Properties

Label 728.1.bs.b.51.1
Level $728$
Weight $1$
Character 728.51
Analytic conductor $0.363$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -104
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,1,Mod(51,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.51");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 728.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.363319329197\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.13763268972544.1

Embedding invariants

Embedding label 51.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 728.51
Dual form 728.1.bs.b.571.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.766044 - 1.32683i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.939693 + 1.62760i) q^{5} -1.53209 q^{6} +(-0.766044 - 0.642788i) q^{7} -1.00000 q^{8} +(-0.673648 + 1.16679i) q^{9} +(0.939693 + 1.62760i) q^{10} +(-0.766044 + 1.32683i) q^{12} -1.00000 q^{13} +(-0.939693 + 0.342020i) q^{14} +2.87939 q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.173648 - 0.300767i) q^{17} +(0.673648 + 1.16679i) q^{18} +1.87939 q^{20} +(-0.266044 + 1.50881i) q^{21} +(0.766044 + 1.32683i) q^{24} +(-1.26604 - 2.19285i) q^{25} +(-0.500000 + 0.866025i) q^{26} +0.532089 q^{27} +(-0.173648 + 0.984808i) q^{28} +(1.43969 - 2.49362i) q^{30} +(-0.500000 - 0.866025i) q^{31} +(0.500000 + 0.866025i) q^{32} -0.347296 q^{34} +(1.76604 - 0.642788i) q^{35} +1.34730 q^{36} +(0.766044 - 1.32683i) q^{37} +(0.766044 + 1.32683i) q^{39} +(0.939693 - 1.62760i) q^{40} +(1.17365 + 0.984808i) q^{42} -1.87939 q^{43} +(-1.26604 - 2.19285i) q^{45} +(0.173648 - 0.300767i) q^{47} +1.53209 q^{48} +(0.173648 + 0.984808i) q^{49} -2.53209 q^{50} +(-0.266044 + 0.460802i) q^{51} +(0.500000 + 0.866025i) q^{52} +(0.266044 - 0.460802i) q^{54} +(0.766044 + 0.642788i) q^{56} +(-1.43969 - 2.49362i) q^{60} -1.00000 q^{62} +(1.26604 - 0.460802i) q^{63} +1.00000 q^{64} +(0.939693 - 1.62760i) q^{65} +(-0.173648 + 0.300767i) q^{68} +(0.326352 - 1.85083i) q^{70} -0.347296 q^{71} +(0.673648 - 1.16679i) q^{72} +(-0.766044 - 1.32683i) q^{74} +(-1.93969 + 3.35965i) q^{75} +1.53209 q^{78} +(-0.939693 - 1.62760i) q^{80} +(0.266044 + 0.460802i) q^{81} +(1.43969 - 0.524005i) q^{84} +0.652704 q^{85} +(-0.939693 + 1.62760i) q^{86} -2.53209 q^{90} +(0.766044 + 0.642788i) q^{91} +(-0.766044 + 1.32683i) q^{93} +(-0.173648 - 0.300767i) q^{94} +(0.766044 - 1.32683i) q^{96} +(0.939693 + 0.342020i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{4} - 6 q^{8} - 3 q^{9} - 6 q^{13} + 6 q^{15} - 3 q^{16} + 3 q^{18} + 3 q^{21} - 3 q^{25} - 3 q^{26} - 6 q^{27} + 3 q^{30} - 3 q^{31} + 3 q^{32} + 6 q^{35} + 6 q^{36} + 6 q^{42} - 3 q^{45}+ \cdots - 6 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.500000 0.866025i
\(3\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(4\) −0.500000 0.866025i −0.500000 0.866025i
\(5\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(6\) −1.53209 −1.53209
\(7\) −0.766044 0.642788i −0.766044 0.642788i
\(8\) −1.00000 −1.00000
\(9\) −0.673648 + 1.16679i −0.673648 + 1.16679i
\(10\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(13\) −1.00000 −1.00000
\(14\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(15\) 2.87939 2.87939
\(16\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(17\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(18\) 0.673648 + 1.16679i 0.673648 + 1.16679i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 1.87939 1.87939
\(21\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(22\) 0 0
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(25\) −1.26604 2.19285i −1.26604 2.19285i
\(26\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(27\) 0.532089 0.532089
\(28\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 1.43969 2.49362i 1.43969 2.49362i
\(31\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(32\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(33\) 0 0
\(34\) −0.347296 −0.347296
\(35\) 1.76604 0.642788i 1.76604 0.642788i
\(36\) 1.34730 1.34730
\(37\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(38\) 0 0
\(39\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(40\) 0.939693 1.62760i 0.939693 1.62760i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(43\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(44\) 0 0
\(45\) −1.26604 2.19285i −1.26604 2.19285i
\(46\) 0 0
\(47\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(48\) 1.53209 1.53209
\(49\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(50\) −2.53209 −2.53209
\(51\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(52\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(53\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) 0.266044 0.460802i 0.266044 0.460802i
\(55\) 0 0
\(56\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) −1.43969 2.49362i −1.43969 2.49362i
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) −1.00000 −1.00000
\(63\) 1.26604 0.460802i 1.26604 0.460802i
\(64\) 1.00000 1.00000
\(65\) 0.939693 1.62760i 0.939693 1.62760i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(69\) 0 0
\(70\) 0.326352 1.85083i 0.326352 1.85083i
\(71\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(72\) 0.673648 1.16679i 0.673648 1.16679i
\(73\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(74\) −0.766044 1.32683i −0.766044 1.32683i
\(75\) −1.93969 + 3.35965i −1.93969 + 3.35965i
\(76\) 0 0
\(77\) 0 0
\(78\) 1.53209 1.53209
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) −0.939693 1.62760i −0.939693 1.62760i
\(81\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 1.43969 0.524005i 1.43969 0.524005i
\(85\) 0.652704 0.652704
\(86\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) −2.53209 −2.53209
\(91\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(92\) 0 0
\(93\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(94\) −0.173648 0.300767i −0.173648 0.300767i
\(95\) 0 0
\(96\) 0.766044 1.32683i 0.766044 1.32683i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(99\) 0 0
\(100\) −1.26604 + 2.19285i −1.26604 + 2.19285i
\(101\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(102\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 1.00000 1.00000
\(105\) −2.20574 1.85083i −2.20574 1.85083i
\(106\) 0 0
\(107\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(108\) −0.266044 0.460802i −0.266044 0.460802i
\(109\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(110\) 0 0
\(111\) −2.34730 −2.34730
\(112\) 0.939693 0.342020i 0.939693 0.342020i
\(113\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.673648 1.16679i 0.673648 1.16679i
\(118\) 0 0
\(119\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(120\) −2.87939 −2.87939
\(121\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(125\) 2.87939 2.87939
\(126\) 0.233956 1.32683i 0.233956 1.32683i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0.500000 0.866025i 0.500000 0.866025i
\(129\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(130\) −0.939693 1.62760i −0.939693 1.62760i
\(131\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(136\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(137\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) 0 0
\(139\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(140\) −1.43969 1.20805i −1.43969 1.20805i
\(141\) −0.532089 −0.532089
\(142\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(143\) 0 0
\(144\) −0.673648 1.16679i −0.673648 1.16679i
\(145\) 0 0
\(146\) 0 0
\(147\) 1.17365 0.984808i 1.17365 0.984808i
\(148\) −1.53209 −1.53209
\(149\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(150\) 1.93969 + 3.35965i 1.93969 + 3.35965i
\(151\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(152\) 0 0
\(153\) 0.467911 0.467911
\(154\) 0 0
\(155\) 1.87939 1.87939
\(156\) 0.766044 1.32683i 0.766044 1.32683i
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −1.87939 −1.87939
\(161\) 0 0
\(162\) 0.532089 0.532089
\(163\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(168\) 0.266044 1.50881i 0.266044 1.50881i
\(169\) 1.00000 1.00000
\(170\) 0.326352 0.565258i 0.326352 0.565258i
\(171\) 0 0
\(172\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) −0.439693 + 2.49362i −0.439693 + 2.49362i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(180\) −1.26604 + 2.19285i −1.26604 + 2.19285i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0.939693 0.342020i 0.939693 0.342020i
\(183\) 0 0
\(184\) 0 0
\(185\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(186\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(187\) 0 0
\(188\) −0.347296 −0.347296
\(189\) −0.407604 0.342020i −0.407604 0.342020i
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) −0.766044 1.32683i −0.766044 1.32683i
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) −2.87939 −2.87939
\(196\) 0.766044 0.642788i 0.766044 0.642788i
\(197\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) 1.26604 + 2.19285i 1.26604 + 2.19285i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0.532089 0.532089
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.500000 0.866025i 0.500000 0.866025i
\(209\) 0 0
\(210\) −2.70574 + 0.984808i −2.70574 + 0.984808i
\(211\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(212\) 0 0
\(213\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(214\) −0.500000 0.866025i −0.500000 0.866025i
\(215\) 1.76604 3.05888i 1.76604 3.05888i
\(216\) −0.532089 −0.532089
\(217\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(218\) −1.87939 −1.87939
\(219\) 0 0
\(220\) 0 0
\(221\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(222\) −1.17365 + 2.03282i −1.17365 + 2.03282i
\(223\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(224\) 0.173648 0.984808i 0.173648 0.984808i
\(225\) 3.41147 3.41147
\(226\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(227\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(228\) 0 0
\(229\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(234\) −0.673648 1.16679i −0.673648 1.16679i
\(235\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(236\) 0 0
\(237\) 0 0
\(238\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(239\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(240\) −1.43969 + 2.49362i −1.43969 + 2.49362i
\(241\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(242\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(243\) 0.673648 1.16679i 0.673648 1.16679i
\(244\) 0 0
\(245\) −1.76604 0.642788i −1.76604 0.642788i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(249\) 0 0
\(250\) 1.43969 2.49362i 1.43969 2.49362i
\(251\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(252\) −1.03209 0.866025i −1.03209 0.866025i
\(253\) 0 0
\(254\) 0 0
\(255\) −0.500000 0.866025i −0.500000 0.866025i
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(258\) 2.87939 2.87939
\(259\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(260\) −1.87939 −1.87939
\(261\) 0 0
\(262\) −0.939693 1.62760i −0.939693 1.62760i
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(270\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(271\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(272\) 0.347296 0.347296
\(273\) 0.266044 1.50881i 0.266044 1.50881i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 0.173648 0.300767i 0.173648 0.300767i
\(279\) 1.34730 1.34730
\(280\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(283\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(284\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.34730 −1.34730
\(289\) 0.439693 0.761570i 0.439693 0.761570i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(294\) −0.266044 1.50881i −0.266044 1.50881i
\(295\) 0 0
\(296\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(297\) 0 0
\(298\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(299\) 0 0
\(300\) 3.87939 3.87939
\(301\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(302\) 0.347296 0.347296
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0.233956 0.405223i 0.233956 0.405223i
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.939693 1.62760i 0.939693 1.62760i
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) −0.766044 1.32683i −0.766044 1.32683i
\(313\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(314\) 0 0
\(315\) −0.439693 + 2.49362i −0.439693 + 2.49362i
\(316\) 0 0
\(317\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(321\) −1.53209 −1.53209
\(322\) 0 0
\(323\) 0 0
\(324\) 0.266044 0.460802i 0.266044 0.460802i
\(325\) 1.26604 + 2.19285i 1.26604 + 2.19285i
\(326\) 0 0
\(327\) −1.43969 + 2.49362i −1.43969 + 2.49362i
\(328\) 0 0
\(329\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(330\) 0 0
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) 1.03209 + 1.78763i 1.03209 + 1.78763i
\(334\) 0.500000 0.866025i 0.500000 0.866025i
\(335\) 0 0
\(336\) −1.17365 0.984808i −1.17365 0.984808i
\(337\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(338\) 0.500000 0.866025i 0.500000 0.866025i
\(339\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(340\) −0.326352 0.565258i −0.326352 0.565258i
\(341\) 0 0
\(342\) 0 0
\(343\) 0.500000 0.866025i 0.500000 0.866025i
\(344\) 1.87939 1.87939
\(345\) 0 0
\(346\) 0 0
\(347\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(348\) 0 0
\(349\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(350\) 1.93969 + 1.62760i 1.93969 + 1.62760i
\(351\) −0.532089 −0.532089
\(352\) 0 0
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0.326352 0.565258i 0.326352 0.565258i
\(356\) 0 0
\(357\) 0.500000 0.181985i 0.500000 0.181985i
\(358\) 1.87939 1.87939
\(359\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(360\) 1.26604 + 2.19285i 1.26604 + 2.19285i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0 0
\(363\) 1.53209 1.53209
\(364\) 0.173648 0.984808i 0.173648 0.984808i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 2.87939 2.87939
\(371\) 0 0
\(372\) 1.53209 1.53209
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) −2.20574 3.82045i −2.20574 3.82045i
\(376\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(377\) 0 0
\(378\) −0.500000 + 0.181985i −0.500000 + 0.181985i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(384\) −1.53209 −1.53209
\(385\) 0 0
\(386\) 0 0
\(387\) 1.26604 2.19285i 1.26604 2.19285i
\(388\) 0 0
\(389\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(390\) −1.43969 + 2.49362i −1.43969 + 2.49362i
\(391\) 0 0
\(392\) −0.173648 0.984808i −0.173648 0.984808i
\(393\) −2.87939 −2.87939
\(394\) 0.939693 1.62760i 0.939693 1.62760i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.53209 2.53209
\(401\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 0 0
\(403\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(404\) 0 0
\(405\) −1.00000 −1.00000
\(406\) 0 0
\(407\) 0 0
\(408\) 0.266044 0.460802i 0.266044 0.460802i
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.500000 0.866025i −0.500000 0.866025i
\(417\) −0.266044 0.460802i −0.266044 0.460802i
\(418\) 0 0
\(419\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(420\) −0.500000 + 2.83564i −0.500000 + 2.83564i
\(421\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(422\) 0.173648 0.300767i 0.173648 0.300767i
\(423\) 0.233956 + 0.405223i 0.233956 + 0.405223i
\(424\) 0 0
\(425\) −0.439693 + 0.761570i −0.439693 + 0.761570i
\(426\) 0.532089 0.532089
\(427\) 0 0
\(428\) −1.00000 −1.00000
\(429\) 0 0
\(430\) −1.76604 3.05888i −1.76604 3.05888i
\(431\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(432\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(433\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(434\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(435\) 0 0
\(436\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) −1.26604 0.460802i −1.26604 0.460802i
\(442\) 0.347296 0.347296
\(443\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(444\) 1.17365 + 2.03282i 1.17365 + 2.03282i
\(445\) 0 0
\(446\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(447\) 1.53209 1.53209
\(448\) −0.766044 0.642788i −0.766044 0.642788i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 1.70574 2.95442i 1.70574 2.95442i
\(451\) 0 0
\(452\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(453\) 0.266044 0.460802i 0.266044 0.460802i
\(454\) 0 0
\(455\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(456\) 0 0
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) −0.766044 1.32683i −0.766044 1.32683i
\(459\) −0.0923963 0.160035i −0.0923963 0.160035i
\(460\) 0 0
\(461\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(462\) 0 0
\(463\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(464\) 0 0
\(465\) −1.43969 2.49362i −1.43969 2.49362i
\(466\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(467\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) −1.34730 −1.34730
\(469\) 0 0
\(470\) 0.652704 0.652704
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0.326352 0.118782i 0.326352 0.118782i
\(477\) 0 0
\(478\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(479\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(480\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(481\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(482\) 0 0
\(483\) 0 0
\(484\) 1.00000 1.00000
\(485\) 0 0
\(486\) −0.673648 1.16679i −0.673648 1.16679i
\(487\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(491\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 1.00000 1.00000
\(497\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(498\) 0 0
\(499\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) −1.43969 2.49362i −1.43969 2.49362i
\(501\) −0.766044 1.32683i −0.766044 1.32683i
\(502\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −1.26604 + 0.460802i −1.26604 + 0.460802i
\(505\) 0 0
\(506\) 0 0
\(507\) −0.766044 1.32683i −0.766044 1.32683i
\(508\) 0 0
\(509\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(510\) −1.00000 −1.00000
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) −0.939693 1.62760i −0.939693 1.62760i
\(515\) 0 0
\(516\) 1.43969 2.49362i 1.43969 2.49362i
\(517\) 0 0
\(518\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(519\) 0 0
\(520\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(521\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(522\) 0 0
\(523\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(524\) −1.87939 −1.87939
\(525\) 3.64543 1.32683i 3.64543 1.32683i
\(526\) 0 0
\(527\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(528\) 0 0
\(529\) −0.500000 0.866025i −0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(536\) 0 0
\(537\) 1.43969 2.49362i 1.43969 2.49362i
\(538\) 0 0
\(539\) 0 0
\(540\) 1.00000 1.00000
\(541\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(542\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(543\) 0 0
\(544\) 0.173648 0.300767i 0.173648 0.300767i
\(545\) 3.53209 3.53209
\(546\) −1.17365 0.984808i −1.17365 0.984808i
\(547\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.20574 3.82045i 2.20574 3.82045i
\(556\) −0.173648 0.300767i −0.173648 0.300767i
\(557\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(558\) 0.673648 1.16679i 0.673648 1.16679i
\(559\) 1.87939 1.87939
\(560\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(561\) 0 0
\(562\) 0 0
\(563\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(564\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(565\) 0.939693 1.62760i 0.939693 1.62760i
\(566\) −2.00000 −2.00000
\(567\) 0.0923963 0.524005i 0.0923963 0.524005i
\(568\) 0.347296 0.347296
\(569\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(570\) 0 0
\(571\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.673648 + 1.16679i −0.673648 + 1.16679i
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) −0.439693 0.761570i −0.439693 0.761570i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.26604 + 2.19285i 1.26604 + 2.19285i
\(586\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −1.43969 0.524005i −1.43969 0.524005i
\(589\) 0 0
\(590\) 0 0
\(591\) −1.43969 2.49362i −1.43969 2.49362i
\(592\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(593\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(594\) 0 0
\(595\) −0.500000 0.419550i −0.500000 0.419550i
\(596\) 1.00000 1.00000
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 1.93969 3.35965i 1.93969 3.35965i
\(601\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(602\) 1.76604 0.642788i 1.76604 0.642788i
\(603\) 0 0
\(604\) 0.173648 0.300767i 0.173648 0.300767i
\(605\) −0.939693 1.62760i −0.939693 1.62760i
\(606\) 0 0
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(612\) −0.233956 0.405223i −0.233956 0.405223i
\(613\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) −0.939693 1.62760i −0.939693 1.62760i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −1.53209 −1.53209
\(625\) −1.43969 + 2.49362i −1.43969 + 2.49362i
\(626\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(627\) 0 0
\(628\) 0 0
\(629\) −0.532089 −0.532089
\(630\) 1.93969 + 1.62760i 1.93969 + 1.62760i
\(631\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(632\) 0 0
\(633\) −0.266044 0.460802i −0.266044 0.460802i
\(634\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.173648 0.984808i −0.173648 0.984808i
\(638\) 0 0
\(639\) 0.233956 0.405223i 0.233956 0.405223i
\(640\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(641\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) −5.41147 −5.41147
\(646\) 0 0
\(647\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(648\) −0.266044 0.460802i −0.266044 0.460802i
\(649\) 0 0
\(650\) 2.53209 2.53209
\(651\) 1.43969 0.524005i 1.43969 0.524005i
\(652\) 0 0
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(655\) 1.76604 + 3.05888i 1.76604 + 3.05888i
\(656\) 0 0
\(657\) 0 0
\(658\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(659\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0.266044 0.460802i 0.266044 0.460802i
\(664\) 0 0
\(665\) 0 0
\(666\) 2.06418 2.06418
\(667\) 0 0
\(668\) −0.500000 0.866025i −0.500000 0.866025i
\(669\) 1.17365 + 2.03282i 1.17365 + 2.03282i
\(670\) 0 0
\(671\) 0 0
\(672\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(673\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(674\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(675\) −0.673648 1.16679i −0.673648 1.16679i
\(676\) −0.500000 0.866025i −0.500000 0.866025i
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 1.53209 1.53209
\(679\) 0 0
\(680\) −0.652704 −0.652704
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.500000 0.866025i −0.500000 0.866025i
\(687\) −2.34730 −2.34730
\(688\) 0.939693 1.62760i 0.939693 1.62760i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.347296 −0.347296
\(695\) −0.326352 + 0.565258i −0.326352 + 0.565258i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(699\) 2.34730 2.34730
\(700\) 2.37939 0.866025i 2.37939 0.866025i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(703\) 0 0
\(704\) 0 0
\(705\) 0.500000 0.866025i 0.500000 0.866025i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(710\) −0.326352 0.565258i −0.326352 0.565258i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0.0923963 0.524005i 0.0923963 0.524005i
\(715\) 0 0
\(716\) 0.939693 1.62760i 0.939693 1.62760i
\(717\) 1.17365 + 2.03282i 1.17365 + 2.03282i
\(718\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) 2.53209 2.53209
\(721\) 0 0
\(722\) −1.00000 −1.00000
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.766044 1.32683i 0.766044 1.32683i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) −0.766044 0.642788i −0.766044 0.642788i
\(729\) −1.53209 −1.53209
\(730\) 0 0
\(731\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(732\) 0 0
\(733\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(734\) 0 0
\(735\) 0.500000 + 2.83564i 0.500000 + 2.83564i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 1.43969 2.49362i 1.43969 2.49362i
\(741\) 0 0
\(742\) 0 0
\(743\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(744\) 0.766044 1.32683i 0.766044 1.32683i
\(745\) −0.939693 1.62760i −0.939693 1.62760i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(750\) −4.41147 −4.41147
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(753\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(754\) 0 0
\(755\) −0.652704 −0.652704
\(756\) −0.0923963 + 0.524005i −0.0923963 + 0.524005i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(764\) 0 0
\(765\) −0.439693 + 0.761570i −0.439693 + 0.761570i
\(766\) −0.766044 1.32683i −0.766044 1.32683i
\(767\) 0 0
\(768\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −2.87939 −2.87939
\(772\) 0 0
\(773\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(774\) −1.26604 2.19285i −1.26604 2.19285i
\(775\) −1.26604 + 2.19285i −1.26604 + 2.19285i
\(776\) 0 0
\(777\) 1.79813 + 1.50881i 1.79813 + 1.50881i
\(778\) 0 0
\(779\) 0 0
\(780\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.939693 0.342020i −0.939693 0.342020i
\(785\) 0 0
\(786\) −1.43969 + 2.49362i −1.43969 + 2.49362i
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) −0.939693 1.62760i −0.939693 1.62760i
\(789\) 0 0
\(790\) 0 0
\(791\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(792\) 0 0
\(793\) 0 0
\(794\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) −0.120615 −0.120615
\(800\) 1.26604 2.19285i 1.26604 2.19285i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 1.00000 1.00000
\(807\) 0 0
\(808\) 0 0
\(809\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(810\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 2.87939 2.87939
\(814\) 0 0
\(815\) 0 0
\(816\) −0.266044 0.460802i −0.266044 0.460802i
\(817\) 0 0
\(818\) 0 0
\(819\) −1.26604 + 0.460802i −1.26604 + 0.460802i
\(820\) 0 0
\(821\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(822\) 0 0
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.00000 −1.00000
\(833\) 0.266044 0.223238i 0.266044 0.223238i
\(834\) −0.532089 −0.532089
\(835\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(836\) 0 0
\(837\) −0.266044 0.460802i −0.266044 0.460802i
\(838\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(839\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(840\) 2.20574 + 1.85083i 2.20574 + 1.85083i
\(841\) 1.00000 1.00000
\(842\) 0.939693 1.62760i 0.939693 1.62760i
\(843\) 0 0
\(844\) −0.173648 0.300767i −0.173648 0.300767i
\(845\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(846\) 0.467911 0.467911
\(847\) 0.939693 0.342020i 0.939693 0.342020i
\(848\) 0 0
\(849\) −1.53209 + 2.65366i −1.53209 + 2.65366i
\(850\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(851\) 0 0
\(852\) 0.266044 0.460802i 0.266044 0.460802i
\(853\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(857\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(858\) 0 0
\(859\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(860\) −3.53209 −3.53209
\(861\) 0 0
\(862\) −1.87939 −1.87939
\(863\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(864\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(865\) 0 0
\(866\) 0.766044 1.32683i 0.766044 1.32683i
\(867\) −1.34730 −1.34730
\(868\) 0.939693 0.342020i 0.939693 0.342020i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(873\) 0 0
\(874\) 0 0
\(875\) −2.20574 1.85083i −2.20574 1.85083i
\(876\) 0 0
\(877\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(878\) 0 0
\(879\) 1.17365 + 2.03282i 1.17365 + 2.03282i
\(880\) 0 0
\(881\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(882\) −1.03209 + 0.866025i −1.03209 + 0.866025i
\(883\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(884\) 0.173648 0.300767i 0.173648 0.300767i
\(885\) 0 0
\(886\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 2.34730 2.34730
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(893\) 0 0
\(894\) 0.766044 1.32683i 0.766044 1.32683i
\(895\) −3.53209 −3.53209
\(896\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −1.70574 2.95442i −1.70574 2.95442i
\(901\) 0 0
\(902\) 0 0
\(903\) 0.500000 2.83564i 0.500000 2.83564i
\(904\) 1.00000 1.00000
\(905\) 0 0
\(906\) −0.266044 0.460802i −0.266044 0.460802i
\(907\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −1.53209 −1.53209
\(917\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(918\) −0.184793 −0.184793
\(919\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(923\) 0.347296 0.347296
\(924\) 0 0
\(925\) −3.87939 −3.87939
\(926\) 0.500000 0.866025i 0.500000 0.866025i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(930\) −2.87939 −2.87939
\(931\) 0 0
\(932\) 1.53209 1.53209
\(933\) 0 0
\(934\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(935\) 0 0
\(936\) −0.673648 + 1.16679i −0.673648 + 1.16679i
\(937\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) 0 0
\(939\) 0.532089 0.532089
\(940\) 0.326352 0.565258i 0.326352 0.565258i
\(941\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0.939693 0.342020i 0.939693 0.342020i
\(946\) 0 0
\(947\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 1.53209 1.53209
\(952\) 0.0603074 0.342020i 0.0603074 0.342020i
\(953\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(957\) 0 0
\(958\) 1.53209 1.53209
\(959\) 0 0
\(960\) 2.87939 2.87939
\(961\) 0 0
\(962\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(963\) 0.673648 + 1.16679i 0.673648 + 1.16679i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(968\) 0.500000 0.866025i 0.500000 0.866025i
\(969\) 0 0
\(970\) 0 0
\(971\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(972\) −1.34730 −1.34730
\(973\) −0.266044 0.223238i −0.266044 0.223238i
\(974\) −1.00000 −1.00000
\(975\) 1.93969 3.35965i 1.93969 3.35965i
\(976\) 0 0
\(977\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(981\) 2.53209 2.53209
\(982\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(983\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(984\) 0 0
\(985\) −1.76604 + 3.05888i −1.76604 + 3.05888i
\(986\) 0 0
\(987\) 0.407604 + 0.342020i 0.407604 + 0.342020i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0.500000 0.866025i 0.500000 0.866025i
\(993\) 0 0
\(994\) 0.326352 0.118782i 0.326352 0.118782i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) 0 0
\(999\) 0.407604 0.705990i 0.407604 0.705990i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.1.bs.b.51.1 yes 6
4.3 odd 2 2912.1.ci.a.1871.3 6
7.4 even 3 inner 728.1.bs.b.571.1 yes 6
8.3 odd 2 728.1.bs.a.51.1 6
8.5 even 2 2912.1.ci.b.1871.3 6
13.12 even 2 728.1.bs.a.51.1 6
28.11 odd 6 2912.1.ci.a.207.3 6
52.51 odd 2 2912.1.ci.b.1871.3 6
56.11 odd 6 728.1.bs.a.571.1 yes 6
56.53 even 6 2912.1.ci.b.207.3 6
91.25 even 6 728.1.bs.a.571.1 yes 6
104.51 odd 2 CM 728.1.bs.b.51.1 yes 6
104.77 even 2 2912.1.ci.a.1871.3 6
364.207 odd 6 2912.1.ci.b.207.3 6
728.389 even 6 2912.1.ci.a.207.3 6
728.571 odd 6 inner 728.1.bs.b.571.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.1.bs.a.51.1 6 8.3 odd 2
728.1.bs.a.51.1 6 13.12 even 2
728.1.bs.a.571.1 yes 6 56.11 odd 6
728.1.bs.a.571.1 yes 6 91.25 even 6
728.1.bs.b.51.1 yes 6 1.1 even 1 trivial
728.1.bs.b.51.1 yes 6 104.51 odd 2 CM
728.1.bs.b.571.1 yes 6 7.4 even 3 inner
728.1.bs.b.571.1 yes 6 728.571 odd 6 inner
2912.1.ci.a.207.3 6 28.11 odd 6
2912.1.ci.a.207.3 6 728.389 even 6
2912.1.ci.a.1871.3 6 4.3 odd 2
2912.1.ci.a.1871.3 6 104.77 even 2
2912.1.ci.b.207.3 6 56.53 even 6
2912.1.ci.b.207.3 6 364.207 odd 6
2912.1.ci.b.1871.3 6 8.5 even 2
2912.1.ci.b.1871.3 6 52.51 odd 2