Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [728,2,Mod(225,728)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(728, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("728.225");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 728 = 2^{3} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 728.bm (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.81310926715\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
225.1 | 0 | −1.56651 | + | 2.71328i | 0 | − | 2.28231i | 0 | 0.866025 | − | 0.500000i | 0 | −3.40791 | − | 5.90267i | 0 | |||||||||||
225.2 | 0 | −1.45593 | + | 2.52174i | 0 | − | 2.05353i | 0 | −0.866025 | + | 0.500000i | 0 | −2.73946 | − | 4.74488i | 0 | |||||||||||
225.3 | 0 | −1.21632 | + | 2.10672i | 0 | 3.98804i | 0 | −0.866025 | + | 0.500000i | 0 | −1.45886 | − | 2.52682i | 0 | ||||||||||||
225.4 | 0 | −0.735217 | + | 1.27343i | 0 | − | 2.91465i | 0 | 0.866025 | − | 0.500000i | 0 | 0.418913 | + | 0.725579i | 0 | |||||||||||
225.5 | 0 | −0.509942 | + | 0.883245i | 0 | − | 2.02001i | 0 | −0.866025 | + | 0.500000i | 0 | 0.979919 | + | 1.69727i | 0 | |||||||||||
225.6 | 0 | −0.266360 | + | 0.461349i | 0 | 3.61008i | 0 | 0.866025 | − | 0.500000i | 0 | 1.35810 | + | 2.35231i | 0 | ||||||||||||
225.7 | 0 | −0.223973 | + | 0.387932i | 0 | − | 0.513505i | 0 | 0.866025 | − | 0.500000i | 0 | 1.39967 | + | 2.42430i | 0 | |||||||||||
225.8 | 0 | 0.0150934 | − | 0.0261426i | 0 | 0.691852i | 0 | −0.866025 | + | 0.500000i | 0 | 1.49954 | + | 2.59729i | 0 | ||||||||||||
225.9 | 0 | 0.879950 | − | 1.52412i | 0 | 0.457188i | 0 | 0.866025 | − | 0.500000i | 0 | −0.0486252 | − | 0.0842213i | 0 | ||||||||||||
225.10 | 0 | 1.01740 | − | 1.76219i | 0 | 2.24692i | 0 | −0.866025 | + | 0.500000i | 0 | −0.570204 | − | 0.987622i | 0 | ||||||||||||
225.11 | 0 | 1.41211 | − | 2.44584i | 0 | − | 4.08885i | 0 | 0.866025 | − | 0.500000i | 0 | −2.48810 | − | 4.30952i | 0 | |||||||||||
225.12 | 0 | 1.64970 | − | 2.85736i | 0 | − | 0.585323i | 0 | −0.866025 | + | 0.500000i | 0 | −3.94299 | − | 6.82946i | 0 | |||||||||||
673.1 | 0 | −1.56651 | − | 2.71328i | 0 | 2.28231i | 0 | 0.866025 | + | 0.500000i | 0 | −3.40791 | + | 5.90267i | 0 | ||||||||||||
673.2 | 0 | −1.45593 | − | 2.52174i | 0 | 2.05353i | 0 | −0.866025 | − | 0.500000i | 0 | −2.73946 | + | 4.74488i | 0 | ||||||||||||
673.3 | 0 | −1.21632 | − | 2.10672i | 0 | − | 3.98804i | 0 | −0.866025 | − | 0.500000i | 0 | −1.45886 | + | 2.52682i | 0 | |||||||||||
673.4 | 0 | −0.735217 | − | 1.27343i | 0 | 2.91465i | 0 | 0.866025 | + | 0.500000i | 0 | 0.418913 | − | 0.725579i | 0 | ||||||||||||
673.5 | 0 | −0.509942 | − | 0.883245i | 0 | 2.02001i | 0 | −0.866025 | − | 0.500000i | 0 | 0.979919 | − | 1.69727i | 0 | ||||||||||||
673.6 | 0 | −0.266360 | − | 0.461349i | 0 | − | 3.61008i | 0 | 0.866025 | + | 0.500000i | 0 | 1.35810 | − | 2.35231i | 0 | |||||||||||
673.7 | 0 | −0.223973 | − | 0.387932i | 0 | 0.513505i | 0 | 0.866025 | + | 0.500000i | 0 | 1.39967 | − | 2.42430i | 0 | ||||||||||||
673.8 | 0 | 0.0150934 | + | 0.0261426i | 0 | − | 0.691852i | 0 | −0.866025 | − | 0.500000i | 0 | 1.49954 | − | 2.59729i | 0 | |||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 728.2.bm.c | ✓ | 24 |
4.b | odd | 2 | 1 | 1456.2.cc.g | 24 | ||
13.e | even | 6 | 1 | inner | 728.2.bm.c | ✓ | 24 |
13.f | odd | 12 | 1 | 9464.2.a.bl | 12 | ||
13.f | odd | 12 | 1 | 9464.2.a.bm | 12 | ||
52.i | odd | 6 | 1 | 1456.2.cc.g | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
728.2.bm.c | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
728.2.bm.c | ✓ | 24 | 13.e | even | 6 | 1 | inner |
1456.2.cc.g | 24 | 4.b | odd | 2 | 1 | ||
1456.2.cc.g | 24 | 52.i | odd | 6 | 1 | ||
9464.2.a.bl | 12 | 13.f | odd | 12 | 1 | ||
9464.2.a.bm | 12 | 13.f | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{24} + 2 T_{3}^{23} + 29 T_{3}^{22} + 54 T_{3}^{21} + 521 T_{3}^{20} + 932 T_{3}^{19} + 5754 T_{3}^{18} + \cdots + 64 \) acting on \(S_{2}^{\mathrm{new}}(728, [\chi])\).