Properties

Label 728.2.bm.c.225.3
Level $728$
Weight $2$
Character 728.225
Analytic conductor $5.813$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(225,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 225.3
Character \(\chi\) \(=\) 728.225
Dual form 728.2.bm.c.673.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.21632 + 2.10672i) q^{3} +3.98804i q^{5} +(-0.866025 + 0.500000i) q^{7} +(-1.45886 - 2.52682i) q^{9} +(2.90265 + 1.67585i) q^{11} +(0.364104 + 3.58712i) q^{13} +(-8.40170 - 4.85073i) q^{15} +(3.40418 + 5.89621i) q^{17} +(0.621861 - 0.359032i) q^{19} -2.43264i q^{21} +(0.509352 - 0.882224i) q^{23} -10.9045 q^{25} -0.200166 q^{27} +(4.79947 - 8.31293i) q^{29} -4.52613i q^{31} +(-7.06109 + 4.07672i) q^{33} +(-1.99402 - 3.45375i) q^{35} +(4.53684 + 2.61935i) q^{37} +(-7.99994 - 3.59601i) q^{39} +(-0.985057 - 0.568723i) q^{41} +(-4.25951 - 7.37769i) q^{43} +(10.0771 - 5.81799i) q^{45} -11.0842i q^{47} +(0.500000 - 0.866025i) q^{49} -16.5622 q^{51} +3.19732 q^{53} +(-6.68334 + 11.5759i) q^{55} +1.74679i q^{57} +(6.50131 - 3.75353i) q^{59} +(1.90489 + 3.29937i) q^{61} +(2.52682 + 1.45886i) q^{63} +(-14.3056 + 1.45206i) q^{65} +(12.6609 + 7.30975i) q^{67} +(1.23907 + 2.14613i) q^{69} +(-11.0774 + 6.39557i) q^{71} +7.44426i q^{73} +(13.2633 - 22.9727i) q^{75} -3.35169 q^{77} +3.61316 q^{79} +(4.62004 - 8.00214i) q^{81} +3.31234i q^{83} +(-23.5143 + 13.5760i) q^{85} +(11.6754 + 20.2223i) q^{87} +(5.96558 + 3.44423i) q^{89} +(-2.10888 - 2.92448i) q^{91} +(9.53530 + 5.50521i) q^{93} +(1.43183 + 2.48001i) q^{95} +(-10.3519 + 5.97665i) q^{97} -9.77929i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{3} - 18 q^{9} + 12 q^{11} + 8 q^{17} - 12 q^{19} + 2 q^{23} - 28 q^{25} - 20 q^{27} + 2 q^{29} - 18 q^{33} - 8 q^{35} + 60 q^{37} + 18 q^{39} - 6 q^{41} + 24 q^{43} - 72 q^{45} + 12 q^{49} - 72 q^{51}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.21632 + 2.10672i −0.702241 + 1.21632i 0.265436 + 0.964128i \(0.414484\pi\)
−0.967678 + 0.252189i \(0.918849\pi\)
\(4\) 0 0
\(5\) 3.98804i 1.78351i 0.452522 + 0.891753i \(0.350524\pi\)
−0.452522 + 0.891753i \(0.649476\pi\)
\(6\) 0 0
\(7\) −0.866025 + 0.500000i −0.327327 + 0.188982i
\(8\) 0 0
\(9\) −1.45886 2.52682i −0.486286 0.842272i
\(10\) 0 0
\(11\) 2.90265 + 1.67585i 0.875182 + 0.505287i 0.869067 0.494695i \(-0.164720\pi\)
0.00611528 + 0.999981i \(0.498053\pi\)
\(12\) 0 0
\(13\) 0.364104 + 3.58712i 0.100984 + 0.994888i
\(14\) 0 0
\(15\) −8.40170 4.85073i −2.16931 1.25245i
\(16\) 0 0
\(17\) 3.40418 + 5.89621i 0.825634 + 1.43004i 0.901434 + 0.432917i \(0.142516\pi\)
−0.0757999 + 0.997123i \(0.524151\pi\)
\(18\) 0 0
\(19\) 0.621861 0.359032i 0.142665 0.0823675i −0.426969 0.904266i \(-0.640419\pi\)
0.569633 + 0.821899i \(0.307085\pi\)
\(20\) 0 0
\(21\) 2.43264i 0.530845i
\(22\) 0 0
\(23\) 0.509352 0.882224i 0.106207 0.183956i −0.808024 0.589150i \(-0.799463\pi\)
0.914231 + 0.405194i \(0.132796\pi\)
\(24\) 0 0
\(25\) −10.9045 −2.18090
\(26\) 0 0
\(27\) −0.200166 −0.0385219
\(28\) 0 0
\(29\) 4.79947 8.31293i 0.891240 1.54367i 0.0528493 0.998602i \(-0.483170\pi\)
0.838390 0.545070i \(-0.183497\pi\)
\(30\) 0 0
\(31\) 4.52613i 0.812916i −0.913669 0.406458i \(-0.866764\pi\)
0.913669 0.406458i \(-0.133236\pi\)
\(32\) 0 0
\(33\) −7.06109 + 4.07672i −1.22918 + 0.709666i
\(34\) 0 0
\(35\) −1.99402 3.45375i −0.337051 0.583790i
\(36\) 0 0
\(37\) 4.53684 + 2.61935i 0.745852 + 0.430618i 0.824193 0.566309i \(-0.191629\pi\)
−0.0783409 + 0.996927i \(0.524962\pi\)
\(38\) 0 0
\(39\) −7.99994 3.59601i −1.28102 0.575823i
\(40\) 0 0
\(41\) −0.985057 0.568723i −0.153840 0.0888196i 0.421104 0.907012i \(-0.361643\pi\)
−0.574944 + 0.818193i \(0.694976\pi\)
\(42\) 0 0
\(43\) −4.25951 7.37769i −0.649569 1.12509i −0.983226 0.182392i \(-0.941616\pi\)
0.333657 0.942695i \(-0.391717\pi\)
\(44\) 0 0
\(45\) 10.0771 5.81799i 1.50220 0.867294i
\(46\) 0 0
\(47\) 11.0842i 1.61679i −0.588637 0.808397i \(-0.700335\pi\)
0.588637 0.808397i \(-0.299665\pi\)
\(48\) 0 0
\(49\) 0.500000 0.866025i 0.0714286 0.123718i
\(50\) 0 0
\(51\) −16.5622 −2.31918
\(52\) 0 0
\(53\) 3.19732 0.439185 0.219593 0.975592i \(-0.429527\pi\)
0.219593 + 0.975592i \(0.429527\pi\)
\(54\) 0 0
\(55\) −6.68334 + 11.5759i −0.901182 + 1.56089i
\(56\) 0 0
\(57\) 1.74679i 0.231367i
\(58\) 0 0
\(59\) 6.50131 3.75353i 0.846398 0.488668i −0.0130358 0.999915i \(-0.504150\pi\)
0.859434 + 0.511247i \(0.170816\pi\)
\(60\) 0 0
\(61\) 1.90489 + 3.29937i 0.243896 + 0.422441i 0.961821 0.273680i \(-0.0882410\pi\)
−0.717924 + 0.696121i \(0.754908\pi\)
\(62\) 0 0
\(63\) 2.52682 + 1.45886i 0.318349 + 0.183799i
\(64\) 0 0
\(65\) −14.3056 + 1.45206i −1.77439 + 0.180106i
\(66\) 0 0
\(67\) 12.6609 + 7.30975i 1.54677 + 0.893028i 0.998386 + 0.0568011i \(0.0180901\pi\)
0.548384 + 0.836227i \(0.315243\pi\)
\(68\) 0 0
\(69\) 1.23907 + 2.14613i 0.149166 + 0.258364i
\(70\) 0 0
\(71\) −11.0774 + 6.39557i −1.31465 + 0.759014i −0.982863 0.184340i \(-0.940985\pi\)
−0.331788 + 0.943354i \(0.607652\pi\)
\(72\) 0 0
\(73\) 7.44426i 0.871285i 0.900120 + 0.435643i \(0.143479\pi\)
−0.900120 + 0.435643i \(0.856521\pi\)
\(74\) 0 0
\(75\) 13.2633 22.9727i 1.53152 2.65266i
\(76\) 0 0
\(77\) −3.35169 −0.381961
\(78\) 0 0
\(79\) 3.61316 0.406512 0.203256 0.979126i \(-0.434848\pi\)
0.203256 + 0.979126i \(0.434848\pi\)
\(80\) 0 0
\(81\) 4.62004 8.00214i 0.513338 0.889127i
\(82\) 0 0
\(83\) 3.31234i 0.363576i 0.983338 + 0.181788i \(0.0581885\pi\)
−0.983338 + 0.181788i \(0.941811\pi\)
\(84\) 0 0
\(85\) −23.5143 + 13.5760i −2.55049 + 1.47252i
\(86\) 0 0
\(87\) 11.6754 + 20.2223i 1.25173 + 2.16806i
\(88\) 0 0
\(89\) 5.96558 + 3.44423i 0.632351 + 0.365088i 0.781662 0.623702i \(-0.214372\pi\)
−0.149311 + 0.988790i \(0.547706\pi\)
\(90\) 0 0
\(91\) −2.10888 2.92448i −0.221071 0.306569i
\(92\) 0 0
\(93\) 9.53530 + 5.50521i 0.988765 + 0.570863i
\(94\) 0 0
\(95\) 1.43183 + 2.48001i 0.146903 + 0.254443i
\(96\) 0 0
\(97\) −10.3519 + 5.97665i −1.05107 + 0.606837i −0.922950 0.384921i \(-0.874229\pi\)
−0.128123 + 0.991758i \(0.540895\pi\)
\(98\) 0 0
\(99\) 9.77929i 0.982855i
\(100\) 0 0
\(101\) 5.64792 9.78248i 0.561989 0.973393i −0.435334 0.900269i \(-0.643370\pi\)
0.997323 0.0731239i \(-0.0232968\pi\)
\(102\) 0 0
\(103\) 2.13103 0.209976 0.104988 0.994473i \(-0.466520\pi\)
0.104988 + 0.994473i \(0.466520\pi\)
\(104\) 0 0
\(105\) 9.70145 0.946765
\(106\) 0 0
\(107\) −8.79045 + 15.2255i −0.849805 + 1.47191i 0.0315771 + 0.999501i \(0.489947\pi\)
−0.881382 + 0.472404i \(0.843386\pi\)
\(108\) 0 0
\(109\) 5.94894i 0.569805i −0.958557 0.284902i \(-0.908039\pi\)
0.958557 0.284902i \(-0.0919612\pi\)
\(110\) 0 0
\(111\) −11.0365 + 6.37192i −1.04754 + 0.604796i
\(112\) 0 0
\(113\) 1.55550 + 2.69421i 0.146330 + 0.253450i 0.929868 0.367893i \(-0.119921\pi\)
−0.783539 + 0.621343i \(0.786587\pi\)
\(114\) 0 0
\(115\) 3.51835 + 2.03132i 0.328087 + 0.189421i
\(116\) 0 0
\(117\) 8.53282 6.15312i 0.788859 0.568856i
\(118\) 0 0
\(119\) −5.89621 3.40418i −0.540504 0.312060i
\(120\) 0 0
\(121\) 0.116921 + 0.202513i 0.0106292 + 0.0184103i
\(122\) 0 0
\(123\) 2.39628 1.38350i 0.216066 0.124746i
\(124\) 0 0
\(125\) 23.5473i 2.10614i
\(126\) 0 0
\(127\) 5.87191 10.1704i 0.521047 0.902481i −0.478653 0.878004i \(-0.658875\pi\)
0.999700 0.0244765i \(-0.00779189\pi\)
\(128\) 0 0
\(129\) 20.7237 1.82462
\(130\) 0 0
\(131\) −7.96449 −0.695860 −0.347930 0.937520i \(-0.613115\pi\)
−0.347930 + 0.937520i \(0.613115\pi\)
\(132\) 0 0
\(133\) −0.359032 + 0.621861i −0.0311320 + 0.0539222i
\(134\) 0 0
\(135\) 0.798270i 0.0687041i
\(136\) 0 0
\(137\) 16.8986 9.75643i 1.44375 0.833548i 0.445651 0.895207i \(-0.352972\pi\)
0.998097 + 0.0616585i \(0.0196390\pi\)
\(138\) 0 0
\(139\) 3.54000 + 6.13147i 0.300259 + 0.520064i 0.976195 0.216897i \(-0.0695935\pi\)
−0.675935 + 0.736961i \(0.736260\pi\)
\(140\) 0 0
\(141\) 23.3513 + 13.4819i 1.96654 + 1.13538i
\(142\) 0 0
\(143\) −4.95459 + 11.0223i −0.414324 + 0.921734i
\(144\) 0 0
\(145\) 33.1523 + 19.1405i 2.75315 + 1.58953i
\(146\) 0 0
\(147\) 1.21632 + 2.10672i 0.100320 + 0.173760i
\(148\) 0 0
\(149\) 4.07836 2.35464i 0.334112 0.192900i −0.323553 0.946210i \(-0.604877\pi\)
0.657665 + 0.753310i \(0.271544\pi\)
\(150\) 0 0
\(151\) 8.99006i 0.731600i 0.930693 + 0.365800i \(0.119205\pi\)
−0.930693 + 0.365800i \(0.880795\pi\)
\(152\) 0 0
\(153\) 9.93242 17.2035i 0.802989 1.39082i
\(154\) 0 0
\(155\) 18.0504 1.44984
\(156\) 0 0
\(157\) −3.64545 −0.290938 −0.145469 0.989363i \(-0.546469\pi\)
−0.145469 + 0.989363i \(0.546469\pi\)
\(158\) 0 0
\(159\) −3.88895 + 6.73586i −0.308414 + 0.534189i
\(160\) 0 0
\(161\) 1.01870i 0.0802851i
\(162\) 0 0
\(163\) 9.57892 5.53039i 0.750279 0.433174i −0.0755156 0.997145i \(-0.524060\pi\)
0.825795 + 0.563971i \(0.190727\pi\)
\(164\) 0 0
\(165\) −16.2581 28.1599i −1.26569 2.19225i
\(166\) 0 0
\(167\) −6.10346 3.52384i −0.472300 0.272683i 0.244902 0.969548i \(-0.421244\pi\)
−0.717202 + 0.696865i \(0.754578\pi\)
\(168\) 0 0
\(169\) −12.7349 + 2.61217i −0.979604 + 0.200936i
\(170\) 0 0
\(171\) −1.81441 1.04755i −0.138752 0.0801083i
\(172\) 0 0
\(173\) −7.54568 13.0695i −0.573688 0.993656i −0.996183 0.0872910i \(-0.972179\pi\)
0.422495 0.906365i \(-0.361154\pi\)
\(174\) 0 0
\(175\) 9.44356 5.45224i 0.713866 0.412151i
\(176\) 0 0
\(177\) 18.2619i 1.37265i
\(178\) 0 0
\(179\) −6.29634 + 10.9056i −0.470611 + 0.815122i −0.999435 0.0336095i \(-0.989300\pi\)
0.528824 + 0.848731i \(0.322633\pi\)
\(180\) 0 0
\(181\) −10.8101 −0.803511 −0.401756 0.915747i \(-0.631600\pi\)
−0.401756 + 0.915747i \(0.631600\pi\)
\(182\) 0 0
\(183\) −9.26782 −0.685097
\(184\) 0 0
\(185\) −10.4461 + 18.0931i −0.768010 + 1.33023i
\(186\) 0 0
\(187\) 22.8195i 1.66873i
\(188\) 0 0
\(189\) 0.173349 0.100083i 0.0126093 0.00727996i
\(190\) 0 0
\(191\) 6.60184 + 11.4347i 0.477692 + 0.827387i 0.999673 0.0255702i \(-0.00814014\pi\)
−0.521981 + 0.852957i \(0.674807\pi\)
\(192\) 0 0
\(193\) −4.83035 2.78880i −0.347696 0.200743i 0.315974 0.948768i \(-0.397669\pi\)
−0.663670 + 0.748025i \(0.731002\pi\)
\(194\) 0 0
\(195\) 14.3410 31.9041i 1.02698 2.28470i
\(196\) 0 0
\(197\) 2.74329 + 1.58384i 0.195452 + 0.112844i 0.594532 0.804072i \(-0.297337\pi\)
−0.399081 + 0.916916i \(0.630671\pi\)
\(198\) 0 0
\(199\) 3.10818 + 5.38353i 0.220333 + 0.381629i 0.954909 0.296898i \(-0.0959521\pi\)
−0.734576 + 0.678527i \(0.762619\pi\)
\(200\) 0 0
\(201\) −30.7992 + 17.7820i −2.17241 + 1.25424i
\(202\) 0 0
\(203\) 9.59895i 0.673714i
\(204\) 0 0
\(205\) 2.26809 3.92845i 0.158410 0.274375i
\(206\) 0 0
\(207\) −2.97229 −0.206588
\(208\) 0 0
\(209\) 2.40673 0.166477
\(210\) 0 0
\(211\) −7.13911 + 12.3653i −0.491477 + 0.851262i −0.999952 0.00981417i \(-0.996876\pi\)
0.508475 + 0.861077i \(0.330209\pi\)
\(212\) 0 0
\(213\) 31.1162i 2.13204i
\(214\) 0 0
\(215\) 29.4225 16.9871i 2.00660 1.15851i
\(216\) 0 0
\(217\) 2.26306 + 3.91974i 0.153627 + 0.266089i
\(218\) 0 0
\(219\) −15.6830 9.05459i −1.05976 0.611853i
\(220\) 0 0
\(221\) −19.9109 + 14.3580i −1.33935 + 0.965825i
\(222\) 0 0
\(223\) −6.50691 3.75677i −0.435735 0.251572i 0.266052 0.963959i \(-0.414281\pi\)
−0.701787 + 0.712387i \(0.747614\pi\)
\(224\) 0 0
\(225\) 15.9081 + 27.5536i 1.06054 + 1.83691i
\(226\) 0 0
\(227\) 9.98521 5.76496i 0.662742 0.382634i −0.130579 0.991438i \(-0.541684\pi\)
0.793321 + 0.608804i \(0.208350\pi\)
\(228\) 0 0
\(229\) 5.92000i 0.391204i −0.980683 0.195602i \(-0.937334\pi\)
0.980683 0.195602i \(-0.0626661\pi\)
\(230\) 0 0
\(231\) 4.07672 7.06109i 0.268229 0.464586i
\(232\) 0 0
\(233\) −27.3769 −1.79352 −0.896759 0.442519i \(-0.854085\pi\)
−0.896759 + 0.442519i \(0.854085\pi\)
\(234\) 0 0
\(235\) 44.2042 2.88356
\(236\) 0 0
\(237\) −4.39475 + 7.61192i −0.285469 + 0.494448i
\(238\) 0 0
\(239\) 25.9440i 1.67818i −0.543996 0.839088i \(-0.683089\pi\)
0.543996 0.839088i \(-0.316911\pi\)
\(240\) 0 0
\(241\) 20.8922 12.0621i 1.34578 0.776988i 0.358134 0.933670i \(-0.383413\pi\)
0.987649 + 0.156682i \(0.0500797\pi\)
\(242\) 0 0
\(243\) 10.9386 + 18.9463i 0.701713 + 1.21540i
\(244\) 0 0
\(245\) 3.45375 + 1.99402i 0.220652 + 0.127393i
\(246\) 0 0
\(247\) 1.51431 + 2.09996i 0.0963533 + 0.133618i
\(248\) 0 0
\(249\) −6.97819 4.02886i −0.442225 0.255318i
\(250\) 0 0
\(251\) 1.58994 + 2.75386i 0.100356 + 0.173822i 0.911832 0.410565i \(-0.134668\pi\)
−0.811475 + 0.584387i \(0.801335\pi\)
\(252\) 0 0
\(253\) 2.95694 1.70719i 0.185901 0.107330i
\(254\) 0 0
\(255\) 66.0509i 4.13627i
\(256\) 0 0
\(257\) 10.4090 18.0288i 0.649293 1.12461i −0.333999 0.942573i \(-0.608398\pi\)
0.983292 0.182035i \(-0.0582684\pi\)
\(258\) 0 0
\(259\) −5.23869 −0.325517
\(260\) 0 0
\(261\) −28.0070 −1.73359
\(262\) 0 0
\(263\) 2.33273 4.04041i 0.143842 0.249142i −0.785098 0.619371i \(-0.787388\pi\)
0.928940 + 0.370229i \(0.120721\pi\)
\(264\) 0 0
\(265\) 12.7510i 0.783289i
\(266\) 0 0
\(267\) −14.5121 + 8.37856i −0.888126 + 0.512760i
\(268\) 0 0
\(269\) −2.79744 4.84531i −0.170563 0.295424i 0.768054 0.640385i \(-0.221225\pi\)
−0.938617 + 0.344961i \(0.887892\pi\)
\(270\) 0 0
\(271\) −1.28702 0.743063i −0.0781810 0.0451378i 0.460400 0.887712i \(-0.347706\pi\)
−0.538581 + 0.842574i \(0.681039\pi\)
\(272\) 0 0
\(273\) 8.72616 0.885732i 0.528131 0.0536069i
\(274\) 0 0
\(275\) −31.6519 18.2742i −1.90868 1.10198i
\(276\) 0 0
\(277\) 14.2101 + 24.6127i 0.853804 + 1.47883i 0.877750 + 0.479119i \(0.159044\pi\)
−0.0239462 + 0.999713i \(0.507623\pi\)
\(278\) 0 0
\(279\) −11.4367 + 6.60298i −0.684697 + 0.395310i
\(280\) 0 0
\(281\) 19.5795i 1.16801i −0.811749 0.584007i \(-0.801484\pi\)
0.811749 0.584007i \(-0.198516\pi\)
\(282\) 0 0
\(283\) −6.44095 + 11.1561i −0.382875 + 0.663158i −0.991472 0.130321i \(-0.958399\pi\)
0.608597 + 0.793479i \(0.291733\pi\)
\(284\) 0 0
\(285\) −6.96626 −0.412645
\(286\) 0 0
\(287\) 1.13745 0.0671413
\(288\) 0 0
\(289\) −14.6768 + 25.4210i −0.863343 + 1.49535i
\(290\) 0 0
\(291\) 29.0780i 1.70459i
\(292\) 0 0
\(293\) −10.7014 + 6.17846i −0.625183 + 0.360950i −0.778884 0.627168i \(-0.784214\pi\)
0.153701 + 0.988117i \(0.450881\pi\)
\(294\) 0 0
\(295\) 14.9692 + 25.9275i 0.871543 + 1.50956i
\(296\) 0 0
\(297\) −0.581012 0.335447i −0.0337137 0.0194646i
\(298\) 0 0
\(299\) 3.35010 + 1.50589i 0.193741 + 0.0870876i
\(300\) 0 0
\(301\) 7.37769 + 4.25951i 0.425243 + 0.245514i
\(302\) 0 0
\(303\) 13.7393 + 23.7972i 0.789303 + 1.36711i
\(304\) 0 0
\(305\) −13.1580 + 7.59679i −0.753426 + 0.434991i
\(306\) 0 0
\(307\) 0.570197i 0.0325429i −0.999868 0.0162714i \(-0.994820\pi\)
0.999868 0.0162714i \(-0.00517959\pi\)
\(308\) 0 0
\(309\) −2.59200 + 4.48948i −0.147454 + 0.255398i
\(310\) 0 0
\(311\) −27.5957 −1.56481 −0.782404 0.622771i \(-0.786007\pi\)
−0.782404 + 0.622771i \(0.786007\pi\)
\(312\) 0 0
\(313\) −2.85101 −0.161149 −0.0805744 0.996749i \(-0.525675\pi\)
−0.0805744 + 0.996749i \(0.525675\pi\)
\(314\) 0 0
\(315\) −5.81799 + 10.0771i −0.327806 + 0.567777i
\(316\) 0 0
\(317\) 32.7278i 1.83818i 0.394052 + 0.919088i \(0.371073\pi\)
−0.394052 + 0.919088i \(0.628927\pi\)
\(318\) 0 0
\(319\) 27.8624 16.0864i 1.55999 0.900663i
\(320\) 0 0
\(321\) −21.3840 37.0381i −1.19354 2.06727i
\(322\) 0 0
\(323\) 4.23385 + 2.44441i 0.235578 + 0.136011i
\(324\) 0 0
\(325\) −3.97036 39.1157i −0.220236 2.16975i
\(326\) 0 0
\(327\) 12.5328 + 7.23580i 0.693064 + 0.400141i
\(328\) 0 0
\(329\) 5.54209 + 9.59919i 0.305546 + 0.529220i
\(330\) 0 0
\(331\) 1.88365 1.08753i 0.103535 0.0597759i −0.447338 0.894365i \(-0.647628\pi\)
0.550873 + 0.834589i \(0.314295\pi\)
\(332\) 0 0
\(333\) 15.2850i 0.837614i
\(334\) 0 0
\(335\) −29.1516 + 50.4920i −1.59272 + 2.75867i
\(336\) 0 0
\(337\) 6.15505 0.335287 0.167644 0.985848i \(-0.446384\pi\)
0.167644 + 0.985848i \(0.446384\pi\)
\(338\) 0 0
\(339\) −7.56795 −0.411035
\(340\) 0 0
\(341\) 7.58509 13.1378i 0.410756 0.711450i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −8.55885 + 4.94146i −0.460793 + 0.266039i
\(346\) 0 0
\(347\) −0.620250 1.07430i −0.0332968 0.0576717i 0.848897 0.528559i \(-0.177267\pi\)
−0.882194 + 0.470887i \(0.843934\pi\)
\(348\) 0 0
\(349\) −15.5980 9.00554i −0.834944 0.482055i 0.0205981 0.999788i \(-0.493443\pi\)
−0.855543 + 0.517732i \(0.826776\pi\)
\(350\) 0 0
\(351\) −0.0728812 0.718019i −0.00389011 0.0383250i
\(352\) 0 0
\(353\) −8.93323 5.15760i −0.475468 0.274511i 0.243058 0.970012i \(-0.421849\pi\)
−0.718526 + 0.695500i \(0.755183\pi\)
\(354\) 0 0
\(355\) −25.5058 44.1773i −1.35371 2.34469i
\(356\) 0 0
\(357\) 14.3433 8.28112i 0.759129 0.438283i
\(358\) 0 0
\(359\) 19.7883i 1.04439i −0.852827 0.522193i \(-0.825114\pi\)
0.852827 0.522193i \(-0.174886\pi\)
\(360\) 0 0
\(361\) −9.24219 + 16.0079i −0.486431 + 0.842524i
\(362\) 0 0
\(363\) −0.568852 −0.0298570
\(364\) 0 0
\(365\) −29.6880 −1.55394
\(366\) 0 0
\(367\) 6.77618 11.7367i 0.353714 0.612650i −0.633183 0.774002i \(-0.718252\pi\)
0.986897 + 0.161352i \(0.0515854\pi\)
\(368\) 0 0
\(369\) 3.31874i 0.172767i
\(370\) 0 0
\(371\) −2.76896 + 1.59866i −0.143757 + 0.0829982i
\(372\) 0 0
\(373\) −6.70165 11.6076i −0.346998 0.601019i 0.638716 0.769442i \(-0.279466\pi\)
−0.985715 + 0.168424i \(0.946132\pi\)
\(374\) 0 0
\(375\) 49.6077 + 28.6410i 2.56173 + 1.47902i
\(376\) 0 0
\(377\) 31.5670 + 14.1895i 1.62578 + 0.730797i
\(378\) 0 0
\(379\) 14.9512 + 8.63206i 0.767990 + 0.443399i 0.832157 0.554540i \(-0.187106\pi\)
−0.0641670 + 0.997939i \(0.520439\pi\)
\(380\) 0 0
\(381\) 14.2842 + 24.7410i 0.731802 + 1.26752i
\(382\) 0 0
\(383\) 10.0074 5.77775i 0.511352 0.295229i −0.222037 0.975038i \(-0.571271\pi\)
0.733389 + 0.679809i \(0.237937\pi\)
\(384\) 0 0
\(385\) 13.3667i 0.681230i
\(386\) 0 0
\(387\) −12.4280 + 21.5260i −0.631753 + 1.09423i
\(388\) 0 0
\(389\) −21.4305 −1.08657 −0.543284 0.839549i \(-0.682819\pi\)
−0.543284 + 0.839549i \(0.682819\pi\)
\(390\) 0 0
\(391\) 6.93570 0.350753
\(392\) 0 0
\(393\) 9.68735 16.7790i 0.488662 0.846387i
\(394\) 0 0
\(395\) 14.4094i 0.725016i
\(396\) 0 0
\(397\) 10.2782 5.93414i 0.515850 0.297826i −0.219385 0.975638i \(-0.570405\pi\)
0.735235 + 0.677812i \(0.237072\pi\)
\(398\) 0 0
\(399\) −0.873393 1.51276i −0.0437243 0.0757328i
\(400\) 0 0
\(401\) 5.71607 + 3.30017i 0.285447 + 0.164803i 0.635887 0.771782i \(-0.280635\pi\)
−0.350440 + 0.936585i \(0.613968\pi\)
\(402\) 0 0
\(403\) 16.2358 1.64798i 0.808761 0.0820917i
\(404\) 0 0
\(405\) 31.9129 + 18.4249i 1.58576 + 0.915541i
\(406\) 0 0
\(407\) 8.77925 + 15.2061i 0.435171 + 0.753738i
\(408\) 0 0
\(409\) −27.8315 + 16.0685i −1.37618 + 0.794538i −0.991697 0.128594i \(-0.958953\pi\)
−0.384483 + 0.923132i \(0.625620\pi\)
\(410\) 0 0
\(411\) 47.4677i 2.34141i
\(412\) 0 0
\(413\) −3.75353 + 6.50131i −0.184699 + 0.319908i
\(414\) 0 0
\(415\) −13.2097 −0.648441
\(416\) 0 0
\(417\) −17.2231 −0.843418
\(418\) 0 0
\(419\) −6.57238 + 11.3837i −0.321082 + 0.556130i −0.980712 0.195461i \(-0.937380\pi\)
0.659630 + 0.751591i \(0.270713\pi\)
\(420\) 0 0
\(421\) 33.7473i 1.64474i −0.568952 0.822371i \(-0.692651\pi\)
0.568952 0.822371i \(-0.307349\pi\)
\(422\) 0 0
\(423\) −28.0077 + 16.1703i −1.36178 + 0.786225i
\(424\) 0 0
\(425\) −37.1208 64.2950i −1.80062 3.11877i
\(426\) 0 0
\(427\) −3.29937 1.90489i −0.159668 0.0921842i
\(428\) 0 0
\(429\) −17.1947 23.8446i −0.830166 1.15123i
\(430\) 0 0
\(431\) 7.61484 + 4.39643i 0.366794 + 0.211769i 0.672057 0.740500i \(-0.265411\pi\)
−0.305263 + 0.952268i \(0.598744\pi\)
\(432\) 0 0
\(433\) 15.3059 + 26.5106i 0.735556 + 1.27402i 0.954479 + 0.298278i \(0.0964122\pi\)
−0.218923 + 0.975742i \(0.570254\pi\)
\(434\) 0 0
\(435\) −80.6475 + 46.5619i −3.86675 + 2.23247i
\(436\) 0 0
\(437\) 0.731494i 0.0349921i
\(438\) 0 0
\(439\) −9.30460 + 16.1160i −0.444084 + 0.769176i −0.997988 0.0634044i \(-0.979804\pi\)
0.553904 + 0.832581i \(0.313138\pi\)
\(440\) 0 0
\(441\) −2.91772 −0.138939
\(442\) 0 0
\(443\) 0.0390168 0.00185374 0.000926871 1.00000i \(-0.499705\pi\)
0.000926871 1.00000i \(0.499705\pi\)
\(444\) 0 0
\(445\) −13.7357 + 23.7910i −0.651136 + 1.12780i
\(446\) 0 0
\(447\) 11.4560i 0.541849i
\(448\) 0 0
\(449\) 30.4435 17.5765i 1.43672 0.829488i 0.439095 0.898440i \(-0.355299\pi\)
0.997620 + 0.0689525i \(0.0219657\pi\)
\(450\) 0 0
\(451\) −1.90618 3.30161i −0.0897587 0.155467i
\(452\) 0 0
\(453\) −18.9396 10.9348i −0.889859 0.513760i
\(454\) 0 0
\(455\) 11.6630 8.41031i 0.546768 0.394282i
\(456\) 0 0
\(457\) −1.80481 1.04201i −0.0844254 0.0487430i 0.457193 0.889368i \(-0.348855\pi\)
−0.541618 + 0.840624i \(0.682188\pi\)
\(458\) 0 0
\(459\) −0.681400 1.18022i −0.0318050 0.0550879i
\(460\) 0 0
\(461\) 18.8011 10.8548i 0.875652 0.505558i 0.00642998 0.999979i \(-0.497953\pi\)
0.869222 + 0.494421i \(0.164620\pi\)
\(462\) 0 0
\(463\) 3.23290i 0.150246i −0.997174 0.0751229i \(-0.976065\pi\)
0.997174 0.0751229i \(-0.0239349\pi\)
\(464\) 0 0
\(465\) −21.9550 + 38.0272i −1.01814 + 1.76347i
\(466\) 0 0
\(467\) −6.13695 −0.283984 −0.141992 0.989868i \(-0.545351\pi\)
−0.141992 + 0.989868i \(0.545351\pi\)
\(468\) 0 0
\(469\) −14.6195 −0.675066
\(470\) 0 0
\(471\) 4.43402 7.67995i 0.204309 0.353874i
\(472\) 0 0
\(473\) 28.5531i 1.31287i
\(474\) 0 0
\(475\) −6.78107 + 3.91505i −0.311137 + 0.179635i
\(476\) 0 0
\(477\) −4.66443 8.07903i −0.213570 0.369913i
\(478\) 0 0
\(479\) 5.93664 + 3.42752i 0.271252 + 0.156607i 0.629456 0.777036i \(-0.283278\pi\)
−0.358204 + 0.933643i \(0.616611\pi\)
\(480\) 0 0
\(481\) −7.74403 + 17.2279i −0.353097 + 0.785525i
\(482\) 0 0
\(483\) −2.14613 1.23907i −0.0976522 0.0563796i
\(484\) 0 0
\(485\) −23.8351 41.2837i −1.08230 1.87460i
\(486\) 0 0
\(487\) −33.1986 + 19.1672i −1.50437 + 0.868551i −0.504387 + 0.863478i \(0.668281\pi\)
−0.999987 + 0.00507302i \(0.998385\pi\)
\(488\) 0 0
\(489\) 26.9069i 1.21677i
\(490\) 0 0
\(491\) 11.7060 20.2754i 0.528284 0.915015i −0.471172 0.882041i \(-0.656169\pi\)
0.999456 0.0329734i \(-0.0104977\pi\)
\(492\) 0 0
\(493\) 65.3530 2.94335
\(494\) 0 0
\(495\) 39.0002 1.75293
\(496\) 0 0
\(497\) 6.39557 11.0774i 0.286880 0.496891i
\(498\) 0 0
\(499\) 15.7127i 0.703395i −0.936114 0.351697i \(-0.885605\pi\)
0.936114 0.351697i \(-0.114395\pi\)
\(500\) 0 0
\(501\) 14.8475 8.57221i 0.663338 0.382978i
\(502\) 0 0
\(503\) −16.9329 29.3286i −0.755000 1.30770i −0.945374 0.325987i \(-0.894303\pi\)
0.190374 0.981712i \(-0.439030\pi\)
\(504\) 0 0
\(505\) 39.0129 + 22.5241i 1.73605 + 1.00231i
\(506\) 0 0
\(507\) 9.98652 30.0061i 0.443517 1.33262i
\(508\) 0 0
\(509\) 6.74442 + 3.89389i 0.298941 + 0.172594i 0.641967 0.766732i \(-0.278119\pi\)
−0.343026 + 0.939326i \(0.611452\pi\)
\(510\) 0 0
\(511\) −3.72213 6.44692i −0.164657 0.285195i
\(512\) 0 0
\(513\) −0.124475 + 0.0718659i −0.00549572 + 0.00317296i
\(514\) 0 0
\(515\) 8.49862i 0.374494i
\(516\) 0 0
\(517\) 18.5754 32.1735i 0.816945 1.41499i
\(518\) 0 0
\(519\) 36.7118 1.61147
\(520\) 0 0
\(521\) −22.6954 −0.994302 −0.497151 0.867664i \(-0.665621\pi\)
−0.497151 + 0.867664i \(0.665621\pi\)
\(522\) 0 0
\(523\) −16.6328 + 28.8088i −0.727301 + 1.25972i 0.230718 + 0.973021i \(0.425892\pi\)
−0.958020 + 0.286702i \(0.907441\pi\)
\(524\) 0 0
\(525\) 26.5266i 1.15772i
\(526\) 0 0
\(527\) 26.6870 15.4077i 1.16250 0.671171i
\(528\) 0 0
\(529\) 10.9811 + 19.0199i 0.477440 + 0.826950i
\(530\) 0 0
\(531\) −18.9690 10.9517i −0.823183 0.475265i
\(532\) 0 0
\(533\) 1.68141 3.74059i 0.0728301 0.162023i
\(534\) 0 0
\(535\) −60.7200 35.0567i −2.62515 1.51563i
\(536\) 0 0
\(537\) −15.3167 26.5293i −0.660965 1.14482i
\(538\) 0 0
\(539\) 2.90265 1.67585i 0.125026 0.0721838i
\(540\) 0 0
\(541\) 34.2525i 1.47263i −0.676640 0.736314i \(-0.736565\pi\)
0.676640 0.736314i \(-0.263435\pi\)
\(542\) 0 0
\(543\) 13.1486 22.7740i 0.564259 0.977325i
\(544\) 0 0
\(545\) 23.7246 1.01625
\(546\) 0 0
\(547\) −17.4809 −0.747428 −0.373714 0.927544i \(-0.621916\pi\)
−0.373714 + 0.927544i \(0.621916\pi\)
\(548\) 0 0
\(549\) 5.55794 9.62663i 0.237207 0.410854i
\(550\) 0 0
\(551\) 6.89265i 0.293637i
\(552\) 0 0
\(553\) −3.12908 + 1.80658i −0.133062 + 0.0768235i
\(554\) 0 0
\(555\) −25.4115 44.0140i −1.07866 1.86829i
\(556\) 0 0
\(557\) 12.5934 + 7.27078i 0.533598 + 0.308073i 0.742480 0.669868i \(-0.233649\pi\)
−0.208883 + 0.977941i \(0.566983\pi\)
\(558\) 0 0
\(559\) 24.9137 17.9656i 1.05374 0.759864i
\(560\) 0 0
\(561\) −48.0744 27.7558i −2.02970 1.17185i
\(562\) 0 0
\(563\) 21.4677 + 37.1832i 0.904757 + 1.56708i 0.821244 + 0.570578i \(0.193281\pi\)
0.0835128 + 0.996507i \(0.473386\pi\)
\(564\) 0 0
\(565\) −10.7446 + 6.20342i −0.452030 + 0.260980i
\(566\) 0 0
\(567\) 9.24008i 0.388047i
\(568\) 0 0
\(569\) 8.12537 14.0736i 0.340633 0.589994i −0.643917 0.765095i \(-0.722692\pi\)
0.984550 + 0.175101i \(0.0560252\pi\)
\(570\) 0 0
\(571\) 16.4589 0.688784 0.344392 0.938826i \(-0.388085\pi\)
0.344392 + 0.938826i \(0.388085\pi\)
\(572\) 0 0
\(573\) −32.1197 −1.34182
\(574\) 0 0
\(575\) −5.55422 + 9.62019i −0.231627 + 0.401190i
\(576\) 0 0
\(577\) 34.1900i 1.42335i 0.702509 + 0.711674i \(0.252063\pi\)
−0.702509 + 0.711674i \(0.747937\pi\)
\(578\) 0 0
\(579\) 11.7505 6.78414i 0.488333 0.281939i
\(580\) 0 0
\(581\) −1.65617 2.86857i −0.0687095 0.119008i
\(582\) 0 0
\(583\) 9.28069 + 5.35821i 0.384367 + 0.221914i
\(584\) 0 0
\(585\) 24.5389 + 34.0292i 1.01456 + 1.40694i
\(586\) 0 0
\(587\) 27.9942 + 16.1624i 1.15544 + 0.667095i 0.950208 0.311618i \(-0.100871\pi\)
0.205235 + 0.978713i \(0.434204\pi\)
\(588\) 0 0
\(589\) −1.62502 2.81462i −0.0669579 0.115974i
\(590\) 0 0
\(591\) −6.67343 + 3.85291i −0.274508 + 0.158487i
\(592\) 0 0
\(593\) 12.7618i 0.524064i −0.965059 0.262032i \(-0.915607\pi\)
0.965059 0.262032i \(-0.0843925\pi\)
\(594\) 0 0
\(595\) 13.5760 23.5143i 0.556562 0.963993i
\(596\) 0 0
\(597\) −15.1222 −0.618909
\(598\) 0 0
\(599\) −36.3602 −1.48564 −0.742818 0.669493i \(-0.766511\pi\)
−0.742818 + 0.669493i \(0.766511\pi\)
\(600\) 0 0
\(601\) −12.2231 + 21.1711i −0.498592 + 0.863586i −0.999999 0.00162539i \(-0.999483\pi\)
0.501407 + 0.865212i \(0.332816\pi\)
\(602\) 0 0
\(603\) 42.6555i 1.73707i
\(604\) 0 0
\(605\) −0.807630 + 0.466285i −0.0328348 + 0.0189572i
\(606\) 0 0
\(607\) −3.87641 6.71413i −0.157338 0.272518i 0.776570 0.630031i \(-0.216958\pi\)
−0.933908 + 0.357513i \(0.883625\pi\)
\(608\) 0 0
\(609\) −20.2223 11.6754i −0.819450 0.473110i
\(610\) 0 0
\(611\) 39.7603 4.03579i 1.60853 0.163271i
\(612\) 0 0
\(613\) 20.6221 + 11.9062i 0.832918 + 0.480885i 0.854851 0.518874i \(-0.173649\pi\)
−0.0219327 + 0.999759i \(0.506982\pi\)
\(614\) 0 0
\(615\) 5.51744 + 9.55648i 0.222485 + 0.385355i
\(616\) 0 0
\(617\) 29.4007 16.9745i 1.18363 0.683369i 0.226778 0.973947i \(-0.427181\pi\)
0.956851 + 0.290578i \(0.0938476\pi\)
\(618\) 0 0
\(619\) 16.8377i 0.676764i 0.941009 + 0.338382i \(0.109880\pi\)
−0.941009 + 0.338382i \(0.890120\pi\)
\(620\) 0 0
\(621\) −0.101955 + 0.176591i −0.00409131 + 0.00708636i
\(622\) 0 0
\(623\) −6.88846 −0.275980
\(624\) 0 0
\(625\) 39.3853 1.57541
\(626\) 0 0
\(627\) −2.92734 + 5.07031i −0.116907 + 0.202489i
\(628\) 0 0
\(629\) 35.6669i 1.42213i
\(630\) 0 0
\(631\) −15.3064 + 8.83718i −0.609340 + 0.351803i −0.772707 0.634763i \(-0.781098\pi\)
0.163367 + 0.986565i \(0.447765\pi\)
\(632\) 0 0
\(633\) −17.3669 30.0803i −0.690270 1.19558i
\(634\) 0 0
\(635\) 40.5601 + 23.4174i 1.60958 + 0.929292i
\(636\) 0 0
\(637\) 3.28859 + 1.47824i 0.130299 + 0.0585699i
\(638\) 0 0
\(639\) 32.3208 + 18.6604i 1.27859 + 0.738196i
\(640\) 0 0
\(641\) −18.9020 32.7392i −0.746583 1.29312i −0.949451 0.313914i \(-0.898360\pi\)
0.202868 0.979206i \(-0.434974\pi\)
\(642\) 0 0
\(643\) −16.8674 + 9.73842i −0.665187 + 0.384046i −0.794250 0.607590i \(-0.792136\pi\)
0.129064 + 0.991636i \(0.458803\pi\)
\(644\) 0 0
\(645\) 82.6469i 3.25422i
\(646\) 0 0
\(647\) 20.3452 35.2389i 0.799851 1.38538i −0.119862 0.992791i \(-0.538245\pi\)
0.919713 0.392592i \(-0.128422\pi\)
\(648\) 0 0
\(649\) 25.1614 0.987670
\(650\) 0 0
\(651\) −11.0104 −0.431532
\(652\) 0 0
\(653\) 9.47968 16.4193i 0.370969 0.642536i −0.618746 0.785591i \(-0.712359\pi\)
0.989715 + 0.143055i \(0.0456924\pi\)
\(654\) 0 0
\(655\) 31.7627i 1.24107i
\(656\) 0 0
\(657\) 18.8103 10.8601i 0.733859 0.423694i
\(658\) 0 0
\(659\) 4.03079 + 6.98153i 0.157017 + 0.271962i 0.933792 0.357817i \(-0.116479\pi\)
−0.776775 + 0.629779i \(0.783146\pi\)
\(660\) 0 0
\(661\) 17.7393 + 10.2418i 0.689978 + 0.398359i 0.803604 0.595165i \(-0.202913\pi\)
−0.113626 + 0.993524i \(0.536246\pi\)
\(662\) 0 0
\(663\) −6.03037 59.4107i −0.234200 2.30732i
\(664\) 0 0
\(665\) −2.48001 1.43183i −0.0961706 0.0555241i
\(666\) 0 0
\(667\) −4.88924 8.46842i −0.189312 0.327898i
\(668\) 0 0
\(669\) 15.8289 9.13884i 0.611982 0.353328i
\(670\) 0 0
\(671\) 12.7692i 0.492951i
\(672\) 0 0
\(673\) −7.70562 + 13.3465i −0.297030 + 0.514471i −0.975455 0.220199i \(-0.929329\pi\)
0.678425 + 0.734669i \(0.262663\pi\)
\(674\) 0 0
\(675\) 2.18270 0.0840123
\(676\) 0 0
\(677\) 51.5750 1.98219 0.991093 0.133169i \(-0.0425151\pi\)
0.991093 + 0.133169i \(0.0425151\pi\)
\(678\) 0 0
\(679\) 5.97665 10.3519i 0.229363 0.397268i
\(680\) 0 0
\(681\) 28.0481i 1.07481i
\(682\) 0 0
\(683\) −10.8294 + 6.25234i −0.414374 + 0.239239i −0.692668 0.721257i \(-0.743565\pi\)
0.278293 + 0.960496i \(0.410231\pi\)
\(684\) 0 0
\(685\) 38.9091 + 67.3925i 1.48664 + 2.57493i
\(686\) 0 0
\(687\) 12.4718 + 7.20060i 0.475829 + 0.274720i
\(688\) 0 0
\(689\) 1.16415 + 11.4692i 0.0443508 + 0.436940i
\(690\) 0 0
\(691\) −6.42282 3.70822i −0.244336 0.141067i 0.372832 0.927899i \(-0.378387\pi\)
−0.617168 + 0.786832i \(0.711720\pi\)
\(692\) 0 0
\(693\) 4.88964 + 8.46911i 0.185742 + 0.321715i
\(694\) 0 0
\(695\) −24.4525 + 14.1177i −0.927538 + 0.535514i
\(696\) 0 0
\(697\) 7.74413i 0.293330i
\(698\) 0 0
\(699\) 33.2990 57.6755i 1.25948 2.18149i
\(700\) 0 0
\(701\) 23.9330 0.903938 0.451969 0.892034i \(-0.350722\pi\)
0.451969 + 0.892034i \(0.350722\pi\)
\(702\) 0 0
\(703\) 3.76171 0.141876
\(704\) 0 0
\(705\) −53.7664 + 93.1261i −2.02496 + 3.50733i
\(706\) 0 0
\(707\) 11.2958i 0.424823i
\(708\) 0 0
\(709\) −3.36015 + 1.93998i −0.126193 + 0.0728575i −0.561768 0.827295i \(-0.689879\pi\)
0.435575 + 0.900153i \(0.356545\pi\)
\(710\) 0 0
\(711\) −5.27108 9.12978i −0.197681 0.342394i
\(712\) 0 0
\(713\) −3.99306 2.30539i −0.149541 0.0863376i
\(714\) 0 0
\(715\) −43.9575 19.7591i −1.64392 0.738950i
\(716\) 0 0
\(717\) 54.6568 + 31.5561i 2.04119 + 1.17848i
\(718\) 0 0
\(719\) 2.95792 + 5.12327i 0.110312 + 0.191066i 0.915896 0.401416i \(-0.131482\pi\)
−0.805584 + 0.592481i \(0.798148\pi\)
\(720\) 0 0
\(721\) −1.84552 + 1.06551i −0.0687308 + 0.0396818i
\(722\) 0 0
\(723\) 58.6854i 2.18253i
\(724\) 0 0
\(725\) −52.3358 + 90.6482i −1.94370 + 3.36659i
\(726\) 0 0
\(727\) −21.9599 −0.814447 −0.407223 0.913329i \(-0.633503\pi\)
−0.407223 + 0.913329i \(0.633503\pi\)
\(728\) 0 0
\(729\) −25.4991 −0.944413
\(730\) 0 0
\(731\) 29.0002 50.2299i 1.07261 1.85782i
\(732\) 0 0
\(733\) 26.5800i 0.981753i −0.871229 0.490877i \(-0.836677\pi\)
0.871229 0.490877i \(-0.163323\pi\)
\(734\) 0 0
\(735\) −8.40170 + 4.85073i −0.309902 + 0.178922i
\(736\) 0 0
\(737\) 24.5000 + 42.4353i 0.902470 + 1.56312i
\(738\) 0 0
\(739\) 20.8757 + 12.0526i 0.767924 + 0.443361i 0.832133 0.554576i \(-0.187119\pi\)
−0.0642098 + 0.997936i \(0.520453\pi\)
\(740\) 0 0
\(741\) −6.26593 + 0.636011i −0.230185 + 0.0233645i
\(742\) 0 0
\(743\) −0.650327 0.375466i −0.0238582 0.0137745i 0.488023 0.872831i \(-0.337718\pi\)
−0.511882 + 0.859056i \(0.671051\pi\)
\(744\) 0 0
\(745\) 9.39042 + 16.2647i 0.344038 + 0.595892i
\(746\) 0 0
\(747\) 8.36967 4.83223i 0.306230 0.176802i
\(748\) 0 0
\(749\) 17.5809i 0.642392i
\(750\) 0 0
\(751\) −21.2580 + 36.8199i −0.775716 + 1.34358i 0.158676 + 0.987331i \(0.449278\pi\)
−0.934391 + 0.356248i \(0.884056\pi\)
\(752\) 0 0
\(753\) −7.73551 −0.281898
\(754\) 0 0
\(755\) −35.8527 −1.30481
\(756\) 0 0
\(757\) 12.0058 20.7947i 0.436360 0.755797i −0.561046 0.827785i \(-0.689601\pi\)
0.997406 + 0.0719875i \(0.0229342\pi\)
\(758\) 0 0
\(759\) 8.30595i 0.301487i
\(760\) 0 0
\(761\) −10.6240 + 6.13375i −0.385118 + 0.222348i −0.680043 0.733172i \(-0.738039\pi\)
0.294924 + 0.955521i \(0.404706\pi\)
\(762\) 0 0
\(763\) 2.97447 + 5.15193i 0.107683 + 0.186512i
\(764\) 0 0
\(765\) 68.6081 + 39.6109i 2.48053 + 1.43214i
\(766\) 0 0
\(767\) 15.8315 + 21.9543i 0.571643 + 0.792724i
\(768\) 0 0
\(769\) −6.22357 3.59318i −0.224428 0.129573i 0.383571 0.923511i \(-0.374694\pi\)
−0.607999 + 0.793938i \(0.708027\pi\)
\(770\) 0 0
\(771\) 25.3212 + 43.8576i 0.911921 + 1.57949i
\(772\) 0 0
\(773\) 19.6003 11.3162i 0.704972 0.407016i −0.104224 0.994554i \(-0.533236\pi\)
0.809197 + 0.587538i \(0.199903\pi\)
\(774\) 0 0
\(775\) 49.3550i 1.77289i
\(776\) 0 0
\(777\) 6.37192 11.0365i 0.228591 0.395932i
\(778\) 0 0
\(779\) −0.816758 −0.0292634
\(780\) 0 0
\(781\) −42.8719 −1.53408
\(782\) 0 0
\(783\) −0.960691 + 1.66397i −0.0343323 + 0.0594653i
\(784\) 0 0
\(785\) 14.5382i 0.518890i
\(786\) 0 0
\(787\) −10.4705 + 6.04512i −0.373232 + 0.215485i −0.674869 0.737937i \(-0.735800\pi\)
0.301638 + 0.953423i \(0.402467\pi\)
\(788\) 0 0
\(789\) 5.67468 + 9.82883i 0.202024 + 0.349916i
\(790\) 0 0
\(791\) −2.69421 1.55550i −0.0957952 0.0553074i
\(792\) 0 0
\(793\) −11.1417 + 8.03439i −0.395652 + 0.285310i
\(794\) 0 0
\(795\) −26.8629 15.5093i −0.952729 0.550058i
\(796\) 0 0
\(797\) 1.83514 + 3.17855i 0.0650039 + 0.112590i 0.896696 0.442647i \(-0.145961\pi\)
−0.831692 + 0.555238i \(0.812627\pi\)
\(798\) 0 0
\(799\) 65.3547 37.7325i 2.31208 1.33488i
\(800\) 0 0
\(801\) 20.0986i 0.710148i
\(802\) 0 0
\(803\) −12.4754 + 21.6081i −0.440249 + 0.762533i
\(804\) 0 0
\(805\) −4.06264 −0.143189
\(806\) 0 0
\(807\) 13.6103 0.479106
\(808\) 0 0
\(809\) 4.76432 8.25204i 0.167504 0.290126i −0.770037 0.637999i \(-0.779762\pi\)
0.937542 + 0.347873i \(0.113096\pi\)
\(810\) 0 0
\(811\) 27.9316i 0.980812i −0.871494 0.490406i \(-0.836849\pi\)
0.871494 0.490406i \(-0.163151\pi\)
\(812\) 0 0
\(813\) 3.13086 1.80760i 0.109804 0.0633953i
\(814\) 0 0
\(815\) 22.0554 + 38.2011i 0.772568 + 1.33813i
\(816\) 0 0
\(817\) −5.29764 3.05860i −0.185341 0.107007i
\(818\) 0 0
\(819\) −4.31308 + 9.59517i −0.150711 + 0.335282i
\(820\) 0 0
\(821\) −7.09938 4.09883i −0.247770 0.143050i 0.370973 0.928644i \(-0.379024\pi\)
−0.618743 + 0.785594i \(0.712358\pi\)
\(822\) 0 0
\(823\) −26.3063 45.5639i −0.916981 1.58826i −0.803974 0.594664i \(-0.797285\pi\)
−0.113007 0.993594i \(-0.536048\pi\)
\(824\) 0 0
\(825\) 76.9975 44.4545i 2.68071 1.54771i
\(826\) 0 0
\(827\) 45.2254i 1.57264i −0.617818 0.786321i \(-0.711983\pi\)
0.617818 0.786321i \(-0.288017\pi\)
\(828\) 0 0
\(829\) 10.6849 18.5068i 0.371101 0.642766i −0.618634 0.785679i \(-0.712314\pi\)
0.989735 + 0.142913i \(0.0456470\pi\)
\(830\) 0 0
\(831\) −69.1361 −2.39831
\(832\) 0 0
\(833\) 6.80835 0.235895
\(834\) 0 0
\(835\) 14.0532 24.3409i 0.486331 0.842350i
\(836\) 0 0
\(837\) 0.905976i 0.0313151i
\(838\) 0 0
\(839\) 38.6504 22.3148i 1.33436 0.770392i 0.348394 0.937348i \(-0.386727\pi\)
0.985964 + 0.166956i \(0.0533938\pi\)
\(840\) 0 0
\(841\) −31.5699 54.6806i −1.08862 1.88554i
\(842\) 0 0
\(843\) 41.2486 + 23.8149i 1.42068 + 0.820228i
\(844\) 0 0
\(845\) −10.4174 50.7871i −0.358371 1.74713i
\(846\) 0 0
\(847\) −0.202513 0.116921i −0.00695843 0.00401745i
\(848\) 0 0
\(849\) −15.6685 27.1386i −0.537741 0.931395i
\(850\) 0 0
\(851\) 4.62170 2.66834i 0.158430 0.0914695i
\(852\) 0 0
\(853\) 2.36345i 0.0809230i −0.999181 0.0404615i \(-0.987117\pi\)
0.999181 0.0404615i \(-0.0128828\pi\)
\(854\) 0 0
\(855\) 4.17768 7.23596i 0.142874 0.247465i
\(856\) 0 0
\(857\) 20.0305 0.684227 0.342114 0.939659i \(-0.388857\pi\)
0.342114 + 0.939659i \(0.388857\pi\)
\(858\) 0 0
\(859\) 3.79217 0.129387 0.0646936 0.997905i \(-0.479393\pi\)
0.0646936 + 0.997905i \(0.479393\pi\)
\(860\) 0 0
\(861\) −1.38350 + 2.39628i −0.0471494 + 0.0816651i
\(862\) 0 0
\(863\) 43.7312i 1.48863i 0.667830 + 0.744314i \(0.267223\pi\)
−0.667830 + 0.744314i \(0.732777\pi\)
\(864\) 0 0
\(865\) 52.1217 30.0925i 1.77219 1.02318i
\(866\) 0 0
\(867\) −35.7034 61.8401i −1.21255 2.10020i
\(868\) 0 0
\(869\) 10.4877 + 6.05509i 0.355772 + 0.205405i
\(870\) 0 0
\(871\) −21.6111 + 48.0775i −0.732263 + 1.62904i
\(872\) 0 0
\(873\) 30.2038 + 17.4382i 1.02224 + 0.590193i
\(874\) 0 0
\(875\) 11.7737 + 20.3926i 0.398022 + 0.689395i
\(876\) 0 0
\(877\) 27.1327 15.6650i 0.916205 0.528971i 0.0337825 0.999429i \(-0.489245\pi\)
0.882422 + 0.470458i \(0.155911\pi\)
\(878\) 0 0
\(879\) 30.0599i 1.01389i
\(880\) 0 0
\(881\) −0.262517 + 0.454693i −0.00884443 + 0.0153190i −0.870414 0.492321i \(-0.836149\pi\)
0.861569 + 0.507640i \(0.169482\pi\)
\(882\) 0 0
\(883\) 26.9929 0.908383 0.454191 0.890904i \(-0.349928\pi\)
0.454191 + 0.890904i \(0.349928\pi\)
\(884\) 0 0
\(885\) −72.8294 −2.44813
\(886\) 0 0
\(887\) −2.80959 + 4.86635i −0.0943367 + 0.163396i −0.909332 0.416072i \(-0.863406\pi\)
0.814995 + 0.579468i \(0.196740\pi\)
\(888\) 0 0
\(889\) 11.7438i 0.393875i
\(890\) 0 0
\(891\) 26.8207 15.4850i 0.898528 0.518765i
\(892\) 0 0
\(893\) −3.97957 6.89282i −0.133171 0.230660i
\(894\) 0 0
\(895\) −43.4919 25.1101i −1.45378 0.839337i
\(896\) 0 0
\(897\) −7.24727 + 5.22610i −0.241979 + 0.174494i
\(898\) 0 0
\(899\) −37.6254 21.7230i −1.25488 0.724503i
\(900\) 0 0
\(901\) 10.8842 + 18.8520i 0.362606 + 0.628052i
\(902\) 0 0
\(903\) −17.9472 + 10.3618i −0.597246 + 0.344820i
\(904\) 0 0
\(905\) 43.1113i 1.43307i
\(906\) 0 0
\(907\) 8.60233 14.8997i 0.285636 0.494735i −0.687128 0.726537i \(-0.741129\pi\)
0.972763 + 0.231802i \(0.0744620\pi\)
\(908\) 0 0
\(909\) −32.9580 −1.09315
\(910\) 0 0
\(911\) −50.1900 −1.66287 −0.831434 0.555623i \(-0.812480\pi\)
−0.831434 + 0.555623i \(0.812480\pi\)
\(912\) 0 0
\(913\) −5.55097 + 9.61456i −0.183710 + 0.318196i
\(914\) 0 0
\(915\) 36.9604i 1.22187i
\(916\) 0 0
\(917\) 6.89745 3.98224i 0.227774 0.131505i
\(918\) 0 0
\(919\) 1.43694 + 2.48885i 0.0474002 + 0.0820996i 0.888752 0.458388i \(-0.151573\pi\)
−0.841352 + 0.540488i \(0.818240\pi\)
\(920\) 0 0
\(921\) 1.20125 + 0.693541i 0.0395825 + 0.0228529i
\(922\) 0 0
\(923\) −26.9750 37.4075i −0.887893 1.23128i
\(924\) 0 0
\(925\) −49.4719 28.5626i −1.62663 0.939133i
\(926\) 0 0
\(927\) −3.10886 5.38471i −0.102108 0.176857i
\(928\) 0 0
\(929\) 50.4339 29.1180i 1.65468 0.955332i 0.679574 0.733607i \(-0.262164\pi\)
0.975109 0.221725i \(-0.0711689\pi\)
\(930\) 0 0
\(931\) 0.718063i 0.0235336i
\(932\) 0 0
\(933\) 33.5651 58.1365i 1.09887 1.90330i
\(934\) 0 0
\(935\) −91.0051 −2.97619
\(936\) 0 0
\(937\) −16.7420 −0.546937 −0.273468 0.961881i \(-0.588171\pi\)
−0.273468 + 0.961881i \(0.588171\pi\)
\(938\) 0 0
\(939\) 3.46774 6.00630i 0.113165 0.196008i
\(940\) 0 0
\(941\) 46.8173i 1.52620i 0.646279 + 0.763101i \(0.276324\pi\)
−0.646279 + 0.763101i \(0.723676\pi\)
\(942\) 0 0
\(943\) −1.00348 + 0.579360i −0.0326778 + 0.0188666i
\(944\) 0 0
\(945\) 0.399135 + 0.691322i 0.0129839 + 0.0224887i
\(946\) 0 0
\(947\) 0.00591719 + 0.00341629i 0.000192283 + 0.000111015i 0.500096 0.865970i \(-0.333298\pi\)
−0.499904 + 0.866081i \(0.666631\pi\)
\(948\) 0 0
\(949\) −26.7035 + 2.71048i −0.866831 + 0.0879861i
\(950\) 0 0
\(951\) −68.9484 39.8074i −2.23581 1.29084i
\(952\) 0 0
\(953\) 2.79166 + 4.83530i 0.0904308 + 0.156631i 0.907692 0.419636i \(-0.137842\pi\)
−0.817262 + 0.576267i \(0.804509\pi\)
\(954\) 0 0
\(955\) −45.6021 + 26.3284i −1.47565 + 0.851967i
\(956\) 0 0
\(957\) 78.2645i 2.52993i
\(958\) 0 0
\(959\) −9.75643 + 16.8986i −0.315052 + 0.545686i
\(960\) 0 0
\(961\) 10.5142 0.339167
\(962\) 0 0
\(963\) 51.2961 1.65299
\(964\) 0 0
\(965\) 11.1219 19.2636i 0.358026 0.620119i
\(966\) 0 0
\(967\) 4.02297i 0.129370i −0.997906 0.0646851i \(-0.979396\pi\)
0.997906 0.0646851i \(-0.0206043\pi\)
\(968\) 0 0
\(969\) −10.2994 + 5.94637i −0.330865 + 0.191025i
\(970\) 0 0
\(971\) 12.0274 + 20.8321i 0.385979 + 0.668535i 0.991904 0.126986i \(-0.0405305\pi\)
−0.605926 + 0.795521i \(0.707197\pi\)
\(972\) 0 0
\(973\) −6.13147 3.54000i −0.196566 0.113487i
\(974\) 0 0
\(975\) 87.2352 + 39.2126i 2.79376 + 1.25581i
\(976\) 0 0
\(977\) −37.6961 21.7639i −1.20601 0.696287i −0.244121 0.969745i \(-0.578499\pi\)
−0.961884 + 0.273457i \(0.911833\pi\)
\(978\) 0 0
\(979\) 11.5440 + 19.9948i 0.368948 + 0.639037i
\(980\) 0 0
\(981\) −15.0319 + 8.67866i −0.479931 + 0.277088i
\(982\) 0 0
\(983\) 52.7712i 1.68314i 0.540149 + 0.841570i \(0.318368\pi\)
−0.540149 + 0.841570i \(0.681632\pi\)
\(984\) 0 0
\(985\) −6.31642 + 10.9404i −0.201258 + 0.348589i
\(986\) 0 0
\(987\) −26.9638 −0.858267
\(988\) 0 0
\(989\) −8.67836 −0.275956
\(990\) 0 0
\(991\) 0.578566 1.00211i 0.0183788 0.0318330i −0.856690 0.515832i \(-0.827483\pi\)
0.875069 + 0.483999i \(0.160816\pi\)
\(992\) 0 0
\(993\) 5.29112i 0.167909i
\(994\) 0 0
\(995\) −21.4698 + 12.3956i −0.680637 + 0.392966i
\(996\) 0 0
\(997\) −3.65812 6.33605i −0.115854 0.200665i 0.802267 0.596965i \(-0.203627\pi\)
−0.918121 + 0.396301i \(0.870294\pi\)
\(998\) 0 0
\(999\) −0.908121 0.524304i −0.0287317 0.0165882i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.bm.c.225.3 24
4.3 odd 2 1456.2.cc.g.225.10 24
13.6 odd 12 9464.2.a.bm.1.10 12
13.7 odd 12 9464.2.a.bl.1.10 12
13.10 even 6 inner 728.2.bm.c.673.3 yes 24
52.23 odd 6 1456.2.cc.g.673.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.bm.c.225.3 24 1.1 even 1 trivial
728.2.bm.c.673.3 yes 24 13.10 even 6 inner
1456.2.cc.g.225.10 24 4.3 odd 2
1456.2.cc.g.673.10 24 52.23 odd 6
9464.2.a.bl.1.10 12 13.7 odd 12
9464.2.a.bm.1.10 12 13.6 odd 12