Properties

Label 728.2.cy.a.675.5
Level $728$
Weight $2$
Character 728.675
Analytic conductor $5.813$
Analytic rank $0$
Dimension $24$
CM discriminant -104
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(467,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.467");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.cy (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 675.5
Character \(\chi\) \(=\) 728.675
Dual form 728.2.cy.a.467.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(2.16895 + 1.25225i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(0.345317 - 0.199369i) q^{5} -3.54188i q^{6} +(2.63319 - 0.257522i) q^{7} +2.82843 q^{8} +(1.63624 + 2.83404i) q^{9} +(-0.488352 - 0.281950i) q^{10} +(-4.33790 + 2.50449i) q^{12} -3.60555i q^{13} +(-2.17734 - 3.04289i) q^{14} +0.998635 q^{15} +(-2.00000 - 3.46410i) q^{16} +(3.76991 + 2.17656i) q^{17} +(2.31399 - 4.00794i) q^{18} +0.797476i q^{20} +(6.03374 + 2.73885i) q^{21} +(6.13472 + 3.54188i) q^{24} +(-2.42050 + 4.19244i) q^{25} +(-4.41588 + 2.54951i) q^{26} +0.682400i q^{27} +(-2.18715 + 4.81834i) q^{28} +(-0.706142 - 1.22307i) q^{30} +(-3.24146 - 1.87146i) q^{31} +(-2.82843 + 4.89898i) q^{32} -6.15623i q^{34} +(0.857944 - 0.613903i) q^{35} -6.54494 q^{36} +(2.44361 + 4.23246i) q^{37} +(4.51503 - 7.82027i) q^{39} +(0.976705 - 0.563901i) q^{40} +(-0.912112 - 9.32645i) q^{42} +9.68172 q^{43} +(1.13004 + 0.652429i) q^{45} +(-6.18224 + 3.56932i) q^{47} -10.0180i q^{48} +(6.86737 - 1.35621i) q^{49} +6.84622 q^{50} +(5.45116 + 9.44169i) q^{51} +(6.24500 + 3.60555i) q^{52} +(0.835766 - 0.482530i) q^{54} +(7.44778 - 0.728381i) q^{56} +(-0.998635 + 1.72969i) q^{60} +5.29329i q^{62} +(5.03834 + 7.04120i) q^{63} +8.00000 q^{64} +(-0.718835 - 1.24506i) q^{65} +(-7.53981 + 4.35311i) q^{68} +(-1.35853 - 0.616667i) q^{70} -16.8514 q^{71} +(4.62797 + 8.01588i) q^{72} +(3.45579 - 5.98560i) q^{74} +(-10.4999 + 6.06213i) q^{75} -12.7704 q^{78} +(-1.38127 - 0.797476i) q^{80} +(4.05417 - 7.02204i) q^{81} +(-10.7776 + 7.71190i) q^{84} +1.73575 q^{85} +(-6.84601 - 11.8576i) q^{86} -1.84535i q^{90} +(-0.928508 - 9.49410i) q^{91} +(-4.68705 - 8.11821i) q^{93} +(8.74301 + 5.04778i) q^{94} +(-12.2694 + 7.08377i) q^{96} +(-6.51697 - 7.45179i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{4} + 36 q^{9} - 48 q^{16} + 60 q^{25} - 24 q^{30} - 72 q^{35} - 144 q^{36} + 96 q^{42} + 60 q^{51} + 192 q^{64} - 108 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.500000 0.866025i
\(3\) 2.16895 + 1.25225i 1.25225 + 0.722984i 0.971555 0.236814i \(-0.0761033\pi\)
0.280690 + 0.959798i \(0.409437\pi\)
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) 0.345317 0.199369i 0.154431 0.0891605i −0.420793 0.907157i \(-0.638248\pi\)
0.575224 + 0.817996i \(0.304915\pi\)
\(6\) 3.54188i 1.44597i
\(7\) 2.63319 0.257522i 0.995252 0.0973341i
\(8\) 2.82843 1.00000
\(9\) 1.63624 + 2.83404i 0.545412 + 0.944681i
\(10\) −0.488352 0.281950i −0.154431 0.0891605i
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) −4.33790 + 2.50449i −1.25225 + 0.722984i
\(13\) 3.60555i 1.00000i
\(14\) −2.17734 3.04289i −0.581920 0.813246i
\(15\) 0.998635 0.257847
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 3.76991 + 2.17656i 0.914336 + 0.527892i 0.881824 0.471579i \(-0.156316\pi\)
0.0325125 + 0.999471i \(0.489649\pi\)
\(18\) 2.31399 4.00794i 0.545412 0.944681i
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) 0.797476i 0.178321i
\(21\) 6.03374 + 2.73885i 1.31667 + 0.597665i
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 6.13472 + 3.54188i 1.25225 + 0.722984i
\(25\) −2.42050 + 4.19244i −0.484101 + 0.838487i
\(26\) −4.41588 + 2.54951i −0.866025 + 0.500000i
\(27\) 0.682400i 0.131328i
\(28\) −2.18715 + 4.81834i −0.413332 + 0.910580i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −0.706142 1.22307i −0.128923 0.223302i
\(31\) −3.24146 1.87146i −0.582184 0.336124i 0.179817 0.983700i \(-0.442449\pi\)
−0.762001 + 0.647576i \(0.775783\pi\)
\(32\) −2.82843 + 4.89898i −0.500000 + 0.866025i
\(33\) 0 0
\(34\) 6.15623i 1.05578i
\(35\) 0.857944 0.613903i 0.145019 0.103769i
\(36\) −6.54494 −1.09082
\(37\) 2.44361 + 4.23246i 0.401727 + 0.695812i 0.993934 0.109974i \(-0.0350768\pi\)
−0.592207 + 0.805786i \(0.701743\pi\)
\(38\) 0 0
\(39\) 4.51503 7.82027i 0.722984 1.25225i
\(40\) 0.976705 0.563901i 0.154431 0.0891605i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) −0.912112 9.32645i −0.140742 1.43910i
\(43\) 9.68172 1.47645 0.738224 0.674556i \(-0.235665\pi\)
0.738224 + 0.674556i \(0.235665\pi\)
\(44\) 0 0
\(45\) 1.13004 + 0.652429i 0.168457 + 0.0972584i
\(46\) 0 0
\(47\) −6.18224 + 3.56932i −0.901772 + 0.520639i −0.877775 0.479073i \(-0.840973\pi\)
−0.0239976 + 0.999712i \(0.507639\pi\)
\(48\) 10.0180i 1.44597i
\(49\) 6.86737 1.35621i 0.981052 0.193744i
\(50\) 6.84622 0.968202
\(51\) 5.45116 + 9.44169i 0.763315 + 1.32210i
\(52\) 6.24500 + 3.60555i 0.866025 + 0.500000i
\(53\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) 0.835766 0.482530i 0.113733 0.0656640i
\(55\) 0 0
\(56\) 7.44778 0.728381i 0.995252 0.0973341i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) −0.998635 + 1.72969i −0.128923 + 0.223302i
\(61\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) 5.29329i 0.672248i
\(63\) 5.03834 + 7.04120i 0.634772 + 0.887108i
\(64\) 8.00000 1.00000
\(65\) −0.718835 1.24506i −0.0891605 0.154431i
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) −7.53981 + 4.35311i −0.914336 + 0.527892i
\(69\) 0 0
\(70\) −1.35853 0.616667i −0.162376 0.0737058i
\(71\) −16.8514 −1.99989 −0.999944 0.0105471i \(-0.996643\pi\)
−0.999944 + 0.0105471i \(0.996643\pi\)
\(72\) 4.62797 + 8.01588i 0.545412 + 0.944681i
\(73\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(74\) 3.45579 5.98560i 0.401727 0.695812i
\(75\) −10.4999 + 6.06213i −1.21243 + 0.699994i
\(76\) 0 0
\(77\) 0 0
\(78\) −12.7704 −1.44597
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) −1.38127 0.797476i −0.154431 0.0891605i
\(81\) 4.05417 7.02204i 0.450464 0.780226i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) −10.7776 + 7.71190i −1.17593 + 0.841437i
\(85\) 1.73575 0.188269
\(86\) −6.84601 11.8576i −0.738224 1.27864i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 1.84535i 0.194517i
\(91\) −0.928508 9.49410i −0.0973341 0.995252i
\(92\) 0 0
\(93\) −4.68705 8.11821i −0.486024 0.841819i
\(94\) 8.74301 + 5.04778i 0.901772 + 0.520639i
\(95\) 0 0
\(96\) −12.2694 + 7.08377i −1.25225 + 0.722984i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −6.51697 7.45179i −0.658313 0.752744i
\(99\) 0 0
\(100\) −4.84101 8.38487i −0.484101 0.838487i
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 7.70911 13.3526i 0.763315 1.32210i
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 10.1980i 1.00000i
\(105\) 2.62960 0.257170i 0.256622 0.0250973i
\(106\) 0 0
\(107\) −0.0841196 0.145699i −0.00813215 0.0140853i 0.861931 0.507026i \(-0.169255\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) −1.18195 0.682400i −0.113733 0.0656640i
\(109\) 9.76072 16.9061i 0.934907 1.61931i 0.160108 0.987100i \(-0.448816\pi\)
0.774800 0.632207i \(-0.217851\pi\)
\(110\) 0 0
\(111\) 12.2400i 1.16177i
\(112\) −6.15846 8.60659i −0.581920 0.813246i
\(113\) −20.6635 −1.94386 −0.971930 0.235269i \(-0.924403\pi\)
−0.971930 + 0.235269i \(0.924403\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 10.2183 5.89953i 0.944681 0.545412i
\(118\) 0 0
\(119\) 10.4874 + 4.76045i 0.961377 + 0.436390i
\(120\) 2.82457 0.257847
\(121\) −5.50000 9.52628i −0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 6.48292 3.74292i 0.582184 0.336124i
\(125\) 3.92398i 0.350972i
\(126\) 5.06103 11.1496i 0.450872 0.993282i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −5.65685 9.79796i −0.500000 0.866025i
\(129\) 20.9992 + 12.1239i 1.84887 + 1.06745i
\(130\) −1.01659 + 1.76078i −0.0891605 + 0.154431i
\(131\) −19.1791 + 11.0730i −1.67568 + 0.967456i −0.711321 + 0.702867i \(0.751903\pi\)
−0.964361 + 0.264588i \(0.914764\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.136049 + 0.235644i 0.0117093 + 0.0202810i
\(136\) 10.6629 + 6.15623i 0.914336 + 0.527892i
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 23.1549i 1.96397i −0.188953 0.981986i \(-0.560509\pi\)
0.188953 0.981986i \(-0.439491\pi\)
\(140\) 0.205367 + 2.09990i 0.0173567 + 0.177474i
\(141\) −17.8786 −1.50565
\(142\) 11.9157 + 20.6386i 0.999944 + 1.73195i
\(143\) 0 0
\(144\) 6.54494 11.3362i 0.545412 0.944681i
\(145\) 0 0
\(146\) 0 0
\(147\) 16.5933 + 5.65808i 1.36859 + 0.466670i
\(148\) −9.77444 −0.803454
\(149\) −12.1959 21.1240i −0.999129 1.73054i −0.535701 0.844407i \(-0.679953\pi\)
−0.463428 0.886135i \(-0.653381\pi\)
\(150\) 14.8491 + 8.57314i 1.21243 + 0.699994i
\(151\) −8.81101 + 15.2611i −0.717030 + 1.24193i 0.245141 + 0.969487i \(0.421166\pi\)
−0.962171 + 0.272445i \(0.912168\pi\)
\(152\) 0 0
\(153\) 14.2454i 1.15167i
\(154\) 0 0
\(155\) −1.49244 −0.119876
\(156\) 9.03007 + 15.6405i 0.722984 + 1.25225i
\(157\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 2.25560i 0.178321i
\(161\) 0 0
\(162\) −11.4669 −0.900928
\(163\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 23.0641i 1.78475i 0.451291 + 0.892377i \(0.350964\pi\)
−0.451291 + 0.892377i \(0.649036\pi\)
\(168\) 17.0660 + 7.74662i 1.31667 + 0.597665i
\(169\) −13.0000 −1.00000
\(170\) −1.22736 2.12585i −0.0941343 0.163045i
\(171\) 0 0
\(172\) −9.68172 + 16.7692i −0.738224 + 1.27864i
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) −5.29400 + 11.6628i −0.400189 + 0.881625i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.0849 + 22.6637i −0.978012 + 1.69397i −0.308395 + 0.951258i \(0.599792\pi\)
−0.669616 + 0.742707i \(0.733541\pi\)
\(180\) −2.26008 + 1.30486i −0.168457 + 0.0972584i
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) −10.9713 + 7.85053i −0.813246 + 0.581920i
\(183\) 0 0
\(184\) 0 0
\(185\) 1.68764 + 0.974360i 0.124078 + 0.0716364i
\(186\) −6.62849 + 11.4809i −0.486024 + 0.841819i
\(187\) 0 0
\(188\) 14.2773i 1.04128i
\(189\) 0.175733 + 1.79689i 0.0127827 + 0.130704i
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 17.3516 + 10.0180i 1.25225 + 0.722984i
\(193\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 3.60063i 0.257847i
\(196\) −4.51835 + 13.2508i −0.322739 + 0.946488i
\(197\) −3.79625 −0.270471 −0.135236 0.990813i \(-0.543179\pi\)
−0.135236 + 0.990813i \(0.543179\pi\)
\(198\) 0 0
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) −6.84622 + 11.8580i −0.484101 + 0.838487i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −21.8047 −1.52663
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −12.4900 + 7.21110i −0.866025 + 0.500000i
\(209\) 0 0
\(210\) −2.17437 3.03874i −0.150046 0.209693i
\(211\) 23.0140 1.58435 0.792175 0.610294i \(-0.208949\pi\)
0.792175 + 0.610294i \(0.208949\pi\)
\(212\) 0 0
\(213\) −36.5498 21.1020i −2.50435 1.44589i
\(214\) −0.118963 + 0.206050i −0.00813215 + 0.0140853i
\(215\) 3.34326 1.93023i 0.228009 0.131641i
\(216\) 1.93012i 0.131328i
\(217\) −9.01732 4.09316i −0.612136 0.277862i
\(218\) −27.6075 −1.86981
\(219\) 0 0
\(220\) 0 0
\(221\) 7.84768 13.5926i 0.527892 0.914336i
\(222\) 14.9909 8.65498i 1.00612 0.580884i
\(223\) 24.8566i 1.66452i 0.554384 + 0.832261i \(0.312954\pi\)
−0.554384 + 0.832261i \(0.687046\pi\)
\(224\) −6.18619 + 13.6283i −0.413332 + 0.910580i
\(225\) −15.8421 −1.05614
\(226\) 14.6113 + 25.3075i 0.971930 + 1.68343i
\(227\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0 0
\(229\) 12.3244 7.11548i 0.814417 0.470204i −0.0340703 0.999419i \(-0.510847\pi\)
0.848487 + 0.529215i \(0.177514\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.84994 + 13.5965i 0.514267 + 0.890736i 0.999863 + 0.0165528i \(0.00526917\pi\)
−0.485596 + 0.874183i \(0.661397\pi\)
\(234\) −14.4508 8.34320i −0.944681 0.545412i
\(235\) −1.42322 + 2.46509i −0.0928408 + 0.160805i
\(236\) 0 0
\(237\) 0 0
\(238\) −1.58536 16.2105i −0.102764 1.05077i
\(239\) 0.744372 0.0481494 0.0240747 0.999710i \(-0.492336\pi\)
0.0240747 + 0.999710i \(0.492336\pi\)
\(240\) −1.99727 3.45937i −0.128923 0.223302i
\(241\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) −7.77817 + 13.4722i −0.500000 + 0.866025i
\(243\) 19.3595 11.1772i 1.24192 0.717020i
\(244\) 0 0
\(245\) 2.10103 1.83746i 0.134230 0.117391i
\(246\) 0 0
\(247\) 0 0
\(248\) −9.16824 5.29329i −0.582184 0.336124i
\(249\) 0 0
\(250\) 4.80588 2.77468i 0.303951 0.175486i
\(251\) 31.0798i 1.96174i −0.194668 0.980869i \(-0.562363\pi\)
0.194668 0.980869i \(-0.437637\pi\)
\(252\) −17.2341 + 1.68546i −1.08564 + 0.106174i
\(253\) 0 0
\(254\) 0 0
\(255\) 3.76476 + 2.17359i 0.235758 + 0.136115i
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 17.7140 10.2272i 1.10497 0.637954i 0.167448 0.985881i \(-0.446448\pi\)
0.937522 + 0.347927i \(0.113114\pi\)
\(258\) 34.2915i 2.13490i
\(259\) 7.52443 + 10.5156i 0.467546 + 0.653406i
\(260\) 2.87534 0.178321
\(261\) 0 0
\(262\) 27.1233 + 15.6596i 1.67568 + 0.967456i
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0.192403 0.333252i 0.0117093 0.0202810i
\(271\) −28.1592 + 16.2577i −1.71055 + 0.987588i −0.776742 + 0.629819i \(0.783129\pi\)
−0.933810 + 0.357769i \(0.883538\pi\)
\(272\) 17.4124i 1.05578i
\(273\) 9.87505 21.7550i 0.597665 1.31667i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) −28.3588 + 16.3730i −1.70085 + 0.981986i
\(279\) 12.2486i 0.733304i
\(280\) 2.42663 1.73638i 0.145019 0.103769i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 12.6421 + 21.8968i 0.752827 + 1.30393i
\(283\) −26.4953 15.2971i −1.57498 0.909316i −0.995544 0.0942988i \(-0.969939\pi\)
−0.579437 0.815017i \(-0.696728\pi\)
\(284\) 16.8514 29.1874i 0.999944 1.73195i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −18.5119 −1.09082
\(289\) 0.974791 + 1.68839i 0.0573406 + 0.0993169i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.14719i 0.417543i −0.977964 0.208772i \(-0.933053\pi\)
0.977964 0.208772i \(-0.0669465\pi\)
\(294\) −4.80353 24.3234i −0.280147 1.41857i
\(295\) 0 0
\(296\) 6.91157 + 11.9712i 0.401727 + 0.695812i
\(297\) 0 0
\(298\) −17.2476 + 29.8738i −0.999129 + 1.73054i
\(299\) 0 0
\(300\) 24.2485i 1.39999i
\(301\) 25.4938 2.49325i 1.46944 0.143709i
\(302\) 24.9213 1.43406
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 17.4470 10.0730i 0.997380 0.575837i
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.05532 + 1.82786i 0.0599380 + 0.103816i
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 12.7704 22.1191i 0.722984 1.25225i
\(313\) 28.7957 16.6252i 1.62763 0.939713i 0.642834 0.766006i \(-0.277759\pi\)
0.984797 0.173707i \(-0.0555747\pi\)
\(314\) 0 0
\(315\) 3.14362 + 1.42696i 0.177123 + 0.0804000i
\(316\) 0 0
\(317\) −2.29643 3.97753i −0.128980 0.223400i 0.794301 0.607524i \(-0.207837\pi\)
−0.923282 + 0.384123i \(0.874504\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 2.76254 1.59495i 0.154431 0.0891605i
\(321\) 0.421353i 0.0235176i
\(322\) 0 0
\(323\) 0 0
\(324\) 8.10835 + 14.0441i 0.450464 + 0.780226i
\(325\) 15.1160 + 8.72725i 0.838487 + 0.484101i
\(326\) 0 0
\(327\) 42.3411 24.4456i 2.34147 1.35185i
\(328\) 0 0
\(329\) −15.3598 + 10.9907i −0.846815 + 0.605940i
\(330\) 0 0
\(331\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) 0 0
\(333\) −7.99664 + 13.8506i −0.438213 + 0.759008i
\(334\) 28.2476 16.3088i 1.54564 0.892377i
\(335\) 0 0
\(336\) −2.57984 26.3792i −0.140742 1.43910i
\(337\) −34.4138 −1.87464 −0.937321 0.348467i \(-0.886702\pi\)
−0.937321 + 0.348467i \(0.886702\pi\)
\(338\) 9.19239 + 15.9217i 0.500000 + 0.866025i
\(339\) −44.8182 25.8758i −2.43419 1.40538i
\(340\) −1.73575 + 3.00641i −0.0941343 + 0.163045i
\(341\) 0 0
\(342\) 0 0
\(343\) 17.7338 5.33964i 0.957536 0.288314i
\(344\) 27.3840 1.47645
\(345\) 0 0
\(346\) 0 0
\(347\) −11.2345 + 19.4588i −0.603101 + 1.04460i 0.389247 + 0.921133i \(0.372735\pi\)
−0.992348 + 0.123469i \(0.960598\pi\)
\(348\) 0 0
\(349\) 27.5721i 1.47590i 0.674854 + 0.737951i \(0.264207\pi\)
−0.674854 + 0.737951i \(0.735793\pi\)
\(350\) 18.0274 1.76305i 0.963604 0.0942390i
\(351\) 2.46043 0.131328
\(352\) 0 0
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) −5.81907 + 3.35964i −0.308844 + 0.178311i
\(356\) 0 0
\(357\) 16.7854 + 23.4580i 0.888377 + 1.24153i
\(358\) 37.0097 1.95602
\(359\) −17.1457 29.6972i −0.904914 1.56736i −0.821033 0.570881i \(-0.806602\pi\)
−0.0838812 0.996476i \(-0.526732\pi\)
\(360\) 3.19624 + 1.84535i 0.168457 + 0.0972584i
\(361\) 9.50000 16.4545i 0.500000 0.866025i
\(362\) 0 0
\(363\) 27.5494i 1.44597i
\(364\) 17.3728 + 7.88587i 0.910580 + 0.413332i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 2.75591i 0.143273i
\(371\) 0 0
\(372\) 18.7482 0.972049
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) −4.91379 + 8.51093i −0.253747 + 0.439503i
\(376\) −17.4860 + 10.0956i −0.901772 + 0.520639i
\(377\) 0 0
\(378\) 2.07647 1.48582i 0.106802 0.0764223i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 33.7959 19.5121i 1.72689 0.997020i 0.824875 0.565315i \(-0.191246\pi\)
0.902015 0.431705i \(-0.142088\pi\)
\(384\) 28.3351i 1.44597i
\(385\) 0 0
\(386\) 0 0
\(387\) 15.8416 + 27.4384i 0.805272 + 1.39477i
\(388\) 0 0
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) −4.40985 + 2.54603i −0.223302 + 0.128923i
\(391\) 0 0
\(392\) 19.4238 3.83593i 0.981052 0.193744i
\(393\) −55.4646 −2.79782
\(394\) 2.68435 + 4.64943i 0.135236 + 0.234235i
\(395\) 0 0
\(396\) 0 0
\(397\) 28.3404 16.3623i 1.42236 0.821203i 0.425864 0.904787i \(-0.359970\pi\)
0.996501 + 0.0835845i \(0.0266368\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 19.3640 0.968202
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) −6.74764 + 11.6873i −0.336124 + 0.582184i
\(404\) 0 0
\(405\) 3.23311i 0.160654i
\(406\) 0 0
\(407\) 0 0
\(408\) 15.4182 + 26.7051i 0.763315 + 1.32210i
\(409\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 17.6635 + 10.1980i 0.866025 + 0.500000i
\(417\) 28.9956 50.2218i 1.41992 2.45937i
\(418\) 0 0
\(419\) 25.5295i 1.24720i 0.781745 + 0.623598i \(0.214330\pi\)
−0.781745 + 0.623598i \(0.785670\pi\)
\(420\) −2.18416 + 4.81176i −0.106576 + 0.234790i
\(421\) 15.4551 0.753235 0.376617 0.926369i \(-0.377087\pi\)
0.376617 + 0.926369i \(0.377087\pi\)
\(422\) −16.2734 28.1863i −0.792175 1.37209i
\(423\) −20.2312 11.6805i −0.983675 0.567925i
\(424\) 0 0
\(425\) −18.2501 + 10.5367i −0.885262 + 0.511106i
\(426\) 59.6856i 2.89178i
\(427\) 0 0
\(428\) 0.336478 0.0162643
\(429\) 0 0
\(430\) −4.72809 2.72976i −0.228009 0.131641i
\(431\) 4.94788 8.56998i 0.238331 0.412802i −0.721904 0.691993i \(-0.756733\pi\)
0.960236 + 0.279191i \(0.0900663\pi\)
\(432\) 2.36390 1.36480i 0.113733 0.0656640i
\(433\) 32.6481i 1.56897i −0.620151 0.784483i \(-0.712928\pi\)
0.620151 0.784483i \(-0.287072\pi\)
\(434\) 1.36314 + 13.9382i 0.0654326 + 0.669056i
\(435\) 0 0
\(436\) 19.5214 + 33.8121i 0.934907 + 1.61931i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 15.0802 + 17.2433i 0.718103 + 0.821111i
\(442\) −22.1966 −1.05578
\(443\) −18.2173 31.5533i −0.865530 1.49914i −0.866520 0.499142i \(-0.833648\pi\)
0.000990059 1.00000i \(-0.499685\pi\)
\(444\) −21.2003 12.2400i −1.00612 0.580884i
\(445\) 0 0
\(446\) 30.4430 17.5763i 1.44152 0.832261i
\(447\) 61.0891i 2.88942i
\(448\) 21.0655 2.06017i 0.995252 0.0973341i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 11.2020 + 19.4025i 0.528069 + 0.914642i
\(451\) 0 0
\(452\) 20.6635 35.7903i 0.971930 1.68343i
\(453\) −38.2213 + 22.0671i −1.79579 + 1.03680i
\(454\) 0 0
\(455\) −2.21346 3.09336i −0.103769 0.145019i
\(456\) 0 0
\(457\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(458\) −17.4293 10.0628i −0.814417 0.470204i
\(459\) −1.48528 + 2.57258i −0.0693270 + 0.120078i
\(460\) 0 0
\(461\) 11.3301i 0.527693i 0.964565 + 0.263847i \(0.0849913\pi\)
−0.964565 + 0.263847i \(0.915009\pi\)
\(462\) 0 0
\(463\) 14.9682 0.695631 0.347816 0.937563i \(-0.386923\pi\)
0.347816 + 0.937563i \(0.386923\pi\)
\(464\) 0 0
\(465\) −3.23704 1.86891i −0.150114 0.0866684i
\(466\) 11.1015 19.2283i 0.514267 0.890736i
\(467\) −8.83176 + 5.09902i −0.408685 + 0.235954i −0.690225 0.723595i \(-0.742488\pi\)
0.281539 + 0.959550i \(0.409155\pi\)
\(468\) 23.5981i 1.09082i
\(469\) 0 0
\(470\) 4.02548 0.185682
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −18.7327 + 13.4042i −0.858613 + 0.614382i
\(477\) 0 0
\(478\) −0.526350 0.911665i −0.0240747 0.0416986i
\(479\) 3.01244 + 1.73923i 0.137642 + 0.0794675i 0.567240 0.823553i \(-0.308011\pi\)
−0.429598 + 0.903020i \(0.641345\pi\)
\(480\) −2.82457 + 4.89229i −0.128923 + 0.223302i
\(481\) 15.2603 8.81056i 0.695812 0.401727i
\(482\) 0 0
\(483\) 0 0
\(484\) 22.0000 1.00000
\(485\) 0 0
\(486\) −27.3785 15.8070i −1.24192 0.717020i
\(487\) −21.9765 + 38.0643i −0.995848 + 1.72486i −0.419091 + 0.907944i \(0.637651\pi\)
−0.576757 + 0.816916i \(0.695682\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −3.73608 1.27395i −0.168779 0.0575512i
\(491\) 23.2945 1.05126 0.525632 0.850712i \(-0.323829\pi\)
0.525632 + 0.850712i \(0.323829\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 14.9717i 0.672248i
\(497\) −44.3728 + 4.33959i −1.99039 + 0.194657i
\(498\) 0 0
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) −6.79654 3.92398i −0.303951 0.175486i
\(501\) −28.8819 + 50.0249i −1.29035 + 2.23495i
\(502\) −38.0648 + 21.9767i −1.69892 + 0.980869i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 14.2506 + 19.9155i 0.634772 + 0.887108i
\(505\) 0 0
\(506\) 0 0
\(507\) −28.1964 16.2792i −1.25225 0.722984i
\(508\) 0 0
\(509\) 18.7350 10.8167i 0.830414 0.479440i −0.0235804 0.999722i \(-0.507507\pi\)
0.853994 + 0.520282i \(0.174173\pi\)
\(510\) 6.14783i 0.272230i
\(511\) 0 0
\(512\) 22.6274 1.00000
\(513\) 0 0
\(514\) −25.0514 14.4634i −1.10497 0.637954i
\(515\) 0 0
\(516\) −41.9984 + 24.2478i −1.84887 + 1.06745i
\(517\) 0 0
\(518\) 7.55832 16.6511i 0.332093 0.731609i
\(519\) 0 0
\(520\) −2.03317 3.52156i −0.0891605 0.154431i
\(521\) 36.9499 + 21.3330i 1.61880 + 0.934616i 0.987230 + 0.159299i \(0.0509235\pi\)
0.631572 + 0.775317i \(0.282410\pi\)
\(522\) 0 0
\(523\) 38.7476 22.3710i 1.69432 0.978214i 0.743358 0.668894i \(-0.233232\pi\)
0.950958 0.309320i \(-0.100101\pi\)
\(524\) 44.2921i 1.93491i
\(525\) −26.0871 + 18.6667i −1.13854 + 0.814681i
\(526\) 0 0
\(527\) −8.14667 14.1104i −0.354875 0.614661i
\(528\) 0 0
\(529\) −11.5000 + 19.9186i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.0580959 0.0335417i −0.00251170 0.00145013i
\(536\) 0 0
\(537\) −56.7611 + 32.7710i −2.44942 + 1.41417i
\(538\) 0 0
\(539\) 0 0
\(540\) −0.544198 −0.0234185
\(541\) 9.38901 + 16.2622i 0.403665 + 0.699168i 0.994165 0.107869i \(-0.0344028\pi\)
−0.590500 + 0.807038i \(0.701069\pi\)
\(542\) 39.8232 + 22.9919i 1.71055 + 0.987588i
\(543\) 0 0
\(544\) −21.3258 + 12.3125i −0.914336 + 0.527892i
\(545\) 7.78394i 0.333427i
\(546\) −33.6270 + 3.28867i −1.43910 + 0.140742i
\(547\) −10.8937 −0.465781 −0.232891 0.972503i \(-0.574818\pi\)
−0.232891 + 0.972503i \(0.574818\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.44028 + 4.22668i 0.103584 + 0.179413i
\(556\) 40.1054 + 23.1549i 1.70085 + 0.981986i
\(557\) −20.5037 + 35.5135i −0.868772 + 1.50476i −0.00551865 + 0.999985i \(0.501757\pi\)
−0.863253 + 0.504772i \(0.831577\pi\)
\(558\) −15.0014 + 8.66106i −0.635060 + 0.366652i
\(559\) 34.9079i 1.47645i
\(560\) −3.84251 1.74420i −0.162376 0.0737058i
\(561\) 0 0
\(562\) 0 0
\(563\) 16.2489 + 9.38133i 0.684812 + 0.395376i 0.801665 0.597773i \(-0.203948\pi\)
−0.116854 + 0.993149i \(0.537281\pi\)
\(564\) 17.8786 30.9667i 0.752827 1.30393i
\(565\) −7.13547 + 4.11967i −0.300192 + 0.173316i
\(566\) 43.2666i 1.81863i
\(567\) 8.86708 19.5344i 0.372382 0.820367i
\(568\) −47.6628 −1.99989
\(569\) 23.6952 + 41.0413i 0.993354 + 1.72054i 0.596356 + 0.802720i \(0.296615\pi\)
0.396998 + 0.917819i \(0.370052\pi\)
\(570\) 0 0
\(571\) −14.2352 + 24.6560i −0.595723 + 1.03182i 0.397721 + 0.917506i \(0.369801\pi\)
−0.993444 + 0.114316i \(0.963532\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 13.0899 + 22.6723i 0.545412 + 0.944681i
\(577\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(578\) 1.37856 2.38774i 0.0573406 0.0993169i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 2.35237 4.07442i 0.0972584 0.168457i
\(586\) −8.75348 + 5.05383i −0.361603 + 0.208772i
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) −26.3934 + 23.0823i −1.08844 + 0.951900i
\(589\) 0 0
\(590\) 0 0
\(591\) −8.23388 4.75383i −0.338696 0.195546i
\(592\) 9.77444 16.9298i 0.401727 0.695812i
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 4.57056 0.446994i 0.187375 0.0183250i
\(596\) 48.7837 1.99826
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) −29.6982 + 17.1463i −1.21243 + 0.699994i
\(601\) 47.6750i 1.94470i 0.233520 + 0.972352i \(0.424975\pi\)
−0.233520 + 0.972352i \(0.575025\pi\)
\(602\) −21.0804 29.4604i −0.859174 1.20072i
\(603\) 0 0
\(604\) −17.6220 30.5222i −0.717030 1.24193i
\(605\) −3.79849 2.19306i −0.154431 0.0891605i
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.8694 + 22.2904i 0.520639 + 0.901772i
\(612\) −24.6738 14.2454i −0.997380 0.575837i
\(613\) −7.12721 + 12.3447i −0.287865 + 0.498598i −0.973300 0.229537i \(-0.926279\pi\)
0.685435 + 0.728134i \(0.259612\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(620\) 1.49244 2.58499i 0.0599380 0.103816i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −36.1203 −1.44597
\(625\) −11.3202 19.6072i −0.452808 0.784286i
\(626\) −40.7233 23.5116i −1.62763 0.939713i
\(627\) 0 0
\(628\) 0 0
\(629\) 21.2746i 0.848274i
\(630\) −0.475217 4.85915i −0.0189331 0.193593i
\(631\) −46.6391 −1.85667 −0.928336 0.371742i \(-0.878761\pi\)
−0.928336 + 0.371742i \(0.878761\pi\)
\(632\) 0 0
\(633\) 49.9163 + 28.8192i 1.98399 + 1.14546i
\(634\) −3.24764 + 5.62508i −0.128980 + 0.223400i
\(635\) 0 0
\(636\) 0 0
\(637\) −4.88987 24.7606i −0.193744 0.981052i
\(638\) 0 0
\(639\) −27.5728 47.7575i −1.09076 1.88926i
\(640\) −3.90682 2.25560i −0.154431 0.0891605i
\(641\) 10.1635 17.6037i 0.401435 0.695306i −0.592464 0.805597i \(-0.701845\pi\)
0.993899 + 0.110291i \(0.0351782\pi\)
\(642\) −0.516050 + 0.297942i −0.0203669 + 0.0117588i
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 9.66850 0.380697
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) 11.4669 19.8613i 0.450464 0.780226i
\(649\) 0 0
\(650\) 24.6844i 0.968202i
\(651\) −14.4325 20.1698i −0.565654 0.790515i
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) −59.8793 34.5713i −2.34147 1.35185i
\(655\) −4.41524 + 7.64742i −0.172518 + 0.298809i
\(656\) 0 0
\(657\) 0 0
\(658\) 24.3219 + 11.0402i 0.948166 + 0.430393i
\(659\) 41.1588 1.60332 0.801660 0.597781i \(-0.203951\pi\)
0.801660 + 0.597781i \(0.203951\pi\)
\(660\) 0 0
\(661\) 41.3063 + 23.8482i 1.60663 + 0.927587i 0.990118 + 0.140240i \(0.0447873\pi\)
0.616510 + 0.787347i \(0.288546\pi\)
\(662\) 0 0
\(663\) 34.0425 19.6544i 1.32210 0.763315i
\(664\) 0 0
\(665\) 0 0
\(666\) 22.6179 0.876426
\(667\) 0 0
\(668\) −39.9482 23.0641i −1.54564 0.892377i
\(669\) −31.1266 + 53.9128i −1.20342 + 2.08439i
\(670\) 0 0
\(671\) 0 0
\(672\) −30.4835 + 21.8125i −1.17593 + 0.841437i
\(673\) 48.4803 1.86878 0.934388 0.356256i \(-0.115947\pi\)
0.934388 + 0.356256i \(0.115947\pi\)
\(674\) 24.3343 + 42.1482i 0.937321 + 1.62349i
\(675\) −2.86092 1.65175i −0.110117 0.0635760i
\(676\) 13.0000 22.5167i 0.500000 0.866025i
\(677\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) 73.1878i 2.81076i
\(679\) 0 0
\(680\) 4.90945 0.188269
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −19.0794 17.9437i −0.728455 0.685094i
\(687\) 35.6413 1.35980
\(688\) −19.3634 33.5384i −0.738224 1.27864i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 31.7761 1.20620
\(695\) −4.61637 7.99578i −0.175109 0.303297i
\(696\) 0 0
\(697\) 0 0
\(698\) 33.7688 19.4964i 1.27817 0.737951i
\(699\) 39.3202i 1.48723i
\(700\) −14.9066 20.8323i −0.563416 0.787386i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −1.73979 3.01340i −0.0656640 0.113733i
\(703\) 0 0
\(704\) 0 0
\(705\) −6.17380 + 3.56445i −0.232519 + 0.134245i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8.48528 + 14.6969i 0.318671 + 0.551955i 0.980211 0.197955i \(-0.0634300\pi\)
−0.661540 + 0.749910i \(0.730097\pi\)
\(710\) 8.22940 + 4.75125i 0.308844 + 0.178311i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 16.8610 37.1451i 0.631006 1.39012i
\(715\) 0 0
\(716\) −26.1698 45.3274i −0.978012 1.69397i
\(717\) 1.61451 + 0.932136i 0.0602948 + 0.0348112i
\(718\) −24.2476 + 41.9981i −0.904914 + 1.56736i
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 5.21943i 0.194517i
\(721\) 0 0
\(722\) −26.8701 −1.00000
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −33.7410 + 19.4804i −1.25225 + 0.722984i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) −2.62622 26.8534i −0.0973341 0.995252i
\(729\) 31.6615 1.17265
\(730\) 0 0
\(731\) 36.4991 + 21.0728i 1.34997 + 0.779405i
\(732\) 0 0
\(733\) 45.2040 26.0985i 1.66965 0.963971i 0.701820 0.712354i \(-0.252371\pi\)
0.967827 0.251617i \(-0.0809623\pi\)
\(734\) 0 0
\(735\) 6.85799 1.35436i 0.252961 0.0499562i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) −3.37528 + 1.94872i −0.124078 + 0.0716364i
\(741\) 0 0
\(742\) 0 0
\(743\) 19.1634 0.703035 0.351518 0.936181i \(-0.385666\pi\)
0.351518 + 0.936181i \(0.385666\pi\)
\(744\) −13.2570 22.9618i −0.486024 0.841819i
\(745\) −8.42293 4.86298i −0.308592 0.178166i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.259023 0.361991i −0.00946451 0.0132269i
\(750\) 13.8983 0.507494
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 24.7290 + 14.2773i 0.901772 + 0.520639i
\(753\) 38.9195 67.4106i 1.41831 2.45658i
\(754\) 0 0
\(755\) 7.02657i 0.255723i
\(756\) −3.28803 1.49251i −0.119585 0.0542821i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 0 0
\(763\) 21.3481 47.0304i 0.772854 1.70262i
\(764\) 0 0
\(765\) 2.84010 + 4.91919i 0.102684 + 0.177854i
\(766\) −47.7946 27.5942i −1.72689 0.997020i
\(767\) 0 0
\(768\) −34.7032 + 20.0359i −1.25225 + 0.722984i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 51.2278 1.84492
\(772\) 0 0
\(773\) −12.2145 7.05206i −0.439326 0.253645i 0.263986 0.964527i \(-0.414963\pi\)
−0.703312 + 0.710882i \(0.748296\pi\)
\(774\) 22.4034 38.8037i 0.805272 1.39477i
\(775\) 15.6919 9.05975i 0.563671 0.325436i
\(776\) 0 0
\(777\) 3.15206 + 32.2302i 0.113080 + 1.15625i
\(778\) 0 0
\(779\) 0 0
\(780\) 6.23648 + 3.60063i 0.223302 + 0.128923i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −18.4328 21.0768i −0.658313 0.752744i
\(785\) 0 0
\(786\) 39.2194 + 67.9300i 1.39891 + 2.42298i
\(787\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(788\) 3.79625 6.57529i 0.135236 0.234235i
\(789\) 0 0
\(790\) 0 0
\(791\) −54.4110 + 5.32131i −1.93463 + 0.189204i
\(792\) 0 0
\(793\) 0 0
\(794\) −40.0794 23.1399i −1.42236 0.821203i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) −31.0753 −1.09936
\(800\) −13.6924 23.7160i −0.484101 0.838487i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 19.0852 0.672248
\(807\) 0 0
\(808\) 0 0
\(809\) −21.6731 + 37.5389i −0.761985 + 1.31980i 0.179841 + 0.983696i \(0.442442\pi\)
−0.941826 + 0.336101i \(0.890892\pi\)
\(810\) −3.95973 + 2.28615i −0.139131 + 0.0803272i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) −81.4347 −2.85604
\(814\) 0 0
\(815\) 0 0
\(816\) 21.8047 37.7668i 0.763315 1.32210i
\(817\) 0 0
\(818\) 0 0
\(819\) 25.3874 18.1660i 0.887108 0.634772i
\(820\) 0 0
\(821\) −21.2481 36.8028i −0.741564 1.28443i −0.951783 0.306773i \(-0.900751\pi\)
0.210218 0.977654i \(-0.432582\pi\)
\(822\) 0 0
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 28.8444i 1.00000i
\(833\) 28.8412 + 9.83443i 0.999287 + 0.340743i
\(834\) −82.0119 −2.83984
\(835\) 4.59827 + 7.96443i 0.159130 + 0.275621i
\(836\) 0 0
\(837\) 1.27708 2.21197i 0.0441425 0.0764570i
\(838\) 31.2671 18.0521i 1.08010 0.623598i
\(839\) 57.3570i 1.98018i 0.140427 + 0.990091i \(0.455153\pi\)
−0.140427 + 0.990091i \(0.544847\pi\)
\(840\) 7.43762 0.727388i 0.256622 0.0250973i
\(841\) 29.0000 1.00000
\(842\) −10.9284 18.9285i −0.376617 0.652321i
\(843\) 0 0
\(844\) −23.0140 + 39.8614i −0.792175 + 1.37209i
\(845\) −4.48912 + 2.59180i −0.154431 + 0.0891605i
\(846\) 33.0374i 1.13585i
\(847\) −16.9358 23.6681i −0.581920 0.813246i
\(848\) 0 0
\(849\) −38.3113 66.3572i −1.31484 2.27737i
\(850\) 25.8096 + 14.9012i 0.885262 + 0.511106i
\(851\) 0 0
\(852\) 73.0996 42.2041i 2.50435 1.44589i
\(853\) 56.7336i 1.94252i −0.238021 0.971260i \(-0.576499\pi\)
0.238021 0.971260i \(-0.423501\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.237926 0.412100i −0.00813215 0.0140853i
\(857\) 35.3270 + 20.3961i 1.20675 + 0.696717i 0.962048 0.272882i \(-0.0879768\pi\)
0.244701 + 0.969599i \(0.421310\pi\)
\(858\) 0 0
\(859\) −24.2524 + 14.0021i −0.827480 + 0.477746i −0.852989 0.521929i \(-0.825213\pi\)
0.0255092 + 0.999675i \(0.491879\pi\)
\(860\) 7.72094i 0.263282i
\(861\) 0 0
\(862\) −13.9947 −0.476662
\(863\) 27.4624 + 47.5663i 0.934831 + 1.61917i 0.774936 + 0.632040i \(0.217782\pi\)
0.159895 + 0.987134i \(0.448885\pi\)
\(864\) −3.34306 1.93012i −0.113733 0.0656640i
\(865\) 0 0
\(866\) −39.9855 + 23.0857i −1.35876 + 0.784483i
\(867\) 4.88271i 0.165825i
\(868\) 16.1069 11.5253i 0.546703 0.391194i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 27.6075 47.8175i 0.934907 1.61931i
\(873\) 0 0
\(874\) 0 0
\(875\) 1.01051 + 10.3326i 0.0341615 + 0.349305i
\(876\) 0 0
\(877\) −27.2490 47.1966i −0.920133 1.59372i −0.799208 0.601055i \(-0.794747\pi\)
−0.120925 0.992662i \(-0.538586\pi\)
\(878\) 0 0
\(879\) 8.95003 15.5019i 0.301877 0.522866i
\(880\) 0 0
\(881\) 2.41480i 0.0813567i 0.999172 + 0.0406783i \(0.0129519\pi\)
−0.999172 + 0.0406783i \(0.987048\pi\)
\(882\) 10.4554 30.6622i 0.352051 1.03245i
\(883\) −48.1523 −1.62046 −0.810228 0.586115i \(-0.800657\pi\)
−0.810228 + 0.586115i \(0.800657\pi\)
\(884\) 15.6954 + 27.1852i 0.527892 + 0.914336i
\(885\) 0 0
\(886\) −25.7631 + 44.6231i −0.865530 + 1.49914i
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 34.6199i 1.16177i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −43.0529 24.8566i −1.44152 0.832261i
\(893\) 0 0
\(894\) −74.8186 + 43.1965i −2.50231 + 1.44471i
\(895\) 10.4349i 0.348800i
\(896\) −17.4188 24.3431i −0.581920 0.813246i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 15.8421 27.4392i 0.528069 0.914642i
\(901\) 0 0
\(902\) 0 0
\(903\) 58.4170 + 26.5167i 1.94399 + 0.882421i
\(904\) −58.4453 −1.94386
\(905\) 0 0
\(906\) 54.0531 + 31.2076i 1.79579 + 1.03680i
\(907\) −13.1418 + 22.7623i −0.436367 + 0.755810i −0.997406 0.0719791i \(-0.977068\pi\)
0.561039 + 0.827789i \(0.310402\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −2.22343 + 4.89826i −0.0737058 + 0.162376i
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 28.4619i 0.940408i
\(917\) −47.6505 + 34.0964i −1.57356 + 1.12596i
\(918\) 4.20101 0.138654
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 13.8764 8.01156i 0.456996 0.263847i
\(923\) 60.7585i 1.99989i
\(924\) 0 0
\(925\) −23.6591 −0.777905
\(926\) −10.5841 18.3322i −0.347816 0.602435i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(930\) 5.28606i 0.173337i
\(931\) 0 0
\(932\) −31.3998 −1.02853
\(933\) 0 0
\(934\) 12.4900 + 7.21110i 0.408685 + 0.235954i
\(935\) 0 0
\(936\) 28.9017 16.6864i 0.944681 0.545412i
\(937\) 28.8621i 0.942883i 0.881897 + 0.471441i \(0.156266\pi\)
−0.881897 + 0.471441i \(0.843734\pi\)
\(938\) 0 0
\(939\) 83.2754 2.71759
\(940\) −2.84645 4.93019i −0.0928408 0.160805i
\(941\) 46.9056 + 27.0809i 1.52908 + 0.882813i 0.999401 + 0.0346136i \(0.0110201\pi\)
0.529677 + 0.848200i \(0.322313\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0.418927 + 0.585461i 0.0136277 + 0.0190450i
\(946\) 0 0
\(947\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 11.5028i 0.373003i
\(952\) 29.6628 + 13.4646i 0.961377 + 0.436390i
\(953\) −45.7556 −1.48217 −0.741084 0.671412i \(-0.765688\pi\)
−0.741084 + 0.671412i \(0.765688\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −0.744372 + 1.28929i −0.0240747 + 0.0416986i
\(957\) 0 0
\(958\) 4.91929i 0.158935i
\(959\) 0 0
\(960\) 7.98908 0.257847
\(961\) −8.49528 14.7143i −0.274041 0.474654i
\(962\) −21.5814 12.4600i −0.695812 0.401727i
\(963\) 0.275279 0.476797i 0.00887074 0.0153646i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −13.4219 −0.431620 −0.215810 0.976435i \(-0.569239\pi\)
−0.215810 + 0.976435i \(0.569239\pi\)
\(968\) −15.5563 26.9444i −0.500000 0.866025i
\(969\) 0 0
\(970\) 0 0
\(971\) −22.4591 + 12.9668i −0.720747 + 0.416124i −0.815028 0.579422i \(-0.803278\pi\)
0.0942803 + 0.995546i \(0.469945\pi\)
\(972\) 44.7090i 1.43404i
\(973\) −5.96289 60.9712i −0.191161 1.95465i
\(974\) 62.1588 1.99170
\(975\) 21.8573 + 37.8580i 0.699994 + 1.21243i
\(976\) 0 0
\(977\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.08154 + 5.47656i 0.0345486 + 0.174942i
\(981\) 63.8833 2.03964
\(982\) −16.4717 28.5298i −0.525632 0.910422i
\(983\) 52.2001 + 30.1377i 1.66492 + 0.961244i 0.970311 + 0.241860i \(0.0777574\pi\)
0.694612 + 0.719384i \(0.255576\pi\)
\(984\) 0 0
\(985\) −1.31091 + 0.756854i −0.0417691 + 0.0241154i
\(986\) 0 0
\(987\) −47.0778 + 4.60414i −1.49850 + 0.146551i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 18.3365 10.5866i 0.582184 0.336124i
\(993\) 0 0
\(994\) 36.6912 + 51.2768i 1.16377 + 1.62640i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(998\) 0 0
\(999\) −2.88823 + 1.66752i −0.0913795 + 0.0527580i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.cy.a.675.5 yes 24
7.5 odd 6 inner 728.2.cy.a.467.5 24
8.3 odd 2 inner 728.2.cy.a.675.11 yes 24
13.12 even 2 inner 728.2.cy.a.675.11 yes 24
56.19 even 6 inner 728.2.cy.a.467.11 yes 24
91.12 odd 6 inner 728.2.cy.a.467.11 yes 24
104.51 odd 2 CM 728.2.cy.a.675.5 yes 24
728.467 even 6 inner 728.2.cy.a.467.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.cy.a.467.5 24 7.5 odd 6 inner
728.2.cy.a.467.5 24 728.467 even 6 inner
728.2.cy.a.467.11 yes 24 56.19 even 6 inner
728.2.cy.a.467.11 yes 24 91.12 odd 6 inner
728.2.cy.a.675.5 yes 24 1.1 even 1 trivial
728.2.cy.a.675.5 yes 24 104.51 odd 2 CM
728.2.cy.a.675.11 yes 24 8.3 odd 2 inner
728.2.cy.a.675.11 yes 24 13.12 even 2 inner