Properties

Label 728.2.i.a.701.52
Level $728$
Weight $2$
Character 728.701
Analytic conductor $5.813$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(701,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.701");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.i (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 701.52
Character \(\chi\) \(=\) 728.701
Dual form 728.2.i.a.701.51

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.552548 + 1.30180i) q^{2} -1.24325i q^{3} +(-1.38938 + 1.43862i) q^{4} -4.24503 q^{5} +(1.61846 - 0.686953i) q^{6} -1.00000i q^{7} +(-2.64050 - 1.01380i) q^{8} +1.45434 q^{9} +(-2.34558 - 5.52619i) q^{10} +2.97219 q^{11} +(1.78855 + 1.72734i) q^{12} +(3.10071 + 1.84000i) q^{13} +(1.30180 - 0.552548i) q^{14} +5.27761i q^{15} +(-0.139235 - 3.99758i) q^{16} +3.88084 q^{17} +(0.803592 + 1.89326i) q^{18} -3.68346 q^{19} +(5.89797 - 6.10697i) q^{20} -1.24325 q^{21} +(1.64228 + 3.86921i) q^{22} +4.72588 q^{23} +(-1.26040 + 3.28278i) q^{24} +13.0203 q^{25} +(-0.682027 + 5.05320i) q^{26} -5.53784i q^{27} +(1.43862 + 1.38938i) q^{28} +7.03148i q^{29} +(-6.87041 + 2.91613i) q^{30} +2.28102i q^{31} +(5.12712 - 2.39011i) q^{32} -3.69517i q^{33} +(2.14435 + 5.05210i) q^{34} +4.24503i q^{35} +(-2.02063 + 2.09224i) q^{36} +3.24019 q^{37} +(-2.03528 - 4.79513i) q^{38} +(2.28757 - 3.85494i) q^{39} +(11.2090 + 4.30360i) q^{40} +3.82209i q^{41} +(-0.686953 - 1.61846i) q^{42} -8.00510i q^{43} +(-4.12951 + 4.27585i) q^{44} -6.17371 q^{45} +(2.61127 + 6.15217i) q^{46} -0.318216i q^{47} +(-4.96997 + 0.173103i) q^{48} -1.00000 q^{49} +(7.19431 + 16.9498i) q^{50} -4.82484i q^{51} +(-6.95512 + 1.90427i) q^{52} +2.52928i q^{53} +(7.20918 - 3.05992i) q^{54} -12.6170 q^{55} +(-1.01380 + 2.64050i) q^{56} +4.57944i q^{57} +(-9.15361 + 3.88523i) q^{58} +10.7468 q^{59} +(-7.59246 - 7.33262i) q^{60} -11.8802i q^{61} +(-2.96944 + 1.26037i) q^{62} -1.45434i q^{63} +(5.94443 + 5.35386i) q^{64} +(-13.1626 - 7.81085i) q^{65} +(4.81038 - 2.04176i) q^{66} +8.65396 q^{67} +(-5.39198 + 5.58305i) q^{68} -5.87543i q^{69} +(-5.52619 + 2.34558i) q^{70} -5.29101i q^{71} +(-3.84018 - 1.47441i) q^{72} -12.1985i q^{73} +(1.79036 + 4.21809i) q^{74} -16.1874i q^{75} +(5.11773 - 5.29908i) q^{76} -2.97219i q^{77} +(6.28237 + 0.847927i) q^{78} +2.81549 q^{79} +(0.591055 + 16.9698i) q^{80} -2.52188 q^{81} +(-4.97560 + 2.11188i) q^{82} +2.11994 q^{83} +(1.72734 - 1.78855i) q^{84} -16.4743 q^{85} +(10.4211 - 4.42320i) q^{86} +8.74186 q^{87} +(-7.84806 - 3.01320i) q^{88} +14.4314i q^{89} +(-3.41127 - 8.03696i) q^{90} +(1.84000 - 3.10071i) q^{91} +(-6.56605 + 6.79873i) q^{92} +2.83587 q^{93} +(0.414254 - 0.175829i) q^{94} +15.6364 q^{95} +(-2.97149 - 6.37427i) q^{96} -3.42799i q^{97} +(-0.552548 - 1.30180i) q^{98} +4.32258 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 84 q^{9} + 8 q^{10} - 20 q^{12} - 8 q^{16} + 8 q^{17} - 12 q^{22} - 24 q^{23} + 92 q^{25} - 40 q^{30} + 44 q^{36} + 20 q^{38} - 24 q^{39} - 28 q^{40} - 72 q^{48} - 84 q^{49} - 44 q^{52} + 32 q^{55}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.552548 + 1.30180i 0.390710 + 0.920514i
\(3\) 1.24325i 0.717788i −0.933378 0.358894i \(-0.883154\pi\)
0.933378 0.358894i \(-0.116846\pi\)
\(4\) −1.38938 + 1.43862i −0.694691 + 0.719308i
\(5\) −4.24503 −1.89843 −0.949217 0.314622i \(-0.898122\pi\)
−0.949217 + 0.314622i \(0.898122\pi\)
\(6\) 1.61846 0.686953i 0.660734 0.280447i
\(7\) 1.00000i 0.377964i
\(8\) −2.64050 1.01380i −0.933556 0.358432i
\(9\) 1.45434 0.484780
\(10\) −2.34558 5.52619i −0.741738 1.74753i
\(11\) 2.97219 0.896150 0.448075 0.893996i \(-0.352110\pi\)
0.448075 + 0.893996i \(0.352110\pi\)
\(12\) 1.78855 + 1.72734i 0.516311 + 0.498641i
\(13\) 3.10071 + 1.84000i 0.859982 + 0.510324i
\(14\) 1.30180 0.552548i 0.347921 0.147675i
\(15\) 5.27761i 1.36267i
\(16\) −0.139235 3.99758i −0.0348087 0.999394i
\(17\) 3.88084 0.941243 0.470622 0.882335i \(-0.344030\pi\)
0.470622 + 0.882335i \(0.344030\pi\)
\(18\) 0.803592 + 1.89326i 0.189408 + 0.446247i
\(19\) −3.68346 −0.845043 −0.422521 0.906353i \(-0.638855\pi\)
−0.422521 + 0.906353i \(0.638855\pi\)
\(20\) 5.89797 6.10697i 1.31883 1.36556i
\(21\) −1.24325 −0.271298
\(22\) 1.64228 + 3.86921i 0.350135 + 0.824919i
\(23\) 4.72588 0.985414 0.492707 0.870195i \(-0.336007\pi\)
0.492707 + 0.870195i \(0.336007\pi\)
\(24\) −1.26040 + 3.28278i −0.257278 + 0.670096i
\(25\) 13.0203 2.60405
\(26\) −0.682027 + 5.05320i −0.133756 + 0.991014i
\(27\) 5.53784i 1.06576i
\(28\) 1.43862 + 1.38938i 0.271873 + 0.262569i
\(29\) 7.03148i 1.30571i 0.757481 + 0.652857i \(0.226430\pi\)
−0.757481 + 0.652857i \(0.773570\pi\)
\(30\) −6.87041 + 2.91613i −1.25436 + 0.532411i
\(31\) 2.28102i 0.409684i 0.978795 + 0.204842i \(0.0656680\pi\)
−0.978795 + 0.204842i \(0.934332\pi\)
\(32\) 5.12712 2.39011i 0.906356 0.422515i
\(33\) 3.69517i 0.643246i
\(34\) 2.14435 + 5.05210i 0.367753 + 0.866427i
\(35\) 4.24503i 0.717541i
\(36\) −2.02063 + 2.09224i −0.336772 + 0.348706i
\(37\) 3.24019 0.532684 0.266342 0.963879i \(-0.414185\pi\)
0.266342 + 0.963879i \(0.414185\pi\)
\(38\) −2.03528 4.79513i −0.330167 0.777873i
\(39\) 2.28757 3.85494i 0.366305 0.617285i
\(40\) 11.2090 + 4.30360i 1.77229 + 0.680459i
\(41\) 3.82209i 0.596910i 0.954424 + 0.298455i \(0.0964712\pi\)
−0.954424 + 0.298455i \(0.903529\pi\)
\(42\) −0.686953 1.61846i −0.105999 0.249734i
\(43\) 8.00510i 1.22077i −0.792106 0.610383i \(-0.791015\pi\)
0.792106 0.610383i \(-0.208985\pi\)
\(44\) −4.12951 + 4.27585i −0.622548 + 0.644608i
\(45\) −6.17371 −0.920323
\(46\) 2.61127 + 6.15217i 0.385011 + 0.907087i
\(47\) 0.318216i 0.0464166i −0.999731 0.0232083i \(-0.992612\pi\)
0.999731 0.0232083i \(-0.00738809\pi\)
\(48\) −4.96997 + 0.173103i −0.717353 + 0.0249852i
\(49\) −1.00000 −0.142857
\(50\) 7.19431 + 16.9498i 1.01743 + 2.39707i
\(51\) 4.82484i 0.675613i
\(52\) −6.95512 + 1.90427i −0.964502 + 0.264075i
\(53\) 2.52928i 0.347423i 0.984797 + 0.173712i \(0.0555761\pi\)
−0.984797 + 0.173712i \(0.944424\pi\)
\(54\) 7.20918 3.05992i 0.981045 0.416402i
\(55\) −12.6170 −1.70128
\(56\) −1.01380 + 2.64050i −0.135474 + 0.352851i
\(57\) 4.57944i 0.606562i
\(58\) −9.15361 + 3.88523i −1.20193 + 0.510156i
\(59\) 10.7468 1.39911 0.699556 0.714578i \(-0.253381\pi\)
0.699556 + 0.714578i \(0.253381\pi\)
\(60\) −7.59246 7.33262i −0.980182 0.946637i
\(61\) 11.8802i 1.52111i −0.649274 0.760555i \(-0.724927\pi\)
0.649274 0.760555i \(-0.275073\pi\)
\(62\) −2.96944 + 1.26037i −0.377120 + 0.160068i
\(63\) 1.45434i 0.183230i
\(64\) 5.94443 + 5.35386i 0.743054 + 0.669232i
\(65\) −13.1626 7.81085i −1.63262 0.968817i
\(66\) 4.81038 2.04176i 0.592117 0.251323i
\(67\) 8.65396 1.05725 0.528625 0.848856i \(-0.322708\pi\)
0.528625 + 0.848856i \(0.322708\pi\)
\(68\) −5.39198 + 5.58305i −0.653873 + 0.677044i
\(69\) 5.87543i 0.707319i
\(70\) −5.52619 + 2.34558i −0.660506 + 0.280350i
\(71\) 5.29101i 0.627927i −0.949435 0.313964i \(-0.898343\pi\)
0.949435 0.313964i \(-0.101657\pi\)
\(72\) −3.84018 1.47441i −0.452569 0.173760i
\(73\) 12.1985i 1.42773i −0.700284 0.713864i \(-0.746943\pi\)
0.700284 0.713864i \(-0.253057\pi\)
\(74\) 1.79036 + 4.21809i 0.208125 + 0.490343i
\(75\) 16.1874i 1.86916i
\(76\) 5.11773 5.29908i 0.587043 0.607846i
\(77\) 2.97219i 0.338713i
\(78\) 6.28237 + 0.847927i 0.711338 + 0.0960088i
\(79\) 2.81549 0.316767 0.158384 0.987378i \(-0.449372\pi\)
0.158384 + 0.987378i \(0.449372\pi\)
\(80\) 0.591055 + 16.9698i 0.0660819 + 1.89728i
\(81\) −2.52188 −0.280208
\(82\) −4.97560 + 2.11188i −0.549463 + 0.233219i
\(83\) 2.11994 0.232693 0.116347 0.993209i \(-0.462882\pi\)
0.116347 + 0.993209i \(0.462882\pi\)
\(84\) 1.72734 1.78855i 0.188469 0.195147i
\(85\) −16.4743 −1.78689
\(86\) 10.4211 4.42320i 1.12373 0.476966i
\(87\) 8.74186 0.937226
\(88\) −7.84806 3.01320i −0.836607 0.321209i
\(89\) 14.4314i 1.52972i 0.644194 + 0.764862i \(0.277193\pi\)
−0.644194 + 0.764862i \(0.722807\pi\)
\(90\) −3.41127 8.03696i −0.359580 0.847170i
\(91\) 1.84000 3.10071i 0.192884 0.325043i
\(92\) −6.56605 + 6.79873i −0.684559 + 0.708817i
\(93\) 2.83587 0.294066
\(94\) 0.414254 0.175829i 0.0427271 0.0181354i
\(95\) 15.6364 1.60426
\(96\) −2.97149 6.37427i −0.303277 0.650572i
\(97\) 3.42799i 0.348060i −0.984740 0.174030i \(-0.944321\pi\)
0.984740 0.174030i \(-0.0556789\pi\)
\(98\) −0.552548 1.30180i −0.0558157 0.131502i
\(99\) 4.32258 0.434436
\(100\) −18.0901 + 18.7312i −1.80901 + 1.87312i
\(101\) 4.85023i 0.482616i −0.970449 0.241308i \(-0.922424\pi\)
0.970449 0.241308i \(-0.0775764\pi\)
\(102\) 6.28100 2.66596i 0.621911 0.263969i
\(103\) −10.9280 −1.07677 −0.538384 0.842700i \(-0.680965\pi\)
−0.538384 + 0.842700i \(0.680965\pi\)
\(104\) −6.32202 8.00200i −0.619925 0.784661i
\(105\) 5.27761 0.515042
\(106\) −3.29263 + 1.39755i −0.319808 + 0.135742i
\(107\) 19.3059i 1.86637i 0.359392 + 0.933187i \(0.382984\pi\)
−0.359392 + 0.933187i \(0.617016\pi\)
\(108\) 7.96683 + 7.69417i 0.766608 + 0.740372i
\(109\) −5.98308 −0.573075 −0.286538 0.958069i \(-0.592504\pi\)
−0.286538 + 0.958069i \(0.592504\pi\)
\(110\) −6.97152 16.4249i −0.664708 1.56605i
\(111\) 4.02835i 0.382354i
\(112\) −3.99758 + 0.139235i −0.377735 + 0.0131564i
\(113\) −11.8821 −1.11777 −0.558887 0.829244i \(-0.688772\pi\)
−0.558887 + 0.829244i \(0.688772\pi\)
\(114\) −5.96153 + 2.53036i −0.558348 + 0.236990i
\(115\) −20.0615 −1.87074
\(116\) −10.1156 9.76942i −0.939211 0.907068i
\(117\) 4.50949 + 2.67598i 0.416902 + 0.247395i
\(118\) 5.93811 + 13.9902i 0.546647 + 1.28790i
\(119\) 3.88084i 0.355756i
\(120\) 5.35043 13.9355i 0.488425 1.27213i
\(121\) −2.16606 −0.196915
\(122\) 15.4657 6.56440i 1.40020 0.594313i
\(123\) 4.75179 0.428455
\(124\) −3.28152 3.16921i −0.294689 0.284604i
\(125\) −34.0462 −3.04519
\(126\) 1.89326 0.803592i 0.168665 0.0715897i
\(127\) 7.65675 0.679426 0.339713 0.940529i \(-0.389670\pi\)
0.339713 + 0.940529i \(0.389670\pi\)
\(128\) −3.68508 + 10.6967i −0.325719 + 0.945467i
\(129\) −9.95231 −0.876252
\(130\) 2.89522 21.4510i 0.253928 1.88138i
\(131\) 2.71789i 0.237463i 0.992926 + 0.118732i \(0.0378828\pi\)
−0.992926 + 0.118732i \(0.962117\pi\)
\(132\) 5.31593 + 5.13400i 0.462692 + 0.446857i
\(133\) 3.68346i 0.319396i
\(134\) 4.78173 + 11.2658i 0.413078 + 0.973213i
\(135\) 23.5083i 2.02327i
\(136\) −10.2474 3.93439i −0.878703 0.337371i
\(137\) 23.0466i 1.96901i 0.175363 + 0.984504i \(0.443890\pi\)
−0.175363 + 0.984504i \(0.556110\pi\)
\(138\) 7.64865 3.24646i 0.651097 0.276357i
\(139\) 6.61294i 0.560902i 0.959868 + 0.280451i \(0.0904840\pi\)
−0.959868 + 0.280451i \(0.909516\pi\)
\(140\) −6.10697 5.89797i −0.516133 0.498469i
\(141\) −0.395621 −0.0333173
\(142\) 6.88785 2.92354i 0.578016 0.245338i
\(143\) 9.21591 + 5.46884i 0.770673 + 0.457327i
\(144\) −0.202495 5.81383i −0.0168745 0.484486i
\(145\) 29.8488i 2.47881i
\(146\) 15.8801 6.74026i 1.31424 0.557828i
\(147\) 1.24325i 0.102541i
\(148\) −4.50186 + 4.66139i −0.370051 + 0.383164i
\(149\) −3.51745 −0.288161 −0.144080 0.989566i \(-0.546022\pi\)
−0.144080 + 0.989566i \(0.546022\pi\)
\(150\) 21.0728 8.94430i 1.72059 0.730299i
\(151\) 10.1417i 0.825316i −0.910886 0.412658i \(-0.864600\pi\)
0.910886 0.412658i \(-0.135400\pi\)
\(152\) 9.72614 + 3.73428i 0.788895 + 0.302890i
\(153\) 5.64407 0.456296
\(154\) 3.86921 1.64228i 0.311790 0.132339i
\(155\) 9.68301i 0.777758i
\(156\) 2.36748 + 8.64693i 0.189550 + 0.692308i
\(157\) 7.13358i 0.569322i 0.958628 + 0.284661i \(0.0918810\pi\)
−0.958628 + 0.284661i \(0.908119\pi\)
\(158\) 1.55569 + 3.66521i 0.123764 + 0.291589i
\(159\) 3.14452 0.249376
\(160\) −21.7648 + 10.1461i −1.72066 + 0.802117i
\(161\) 4.72588i 0.372452i
\(162\) −1.39346 3.28298i −0.109480 0.257936i
\(163\) 20.6173 1.61487 0.807437 0.589954i \(-0.200854\pi\)
0.807437 + 0.589954i \(0.200854\pi\)
\(164\) −5.49852 5.31034i −0.429362 0.414668i
\(165\) 15.6861i 1.22116i
\(166\) 1.17137 + 2.75974i 0.0909156 + 0.214197i
\(167\) 6.39044i 0.494507i −0.968951 0.247253i \(-0.920472\pi\)
0.968951 0.247253i \(-0.0795280\pi\)
\(168\) 3.28278 + 1.26040i 0.253272 + 0.0972419i
\(169\) 6.22880 + 11.4106i 0.479139 + 0.877739i
\(170\) −9.10283 21.4463i −0.698155 1.64485i
\(171\) −5.35700 −0.409660
\(172\) 11.5163 + 11.1221i 0.878107 + 0.848056i
\(173\) 3.69193i 0.280693i 0.990102 + 0.140346i \(0.0448216\pi\)
−0.990102 + 0.140346i \(0.955178\pi\)
\(174\) 4.83030 + 11.3802i 0.366184 + 0.862729i
\(175\) 13.0203i 0.984239i
\(176\) −0.413832 11.8816i −0.0311938 0.895607i
\(177\) 13.3609i 1.00427i
\(178\) −18.7868 + 7.97403i −1.40813 + 0.597679i
\(179\) 20.4497i 1.52848i −0.644930 0.764242i \(-0.723114\pi\)
0.644930 0.764242i \(-0.276886\pi\)
\(180\) 8.57765 8.88161i 0.639340 0.661996i
\(181\) 19.6160i 1.45805i 0.684488 + 0.729024i \(0.260026\pi\)
−0.684488 + 0.729024i \(0.739974\pi\)
\(182\) 5.05320 + 0.682027i 0.374568 + 0.0505552i
\(183\) −14.7701 −1.09183
\(184\) −12.4787 4.79109i −0.919939 0.353204i
\(185\) −13.7547 −1.01127
\(186\) 1.56695 + 3.69175i 0.114895 + 0.270692i
\(187\) 11.5346 0.843495
\(188\) 0.457791 + 0.442124i 0.0333878 + 0.0322452i
\(189\) −5.53784 −0.402819
\(190\) 8.63984 + 20.3555i 0.626800 + 1.47674i
\(191\) −6.04598 −0.437472 −0.218736 0.975784i \(-0.570193\pi\)
−0.218736 + 0.975784i \(0.570193\pi\)
\(192\) 6.65616 7.39039i 0.480367 0.533355i
\(193\) 1.37318i 0.0988435i −0.998778 0.0494217i \(-0.984262\pi\)
0.998778 0.0494217i \(-0.0157378\pi\)
\(194\) 4.46257 1.89413i 0.320394 0.135991i
\(195\) −9.71080 + 16.3643i −0.695405 + 1.17188i
\(196\) 1.38938 1.43862i 0.0992416 0.102758i
\(197\) 15.5202 1.10577 0.552884 0.833258i \(-0.313527\pi\)
0.552884 + 0.833258i \(0.313527\pi\)
\(198\) 2.38843 + 5.62715i 0.169738 + 0.399904i
\(199\) 27.2936 1.93479 0.967395 0.253271i \(-0.0815064\pi\)
0.967395 + 0.253271i \(0.0815064\pi\)
\(200\) −34.3799 13.1999i −2.43103 0.933375i
\(201\) 10.7590i 0.758881i
\(202\) 6.31404 2.67998i 0.444255 0.188563i
\(203\) 7.03148 0.493513
\(204\) 6.94110 + 6.70355i 0.485974 + 0.469343i
\(205\) 16.2249i 1.13319i
\(206\) −6.03824 14.2261i −0.420704 0.991179i
\(207\) 6.87304 0.477709
\(208\) 6.92381 12.6515i 0.480080 0.877225i
\(209\) −10.9479 −0.757285
\(210\) 2.91613 + 6.87041i 0.201232 + 0.474103i
\(211\) 6.32498i 0.435429i −0.976012 0.217715i \(-0.930140\pi\)
0.976012 0.217715i \(-0.0698602\pi\)
\(212\) −3.63866 3.51414i −0.249905 0.241352i
\(213\) −6.57803 −0.450719
\(214\) −25.1325 + 10.6674i −1.71802 + 0.729211i
\(215\) 33.9819i 2.31754i
\(216\) −5.61425 + 14.6226i −0.382001 + 0.994944i
\(217\) 2.28102 0.154846
\(218\) −3.30594 7.78879i −0.223906 0.527524i
\(219\) −15.1658 −1.02481
\(220\) 17.5299 18.1511i 1.18187 1.22375i
\(221\) 12.0334 + 7.14075i 0.809452 + 0.480339i
\(222\) 5.24412 2.22586i 0.351962 0.149390i
\(223\) 9.60586i 0.643256i 0.946866 + 0.321628i \(0.104230\pi\)
−0.946866 + 0.321628i \(0.895770\pi\)
\(224\) −2.39011 5.12712i −0.159696 0.342570i
\(225\) 18.9359 1.26239
\(226\) −6.56543 15.4682i −0.436726 1.02893i
\(227\) −14.4621 −0.959882 −0.479941 0.877301i \(-0.659342\pi\)
−0.479941 + 0.877301i \(0.659342\pi\)
\(228\) −6.58806 6.36259i −0.436305 0.421373i
\(229\) 4.33134 0.286223 0.143112 0.989707i \(-0.454289\pi\)
0.143112 + 0.989707i \(0.454289\pi\)
\(230\) −11.0849 26.1161i −0.730919 1.72205i
\(231\) −3.69517 −0.243124
\(232\) 7.12850 18.5666i 0.468009 1.21896i
\(233\) −24.1730 −1.58362 −0.791812 0.610765i \(-0.790862\pi\)
−0.791812 + 0.610765i \(0.790862\pi\)
\(234\) −0.991899 + 7.34907i −0.0648425 + 0.480424i
\(235\) 1.35084i 0.0881188i
\(236\) −14.9314 + 15.4605i −0.971951 + 1.00639i
\(237\) 3.50035i 0.227372i
\(238\) 5.05210 2.14435i 0.327479 0.138998i
\(239\) 13.4660i 0.871045i −0.900178 0.435523i \(-0.856564\pi\)
0.900178 0.435523i \(-0.143436\pi\)
\(240\) 21.0977 0.734827i 1.36185 0.0474328i
\(241\) 24.4534i 1.57518i −0.616200 0.787590i \(-0.711329\pi\)
0.616200 0.787590i \(-0.288671\pi\)
\(242\) −1.19685 2.81978i −0.0769365 0.181263i
\(243\) 13.4782i 0.864627i
\(244\) 17.0911 + 16.5062i 1.09415 + 1.05670i
\(245\) 4.24503 0.271205
\(246\) 2.62559 + 6.18590i 0.167402 + 0.394398i
\(247\) −11.4213 6.77756i −0.726722 0.431246i
\(248\) 2.31250 6.02303i 0.146844 0.382463i
\(249\) 2.63560i 0.167024i
\(250\) −18.8122 44.3215i −1.18979 2.80314i
\(251\) 20.9395i 1.32169i 0.750522 + 0.660846i \(0.229802\pi\)
−0.750522 + 0.660846i \(0.770198\pi\)
\(252\) 2.09224 + 2.02063i 0.131799 + 0.127288i
\(253\) 14.0462 0.883079
\(254\) 4.23072 + 9.96758i 0.265459 + 0.625421i
\(255\) 20.4816i 1.28261i
\(256\) −15.9612 + 1.11320i −0.997577 + 0.0695751i
\(257\) 1.15045 0.0717633 0.0358816 0.999356i \(-0.488576\pi\)
0.0358816 + 0.999356i \(0.488576\pi\)
\(258\) −5.49912 12.9559i −0.342361 0.806602i
\(259\) 3.24019i 0.201336i
\(260\) 29.5247 8.08368i 1.83104 0.501328i
\(261\) 10.2262i 0.632984i
\(262\) −3.53816 + 1.50177i −0.218588 + 0.0927794i
\(263\) −4.03698 −0.248931 −0.124465 0.992224i \(-0.539722\pi\)
−0.124465 + 0.992224i \(0.539722\pi\)
\(264\) −3.74615 + 9.75707i −0.230560 + 0.600506i
\(265\) 10.7369i 0.659560i
\(266\) −4.79513 + 2.03528i −0.294008 + 0.124791i
\(267\) 17.9418 1.09802
\(268\) −12.0237 + 12.4497i −0.734462 + 0.760488i
\(269\) 4.24698i 0.258943i −0.991583 0.129472i \(-0.958672\pi\)
0.991583 0.129472i \(-0.0413281\pi\)
\(270\) −30.6032 + 12.9894i −1.86245 + 0.790513i
\(271\) 25.3475i 1.53975i −0.638194 0.769875i \(-0.720318\pi\)
0.638194 0.769875i \(-0.279682\pi\)
\(272\) −0.540348 15.5140i −0.0327634 0.940673i
\(273\) −3.85494 2.28757i −0.233312 0.138450i
\(274\) −30.0022 + 12.7344i −1.81250 + 0.769311i
\(275\) 38.6987 2.33362
\(276\) 8.45249 + 8.16322i 0.508780 + 0.491368i
\(277\) 6.89186i 0.414092i −0.978331 0.207046i \(-0.933615\pi\)
0.978331 0.207046i \(-0.0663849\pi\)
\(278\) −8.60874 + 3.65396i −0.516318 + 0.219150i
\(279\) 3.31738i 0.198607i
\(280\) 4.30360 11.2090i 0.257189 0.669864i
\(281\) 1.99156i 0.118807i −0.998234 0.0594033i \(-0.981080\pi\)
0.998234 0.0594033i \(-0.0189198\pi\)
\(282\) −0.218599 0.515020i −0.0130174 0.0306690i
\(283\) 5.18039i 0.307942i −0.988075 0.153971i \(-0.950794\pi\)
0.988075 0.153971i \(-0.0492062\pi\)
\(284\) 7.61173 + 7.35123i 0.451673 + 0.436216i
\(285\) 19.4398i 1.15152i
\(286\) −2.02712 + 15.0191i −0.119866 + 0.888098i
\(287\) 3.82209 0.225611
\(288\) 7.45658 3.47603i 0.439383 0.204827i
\(289\) −1.93904 −0.114061
\(290\) 38.8573 16.4929i 2.28178 0.968497i
\(291\) −4.26184 −0.249833
\(292\) 17.5490 + 16.9484i 1.02698 + 0.991830i
\(293\) −8.11470 −0.474066 −0.237033 0.971502i \(-0.576175\pi\)
−0.237033 + 0.971502i \(0.576175\pi\)
\(294\) −1.61846 + 0.686953i −0.0943906 + 0.0400639i
\(295\) −45.6204 −2.65612
\(296\) −8.55571 3.28490i −0.497290 0.190931i
\(297\) 16.4595i 0.955079i
\(298\) −1.94356 4.57902i −0.112587 0.265256i
\(299\) 14.6536 + 8.69562i 0.847439 + 0.502881i
\(300\) 23.2874 + 22.4905i 1.34450 + 1.29849i
\(301\) −8.00510 −0.461406
\(302\) 13.2024 5.60375i 0.759715 0.322459i
\(303\) −6.03003 −0.346416
\(304\) 0.512865 + 14.7249i 0.0294148 + 0.844530i
\(305\) 50.4320i 2.88773i
\(306\) 3.11862 + 7.34746i 0.178279 + 0.420027i
\(307\) 22.6768 1.29424 0.647118 0.762390i \(-0.275974\pi\)
0.647118 + 0.762390i \(0.275974\pi\)
\(308\) 4.27585 + 4.12951i 0.243639 + 0.235301i
\(309\) 13.5862i 0.772891i
\(310\) 12.6054 5.35032i 0.715937 0.303878i
\(311\) 1.90309 0.107914 0.0539571 0.998543i \(-0.482817\pi\)
0.0539571 + 0.998543i \(0.482817\pi\)
\(312\) −9.94846 + 7.85983i −0.563220 + 0.444975i
\(313\) 30.9361 1.74861 0.874306 0.485376i \(-0.161317\pi\)
0.874306 + 0.485376i \(0.161317\pi\)
\(314\) −9.28652 + 3.94164i −0.524068 + 0.222440i
\(315\) 6.17371i 0.347849i
\(316\) −3.91179 + 4.05041i −0.220055 + 0.227853i
\(317\) 10.9849 0.616975 0.308488 0.951228i \(-0.400177\pi\)
0.308488 + 0.951228i \(0.400177\pi\)
\(318\) 1.73750 + 4.09354i 0.0974339 + 0.229554i
\(319\) 20.8989i 1.17012i
\(320\) −25.2343 22.7273i −1.41064 1.27049i
\(321\) 24.0020 1.33966
\(322\) 6.15217 2.61127i 0.342847 0.145521i
\(323\) −14.2949 −0.795390
\(324\) 3.50385 3.62801i 0.194658 0.201556i
\(325\) 40.3721 + 23.9573i 2.23944 + 1.32891i
\(326\) 11.3921 + 26.8397i 0.630948 + 1.48651i
\(327\) 7.43844i 0.411347i
\(328\) 3.87482 10.0922i 0.213951 0.557248i
\(329\) −0.318216 −0.0175438
\(330\) −20.4202 + 8.66731i −1.12410 + 0.477120i
\(331\) −21.1523 −1.16264 −0.581319 0.813676i \(-0.697463\pi\)
−0.581319 + 0.813676i \(0.697463\pi\)
\(332\) −2.94540 + 3.04977i −0.161650 + 0.167378i
\(333\) 4.71234 0.258235
\(334\) 8.31909 3.53102i 0.455200 0.193209i
\(335\) −36.7363 −2.00712
\(336\) 0.173103 + 4.96997i 0.00944354 + 0.271134i
\(337\) −22.7775 −1.24077 −0.620385 0.784297i \(-0.713024\pi\)
−0.620385 + 0.784297i \(0.713024\pi\)
\(338\) −11.4127 + 14.4136i −0.620767 + 0.783995i
\(339\) 14.7724i 0.802326i
\(340\) 22.8891 23.7002i 1.24134 1.28532i
\(341\) 6.77965i 0.367138i
\(342\) −2.96000 6.97375i −0.160058 0.377097i
\(343\) 1.00000i 0.0539949i
\(344\) −8.11555 + 21.1374i −0.437561 + 1.13965i
\(345\) 24.9414i 1.34280i
\(346\) −4.80617 + 2.03997i −0.258381 + 0.109669i
\(347\) 8.80009i 0.472414i −0.971703 0.236207i \(-0.924096\pi\)
0.971703 0.236207i \(-0.0759043\pi\)
\(348\) −12.1458 + 12.5762i −0.651083 + 0.674154i
\(349\) −7.29071 −0.390263 −0.195131 0.980777i \(-0.562513\pi\)
−0.195131 + 0.980777i \(0.562513\pi\)
\(350\) 16.9498 7.19431i 0.906006 0.384552i
\(351\) 10.1896 17.1712i 0.543882 0.916533i
\(352\) 15.2388 7.10386i 0.812231 0.378637i
\(353\) 16.0655i 0.855078i −0.903997 0.427539i \(-0.859381\pi\)
0.903997 0.427539i \(-0.140619\pi\)
\(354\) 17.3933 7.38253i 0.924441 0.392377i
\(355\) 22.4605i 1.19208i
\(356\) −20.7612 20.0507i −1.10034 1.06269i
\(357\) −4.82484 −0.255358
\(358\) 26.6215 11.2994i 1.40699 0.597194i
\(359\) 3.43324i 0.181200i 0.995887 + 0.0905999i \(0.0288784\pi\)
−0.995887 + 0.0905999i \(0.971122\pi\)
\(360\) 16.3017 + 6.25890i 0.859173 + 0.329873i
\(361\) −5.43216 −0.285903
\(362\) −25.5362 + 10.8388i −1.34215 + 0.569674i
\(363\) 2.69295i 0.141343i
\(364\) 1.90427 + 6.95512i 0.0998109 + 0.364548i
\(365\) 51.7830i 2.71045i
\(366\) −8.16117 19.2277i −0.426591 1.00505i
\(367\) −17.1507 −0.895260 −0.447630 0.894219i \(-0.647732\pi\)
−0.447630 + 0.894219i \(0.647732\pi\)
\(368\) −0.658006 18.8921i −0.0343010 0.984817i
\(369\) 5.55861i 0.289370i
\(370\) −7.60013 17.9059i −0.395112 0.930884i
\(371\) 2.52928 0.131314
\(372\) −3.94011 + 4.07973i −0.204285 + 0.211524i
\(373\) 9.16344i 0.474465i 0.971453 + 0.237233i \(0.0762403\pi\)
−0.971453 + 0.237233i \(0.923760\pi\)
\(374\) 6.37343 + 15.0158i 0.329562 + 0.776449i
\(375\) 42.3278i 2.18580i
\(376\) −0.322607 + 0.840248i −0.0166372 + 0.0433325i
\(377\) −12.9379 + 21.8026i −0.666337 + 1.12289i
\(378\) −3.05992 7.20918i −0.157385 0.370800i
\(379\) −30.7837 −1.58125 −0.790627 0.612298i \(-0.790245\pi\)
−0.790627 + 0.612298i \(0.790245\pi\)
\(380\) −21.7249 + 22.4947i −1.11446 + 1.15396i
\(381\) 9.51922i 0.487684i
\(382\) −3.34069 7.87068i −0.170925 0.402699i
\(383\) 37.8476i 1.93392i 0.254921 + 0.966962i \(0.417951\pi\)
−0.254921 + 0.966962i \(0.582049\pi\)
\(384\) 13.2987 + 4.58147i 0.678645 + 0.233797i
\(385\) 12.6170i 0.643024i
\(386\) 1.78761 0.758746i 0.0909868 0.0386192i
\(387\) 11.6421i 0.591803i
\(388\) 4.93157 + 4.76279i 0.250362 + 0.241794i
\(389\) 32.2732i 1.63631i −0.574994 0.818157i \(-0.694996\pi\)
0.574994 0.818157i \(-0.305004\pi\)
\(390\) −26.6688 3.59947i −1.35043 0.182266i
\(391\) 18.3404 0.927514
\(392\) 2.64050 + 1.01380i 0.133365 + 0.0512045i
\(393\) 3.37901 0.170448
\(394\) 8.57564 + 20.2042i 0.432035 + 1.01787i
\(395\) −11.9518 −0.601362
\(396\) −6.00572 + 6.21854i −0.301799 + 0.312493i
\(397\) −6.45949 −0.324192 −0.162096 0.986775i \(-0.551825\pi\)
−0.162096 + 0.986775i \(0.551825\pi\)
\(398\) 15.0810 + 35.5309i 0.755943 + 1.78100i
\(399\) 4.57944 0.229259
\(400\) −1.81287 52.0495i −0.0906436 2.60247i
\(401\) 2.05810i 0.102777i 0.998679 + 0.0513883i \(0.0163646\pi\)
−0.998679 + 0.0513883i \(0.983635\pi\)
\(402\) 14.0061 5.94486i 0.698561 0.296503i
\(403\) −4.19708 + 7.07279i −0.209072 + 0.352321i
\(404\) 6.97762 + 6.73882i 0.347150 + 0.335269i
\(405\) 10.7054 0.531957
\(406\) 3.88523 + 9.15361i 0.192821 + 0.454286i
\(407\) 9.63048 0.477365
\(408\) −4.89142 + 12.7400i −0.242161 + 0.630723i
\(409\) 25.4159i 1.25674i 0.777916 + 0.628368i \(0.216277\pi\)
−0.777916 + 0.628368i \(0.783723\pi\)
\(410\) 21.1216 8.96501i 1.04312 0.442750i
\(411\) 28.6526 1.41333
\(412\) 15.1832 15.7212i 0.748020 0.774527i
\(413\) 10.7468i 0.528815i
\(414\) 3.79768 + 8.94734i 0.186646 + 0.439738i
\(415\) −8.99918 −0.441753
\(416\) 20.2955 + 2.02287i 0.995070 + 0.0991795i
\(417\) 8.22151 0.402609
\(418\) −6.04926 14.2521i −0.295879 0.697091i
\(419\) 23.1356i 1.13025i −0.825006 0.565125i \(-0.808828\pi\)
0.825006 0.565125i \(-0.191172\pi\)
\(420\) −7.33262 + 7.59246i −0.357795 + 0.370474i
\(421\) 7.32172 0.356839 0.178419 0.983955i \(-0.442902\pi\)
0.178419 + 0.983955i \(0.442902\pi\)
\(422\) 8.23388 3.49485i 0.400819 0.170127i
\(423\) 0.462794i 0.0225018i
\(424\) 2.56418 6.67855i 0.124528 0.324339i
\(425\) 50.5296 2.45105
\(426\) −3.63467 8.56329i −0.176100 0.414893i
\(427\) −11.8802 −0.574926
\(428\) −27.7738 26.8233i −1.34250 1.29655i
\(429\) 6.79911 11.4576i 0.328264 0.553180i
\(430\) −44.2377 + 18.7766i −2.13333 + 0.905488i
\(431\) 29.5377i 1.42278i −0.702797 0.711390i \(-0.748066\pi\)
0.702797 0.711390i \(-0.251934\pi\)
\(432\) −22.1379 + 0.771059i −1.06511 + 0.0370976i
\(433\) −27.4093 −1.31721 −0.658604 0.752489i \(-0.728853\pi\)
−0.658604 + 0.752489i \(0.728853\pi\)
\(434\) 1.26037 + 2.96944i 0.0604999 + 0.142538i
\(435\) −37.1094 −1.77926
\(436\) 8.31278 8.60736i 0.398110 0.412218i
\(437\) −17.4076 −0.832717
\(438\) −8.37980 19.7428i −0.400402 0.943349i
\(439\) 17.6695 0.843320 0.421660 0.906754i \(-0.361448\pi\)
0.421660 + 0.906754i \(0.361448\pi\)
\(440\) 33.3153 + 12.7911i 1.58824 + 0.609793i
\(441\) −1.45434 −0.0692543
\(442\) −2.64684 + 19.6107i −0.125897 + 0.932785i
\(443\) 1.74367i 0.0828444i 0.999142 + 0.0414222i \(0.0131889\pi\)
−0.999142 + 0.0414222i \(0.986811\pi\)
\(444\) 5.79526 + 5.59692i 0.275031 + 0.265618i
\(445\) 61.2616i 2.90408i
\(446\) −12.5049 + 5.30770i −0.592126 + 0.251327i
\(447\) 4.37305i 0.206838i
\(448\) 5.35386 5.94443i 0.252946 0.280848i
\(449\) 2.54137i 0.119935i 0.998200 + 0.0599673i \(0.0190997\pi\)
−0.998200 + 0.0599673i \(0.980900\pi\)
\(450\) 10.4630 + 24.6508i 0.493230 + 1.16205i
\(451\) 11.3600i 0.534921i
\(452\) 16.5088 17.0938i 0.776508 0.804025i
\(453\) −12.6086 −0.592402
\(454\) −7.99099 18.8268i −0.375036 0.883584i
\(455\) −7.81085 + 13.1626i −0.366178 + 0.617072i
\(456\) 4.64263 12.0920i 0.217411 0.566259i
\(457\) 39.5988i 1.85235i 0.377091 + 0.926176i \(0.376924\pi\)
−0.377091 + 0.926176i \(0.623076\pi\)
\(458\) 2.39327 + 5.63855i 0.111830 + 0.263472i
\(459\) 21.4915i 1.00314i
\(460\) 27.8731 28.8608i 1.29959 1.34564i
\(461\) 13.1410 0.612036 0.306018 0.952026i \(-0.401003\pi\)
0.306018 + 0.952026i \(0.401003\pi\)
\(462\) −2.04176 4.81038i −0.0949911 0.223799i
\(463\) 26.9632i 1.25309i −0.779386 0.626544i \(-0.784469\pi\)
0.779386 0.626544i \(-0.215531\pi\)
\(464\) 28.1089 0.979026i 1.30492 0.0454501i
\(465\) −12.0384 −0.558266
\(466\) −13.3567 31.4684i −0.618738 1.45775i
\(467\) 31.2099i 1.44422i 0.691776 + 0.722112i \(0.256829\pi\)
−0.691776 + 0.722112i \(0.743171\pi\)
\(468\) −10.1151 + 2.76946i −0.467571 + 0.128018i
\(469\) 8.65396i 0.399603i
\(470\) −1.75852 + 0.746401i −0.0811146 + 0.0344289i
\(471\) 8.86879 0.408652
\(472\) −28.3768 10.8951i −1.30615 0.501486i
\(473\) 23.7927i 1.09399i
\(474\) 4.55676 1.93411i 0.209299 0.0888365i
\(475\) −47.9595 −2.20053
\(476\) 5.58305 + 5.39198i 0.255899 + 0.247141i
\(477\) 3.67843i 0.168424i
\(478\) 17.5301 7.44062i 0.801809 0.340326i
\(479\) 7.12602i 0.325596i −0.986659 0.162798i \(-0.947948\pi\)
0.986659 0.162798i \(-0.0520519\pi\)
\(480\) 12.6141 + 27.0590i 0.575750 + 1.23507i
\(481\) 10.0469 + 5.96195i 0.458099 + 0.271841i
\(482\) 31.8335 13.5117i 1.44997 0.615439i
\(483\) −5.87543 −0.267341
\(484\) 3.00949 3.11613i 0.136795 0.141642i
\(485\) 14.5519i 0.660769i
\(486\) 17.5460 7.44735i 0.795901 0.337819i
\(487\) 1.00402i 0.0454964i 0.999741 + 0.0227482i \(0.00724160\pi\)
−0.999741 + 0.0227482i \(0.992758\pi\)
\(488\) −12.0442 + 31.3697i −0.545214 + 1.42004i
\(489\) 25.6324i 1.15914i
\(490\) 2.34558 + 5.52619i 0.105963 + 0.249648i
\(491\) 9.80821i 0.442638i −0.975201 0.221319i \(-0.928964\pi\)
0.975201 0.221319i \(-0.0710362\pi\)
\(492\) −6.60206 + 6.83601i −0.297644 + 0.308191i
\(493\) 27.2881i 1.22899i
\(494\) 2.51221 18.6132i 0.113030 0.837449i
\(495\) −18.3495 −0.824748
\(496\) 9.11856 0.317597i 0.409436 0.0142605i
\(497\) −5.29101 −0.237334
\(498\) 3.43103 1.45630i 0.153748 0.0652581i
\(499\) 2.81067 0.125823 0.0629115 0.998019i \(-0.479961\pi\)
0.0629115 + 0.998019i \(0.479961\pi\)
\(500\) 47.3032 48.9795i 2.11546 2.19043i
\(501\) −7.94488 −0.354951
\(502\) −27.2591 + 11.5701i −1.21664 + 0.516398i
\(503\) −1.76210 −0.0785682 −0.0392841 0.999228i \(-0.512508\pi\)
−0.0392841 + 0.999228i \(0.512508\pi\)
\(504\) −1.47441 + 3.84018i −0.0656753 + 0.171055i
\(505\) 20.5894i 0.916214i
\(506\) 7.76122 + 18.2854i 0.345028 + 0.812887i
\(507\) 14.1862 7.74393i 0.630031 0.343920i
\(508\) −10.6381 + 11.0151i −0.471991 + 0.488717i
\(509\) −2.58451 −0.114556 −0.0572782 0.998358i \(-0.518242\pi\)
−0.0572782 + 0.998358i \(0.518242\pi\)
\(510\) −26.6630 + 11.3171i −1.18066 + 0.501128i
\(511\) −12.1985 −0.539631
\(512\) −10.2685 20.1633i −0.453808 0.891099i
\(513\) 20.3984i 0.900611i
\(514\) 0.635680 + 1.49766i 0.0280386 + 0.0660591i
\(515\) 46.3896 2.04417
\(516\) 13.8276 14.3176i 0.608724 0.630295i
\(517\) 0.945800i 0.0415962i
\(518\) 4.21809 1.79036i 0.185332 0.0786639i
\(519\) 4.58998 0.201478
\(520\) 26.8372 + 33.9687i 1.17689 + 1.48963i
\(521\) −10.1321 −0.443896 −0.221948 0.975058i \(-0.571242\pi\)
−0.221948 + 0.975058i \(0.571242\pi\)
\(522\) −13.3125 + 5.65045i −0.582670 + 0.247313i
\(523\) 30.8439i 1.34871i 0.738408 + 0.674355i \(0.235578\pi\)
−0.738408 + 0.674355i \(0.764422\pi\)
\(524\) −3.91000 3.77619i −0.170809 0.164964i
\(525\) −16.1874 −0.706475
\(526\) −2.23063 5.25536i −0.0972599 0.229144i
\(527\) 8.85230i 0.385612i
\(528\) −14.7717 + 0.514495i −0.642856 + 0.0223905i
\(529\) −0.666049 −0.0289586
\(530\) 13.9773 5.93263i 0.607134 0.257697i
\(531\) 15.6295 0.678262
\(532\) −5.29908 5.11773i −0.229744 0.221882i
\(533\) −7.03264 + 11.8512i −0.304617 + 0.513332i
\(534\) 9.91368 + 23.3566i 0.429007 + 1.01074i
\(535\) 81.9542i 3.54319i
\(536\) −22.8507 8.77336i −0.987002 0.378952i
\(537\) −25.4240 −1.09713
\(538\) 5.52873 2.34666i 0.238361 0.101172i
\(539\) −2.97219 −0.128021
\(540\) −33.8194 32.6620i −1.45536 1.40555i
\(541\) −39.8533 −1.71343 −0.856713 0.515793i \(-0.827497\pi\)
−0.856713 + 0.515793i \(0.827497\pi\)
\(542\) 32.9974 14.0057i 1.41736 0.601596i
\(543\) 24.3876 1.04657
\(544\) 19.8976 9.27564i 0.853101 0.397690i
\(545\) 25.3983 1.08795
\(546\) 0.847927 6.28237i 0.0362879 0.268861i
\(547\) 33.2749i 1.42273i −0.702821 0.711366i \(-0.748077\pi\)
0.702821 0.711366i \(-0.251923\pi\)
\(548\) −33.1553 32.0206i −1.41632 1.36785i
\(549\) 17.2779i 0.737404i
\(550\) 21.3829 + 50.3781i 0.911770 + 2.14813i
\(551\) 25.9002i 1.10338i
\(552\) −5.95650 + 15.5140i −0.253525 + 0.660322i
\(553\) 2.81549i 0.119727i
\(554\) 8.97184 3.80808i 0.381177 0.161790i
\(555\) 17.1005i 0.725875i
\(556\) −9.51348 9.18790i −0.403461 0.389654i
\(557\) 24.4137 1.03444 0.517222 0.855852i \(-0.326966\pi\)
0.517222 + 0.855852i \(0.326966\pi\)
\(558\) −4.31858 + 1.83301i −0.182820 + 0.0775976i
\(559\) 14.7294 24.8215i 0.622986 1.04984i
\(560\) 16.9698 0.591055i 0.717106 0.0249766i
\(561\) 14.3404i 0.605451i
\(562\) 2.59262 1.10043i 0.109363 0.0464190i
\(563\) 11.8363i 0.498842i 0.968395 + 0.249421i \(0.0802403\pi\)
−0.968395 + 0.249421i \(0.919760\pi\)
\(564\) 0.549668 0.569146i 0.0231452 0.0239654i
\(565\) 50.4399 2.12202
\(566\) 6.74384 2.86241i 0.283465 0.120316i
\(567\) 2.52188i 0.105909i
\(568\) −5.36401 + 13.9709i −0.225069 + 0.586205i
\(569\) −22.6270 −0.948573 −0.474286 0.880371i \(-0.657294\pi\)
−0.474286 + 0.880371i \(0.657294\pi\)
\(570\) 25.3069 10.7414i 1.05999 0.449910i
\(571\) 1.63950i 0.0686108i 0.999411 + 0.0343054i \(0.0109219\pi\)
−0.999411 + 0.0343054i \(0.989078\pi\)
\(572\) −20.6720 + 5.65986i −0.864339 + 0.236651i
\(573\) 7.51664i 0.314012i
\(574\) 2.11188 + 4.97560i 0.0881484 + 0.207678i
\(575\) 61.5322 2.56607
\(576\) 8.64522 + 7.78633i 0.360218 + 0.324430i
\(577\) 29.5910i 1.23189i 0.787789 + 0.615945i \(0.211226\pi\)
−0.787789 + 0.615945i \(0.788774\pi\)
\(578\) −1.07141 2.52425i −0.0445649 0.104995i
\(579\) −1.70720 −0.0709487
\(580\) 42.9410 + 41.4714i 1.78303 + 1.72201i
\(581\) 2.11994i 0.0879497i
\(582\) −2.35487 5.54807i −0.0976124 0.229975i
\(583\) 7.51751i 0.311344i
\(584\) −12.3668 + 32.2101i −0.511743 + 1.33286i
\(585\) −19.1429 11.3596i −0.791461 0.469663i
\(586\) −4.48376 10.5637i −0.185222 0.436384i
\(587\) 41.1847 1.69988 0.849938 0.526882i \(-0.176639\pi\)
0.849938 + 0.526882i \(0.176639\pi\)
\(588\) −1.78855 1.72734i −0.0737587 0.0712344i
\(589\) 8.40205i 0.346200i
\(590\) −25.2074 59.3888i −1.03777 2.44500i
\(591\) 19.2954i 0.793707i
\(592\) −0.451147 12.9529i −0.0185420 0.532361i
\(593\) 3.33933i 0.137130i 0.997647 + 0.0685650i \(0.0218421\pi\)
−0.997647 + 0.0685650i \(0.978158\pi\)
\(594\) 21.4271 9.09468i 0.879163 0.373159i
\(595\) 16.4743i 0.675380i
\(596\) 4.88708 5.06026i 0.200183 0.207276i
\(597\) 33.9326i 1.38877i
\(598\) −3.22318 + 23.8808i −0.131806 + 0.976560i
\(599\) −27.4683 −1.12232 −0.561162 0.827706i \(-0.689646\pi\)
−0.561162 + 0.827706i \(0.689646\pi\)
\(600\) −16.4107 + 42.7427i −0.669965 + 1.74496i
\(601\) −9.80041 −0.399767 −0.199884 0.979820i \(-0.564056\pi\)
−0.199884 + 0.979820i \(0.564056\pi\)
\(602\) −4.42320 10.4211i −0.180276 0.424731i
\(603\) 12.5858 0.512533
\(604\) 14.5900 + 14.0906i 0.593657 + 0.573340i
\(605\) 9.19499 0.373829
\(606\) −3.33188 7.84991i −0.135348 0.318881i
\(607\) 24.7016 1.00261 0.501304 0.865271i \(-0.332854\pi\)
0.501304 + 0.865271i \(0.332854\pi\)
\(608\) −18.8855 + 8.80385i −0.765909 + 0.357043i
\(609\) 8.74186i 0.354238i
\(610\) −65.6525 + 27.8661i −2.65819 + 1.12826i
\(611\) 0.585517 0.986695i 0.0236875 0.0399174i
\(612\) −7.84177 + 8.11965i −0.316985 + 0.328217i
\(613\) 33.1575 1.33922 0.669610 0.742713i \(-0.266461\pi\)
0.669610 + 0.742713i \(0.266461\pi\)
\(614\) 12.5300 + 29.5208i 0.505671 + 1.19136i
\(615\) −20.1715 −0.813393
\(616\) −3.01320 + 7.84806i −0.121405 + 0.316208i
\(617\) 45.3381i 1.82524i −0.408805 0.912622i \(-0.634054\pi\)
0.408805 0.912622i \(-0.365946\pi\)
\(618\) −17.6865 + 7.50701i −0.711457 + 0.301976i
\(619\) −22.2066 −0.892560 −0.446280 0.894893i \(-0.647251\pi\)
−0.446280 + 0.894893i \(0.647251\pi\)
\(620\) 13.9301 + 13.4534i 0.559448 + 0.540301i
\(621\) 26.1712i 1.05021i
\(622\) 1.05155 + 2.47744i 0.0421632 + 0.0993364i
\(623\) 14.4314 0.578181
\(624\) −15.7289 8.60800i −0.629662 0.344596i
\(625\) 79.4259 3.17704
\(626\) 17.0937 + 40.2727i 0.683200 + 1.60962i
\(627\) 13.6110i 0.543570i
\(628\) −10.2625 9.91127i −0.409518 0.395503i
\(629\) 12.5747 0.501385
\(630\) −8.03696 + 3.41127i −0.320200 + 0.135908i
\(631\) 9.86072i 0.392549i 0.980549 + 0.196275i \(0.0628844\pi\)
−0.980549 + 0.196275i \(0.937116\pi\)
\(632\) −7.43429 2.85434i −0.295720 0.113539i
\(633\) −7.86350 −0.312546
\(634\) 6.06970 + 14.3002i 0.241059 + 0.567934i
\(635\) −32.5031 −1.28985
\(636\) −4.36894 + 4.52375i −0.173240 + 0.179379i
\(637\) −3.10071 1.84000i −0.122855 0.0729034i
\(638\) −27.2063 + 11.5477i −1.07711 + 0.457176i
\(639\) 7.69493i 0.304407i
\(640\) 15.6433 45.4079i 0.618355 1.79491i
\(641\) −29.8909 −1.18062 −0.590311 0.807176i \(-0.700995\pi\)
−0.590311 + 0.807176i \(0.700995\pi\)
\(642\) 13.2622 + 31.2459i 0.523419 + 1.23318i
\(643\) −34.3349 −1.35404 −0.677019 0.735966i \(-0.736728\pi\)
−0.677019 + 0.735966i \(0.736728\pi\)
\(644\) 6.79873 + 6.56605i 0.267908 + 0.258739i
\(645\) 42.2478 1.66351
\(646\) −7.89862 18.6092i −0.310767 0.732168i
\(647\) −9.52056 −0.374292 −0.187146 0.982332i \(-0.559924\pi\)
−0.187146 + 0.982332i \(0.559924\pi\)
\(648\) 6.65900 + 2.55667i 0.261590 + 0.100436i
\(649\) 31.9415 1.25381
\(650\) −8.88017 + 65.7940i −0.348309 + 2.58065i
\(651\) 2.83587i 0.111147i
\(652\) −28.6454 + 29.6604i −1.12184 + 1.16159i
\(653\) 46.5326i 1.82096i −0.413554 0.910480i \(-0.635713\pi\)
0.413554 0.910480i \(-0.364287\pi\)
\(654\) −9.68338 + 4.11009i −0.378650 + 0.160717i
\(655\) 11.5375i 0.450809i
\(656\) 15.2791 0.532167i 0.596548 0.0207776i
\(657\) 17.7408i 0.692134i
\(658\) −0.175829 0.414254i −0.00685455 0.0161493i
\(659\) 24.5788i 0.957456i 0.877963 + 0.478728i \(0.158902\pi\)
−0.877963 + 0.478728i \(0.841098\pi\)
\(660\) −22.5663 21.7940i −0.878391 0.848329i
\(661\) −19.4726 −0.757395 −0.378697 0.925521i \(-0.623628\pi\)
−0.378697 + 0.925521i \(0.623628\pi\)
\(662\) −11.6877 27.5362i −0.454255 1.07022i
\(663\) 8.87771 14.9604i 0.344782 0.581015i
\(664\) −5.59768 2.14919i −0.217232 0.0834046i
\(665\) 15.6364i 0.606352i
\(666\) 2.60379 + 6.13454i 0.100895 + 0.237708i
\(667\) 33.2300i 1.28667i
\(668\) 9.19339 + 8.87876i 0.355703 + 0.343530i
\(669\) 11.9424 0.461722
\(670\) −20.2986 47.8234i −0.784202 1.84758i
\(671\) 35.3104i 1.36314i
\(672\) −6.37427 + 2.97149i −0.245893 + 0.114628i
\(673\) −33.4160 −1.28809 −0.644046 0.764987i \(-0.722745\pi\)
−0.644046 + 0.764987i \(0.722745\pi\)
\(674\) −12.5857 29.6518i −0.484782 1.14215i
\(675\) 72.1041i 2.77529i
\(676\) −25.0697 6.89284i −0.964218 0.265109i
\(677\) 16.9070i 0.649790i 0.945750 + 0.324895i \(0.105329\pi\)
−0.945750 + 0.324895i \(0.894671\pi\)
\(678\) −19.2307 + 8.16244i −0.738552 + 0.313477i
\(679\) −3.42799 −0.131554
\(680\) 43.5003 + 16.7016i 1.66816 + 0.640477i
\(681\) 17.9799i 0.688992i
\(682\) −8.82576 + 3.74608i −0.337956 + 0.143445i
\(683\) 3.07903 0.117816 0.0589080 0.998263i \(-0.481238\pi\)
0.0589080 + 0.998263i \(0.481238\pi\)
\(684\) 7.44291 7.70666i 0.284587 0.294672i
\(685\) 97.8336i 3.73803i
\(686\) −1.30180 + 0.552548i −0.0497031 + 0.0210964i
\(687\) 5.38492i 0.205448i
\(688\) −32.0010 + 1.11459i −1.22003 + 0.0424932i
\(689\) −4.65388 + 7.84257i −0.177299 + 0.298778i
\(690\) −32.4688 + 13.7813i −1.23606 + 0.524645i
\(691\) −29.3592 −1.11688 −0.558439 0.829546i \(-0.688600\pi\)
−0.558439 + 0.829546i \(0.688600\pi\)
\(692\) −5.31128 5.12951i −0.201904 0.194995i
\(693\) 4.32258i 0.164201i
\(694\) 11.4560 4.86247i 0.434863 0.184577i
\(695\) 28.0721i 1.06484i
\(696\) −23.0828 8.86248i −0.874953 0.335931i
\(697\) 14.8329i 0.561837i
\(698\) −4.02846 9.49106i −0.152480 0.359242i
\(699\) 30.0529i 1.13671i
\(700\) 18.7312 + 18.0901i 0.707971 + 0.683742i
\(701\) 23.1700i 0.875119i 0.899190 + 0.437559i \(0.144157\pi\)
−0.899190 + 0.437559i \(0.855843\pi\)
\(702\) 27.9838 + 3.77695i 1.05618 + 0.142552i
\(703\) −11.9351 −0.450141
\(704\) 17.6680 + 15.9127i 0.665888 + 0.599732i
\(705\) 1.67942 0.0632506
\(706\) 20.9141 8.87693i 0.787111 0.334088i
\(707\) −4.85023 −0.182412
\(708\) 19.2212 + 18.5634i 0.722377 + 0.697655i
\(709\) −1.93611 −0.0727121 −0.0363561 0.999339i \(-0.511575\pi\)
−0.0363561 + 0.999339i \(0.511575\pi\)
\(710\) −29.2391 + 12.4105i −1.09732 + 0.465757i
\(711\) 4.09468 0.153562
\(712\) 14.6305 38.1060i 0.548301 1.42808i
\(713\) 10.7798i 0.403708i
\(714\) −2.66596 6.28100i −0.0997709 0.235060i
\(715\) −39.1218 23.2154i −1.46307 0.868205i
\(716\) 29.4193 + 28.4125i 1.09945 + 1.06182i
\(717\) −16.7416 −0.625226
\(718\) −4.46941 + 1.89703i −0.166797 + 0.0707966i
\(719\) −33.4382 −1.24703 −0.623517 0.781810i \(-0.714297\pi\)
−0.623517 + 0.781810i \(0.714297\pi\)
\(720\) 0.859595 + 24.6799i 0.0320352 + 0.919765i
\(721\) 10.9280i 0.406980i
\(722\) −3.00153 7.07160i −0.111705 0.263178i
\(723\) −30.4015 −1.13065
\(724\) −28.2200 27.2542i −1.04879 1.01289i
\(725\) 91.5517i 3.40015i
\(726\) −3.50568 + 1.48798i −0.130108 + 0.0552241i
\(727\) −47.6574 −1.76752 −0.883758 0.467943i \(-0.844995\pi\)
−0.883758 + 0.467943i \(0.844995\pi\)
\(728\) −8.00200 + 6.32202i −0.296574 + 0.234310i
\(729\) −24.3223 −0.900828
\(730\) −67.4113 + 28.6126i −2.49500 + 1.05900i
\(731\) 31.0666i 1.14904i
\(732\) 20.5213 21.2485i 0.758488 0.785366i
\(733\) −10.5296 −0.388921 −0.194460 0.980910i \(-0.562296\pi\)
−0.194460 + 0.980910i \(0.562296\pi\)
\(734\) −9.47658 22.3268i −0.349787 0.824099i
\(735\) 5.27761i 0.194668i
\(736\) 24.2302 11.2954i 0.893136 0.416353i
\(737\) 25.7213 0.947455
\(738\) −7.23622 + 3.07140i −0.266369 + 0.113060i
\(739\) −37.2518 −1.37033 −0.685164 0.728388i \(-0.740270\pi\)
−0.685164 + 0.728388i \(0.740270\pi\)
\(740\) 19.1105 19.7877i 0.702517 0.727412i
\(741\) −8.42617 + 14.1995i −0.309543 + 0.521632i
\(742\) 1.39755 + 3.29263i 0.0513056 + 0.120876i
\(743\) 17.1129i 0.627810i 0.949454 + 0.313905i \(0.101637\pi\)
−0.949454 + 0.313905i \(0.898363\pi\)
\(744\) −7.48811 2.87500i −0.274527 0.105403i
\(745\) 14.9317 0.547054
\(746\) −11.9290 + 5.06324i −0.436752 + 0.185378i
\(747\) 3.08311 0.112805
\(748\) −16.0260 + 16.5939i −0.585969 + 0.606733i
\(749\) 19.3059 0.705423
\(750\) −55.1025 + 23.3881i −2.01206 + 0.854014i
\(751\) 0.528361 0.0192802 0.00964009 0.999954i \(-0.496931\pi\)
0.00964009 + 0.999954i \(0.496931\pi\)
\(752\) −1.27209 + 0.0443067i −0.0463884 + 0.00161570i
\(753\) 26.0330 0.948695
\(754\) −35.5315 4.79566i −1.29398 0.174648i
\(755\) 43.0516i 1.56681i
\(756\) 7.69417 7.96683i 0.279834 0.289751i
\(757\) 23.8685i 0.867515i 0.901030 + 0.433758i \(0.142813\pi\)
−0.901030 + 0.433758i \(0.857187\pi\)
\(758\) −17.0095 40.0744i −0.617812 1.45557i
\(759\) 17.4629i 0.633864i
\(760\) −41.2878 15.8521i −1.49766 0.575017i
\(761\) 24.1900i 0.876887i 0.898759 + 0.438444i \(0.144470\pi\)
−0.898759 + 0.438444i \(0.855530\pi\)
\(762\) 12.3921 5.25982i 0.448920 0.190543i
\(763\) 5.98308i 0.216602i
\(764\) 8.40018 8.69785i 0.303908 0.314677i
\(765\) −23.9592 −0.866248
\(766\) −49.2702 + 20.9126i −1.78020 + 0.755604i
\(767\) 33.3227 + 19.7741i 1.20321 + 0.714001i
\(768\) 1.38398 + 19.8437i 0.0499402 + 0.716049i
\(769\) 13.0043i 0.468947i −0.972123 0.234474i \(-0.924663\pi\)
0.972123 0.234474i \(-0.0753366\pi\)
\(770\) −16.4249 + 6.97152i −0.591913 + 0.251236i
\(771\) 1.43030i 0.0515108i
\(772\) 1.97548 + 1.90787i 0.0710989 + 0.0686657i
\(773\) 3.76057 0.135258 0.0676292 0.997711i \(-0.478457\pi\)
0.0676292 + 0.997711i \(0.478457\pi\)
\(774\) 15.1558 6.43284i 0.544763 0.231224i
\(775\) 29.6995i 1.06684i
\(776\) −3.47529 + 9.05160i −0.124756 + 0.324933i
\(777\) −4.02835 −0.144516
\(778\) 42.0133 17.8325i 1.50625 0.639325i
\(779\) 14.0785i 0.504414i
\(780\) −10.0500 36.7065i −0.359848 1.31430i
\(781\) 15.7259i 0.562717i
\(782\) 10.1340 + 23.8756i 0.362389 + 0.853790i
\(783\) 38.9392 1.39157
\(784\) 0.139235 + 3.99758i 0.00497267 + 0.142771i
\(785\) 30.2822i 1.08082i
\(786\) 1.86706 + 4.39880i 0.0665959 + 0.156900i
\(787\) −19.7264 −0.703169 −0.351584 0.936156i \(-0.614357\pi\)
−0.351584 + 0.936156i \(0.614357\pi\)
\(788\) −21.5635 + 22.3276i −0.768167 + 0.795388i
\(789\) 5.01896i 0.178680i
\(790\) −6.60396 15.5589i −0.234958 0.553562i
\(791\) 11.8821i 0.422479i
\(792\) −11.4138 4.38222i −0.405570 0.155715i
\(793\) 21.8597 36.8372i 0.776259 1.30813i
\(794\) −3.56917 8.40898i −0.126665 0.298423i
\(795\) −13.3486 −0.473425
\(796\) −37.9212 + 39.2650i −1.34408 + 1.39171i
\(797\) 13.5927i 0.481479i −0.970590 0.240740i \(-0.922610\pi\)
0.970590 0.240740i \(-0.0773900\pi\)
\(798\) 2.53036 + 5.96153i 0.0895737 + 0.211036i
\(799\) 1.23495i 0.0436893i
\(800\) 66.7565 31.1198i 2.36020 1.10025i
\(801\) 20.9881i 0.741579i
\(802\) −2.67924 + 1.13720i −0.0946073 + 0.0401559i
\(803\) 36.2564i 1.27946i
\(804\) 15.4781 + 14.9484i 0.545870 + 0.527188i
\(805\) 20.0615i 0.707075i
\(806\) −11.5265 1.55572i −0.406003 0.0547979i
\(807\) −5.28004 −0.185866
\(808\) −4.91715 + 12.8070i −0.172985 + 0.450549i
\(809\) 39.7054 1.39597 0.697983 0.716114i \(-0.254081\pi\)
0.697983 + 0.716114i \(0.254081\pi\)
\(810\) 5.91526 + 13.9364i 0.207841 + 0.489674i
\(811\) 1.54998 0.0544270 0.0272135 0.999630i \(-0.491337\pi\)
0.0272135 + 0.999630i \(0.491337\pi\)
\(812\) −9.76942 + 10.1156i −0.342839 + 0.354988i
\(813\) −31.5132 −1.10521
\(814\) 5.32130 + 12.5370i 0.186511 + 0.439421i
\(815\) −87.5211 −3.06573
\(816\) −19.2877 + 0.671785i −0.675204 + 0.0235172i
\(817\) 29.4864i 1.03160i
\(818\) −33.0865 + 14.0435i −1.15684 + 0.491020i
\(819\) 2.67598 4.50949i 0.0935065 0.157574i
\(820\) 23.3414 + 22.5425i 0.815115 + 0.787219i
\(821\) 43.4323 1.51580 0.757900 0.652371i \(-0.226226\pi\)
0.757900 + 0.652371i \(0.226226\pi\)
\(822\) 15.8320 + 37.3001i 0.552203 + 1.30099i
\(823\) 56.1465 1.95714 0.978571 0.205908i \(-0.0660149\pi\)
0.978571 + 0.205908i \(0.0660149\pi\)
\(824\) 28.8553 + 11.0788i 1.00522 + 0.385947i
\(825\) 48.1121i 1.67505i
\(826\) 13.9902 5.93811i 0.486781 0.206613i
\(827\) −0.504695 −0.0175500 −0.00877499 0.999961i \(-0.502793\pi\)
−0.00877499 + 0.999961i \(0.502793\pi\)
\(828\) −9.54928 + 9.88767i −0.331860 + 0.343620i
\(829\) 8.83750i 0.306939i −0.988153 0.153470i \(-0.950955\pi\)
0.988153 0.153470i \(-0.0490447\pi\)
\(830\) −4.97248 11.7152i −0.172597 0.406639i
\(831\) −8.56827 −0.297230
\(832\) 8.58086 + 27.5385i 0.297488 + 0.954726i
\(833\) −3.88084 −0.134463
\(834\) 4.54277 + 10.7028i 0.157303 + 0.370607i
\(835\) 27.1276i 0.938789i
\(836\) 15.2109 15.7499i 0.526079 0.544721i
\(837\) 12.6319 0.436624
\(838\) 30.1180 12.7835i 1.04041 0.441600i
\(839\) 3.95785i 0.136640i −0.997663 0.0683202i \(-0.978236\pi\)
0.997663 0.0683202i \(-0.0217639\pi\)
\(840\) −13.9355 5.35043i −0.480821 0.184607i
\(841\) −20.4418 −0.704888
\(842\) 4.04560 + 9.53144i 0.139421 + 0.328475i
\(843\) −2.47600 −0.0852780
\(844\) 9.09922 + 8.78781i 0.313208 + 0.302489i
\(845\) −26.4414 48.4384i −0.909613 1.66633i
\(846\) 0.602467 0.255716i 0.0207132 0.00879169i
\(847\) 2.16606i 0.0744267i
\(848\) 10.1110 0.352164i 0.347213 0.0120933i
\(849\) −6.44049 −0.221037
\(850\) 27.9200 + 65.7796i 0.957649 + 2.25622i
\(851\) 15.3128 0.524915
\(852\) 9.13939 9.46326i 0.313110 0.324206i
\(853\) 10.0094 0.342715 0.171358 0.985209i \(-0.445185\pi\)
0.171358 + 0.985209i \(0.445185\pi\)
\(854\) −6.56440 15.4657i −0.224629 0.529227i
\(855\) 22.7406 0.777712
\(856\) 19.5723 50.9772i 0.668967 1.74236i
\(857\) 16.3535 0.558624 0.279312 0.960200i \(-0.409894\pi\)
0.279312 + 0.960200i \(0.409894\pi\)
\(858\) 18.6724 + 2.52020i 0.637466 + 0.0860383i
\(859\) 46.1150i 1.57342i −0.617322 0.786711i \(-0.711782\pi\)
0.617322 0.786711i \(-0.288218\pi\)
\(860\) −48.8869 47.2138i −1.66703 1.60998i
\(861\) 4.75179i 0.161941i
\(862\) 38.4523 16.3210i 1.30969 0.555895i
\(863\) 48.4827i 1.65037i 0.564864 + 0.825184i \(0.308929\pi\)
−0.564864 + 0.825184i \(0.691071\pi\)
\(864\) −13.2360 28.3932i −0.450299 0.965956i
\(865\) 15.6724i 0.532876i
\(866\) −15.1450 35.6816i −0.514647 1.21251i
\(867\) 2.41071i 0.0818719i
\(868\) −3.16921 + 3.28152i −0.107570 + 0.111382i
\(869\) 8.36818 0.283871
\(870\) −20.5047 48.3092i −0.695176 1.63783i
\(871\) 26.8334 + 15.9233i 0.909216 + 0.539540i
\(872\) 15.7983 + 6.06563i 0.534998 + 0.205408i
\(873\) 4.98547i 0.168732i
\(874\) −9.61851 22.6612i −0.325351 0.766527i
\(875\) 34.0462i 1.15097i
\(876\) 21.0710 21.8177i 0.711924 0.737152i
\(877\) −28.3417 −0.957033 −0.478516 0.878079i \(-0.658825\pi\)
−0.478516 + 0.878079i \(0.658825\pi\)
\(878\) 9.76325 + 23.0022i 0.329494 + 0.776288i
\(879\) 10.0886i 0.340279i
\(880\) 1.75673 + 50.4376i 0.0592194 + 1.70025i
\(881\) 41.6725 1.40398 0.701991 0.712185i \(-0.252295\pi\)
0.701991 + 0.712185i \(0.252295\pi\)
\(882\) −0.803592 1.89326i −0.0270584 0.0637495i
\(883\) 13.9586i 0.469743i −0.972026 0.234872i \(-0.924533\pi\)
0.972026 0.234872i \(-0.0754670\pi\)
\(884\) −26.9918 + 7.39018i −0.907831 + 0.248559i
\(885\) 56.7174i 1.90653i
\(886\) −2.26992 + 0.963462i −0.0762594 + 0.0323681i
\(887\) −26.0576 −0.874929 −0.437465 0.899236i \(-0.644124\pi\)
−0.437465 + 0.899236i \(0.644124\pi\)
\(888\) −4.08394 + 10.6368i −0.137048 + 0.356949i
\(889\) 7.65675i 0.256799i
\(890\) 79.7506 33.8500i 2.67325 1.13465i
\(891\) −7.49550 −0.251109
\(892\) −13.8192 13.3462i −0.462699 0.446864i
\(893\) 1.17213i 0.0392240i
\(894\) −5.69285 + 2.41632i −0.190397 + 0.0808138i
\(895\) 86.8096i 2.90172i
\(896\) 10.6967 + 3.68508i 0.357353 + 0.123110i
\(897\) 10.8108 18.2180i 0.360962 0.608282i
\(898\) −3.30836 + 1.40423i −0.110402 + 0.0468597i
\(899\) −16.0390 −0.534930
\(900\) −26.3092 + 27.2415i −0.876973 + 0.908049i
\(901\) 9.81575i 0.327010i
\(902\) −14.7885 + 6.27693i −0.492402 + 0.208999i
\(903\) 9.95231i 0.331192i
\(904\) 31.3746 + 12.0461i 1.04351 + 0.400646i
\(905\) 83.2706i 2.76801i
\(906\) −6.96684 16.4139i −0.231458 0.545314i
\(907\) 5.70501i 0.189432i −0.995504 0.0947159i \(-0.969806\pi\)
0.995504 0.0947159i \(-0.0301943\pi\)
\(908\) 20.0933 20.8054i 0.666821 0.690451i
\(909\) 7.05388i 0.233963i
\(910\) −21.4510 2.89522i −0.711093 0.0959757i
\(911\) −37.8264 −1.25325 −0.626623 0.779323i \(-0.715563\pi\)
−0.626623 + 0.779323i \(0.715563\pi\)
\(912\) 18.3067 0.637617i 0.606194 0.0211136i
\(913\) 6.30086 0.208528
\(914\) −51.5498 + 21.8802i −1.70512 + 0.723733i
\(915\) 62.6993 2.07278
\(916\) −6.01789 + 6.23114i −0.198837 + 0.205883i
\(917\) 2.71789 0.0897527
\(918\) 27.9777 11.8751i 0.923401 0.391936i
\(919\) 15.8594 0.523152 0.261576 0.965183i \(-0.415758\pi\)
0.261576 + 0.965183i \(0.415758\pi\)
\(920\) 52.9723 + 20.3383i 1.74644 + 0.670534i
\(921\) 28.1929i 0.928987i
\(922\) 7.26101 + 17.1070i 0.239129 + 0.563388i
\(923\) 9.73546 16.4059i 0.320446 0.540006i
\(924\) 5.13400 5.31593i 0.168896 0.174881i
\(925\) 42.1881 1.38714
\(926\) 35.1008 14.8985i 1.15348 0.489594i
\(927\) −15.8930 −0.521995
\(928\) 16.8060 + 36.0513i 0.551684 + 1.18344i
\(929\) 12.4095i 0.407141i 0.979060 + 0.203571i \(0.0652546\pi\)
−0.979060 + 0.203571i \(0.934745\pi\)
\(930\) −6.65177 15.6716i −0.218120 0.513891i
\(931\) 3.68346 0.120720
\(932\) 33.5855 34.7756i 1.10013 1.13911i
\(933\) 2.36600i 0.0774595i
\(934\) −40.6292 + 17.2450i −1.32943 + 0.564273i
\(935\) −48.9648 −1.60132
\(936\) −9.19437 11.6376i −0.300527 0.380388i
\(937\) 27.8945 0.911275 0.455637 0.890165i \(-0.349411\pi\)
0.455637 + 0.890165i \(0.349411\pi\)
\(938\) 11.2658 4.78173i 0.367840 0.156129i
\(939\) 38.4612i 1.25513i
\(940\) −1.94333 1.87683i −0.0633846 0.0612153i
\(941\) −33.5634 −1.09414 −0.547068 0.837088i \(-0.684256\pi\)
−0.547068 + 0.837088i \(0.684256\pi\)
\(942\) 4.90043 + 11.5454i 0.159665 + 0.376170i
\(943\) 18.0627i 0.588203i
\(944\) −1.49632 42.9611i −0.0487012 1.39826i
\(945\) 23.5083 0.764724
\(946\) 30.9734 13.1466i 1.00703 0.427433i
\(947\) 18.9092 0.614466 0.307233 0.951634i \(-0.400597\pi\)
0.307233 + 0.951634i \(0.400597\pi\)
\(948\) 5.03565 + 4.86332i 0.163550 + 0.157953i
\(949\) 22.4453 37.8241i 0.728604 1.22782i
\(950\) −26.4999 62.4339i −0.859771 2.02562i
\(951\) 13.6570i 0.442858i
\(952\) −3.93439 + 10.2474i −0.127514 + 0.332119i
\(953\) −21.7892 −0.705823 −0.352911 0.935657i \(-0.614808\pi\)
−0.352911 + 0.935657i \(0.614808\pi\)
\(954\) −4.78860 + 2.03251i −0.155037 + 0.0658049i
\(955\) 25.6654 0.830512
\(956\) 19.3725 + 18.7095i 0.626550 + 0.605107i
\(957\) 25.9825 0.839895
\(958\) 9.27668 3.93747i 0.299716 0.127214i
\(959\) 23.0466 0.744215
\(960\) −28.2556 + 31.3724i −0.911945 + 1.01254i
\(961\) 25.7969 0.832159
\(962\) −2.20990 + 16.3733i −0.0712499 + 0.527897i
\(963\) 28.0774i 0.904781i
\(964\) 35.1790 + 33.9751i 1.13304 + 1.09426i
\(965\) 5.82918i 0.187648i
\(966\) −3.24646 7.64865i −0.104453 0.246091i
\(967\) 42.4630i 1.36552i 0.730643 + 0.682759i \(0.239220\pi\)
−0.730643 + 0.682759i \(0.760780\pi\)
\(968\) 5.71947 + 2.19595i 0.183831 + 0.0705804i
\(969\) 17.7721i 0.570922i
\(970\) −18.9437 + 8.04063i −0.608247 + 0.258169i
\(971\) 47.0765i 1.51076i 0.655289 + 0.755378i \(0.272547\pi\)
−0.655289 + 0.755378i \(0.727453\pi\)
\(972\) 19.3900 + 18.7264i 0.621934 + 0.600649i
\(973\) 6.61294 0.212001
\(974\) −1.30703 + 0.554768i −0.0418801 + 0.0177759i
\(975\) 29.7848 50.1924i 0.953876 1.60744i
\(976\) −47.4922 + 1.65414i −1.52019 + 0.0529478i
\(977\) 23.5667i 0.753967i 0.926220 + 0.376984i \(0.123039\pi\)
−0.926220 + 0.376984i \(0.876961\pi\)
\(978\) 33.3683 14.1631i 1.06700 0.452887i
\(979\) 42.8929i 1.37086i
\(980\) −5.89797 + 6.10697i −0.188404 + 0.195080i
\(981\) −8.70143 −0.277815
\(982\) 12.7684 5.41950i 0.407455 0.172943i
\(983\) 33.4979i 1.06842i −0.845353 0.534208i \(-0.820610\pi\)
0.845353 0.534208i \(-0.179390\pi\)
\(984\) −12.5471 4.81736i −0.399986 0.153572i
\(985\) −65.8836 −2.09923
\(986\) −35.5237 + 15.0780i −1.13131 + 0.480181i
\(987\) 0.395621i 0.0125927i
\(988\) 25.6189 7.01429i 0.815045 0.223154i
\(989\) 37.8312i 1.20296i
\(990\) −10.1390 23.8874i −0.322237 0.759192i
\(991\) −9.57436 −0.304140 −0.152070 0.988370i \(-0.548594\pi\)
−0.152070 + 0.988370i \(0.548594\pi\)
\(992\) 5.45189 + 11.6951i 0.173098 + 0.371319i
\(993\) 26.2976i 0.834528i
\(994\) −2.92354 6.88785i −0.0927289 0.218469i
\(995\) −115.862 −3.67307
\(996\) 3.79162 + 3.66186i 0.120142 + 0.116030i
\(997\) 44.0185i 1.39408i 0.717033 + 0.697039i \(0.245500\pi\)
−0.717033 + 0.697039i \(0.754500\pi\)
\(998\) 1.55303 + 3.65894i 0.0491603 + 0.115822i
\(999\) 17.9437i 0.567712i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.i.a.701.52 yes 84
4.3 odd 2 2912.2.i.a.337.6 84
8.3 odd 2 2912.2.i.a.337.79 84
8.5 even 2 inner 728.2.i.a.701.34 yes 84
13.12 even 2 inner 728.2.i.a.701.33 84
52.51 odd 2 2912.2.i.a.337.80 84
104.51 odd 2 2912.2.i.a.337.5 84
104.77 even 2 inner 728.2.i.a.701.51 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.i.a.701.33 84 13.12 even 2 inner
728.2.i.a.701.34 yes 84 8.5 even 2 inner
728.2.i.a.701.51 yes 84 104.77 even 2 inner
728.2.i.a.701.52 yes 84 1.1 even 1 trivial
2912.2.i.a.337.5 84 104.51 odd 2
2912.2.i.a.337.6 84 4.3 odd 2
2912.2.i.a.337.79 84 8.3 odd 2
2912.2.i.a.337.80 84 52.51 odd 2