Properties

Label 2912.2.i.a.337.6
Level $2912$
Weight $2$
Character 2912.337
Analytic conductor $23.252$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(337,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.6
Character \(\chi\) \(=\) 2912.337
Dual form 2912.2.i.a.337.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.24325i q^{3} -4.24503 q^{5} +1.00000i q^{7} +1.45434 q^{9} -2.97219 q^{11} +(3.10071 + 1.84000i) q^{13} -5.27761i q^{15} +3.88084 q^{17} +3.68346 q^{19} -1.24325 q^{21} -4.72588 q^{23} +13.0203 q^{25} +5.53784i q^{27} +7.03148i q^{29} -2.28102i q^{31} -3.69517i q^{33} -4.24503i q^{35} +3.24019 q^{37} +(-2.28757 + 3.85494i) q^{39} +3.82209i q^{41} +8.00510i q^{43} -6.17371 q^{45} +0.318216i q^{47} -1.00000 q^{49} +4.82484i q^{51} +2.52928i q^{53} +12.6170 q^{55} +4.57944i q^{57} -10.7468 q^{59} -11.8802i q^{61} +1.45434i q^{63} +(-13.1626 - 7.81085i) q^{65} -8.65396 q^{67} -5.87543i q^{69} +5.29101i q^{71} -12.1985i q^{73} +16.1874i q^{75} -2.97219i q^{77} -2.81549 q^{79} -2.52188 q^{81} -2.11994 q^{83} -16.4743 q^{85} -8.74186 q^{87} +14.4314i q^{89} +(-1.84000 + 3.10071i) q^{91} +2.83587 q^{93} -15.6364 q^{95} -3.42799i q^{97} -4.32258 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 84 q^{9} + 8 q^{17} + 24 q^{23} + 92 q^{25} + 24 q^{39} - 84 q^{49} - 32 q^{55} - 24 q^{65} + 40 q^{79} + 84 q^{81} + 48 q^{87} + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.24325i 0.717788i 0.933378 + 0.358894i \(0.116846\pi\)
−0.933378 + 0.358894i \(0.883154\pi\)
\(4\) 0 0
\(5\) −4.24503 −1.89843 −0.949217 0.314622i \(-0.898122\pi\)
−0.949217 + 0.314622i \(0.898122\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 1.45434 0.484780
\(10\) 0 0
\(11\) −2.97219 −0.896150 −0.448075 0.893996i \(-0.647890\pi\)
−0.448075 + 0.893996i \(0.647890\pi\)
\(12\) 0 0
\(13\) 3.10071 + 1.84000i 0.859982 + 0.510324i
\(14\) 0 0
\(15\) 5.27761i 1.36267i
\(16\) 0 0
\(17\) 3.88084 0.941243 0.470622 0.882335i \(-0.344030\pi\)
0.470622 + 0.882335i \(0.344030\pi\)
\(18\) 0 0
\(19\) 3.68346 0.845043 0.422521 0.906353i \(-0.361145\pi\)
0.422521 + 0.906353i \(0.361145\pi\)
\(20\) 0 0
\(21\) −1.24325 −0.271298
\(22\) 0 0
\(23\) −4.72588 −0.985414 −0.492707 0.870195i \(-0.663993\pi\)
−0.492707 + 0.870195i \(0.663993\pi\)
\(24\) 0 0
\(25\) 13.0203 2.60405
\(26\) 0 0
\(27\) 5.53784i 1.06576i
\(28\) 0 0
\(29\) 7.03148i 1.30571i 0.757481 + 0.652857i \(0.226430\pi\)
−0.757481 + 0.652857i \(0.773570\pi\)
\(30\) 0 0
\(31\) 2.28102i 0.409684i −0.978795 0.204842i \(-0.934332\pi\)
0.978795 0.204842i \(-0.0656680\pi\)
\(32\) 0 0
\(33\) 3.69517i 0.643246i
\(34\) 0 0
\(35\) 4.24503i 0.717541i
\(36\) 0 0
\(37\) 3.24019 0.532684 0.266342 0.963879i \(-0.414185\pi\)
0.266342 + 0.963879i \(0.414185\pi\)
\(38\) 0 0
\(39\) −2.28757 + 3.85494i −0.366305 + 0.617285i
\(40\) 0 0
\(41\) 3.82209i 0.596910i 0.954424 + 0.298455i \(0.0964712\pi\)
−0.954424 + 0.298455i \(0.903529\pi\)
\(42\) 0 0
\(43\) 8.00510i 1.22077i 0.792106 + 0.610383i \(0.208985\pi\)
−0.792106 + 0.610383i \(0.791015\pi\)
\(44\) 0 0
\(45\) −6.17371 −0.920323
\(46\) 0 0
\(47\) 0.318216i 0.0464166i 0.999731 + 0.0232083i \(0.00738809\pi\)
−0.999731 + 0.0232083i \(0.992612\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 4.82484i 0.675613i
\(52\) 0 0
\(53\) 2.52928i 0.347423i 0.984797 + 0.173712i \(0.0555761\pi\)
−0.984797 + 0.173712i \(0.944424\pi\)
\(54\) 0 0
\(55\) 12.6170 1.70128
\(56\) 0 0
\(57\) 4.57944i 0.606562i
\(58\) 0 0
\(59\) −10.7468 −1.39911 −0.699556 0.714578i \(-0.746619\pi\)
−0.699556 + 0.714578i \(0.746619\pi\)
\(60\) 0 0
\(61\) 11.8802i 1.52111i −0.649274 0.760555i \(-0.724927\pi\)
0.649274 0.760555i \(-0.275073\pi\)
\(62\) 0 0
\(63\) 1.45434i 0.183230i
\(64\) 0 0
\(65\) −13.1626 7.81085i −1.63262 0.968817i
\(66\) 0 0
\(67\) −8.65396 −1.05725 −0.528625 0.848856i \(-0.677292\pi\)
−0.528625 + 0.848856i \(0.677292\pi\)
\(68\) 0 0
\(69\) 5.87543i 0.707319i
\(70\) 0 0
\(71\) 5.29101i 0.627927i 0.949435 + 0.313964i \(0.101657\pi\)
−0.949435 + 0.313964i \(0.898343\pi\)
\(72\) 0 0
\(73\) 12.1985i 1.42773i −0.700284 0.713864i \(-0.746943\pi\)
0.700284 0.713864i \(-0.253057\pi\)
\(74\) 0 0
\(75\) 16.1874i 1.86916i
\(76\) 0 0
\(77\) 2.97219i 0.338713i
\(78\) 0 0
\(79\) −2.81549 −0.316767 −0.158384 0.987378i \(-0.550628\pi\)
−0.158384 + 0.987378i \(0.550628\pi\)
\(80\) 0 0
\(81\) −2.52188 −0.280208
\(82\) 0 0
\(83\) −2.11994 −0.232693 −0.116347 0.993209i \(-0.537118\pi\)
−0.116347 + 0.993209i \(0.537118\pi\)
\(84\) 0 0
\(85\) −16.4743 −1.78689
\(86\) 0 0
\(87\) −8.74186 −0.937226
\(88\) 0 0
\(89\) 14.4314i 1.52972i 0.644194 + 0.764862i \(0.277193\pi\)
−0.644194 + 0.764862i \(0.722807\pi\)
\(90\) 0 0
\(91\) −1.84000 + 3.10071i −0.192884 + 0.325043i
\(92\) 0 0
\(93\) 2.83587 0.294066
\(94\) 0 0
\(95\) −15.6364 −1.60426
\(96\) 0 0
\(97\) 3.42799i 0.348060i −0.984740 0.174030i \(-0.944321\pi\)
0.984740 0.174030i \(-0.0556789\pi\)
\(98\) 0 0
\(99\) −4.32258 −0.434436
\(100\) 0 0
\(101\) 4.85023i 0.482616i −0.970449 0.241308i \(-0.922424\pi\)
0.970449 0.241308i \(-0.0775764\pi\)
\(102\) 0 0
\(103\) 10.9280 1.07677 0.538384 0.842700i \(-0.319035\pi\)
0.538384 + 0.842700i \(0.319035\pi\)
\(104\) 0 0
\(105\) 5.27761 0.515042
\(106\) 0 0
\(107\) 19.3059i 1.86637i −0.359392 0.933187i \(-0.617016\pi\)
0.359392 0.933187i \(-0.382984\pi\)
\(108\) 0 0
\(109\) −5.98308 −0.573075 −0.286538 0.958069i \(-0.592504\pi\)
−0.286538 + 0.958069i \(0.592504\pi\)
\(110\) 0 0
\(111\) 4.02835i 0.382354i
\(112\) 0 0
\(113\) −11.8821 −1.11777 −0.558887 0.829244i \(-0.688772\pi\)
−0.558887 + 0.829244i \(0.688772\pi\)
\(114\) 0 0
\(115\) 20.0615 1.87074
\(116\) 0 0
\(117\) 4.50949 + 2.67598i 0.416902 + 0.247395i
\(118\) 0 0
\(119\) 3.88084i 0.355756i
\(120\) 0 0
\(121\) −2.16606 −0.196915
\(122\) 0 0
\(123\) −4.75179 −0.428455
\(124\) 0 0
\(125\) −34.0462 −3.04519
\(126\) 0 0
\(127\) −7.65675 −0.679426 −0.339713 0.940529i \(-0.610330\pi\)
−0.339713 + 0.940529i \(0.610330\pi\)
\(128\) 0 0
\(129\) −9.95231 −0.876252
\(130\) 0 0
\(131\) 2.71789i 0.237463i −0.992926 0.118732i \(-0.962117\pi\)
0.992926 0.118732i \(-0.0378828\pi\)
\(132\) 0 0
\(133\) 3.68346i 0.319396i
\(134\) 0 0
\(135\) 23.5083i 2.02327i
\(136\) 0 0
\(137\) 23.0466i 1.96901i 0.175363 + 0.984504i \(0.443890\pi\)
−0.175363 + 0.984504i \(0.556110\pi\)
\(138\) 0 0
\(139\) 6.61294i 0.560902i −0.959868 0.280451i \(-0.909516\pi\)
0.959868 0.280451i \(-0.0904840\pi\)
\(140\) 0 0
\(141\) −0.395621 −0.0333173
\(142\) 0 0
\(143\) −9.21591 5.46884i −0.770673 0.457327i
\(144\) 0 0
\(145\) 29.8488i 2.47881i
\(146\) 0 0
\(147\) 1.24325i 0.102541i
\(148\) 0 0
\(149\) −3.51745 −0.288161 −0.144080 0.989566i \(-0.546022\pi\)
−0.144080 + 0.989566i \(0.546022\pi\)
\(150\) 0 0
\(151\) 10.1417i 0.825316i 0.910886 + 0.412658i \(0.135400\pi\)
−0.910886 + 0.412658i \(0.864600\pi\)
\(152\) 0 0
\(153\) 5.64407 0.456296
\(154\) 0 0
\(155\) 9.68301i 0.777758i
\(156\) 0 0
\(157\) 7.13358i 0.569322i 0.958628 + 0.284661i \(0.0918810\pi\)
−0.958628 + 0.284661i \(0.908119\pi\)
\(158\) 0 0
\(159\) −3.14452 −0.249376
\(160\) 0 0
\(161\) 4.72588i 0.372452i
\(162\) 0 0
\(163\) −20.6173 −1.61487 −0.807437 0.589954i \(-0.799146\pi\)
−0.807437 + 0.589954i \(0.799146\pi\)
\(164\) 0 0
\(165\) 15.6861i 1.22116i
\(166\) 0 0
\(167\) 6.39044i 0.494507i 0.968951 + 0.247253i \(0.0795280\pi\)
−0.968951 + 0.247253i \(0.920472\pi\)
\(168\) 0 0
\(169\) 6.22880 + 11.4106i 0.479139 + 0.877739i
\(170\) 0 0
\(171\) 5.35700 0.409660
\(172\) 0 0
\(173\) 3.69193i 0.280693i 0.990102 + 0.140346i \(0.0448216\pi\)
−0.990102 + 0.140346i \(0.955178\pi\)
\(174\) 0 0
\(175\) 13.0203i 0.984239i
\(176\) 0 0
\(177\) 13.3609i 1.00427i
\(178\) 0 0
\(179\) 20.4497i 1.52848i 0.644930 + 0.764242i \(0.276886\pi\)
−0.644930 + 0.764242i \(0.723114\pi\)
\(180\) 0 0
\(181\) 19.6160i 1.45805i 0.684488 + 0.729024i \(0.260026\pi\)
−0.684488 + 0.729024i \(0.739974\pi\)
\(182\) 0 0
\(183\) 14.7701 1.09183
\(184\) 0 0
\(185\) −13.7547 −1.01127
\(186\) 0 0
\(187\) −11.5346 −0.843495
\(188\) 0 0
\(189\) −5.53784 −0.402819
\(190\) 0 0
\(191\) 6.04598 0.437472 0.218736 0.975784i \(-0.429807\pi\)
0.218736 + 0.975784i \(0.429807\pi\)
\(192\) 0 0
\(193\) 1.37318i 0.0988435i −0.998778 0.0494217i \(-0.984262\pi\)
0.998778 0.0494217i \(-0.0157378\pi\)
\(194\) 0 0
\(195\) 9.71080 16.3643i 0.695405 1.17188i
\(196\) 0 0
\(197\) 15.5202 1.10577 0.552884 0.833258i \(-0.313527\pi\)
0.552884 + 0.833258i \(0.313527\pi\)
\(198\) 0 0
\(199\) −27.2936 −1.93479 −0.967395 0.253271i \(-0.918494\pi\)
−0.967395 + 0.253271i \(0.918494\pi\)
\(200\) 0 0
\(201\) 10.7590i 0.758881i
\(202\) 0 0
\(203\) −7.03148 −0.493513
\(204\) 0 0
\(205\) 16.2249i 1.13319i
\(206\) 0 0
\(207\) −6.87304 −0.477709
\(208\) 0 0
\(209\) −10.9479 −0.757285
\(210\) 0 0
\(211\) 6.32498i 0.435429i 0.976012 + 0.217715i \(0.0698602\pi\)
−0.976012 + 0.217715i \(0.930140\pi\)
\(212\) 0 0
\(213\) −6.57803 −0.450719
\(214\) 0 0
\(215\) 33.9819i 2.31754i
\(216\) 0 0
\(217\) 2.28102 0.154846
\(218\) 0 0
\(219\) 15.1658 1.02481
\(220\) 0 0
\(221\) 12.0334 + 7.14075i 0.809452 + 0.480339i
\(222\) 0 0
\(223\) 9.60586i 0.643256i −0.946866 0.321628i \(-0.895770\pi\)
0.946866 0.321628i \(-0.104230\pi\)
\(224\) 0 0
\(225\) 18.9359 1.26239
\(226\) 0 0
\(227\) 14.4621 0.959882 0.479941 0.877301i \(-0.340658\pi\)
0.479941 + 0.877301i \(0.340658\pi\)
\(228\) 0 0
\(229\) 4.33134 0.286223 0.143112 0.989707i \(-0.454289\pi\)
0.143112 + 0.989707i \(0.454289\pi\)
\(230\) 0 0
\(231\) 3.69517 0.243124
\(232\) 0 0
\(233\) −24.1730 −1.58362 −0.791812 0.610765i \(-0.790862\pi\)
−0.791812 + 0.610765i \(0.790862\pi\)
\(234\) 0 0
\(235\) 1.35084i 0.0881188i
\(236\) 0 0
\(237\) 3.50035i 0.227372i
\(238\) 0 0
\(239\) 13.4660i 0.871045i 0.900178 + 0.435523i \(0.143436\pi\)
−0.900178 + 0.435523i \(0.856564\pi\)
\(240\) 0 0
\(241\) 24.4534i 1.57518i −0.616200 0.787590i \(-0.711329\pi\)
0.616200 0.787590i \(-0.288671\pi\)
\(242\) 0 0
\(243\) 13.4782i 0.864627i
\(244\) 0 0
\(245\) 4.24503 0.271205
\(246\) 0 0
\(247\) 11.4213 + 6.77756i 0.726722 + 0.431246i
\(248\) 0 0
\(249\) 2.63560i 0.167024i
\(250\) 0 0
\(251\) 20.9395i 1.32169i −0.750522 0.660846i \(-0.770198\pi\)
0.750522 0.660846i \(-0.229802\pi\)
\(252\) 0 0
\(253\) 14.0462 0.883079
\(254\) 0 0
\(255\) 20.4816i 1.28261i
\(256\) 0 0
\(257\) 1.15045 0.0717633 0.0358816 0.999356i \(-0.488576\pi\)
0.0358816 + 0.999356i \(0.488576\pi\)
\(258\) 0 0
\(259\) 3.24019i 0.201336i
\(260\) 0 0
\(261\) 10.2262i 0.632984i
\(262\) 0 0
\(263\) 4.03698 0.248931 0.124465 0.992224i \(-0.460278\pi\)
0.124465 + 0.992224i \(0.460278\pi\)
\(264\) 0 0
\(265\) 10.7369i 0.659560i
\(266\) 0 0
\(267\) −17.9418 −1.09802
\(268\) 0 0
\(269\) 4.24698i 0.258943i −0.991583 0.129472i \(-0.958672\pi\)
0.991583 0.129472i \(-0.0413281\pi\)
\(270\) 0 0
\(271\) 25.3475i 1.53975i 0.638194 + 0.769875i \(0.279682\pi\)
−0.638194 + 0.769875i \(0.720318\pi\)
\(272\) 0 0
\(273\) −3.85494 2.28757i −0.233312 0.138450i
\(274\) 0 0
\(275\) −38.6987 −2.33362
\(276\) 0 0
\(277\) 6.89186i 0.414092i −0.978331 0.207046i \(-0.933615\pi\)
0.978331 0.207046i \(-0.0663849\pi\)
\(278\) 0 0
\(279\) 3.31738i 0.198607i
\(280\) 0 0
\(281\) 1.99156i 0.118807i −0.998234 0.0594033i \(-0.981080\pi\)
0.998234 0.0594033i \(-0.0189198\pi\)
\(282\) 0 0
\(283\) 5.18039i 0.307942i 0.988075 + 0.153971i \(0.0492062\pi\)
−0.988075 + 0.153971i \(0.950794\pi\)
\(284\) 0 0
\(285\) 19.4398i 1.15152i
\(286\) 0 0
\(287\) −3.82209 −0.225611
\(288\) 0 0
\(289\) −1.93904 −0.114061
\(290\) 0 0
\(291\) 4.26184 0.249833
\(292\) 0 0
\(293\) −8.11470 −0.474066 −0.237033 0.971502i \(-0.576175\pi\)
−0.237033 + 0.971502i \(0.576175\pi\)
\(294\) 0 0
\(295\) 45.6204 2.65612
\(296\) 0 0
\(297\) 16.4595i 0.955079i
\(298\) 0 0
\(299\) −14.6536 8.69562i −0.847439 0.502881i
\(300\) 0 0
\(301\) −8.00510 −0.461406
\(302\) 0 0
\(303\) 6.03003 0.346416
\(304\) 0 0
\(305\) 50.4320i 2.88773i
\(306\) 0 0
\(307\) −22.6768 −1.29424 −0.647118 0.762390i \(-0.724026\pi\)
−0.647118 + 0.762390i \(0.724026\pi\)
\(308\) 0 0
\(309\) 13.5862i 0.772891i
\(310\) 0 0
\(311\) −1.90309 −0.107914 −0.0539571 0.998543i \(-0.517183\pi\)
−0.0539571 + 0.998543i \(0.517183\pi\)
\(312\) 0 0
\(313\) 30.9361 1.74861 0.874306 0.485376i \(-0.161317\pi\)
0.874306 + 0.485376i \(0.161317\pi\)
\(314\) 0 0
\(315\) 6.17371i 0.347849i
\(316\) 0 0
\(317\) 10.9849 0.616975 0.308488 0.951228i \(-0.400177\pi\)
0.308488 + 0.951228i \(0.400177\pi\)
\(318\) 0 0
\(319\) 20.8989i 1.17012i
\(320\) 0 0
\(321\) 24.0020 1.33966
\(322\) 0 0
\(323\) 14.2949 0.795390
\(324\) 0 0
\(325\) 40.3721 + 23.9573i 2.23944 + 1.32891i
\(326\) 0 0
\(327\) 7.43844i 0.411347i
\(328\) 0 0
\(329\) −0.318216 −0.0175438
\(330\) 0 0
\(331\) 21.1523 1.16264 0.581319 0.813676i \(-0.302537\pi\)
0.581319 + 0.813676i \(0.302537\pi\)
\(332\) 0 0
\(333\) 4.71234 0.258235
\(334\) 0 0
\(335\) 36.7363 2.00712
\(336\) 0 0
\(337\) −22.7775 −1.24077 −0.620385 0.784297i \(-0.713024\pi\)
−0.620385 + 0.784297i \(0.713024\pi\)
\(338\) 0 0
\(339\) 14.7724i 0.802326i
\(340\) 0 0
\(341\) 6.77965i 0.367138i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 24.9414i 1.34280i
\(346\) 0 0
\(347\) 8.80009i 0.472414i 0.971703 + 0.236207i \(0.0759043\pi\)
−0.971703 + 0.236207i \(0.924096\pi\)
\(348\) 0 0
\(349\) −7.29071 −0.390263 −0.195131 0.980777i \(-0.562513\pi\)
−0.195131 + 0.980777i \(0.562513\pi\)
\(350\) 0 0
\(351\) −10.1896 + 17.1712i −0.543882 + 0.916533i
\(352\) 0 0
\(353\) 16.0655i 0.855078i −0.903997 0.427539i \(-0.859381\pi\)
0.903997 0.427539i \(-0.140619\pi\)
\(354\) 0 0
\(355\) 22.4605i 1.19208i
\(356\) 0 0
\(357\) −4.82484 −0.255358
\(358\) 0 0
\(359\) 3.43324i 0.181200i −0.995887 0.0905999i \(-0.971122\pi\)
0.995887 0.0905999i \(-0.0288784\pi\)
\(360\) 0 0
\(361\) −5.43216 −0.285903
\(362\) 0 0
\(363\) 2.69295i 0.141343i
\(364\) 0 0
\(365\) 51.7830i 2.71045i
\(366\) 0 0
\(367\) 17.1507 0.895260 0.447630 0.894219i \(-0.352268\pi\)
0.447630 + 0.894219i \(0.352268\pi\)
\(368\) 0 0
\(369\) 5.55861i 0.289370i
\(370\) 0 0
\(371\) −2.52928 −0.131314
\(372\) 0 0
\(373\) 9.16344i 0.474465i 0.971453 + 0.237233i \(0.0762403\pi\)
−0.971453 + 0.237233i \(0.923760\pi\)
\(374\) 0 0
\(375\) 42.3278i 2.18580i
\(376\) 0 0
\(377\) −12.9379 + 21.8026i −0.666337 + 1.12289i
\(378\) 0 0
\(379\) 30.7837 1.58125 0.790627 0.612298i \(-0.209755\pi\)
0.790627 + 0.612298i \(0.209755\pi\)
\(380\) 0 0
\(381\) 9.51922i 0.487684i
\(382\) 0 0
\(383\) 37.8476i 1.93392i −0.254921 0.966962i \(-0.582049\pi\)
0.254921 0.966962i \(-0.417951\pi\)
\(384\) 0 0
\(385\) 12.6170i 0.643024i
\(386\) 0 0
\(387\) 11.6421i 0.591803i
\(388\) 0 0
\(389\) 32.2732i 1.63631i −0.574994 0.818157i \(-0.694996\pi\)
0.574994 0.818157i \(-0.305004\pi\)
\(390\) 0 0
\(391\) −18.3404 −0.927514
\(392\) 0 0
\(393\) 3.37901 0.170448
\(394\) 0 0
\(395\) 11.9518 0.601362
\(396\) 0 0
\(397\) −6.45949 −0.324192 −0.162096 0.986775i \(-0.551825\pi\)
−0.162096 + 0.986775i \(0.551825\pi\)
\(398\) 0 0
\(399\) −4.57944 −0.229259
\(400\) 0 0
\(401\) 2.05810i 0.102777i 0.998679 + 0.0513883i \(0.0163646\pi\)
−0.998679 + 0.0513883i \(0.983635\pi\)
\(402\) 0 0
\(403\) 4.19708 7.07279i 0.209072 0.352321i
\(404\) 0 0
\(405\) 10.7054 0.531957
\(406\) 0 0
\(407\) −9.63048 −0.477365
\(408\) 0 0
\(409\) 25.4159i 1.25674i 0.777916 + 0.628368i \(0.216277\pi\)
−0.777916 + 0.628368i \(0.783723\pi\)
\(410\) 0 0
\(411\) −28.6526 −1.41333
\(412\) 0 0
\(413\) 10.7468i 0.528815i
\(414\) 0 0
\(415\) 8.99918 0.441753
\(416\) 0 0
\(417\) 8.22151 0.402609
\(418\) 0 0
\(419\) 23.1356i 1.13025i 0.825006 + 0.565125i \(0.191172\pi\)
−0.825006 + 0.565125i \(0.808828\pi\)
\(420\) 0 0
\(421\) 7.32172 0.356839 0.178419 0.983955i \(-0.442902\pi\)
0.178419 + 0.983955i \(0.442902\pi\)
\(422\) 0 0
\(423\) 0.462794i 0.0225018i
\(424\) 0 0
\(425\) 50.5296 2.45105
\(426\) 0 0
\(427\) 11.8802 0.574926
\(428\) 0 0
\(429\) 6.79911 11.4576i 0.328264 0.553180i
\(430\) 0 0
\(431\) 29.5377i 1.42278i 0.702797 + 0.711390i \(0.251934\pi\)
−0.702797 + 0.711390i \(0.748066\pi\)
\(432\) 0 0
\(433\) −27.4093 −1.31721 −0.658604 0.752489i \(-0.728853\pi\)
−0.658604 + 0.752489i \(0.728853\pi\)
\(434\) 0 0
\(435\) 37.1094 1.77926
\(436\) 0 0
\(437\) −17.4076 −0.832717
\(438\) 0 0
\(439\) −17.6695 −0.843320 −0.421660 0.906754i \(-0.638552\pi\)
−0.421660 + 0.906754i \(0.638552\pi\)
\(440\) 0 0
\(441\) −1.45434 −0.0692543
\(442\) 0 0
\(443\) 1.74367i 0.0828444i −0.999142 0.0414222i \(-0.986811\pi\)
0.999142 0.0414222i \(-0.0131889\pi\)
\(444\) 0 0
\(445\) 61.2616i 2.90408i
\(446\) 0 0
\(447\) 4.37305i 0.206838i
\(448\) 0 0
\(449\) 2.54137i 0.119935i 0.998200 + 0.0599673i \(0.0190997\pi\)
−0.998200 + 0.0599673i \(0.980900\pi\)
\(450\) 0 0
\(451\) 11.3600i 0.534921i
\(452\) 0 0
\(453\) −12.6086 −0.592402
\(454\) 0 0
\(455\) 7.81085 13.1626i 0.366178 0.617072i
\(456\) 0 0
\(457\) 39.5988i 1.85235i 0.377091 + 0.926176i \(0.376924\pi\)
−0.377091 + 0.926176i \(0.623076\pi\)
\(458\) 0 0
\(459\) 21.4915i 1.00314i
\(460\) 0 0
\(461\) 13.1410 0.612036 0.306018 0.952026i \(-0.401003\pi\)
0.306018 + 0.952026i \(0.401003\pi\)
\(462\) 0 0
\(463\) 26.9632i 1.25309i 0.779386 + 0.626544i \(0.215531\pi\)
−0.779386 + 0.626544i \(0.784469\pi\)
\(464\) 0 0
\(465\) −12.0384 −0.558266
\(466\) 0 0
\(467\) 31.2099i 1.44422i −0.691776 0.722112i \(-0.743171\pi\)
0.691776 0.722112i \(-0.256829\pi\)
\(468\) 0 0
\(469\) 8.65396i 0.399603i
\(470\) 0 0
\(471\) −8.86879 −0.408652
\(472\) 0 0
\(473\) 23.7927i 1.09399i
\(474\) 0 0
\(475\) 47.9595 2.20053
\(476\) 0 0
\(477\) 3.67843i 0.168424i
\(478\) 0 0
\(479\) 7.12602i 0.325596i 0.986659 + 0.162798i \(0.0520519\pi\)
−0.986659 + 0.162798i \(0.947948\pi\)
\(480\) 0 0
\(481\) 10.0469 + 5.96195i 0.458099 + 0.271841i
\(482\) 0 0
\(483\) 5.87543 0.267341
\(484\) 0 0
\(485\) 14.5519i 0.660769i
\(486\) 0 0
\(487\) 1.00402i 0.0454964i −0.999741 0.0227482i \(-0.992758\pi\)
0.999741 0.0227482i \(-0.00724160\pi\)
\(488\) 0 0
\(489\) 25.6324i 1.15914i
\(490\) 0 0
\(491\) 9.80821i 0.442638i 0.975201 + 0.221319i \(0.0710362\pi\)
−0.975201 + 0.221319i \(0.928964\pi\)
\(492\) 0 0
\(493\) 27.2881i 1.22899i
\(494\) 0 0
\(495\) 18.3495 0.824748
\(496\) 0 0
\(497\) −5.29101 −0.237334
\(498\) 0 0
\(499\) −2.81067 −0.125823 −0.0629115 0.998019i \(-0.520039\pi\)
−0.0629115 + 0.998019i \(0.520039\pi\)
\(500\) 0 0
\(501\) −7.94488 −0.354951
\(502\) 0 0
\(503\) 1.76210 0.0785682 0.0392841 0.999228i \(-0.487492\pi\)
0.0392841 + 0.999228i \(0.487492\pi\)
\(504\) 0 0
\(505\) 20.5894i 0.916214i
\(506\) 0 0
\(507\) −14.1862 + 7.74393i −0.630031 + 0.343920i
\(508\) 0 0
\(509\) −2.58451 −0.114556 −0.0572782 0.998358i \(-0.518242\pi\)
−0.0572782 + 0.998358i \(0.518242\pi\)
\(510\) 0 0
\(511\) 12.1985 0.539631
\(512\) 0 0
\(513\) 20.3984i 0.900611i
\(514\) 0 0
\(515\) −46.3896 −2.04417
\(516\) 0 0
\(517\) 0.945800i 0.0415962i
\(518\) 0 0
\(519\) −4.58998 −0.201478
\(520\) 0 0
\(521\) −10.1321 −0.443896 −0.221948 0.975058i \(-0.571242\pi\)
−0.221948 + 0.975058i \(0.571242\pi\)
\(522\) 0 0
\(523\) 30.8439i 1.34871i −0.738408 0.674355i \(-0.764422\pi\)
0.738408 0.674355i \(-0.235578\pi\)
\(524\) 0 0
\(525\) −16.1874 −0.706475
\(526\) 0 0
\(527\) 8.85230i 0.385612i
\(528\) 0 0
\(529\) −0.666049 −0.0289586
\(530\) 0 0
\(531\) −15.6295 −0.678262
\(532\) 0 0
\(533\) −7.03264 + 11.8512i −0.304617 + 0.513332i
\(534\) 0 0
\(535\) 81.9542i 3.54319i
\(536\) 0 0
\(537\) −25.4240 −1.09713
\(538\) 0 0
\(539\) 2.97219 0.128021
\(540\) 0 0
\(541\) −39.8533 −1.71343 −0.856713 0.515793i \(-0.827497\pi\)
−0.856713 + 0.515793i \(0.827497\pi\)
\(542\) 0 0
\(543\) −24.3876 −1.04657
\(544\) 0 0
\(545\) 25.3983 1.08795
\(546\) 0 0
\(547\) 33.2749i 1.42273i 0.702821 + 0.711366i \(0.251923\pi\)
−0.702821 + 0.711366i \(0.748077\pi\)
\(548\) 0 0
\(549\) 17.2779i 0.737404i
\(550\) 0 0
\(551\) 25.9002i 1.10338i
\(552\) 0 0
\(553\) 2.81549i 0.119727i
\(554\) 0 0
\(555\) 17.1005i 0.725875i
\(556\) 0 0
\(557\) 24.4137 1.03444 0.517222 0.855852i \(-0.326966\pi\)
0.517222 + 0.855852i \(0.326966\pi\)
\(558\) 0 0
\(559\) −14.7294 + 24.8215i −0.622986 + 1.04984i
\(560\) 0 0
\(561\) 14.3404i 0.605451i
\(562\) 0 0
\(563\) 11.8363i 0.498842i −0.968395 0.249421i \(-0.919760\pi\)
0.968395 0.249421i \(-0.0802403\pi\)
\(564\) 0 0
\(565\) 50.4399 2.12202
\(566\) 0 0
\(567\) 2.52188i 0.105909i
\(568\) 0 0
\(569\) −22.6270 −0.948573 −0.474286 0.880371i \(-0.657294\pi\)
−0.474286 + 0.880371i \(0.657294\pi\)
\(570\) 0 0
\(571\) 1.63950i 0.0686108i −0.999411 0.0343054i \(-0.989078\pi\)
0.999411 0.0343054i \(-0.0109219\pi\)
\(572\) 0 0
\(573\) 7.51664i 0.314012i
\(574\) 0 0
\(575\) −61.5322 −2.56607
\(576\) 0 0
\(577\) 29.5910i 1.23189i 0.787789 + 0.615945i \(0.211226\pi\)
−0.787789 + 0.615945i \(0.788774\pi\)
\(578\) 0 0
\(579\) 1.70720 0.0709487
\(580\) 0 0
\(581\) 2.11994i 0.0879497i
\(582\) 0 0
\(583\) 7.51751i 0.311344i
\(584\) 0 0
\(585\) −19.1429 11.3596i −0.791461 0.469663i
\(586\) 0 0
\(587\) −41.1847 −1.69988 −0.849938 0.526882i \(-0.823361\pi\)
−0.849938 + 0.526882i \(0.823361\pi\)
\(588\) 0 0
\(589\) 8.40205i 0.346200i
\(590\) 0 0
\(591\) 19.2954i 0.793707i
\(592\) 0 0
\(593\) 3.33933i 0.137130i 0.997647 + 0.0685650i \(0.0218421\pi\)
−0.997647 + 0.0685650i \(0.978158\pi\)
\(594\) 0 0
\(595\) 16.4743i 0.675380i
\(596\) 0 0
\(597\) 33.9326i 1.38877i
\(598\) 0 0
\(599\) 27.4683 1.12232 0.561162 0.827706i \(-0.310354\pi\)
0.561162 + 0.827706i \(0.310354\pi\)
\(600\) 0 0
\(601\) −9.80041 −0.399767 −0.199884 0.979820i \(-0.564056\pi\)
−0.199884 + 0.979820i \(0.564056\pi\)
\(602\) 0 0
\(603\) −12.5858 −0.512533
\(604\) 0 0
\(605\) 9.19499 0.373829
\(606\) 0 0
\(607\) −24.7016 −1.00261 −0.501304 0.865271i \(-0.667146\pi\)
−0.501304 + 0.865271i \(0.667146\pi\)
\(608\) 0 0
\(609\) 8.74186i 0.354238i
\(610\) 0 0
\(611\) −0.585517 + 0.986695i −0.0236875 + 0.0399174i
\(612\) 0 0
\(613\) 33.1575 1.33922 0.669610 0.742713i \(-0.266461\pi\)
0.669610 + 0.742713i \(0.266461\pi\)
\(614\) 0 0
\(615\) 20.1715 0.813393
\(616\) 0 0
\(617\) 45.3381i 1.82524i −0.408805 0.912622i \(-0.634054\pi\)
0.408805 0.912622i \(-0.365946\pi\)
\(618\) 0 0
\(619\) 22.2066 0.892560 0.446280 0.894893i \(-0.352749\pi\)
0.446280 + 0.894893i \(0.352749\pi\)
\(620\) 0 0
\(621\) 26.1712i 1.05021i
\(622\) 0 0
\(623\) −14.4314 −0.578181
\(624\) 0 0
\(625\) 79.4259 3.17704
\(626\) 0 0
\(627\) 13.6110i 0.543570i
\(628\) 0 0
\(629\) 12.5747 0.501385
\(630\) 0 0
\(631\) 9.86072i 0.392549i −0.980549 0.196275i \(-0.937116\pi\)
0.980549 0.196275i \(-0.0628844\pi\)
\(632\) 0 0
\(633\) −7.86350 −0.312546
\(634\) 0 0
\(635\) 32.5031 1.28985
\(636\) 0 0
\(637\) −3.10071 1.84000i −0.122855 0.0729034i
\(638\) 0 0
\(639\) 7.69493i 0.304407i
\(640\) 0 0
\(641\) −29.8909 −1.18062 −0.590311 0.807176i \(-0.700995\pi\)
−0.590311 + 0.807176i \(0.700995\pi\)
\(642\) 0 0
\(643\) 34.3349 1.35404 0.677019 0.735966i \(-0.263272\pi\)
0.677019 + 0.735966i \(0.263272\pi\)
\(644\) 0 0
\(645\) 42.2478 1.66351
\(646\) 0 0
\(647\) 9.52056 0.374292 0.187146 0.982332i \(-0.440076\pi\)
0.187146 + 0.982332i \(0.440076\pi\)
\(648\) 0 0
\(649\) 31.9415 1.25381
\(650\) 0 0
\(651\) 2.83587i 0.111147i
\(652\) 0 0
\(653\) 46.5326i 1.82096i −0.413554 0.910480i \(-0.635713\pi\)
0.413554 0.910480i \(-0.364287\pi\)
\(654\) 0 0
\(655\) 11.5375i 0.450809i
\(656\) 0 0
\(657\) 17.7408i 0.692134i
\(658\) 0 0
\(659\) 24.5788i 0.957456i −0.877963 0.478728i \(-0.841098\pi\)
0.877963 0.478728i \(-0.158902\pi\)
\(660\) 0 0
\(661\) −19.4726 −0.757395 −0.378697 0.925521i \(-0.623628\pi\)
−0.378697 + 0.925521i \(0.623628\pi\)
\(662\) 0 0
\(663\) −8.87771 + 14.9604i −0.344782 + 0.581015i
\(664\) 0 0
\(665\) 15.6364i 0.606352i
\(666\) 0 0
\(667\) 33.2300i 1.28667i
\(668\) 0 0
\(669\) 11.9424 0.461722
\(670\) 0 0
\(671\) 35.3104i 1.36314i
\(672\) 0 0
\(673\) −33.4160 −1.28809 −0.644046 0.764987i \(-0.722745\pi\)
−0.644046 + 0.764987i \(0.722745\pi\)
\(674\) 0 0
\(675\) 72.1041i 2.77529i
\(676\) 0 0
\(677\) 16.9070i 0.649790i 0.945750 + 0.324895i \(0.105329\pi\)
−0.945750 + 0.324895i \(0.894671\pi\)
\(678\) 0 0
\(679\) 3.42799 0.131554
\(680\) 0 0
\(681\) 17.9799i 0.688992i
\(682\) 0 0
\(683\) −3.07903 −0.117816 −0.0589080 0.998263i \(-0.518762\pi\)
−0.0589080 + 0.998263i \(0.518762\pi\)
\(684\) 0 0
\(685\) 97.8336i 3.73803i
\(686\) 0 0
\(687\) 5.38492i 0.205448i
\(688\) 0 0
\(689\) −4.65388 + 7.84257i −0.177299 + 0.298778i
\(690\) 0 0
\(691\) 29.3592 1.11688 0.558439 0.829546i \(-0.311400\pi\)
0.558439 + 0.829546i \(0.311400\pi\)
\(692\) 0 0
\(693\) 4.32258i 0.164201i
\(694\) 0 0
\(695\) 28.0721i 1.06484i
\(696\) 0 0
\(697\) 14.8329i 0.561837i
\(698\) 0 0
\(699\) 30.0529i 1.13671i
\(700\) 0 0
\(701\) 23.1700i 0.875119i 0.899190 + 0.437559i \(0.144157\pi\)
−0.899190 + 0.437559i \(0.855843\pi\)
\(702\) 0 0
\(703\) 11.9351 0.450141
\(704\) 0 0
\(705\) 1.67942 0.0632506
\(706\) 0 0
\(707\) 4.85023 0.182412
\(708\) 0 0
\(709\) −1.93611 −0.0727121 −0.0363561 0.999339i \(-0.511575\pi\)
−0.0363561 + 0.999339i \(0.511575\pi\)
\(710\) 0 0
\(711\) −4.09468 −0.153562
\(712\) 0 0
\(713\) 10.7798i 0.403708i
\(714\) 0 0
\(715\) 39.1218 + 23.2154i 1.46307 + 0.868205i
\(716\) 0 0
\(717\) −16.7416 −0.625226
\(718\) 0 0
\(719\) 33.4382 1.24703 0.623517 0.781810i \(-0.285703\pi\)
0.623517 + 0.781810i \(0.285703\pi\)
\(720\) 0 0
\(721\) 10.9280i 0.406980i
\(722\) 0 0
\(723\) 30.4015 1.13065
\(724\) 0 0
\(725\) 91.5517i 3.40015i
\(726\) 0 0
\(727\) 47.6574 1.76752 0.883758 0.467943i \(-0.155005\pi\)
0.883758 + 0.467943i \(0.155005\pi\)
\(728\) 0 0
\(729\) −24.3223 −0.900828
\(730\) 0 0
\(731\) 31.0666i 1.14904i
\(732\) 0 0
\(733\) −10.5296 −0.388921 −0.194460 0.980910i \(-0.562296\pi\)
−0.194460 + 0.980910i \(0.562296\pi\)
\(734\) 0 0
\(735\) 5.27761i 0.194668i
\(736\) 0 0
\(737\) 25.7213 0.947455
\(738\) 0 0
\(739\) 37.2518 1.37033 0.685164 0.728388i \(-0.259730\pi\)
0.685164 + 0.728388i \(0.259730\pi\)
\(740\) 0 0
\(741\) −8.42617 + 14.1995i −0.309543 + 0.521632i
\(742\) 0 0
\(743\) 17.1129i 0.627810i −0.949454 0.313905i \(-0.898363\pi\)
0.949454 0.313905i \(-0.101637\pi\)
\(744\) 0 0
\(745\) 14.9317 0.547054
\(746\) 0 0
\(747\) −3.08311 −0.112805
\(748\) 0 0
\(749\) 19.3059 0.705423
\(750\) 0 0
\(751\) −0.528361 −0.0192802 −0.00964009 0.999954i \(-0.503069\pi\)
−0.00964009 + 0.999954i \(0.503069\pi\)
\(752\) 0 0
\(753\) 26.0330 0.948695
\(754\) 0 0
\(755\) 43.0516i 1.56681i
\(756\) 0 0
\(757\) 23.8685i 0.867515i 0.901030 + 0.433758i \(0.142813\pi\)
−0.901030 + 0.433758i \(0.857187\pi\)
\(758\) 0 0
\(759\) 17.4629i 0.633864i
\(760\) 0 0
\(761\) 24.1900i 0.876887i 0.898759 + 0.438444i \(0.144470\pi\)
−0.898759 + 0.438444i \(0.855530\pi\)
\(762\) 0 0
\(763\) 5.98308i 0.216602i
\(764\) 0 0
\(765\) −23.9592 −0.866248
\(766\) 0 0
\(767\) −33.3227 19.7741i −1.20321 0.714001i
\(768\) 0 0
\(769\) 13.0043i 0.468947i −0.972123 0.234474i \(-0.924663\pi\)
0.972123 0.234474i \(-0.0753366\pi\)
\(770\) 0 0
\(771\) 1.43030i 0.0515108i
\(772\) 0 0
\(773\) 3.76057 0.135258 0.0676292 0.997711i \(-0.478457\pi\)
0.0676292 + 0.997711i \(0.478457\pi\)
\(774\) 0 0
\(775\) 29.6995i 1.06684i
\(776\) 0 0
\(777\) −4.02835 −0.144516
\(778\) 0 0
\(779\) 14.0785i 0.504414i
\(780\) 0 0
\(781\) 15.7259i 0.562717i
\(782\) 0 0
\(783\) −38.9392 −1.39157
\(784\) 0 0
\(785\) 30.2822i 1.08082i
\(786\) 0 0
\(787\) 19.7264 0.703169 0.351584 0.936156i \(-0.385643\pi\)
0.351584 + 0.936156i \(0.385643\pi\)
\(788\) 0 0
\(789\) 5.01896i 0.178680i
\(790\) 0 0
\(791\) 11.8821i 0.422479i
\(792\) 0 0
\(793\) 21.8597 36.8372i 0.776259 1.30813i
\(794\) 0 0
\(795\) 13.3486 0.473425
\(796\) 0 0
\(797\) 13.5927i 0.481479i −0.970590 0.240740i \(-0.922610\pi\)
0.970590 0.240740i \(-0.0773900\pi\)
\(798\) 0 0
\(799\) 1.23495i 0.0436893i
\(800\) 0 0
\(801\) 20.9881i 0.741579i
\(802\) 0 0
\(803\) 36.2564i 1.27946i
\(804\) 0 0
\(805\) 20.0615i 0.707075i
\(806\) 0 0
\(807\) 5.28004 0.185866
\(808\) 0 0
\(809\) 39.7054 1.39597 0.697983 0.716114i \(-0.254081\pi\)
0.697983 + 0.716114i \(0.254081\pi\)
\(810\) 0 0
\(811\) −1.54998 −0.0544270 −0.0272135 0.999630i \(-0.508663\pi\)
−0.0272135 + 0.999630i \(0.508663\pi\)
\(812\) 0 0
\(813\) −31.5132 −1.10521
\(814\) 0 0
\(815\) 87.5211 3.06573
\(816\) 0 0
\(817\) 29.4864i 1.03160i
\(818\) 0 0
\(819\) −2.67598 + 4.50949i −0.0935065 + 0.157574i
\(820\) 0 0
\(821\) 43.4323 1.51580 0.757900 0.652371i \(-0.226226\pi\)
0.757900 + 0.652371i \(0.226226\pi\)
\(822\) 0 0
\(823\) −56.1465 −1.95714 −0.978571 0.205908i \(-0.933985\pi\)
−0.978571 + 0.205908i \(0.933985\pi\)
\(824\) 0 0
\(825\) 48.1121i 1.67505i
\(826\) 0 0
\(827\) 0.504695 0.0175500 0.00877499 0.999961i \(-0.497207\pi\)
0.00877499 + 0.999961i \(0.497207\pi\)
\(828\) 0 0
\(829\) 8.83750i 0.306939i −0.988153 0.153470i \(-0.950955\pi\)
0.988153 0.153470i \(-0.0490447\pi\)
\(830\) 0 0
\(831\) 8.56827 0.297230
\(832\) 0 0
\(833\) −3.88084 −0.134463
\(834\) 0 0
\(835\) 27.1276i 0.938789i
\(836\) 0 0
\(837\) 12.6319 0.436624
\(838\) 0 0
\(839\) 3.95785i 0.136640i 0.997663 + 0.0683202i \(0.0217639\pi\)
−0.997663 + 0.0683202i \(0.978236\pi\)
\(840\) 0 0
\(841\) −20.4418 −0.704888
\(842\) 0 0
\(843\) 2.47600 0.0852780
\(844\) 0 0
\(845\) −26.4414 48.4384i −0.909613 1.66633i
\(846\) 0 0
\(847\) 2.16606i 0.0744267i
\(848\) 0 0
\(849\) −6.44049 −0.221037
\(850\) 0 0
\(851\) −15.3128 −0.524915
\(852\) 0 0
\(853\) 10.0094 0.342715 0.171358 0.985209i \(-0.445185\pi\)
0.171358 + 0.985209i \(0.445185\pi\)
\(854\) 0 0
\(855\) −22.7406 −0.777712
\(856\) 0 0
\(857\) 16.3535 0.558624 0.279312 0.960200i \(-0.409894\pi\)
0.279312 + 0.960200i \(0.409894\pi\)
\(858\) 0 0
\(859\) 46.1150i 1.57342i 0.617322 + 0.786711i \(0.288218\pi\)
−0.617322 + 0.786711i \(0.711782\pi\)
\(860\) 0 0
\(861\) 4.75179i 0.161941i
\(862\) 0 0
\(863\) 48.4827i 1.65037i −0.564864 0.825184i \(-0.691071\pi\)
0.564864 0.825184i \(-0.308929\pi\)
\(864\) 0 0
\(865\) 15.6724i 0.532876i
\(866\) 0 0
\(867\) 2.41071i 0.0818719i
\(868\) 0 0
\(869\) 8.36818 0.283871
\(870\) 0 0
\(871\) −26.8334 15.9233i −0.909216 0.539540i
\(872\) 0 0
\(873\) 4.98547i 0.168732i
\(874\) 0 0
\(875\) 34.0462i 1.15097i
\(876\) 0 0
\(877\) −28.3417 −0.957033 −0.478516 0.878079i \(-0.658825\pi\)
−0.478516 + 0.878079i \(0.658825\pi\)
\(878\) 0 0
\(879\) 10.0886i 0.340279i
\(880\) 0 0
\(881\) 41.6725 1.40398 0.701991 0.712185i \(-0.252295\pi\)
0.701991 + 0.712185i \(0.252295\pi\)
\(882\) 0 0
\(883\) 13.9586i 0.469743i 0.972026 + 0.234872i \(0.0754670\pi\)
−0.972026 + 0.234872i \(0.924533\pi\)
\(884\) 0 0
\(885\) 56.7174i 1.90653i
\(886\) 0 0
\(887\) 26.0576 0.874929 0.437465 0.899236i \(-0.355876\pi\)
0.437465 + 0.899236i \(0.355876\pi\)
\(888\) 0 0
\(889\) 7.65675i 0.256799i
\(890\) 0 0
\(891\) 7.49550 0.251109
\(892\) 0 0
\(893\) 1.17213i 0.0392240i
\(894\) 0 0
\(895\) 86.8096i 2.90172i
\(896\) 0 0
\(897\) 10.8108 18.2180i 0.360962 0.608282i
\(898\) 0 0
\(899\) 16.0390 0.534930
\(900\) 0 0
\(901\) 9.81575i 0.327010i
\(902\) 0 0
\(903\) 9.95231i 0.331192i
\(904\) 0 0
\(905\) 83.2706i 2.76801i
\(906\) 0 0
\(907\) 5.70501i 0.189432i 0.995504 + 0.0947159i \(0.0301943\pi\)
−0.995504 + 0.0947159i \(0.969806\pi\)
\(908\) 0 0
\(909\) 7.05388i 0.233963i
\(910\) 0 0
\(911\) 37.8264 1.25325 0.626623 0.779323i \(-0.284437\pi\)
0.626623 + 0.779323i \(0.284437\pi\)
\(912\) 0 0
\(913\) 6.30086 0.208528
\(914\) 0 0
\(915\) −62.6993 −2.07278
\(916\) 0 0
\(917\) 2.71789 0.0897527
\(918\) 0 0
\(919\) −15.8594 −0.523152 −0.261576 0.965183i \(-0.584242\pi\)
−0.261576 + 0.965183i \(0.584242\pi\)
\(920\) 0 0
\(921\) 28.1929i 0.928987i
\(922\) 0 0
\(923\) −9.73546 + 16.4059i −0.320446 + 0.540006i
\(924\) 0 0
\(925\) 42.1881 1.38714
\(926\) 0 0
\(927\) 15.8930 0.521995
\(928\) 0 0
\(929\) 12.4095i 0.407141i 0.979060 + 0.203571i \(0.0652546\pi\)
−0.979060 + 0.203571i \(0.934745\pi\)
\(930\) 0 0
\(931\) −3.68346 −0.120720
\(932\) 0 0
\(933\) 2.36600i 0.0774595i
\(934\) 0 0
\(935\) 48.9648 1.60132
\(936\) 0 0
\(937\) 27.8945 0.911275 0.455637 0.890165i \(-0.349411\pi\)
0.455637 + 0.890165i \(0.349411\pi\)
\(938\) 0 0
\(939\) 38.4612i 1.25513i
\(940\) 0 0
\(941\) −33.5634 −1.09414 −0.547068 0.837088i \(-0.684256\pi\)
−0.547068 + 0.837088i \(0.684256\pi\)
\(942\) 0 0
\(943\) 18.0627i 0.588203i
\(944\) 0 0
\(945\) 23.5083 0.764724
\(946\) 0 0
\(947\) −18.9092 −0.614466 −0.307233 0.951634i \(-0.599403\pi\)
−0.307233 + 0.951634i \(0.599403\pi\)
\(948\) 0 0
\(949\) 22.4453 37.8241i 0.728604 1.22782i
\(950\) 0 0
\(951\) 13.6570i 0.442858i
\(952\) 0 0
\(953\) −21.7892 −0.705823 −0.352911 0.935657i \(-0.614808\pi\)
−0.352911 + 0.935657i \(0.614808\pi\)
\(954\) 0 0
\(955\) −25.6654 −0.830512
\(956\) 0 0
\(957\) 25.9825 0.839895
\(958\) 0 0
\(959\) −23.0466 −0.744215
\(960\) 0 0
\(961\) 25.7969 0.832159
\(962\) 0 0
\(963\) 28.0774i 0.904781i
\(964\) 0 0
\(965\) 5.82918i 0.187648i
\(966\) 0 0
\(967\) 42.4630i 1.36552i −0.730643 0.682759i \(-0.760780\pi\)
0.730643 0.682759i \(-0.239220\pi\)
\(968\) 0 0
\(969\) 17.7721i 0.570922i
\(970\) 0 0
\(971\) 47.0765i 1.51076i −0.655289 0.755378i \(-0.727453\pi\)
0.655289 0.755378i \(-0.272547\pi\)
\(972\) 0 0
\(973\) 6.61294 0.212001
\(974\) 0 0
\(975\) −29.7848 + 50.1924i −0.953876 + 1.60744i
\(976\) 0 0
\(977\) 23.5667i 0.753967i 0.926220 + 0.376984i \(0.123039\pi\)
−0.926220 + 0.376984i \(0.876961\pi\)
\(978\) 0 0
\(979\) 42.8929i 1.37086i
\(980\) 0 0
\(981\) −8.70143 −0.277815
\(982\) 0 0
\(983\) 33.4979i 1.06842i 0.845353 + 0.534208i \(0.179390\pi\)
−0.845353 + 0.534208i \(0.820610\pi\)
\(984\) 0 0
\(985\) −65.8836 −2.09923
\(986\) 0 0
\(987\) 0.395621i 0.0125927i
\(988\) 0 0
\(989\) 37.8312i 1.20296i
\(990\) 0 0
\(991\) 9.57436 0.304140 0.152070 0.988370i \(-0.451406\pi\)
0.152070 + 0.988370i \(0.451406\pi\)
\(992\) 0 0
\(993\) 26.2976i 0.834528i
\(994\) 0 0
\(995\) 115.862 3.67307
\(996\) 0 0
\(997\) 44.0185i 1.39408i 0.717033 + 0.697039i \(0.245500\pi\)
−0.717033 + 0.697039i \(0.754500\pi\)
\(998\) 0 0
\(999\) 17.9437i 0.567712i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.i.a.337.6 84
4.3 odd 2 728.2.i.a.701.52 yes 84
8.3 odd 2 728.2.i.a.701.34 yes 84
8.5 even 2 inner 2912.2.i.a.337.79 84
13.12 even 2 inner 2912.2.i.a.337.80 84
52.51 odd 2 728.2.i.a.701.33 84
104.51 odd 2 728.2.i.a.701.51 yes 84
104.77 even 2 inner 2912.2.i.a.337.5 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.i.a.701.33 84 52.51 odd 2
728.2.i.a.701.34 yes 84 8.3 odd 2
728.2.i.a.701.51 yes 84 104.51 odd 2
728.2.i.a.701.52 yes 84 4.3 odd 2
2912.2.i.a.337.5 84 104.77 even 2 inner
2912.2.i.a.337.6 84 1.1 even 1 trivial
2912.2.i.a.337.79 84 8.5 even 2 inner
2912.2.i.a.337.80 84 13.12 even 2 inner