Properties

Label 729.2.e.b.406.1
Level $729$
Weight $2$
Character 729.406
Analytic conductor $5.821$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 406.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 729.406
Dual form 729.2.e.b.325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.673648 - 0.565258i) q^{2} +(-0.213011 - 1.20805i) q^{4} +(-3.64543 - 1.32683i) q^{5} +(-0.379385 + 2.15160i) q^{7} +(-1.41875 + 2.45734i) q^{8} +(1.70574 + 2.95442i) q^{10} +(-0.152704 + 0.0555796i) q^{11} +(1.84730 - 1.55007i) q^{13} +(1.47178 - 1.23497i) q^{14} +(0.0393628 - 0.0143269i) q^{16} +(-1.50000 - 2.59808i) q^{17} +(-1.79813 + 3.11446i) q^{19} +(-0.826352 + 4.68647i) q^{20} +(0.134285 + 0.0488759i) q^{22} +(0.492726 + 2.79439i) q^{23} +(7.69846 + 6.45978i) q^{25} -2.12061 q^{26} +2.68004 q^{28} +(5.14543 + 4.31753i) q^{29} +(-0.900330 - 5.10602i) q^{31} +(5.29813 + 1.92836i) q^{32} +(-0.458111 + 2.59808i) q^{34} +(4.23783 - 7.34013i) q^{35} +(3.31908 + 5.74881i) q^{37} +(2.97178 - 1.08164i) q^{38} +(8.43242 - 7.07564i) q^{40} +(-4.44356 + 3.72859i) q^{41} +(5.85117 - 2.12965i) q^{43} +(0.0996702 + 0.172634i) q^{44} +(1.24763 - 2.16095i) q^{46} +(1.28446 - 7.28455i) q^{47} +(2.09240 + 0.761570i) q^{49} +(-1.53462 - 8.70323i) q^{50} +(-2.26604 - 1.90144i) q^{52} +1.40373 q^{53} +0.630415 q^{55} +(-4.74897 - 3.98486i) q^{56} +(-1.02569 - 5.81699i) q^{58} +(4.81180 + 1.75135i) q^{59} +(-0.656574 + 3.72362i) q^{61} +(-2.27972 + 3.94858i) q^{62} +(-2.52094 - 4.36640i) q^{64} +(-8.79086 + 3.19961i) q^{65} +(-4.49273 + 3.76984i) q^{67} +(-2.81908 + 2.36549i) q^{68} +(-7.00387 + 2.54920i) q^{70} +(7.65910 + 13.2660i) q^{71} +(-4.34002 + 7.51714i) q^{73} +(1.01367 - 5.74881i) q^{74} +(4.14543 + 1.50881i) q^{76} +(-0.0616516 - 0.349643i) q^{77} +(-0.971782 - 0.815422i) q^{79} -0.162504 q^{80} +5.10101 q^{82} +(-6.49273 - 5.44804i) q^{83} +(2.02094 + 11.4613i) q^{85} +(-5.14543 - 1.87278i) q^{86} +(0.0800699 - 0.454099i) q^{88} +(-3.86097 + 6.68739i) q^{89} +(2.63429 + 4.56272i) q^{91} +(3.27079 - 1.19047i) q^{92} +(-4.98293 + 4.18117i) q^{94} +(10.6873 - 8.96773i) q^{95} +(3.67112 - 1.33618i) q^{97} +(-0.979055 - 1.69577i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 9 q^{4} - 6 q^{5} + 9 q^{7} - 6 q^{8} - 3 q^{11} + 9 q^{13} - 6 q^{14} + 9 q^{16} - 9 q^{17} + 3 q^{19} - 6 q^{20} - 9 q^{22} - 15 q^{23} + 18 q^{25} - 24 q^{26} - 24 q^{28} + 15 q^{29}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.673648 0.565258i −0.476341 0.399698i 0.372760 0.927928i \(-0.378411\pi\)
−0.849101 + 0.528230i \(0.822856\pi\)
\(3\) 0 0
\(4\) −0.213011 1.20805i −0.106506 0.604023i
\(5\) −3.64543 1.32683i −1.63029 0.593375i −0.644984 0.764196i \(-0.723136\pi\)
−0.985302 + 0.170821i \(0.945358\pi\)
\(6\) 0 0
\(7\) −0.379385 + 2.15160i −0.143394 + 0.813229i 0.825248 + 0.564770i \(0.191035\pi\)
−0.968643 + 0.248459i \(0.920076\pi\)
\(8\) −1.41875 + 2.45734i −0.501603 + 0.868802i
\(9\) 0 0
\(10\) 1.70574 + 2.95442i 0.539401 + 0.934271i
\(11\) −0.152704 + 0.0555796i −0.0460419 + 0.0167579i −0.364938 0.931032i \(-0.618910\pi\)
0.318897 + 0.947790i \(0.396688\pi\)
\(12\) 0 0
\(13\) 1.84730 1.55007i 0.512348 0.429911i −0.349607 0.936897i \(-0.613685\pi\)
0.861954 + 0.506986i \(0.169240\pi\)
\(14\) 1.47178 1.23497i 0.393350 0.330060i
\(15\) 0 0
\(16\) 0.0393628 0.0143269i 0.00984071 0.00358173i
\(17\) −1.50000 2.59808i −0.363803 0.630126i 0.624780 0.780801i \(-0.285189\pi\)
−0.988583 + 0.150675i \(0.951855\pi\)
\(18\) 0 0
\(19\) −1.79813 + 3.11446i −0.412520 + 0.714506i −0.995165 0.0982214i \(-0.968685\pi\)
0.582645 + 0.812727i \(0.302018\pi\)
\(20\) −0.826352 + 4.68647i −0.184778 + 1.04793i
\(21\) 0 0
\(22\) 0.134285 + 0.0488759i 0.0286297 + 0.0104204i
\(23\) 0.492726 + 2.79439i 0.102740 + 0.582670i 0.992099 + 0.125459i \(0.0400404\pi\)
−0.889358 + 0.457211i \(0.848848\pi\)
\(24\) 0 0
\(25\) 7.69846 + 6.45978i 1.53969 + 1.29196i
\(26\) −2.12061 −0.415887
\(27\) 0 0
\(28\) 2.68004 0.506481
\(29\) 5.14543 + 4.31753i 0.955482 + 0.801745i 0.980212 0.197949i \(-0.0634281\pi\)
−0.0247300 + 0.999694i \(0.507873\pi\)
\(30\) 0 0
\(31\) −0.900330 5.10602i −0.161704 0.917069i −0.952398 0.304857i \(-0.901391\pi\)
0.790694 0.612212i \(-0.209720\pi\)
\(32\) 5.29813 + 1.92836i 0.936587 + 0.340890i
\(33\) 0 0
\(34\) −0.458111 + 2.59808i −0.0785654 + 0.445566i
\(35\) 4.23783 7.34013i 0.716323 1.24071i
\(36\) 0 0
\(37\) 3.31908 + 5.74881i 0.545653 + 0.945099i 0.998566 + 0.0535438i \(0.0170517\pi\)
−0.452912 + 0.891555i \(0.649615\pi\)
\(38\) 2.97178 1.08164i 0.482087 0.175465i
\(39\) 0 0
\(40\) 8.43242 7.07564i 1.33328 1.11876i
\(41\) −4.44356 + 3.72859i −0.693968 + 0.582308i −0.920050 0.391800i \(-0.871853\pi\)
0.226082 + 0.974108i \(0.427408\pi\)
\(42\) 0 0
\(43\) 5.85117 2.12965i 0.892295 0.324769i 0.145134 0.989412i \(-0.453639\pi\)
0.747161 + 0.664643i \(0.231417\pi\)
\(44\) 0.0996702 + 0.172634i 0.0150259 + 0.0260255i
\(45\) 0 0
\(46\) 1.24763 2.16095i 0.183952 0.318615i
\(47\) 1.28446 7.28455i 0.187358 1.06256i −0.735530 0.677492i \(-0.763067\pi\)
0.922888 0.385069i \(-0.125822\pi\)
\(48\) 0 0
\(49\) 2.09240 + 0.761570i 0.298914 + 0.108796i
\(50\) −1.53462 8.70323i −0.217027 1.23082i
\(51\) 0 0
\(52\) −2.26604 1.90144i −0.314244 0.263682i
\(53\) 1.40373 0.192818 0.0964088 0.995342i \(-0.469264\pi\)
0.0964088 + 0.995342i \(0.469264\pi\)
\(54\) 0 0
\(55\) 0.630415 0.0850051
\(56\) −4.74897 3.98486i −0.634608 0.532499i
\(57\) 0 0
\(58\) −1.02569 5.81699i −0.134680 0.763808i
\(59\) 4.81180 + 1.75135i 0.626444 + 0.228007i 0.635683 0.771951i \(-0.280719\pi\)
−0.00923910 + 0.999957i \(0.502941\pi\)
\(60\) 0 0
\(61\) −0.656574 + 3.72362i −0.0840657 + 0.476760i 0.913489 + 0.406864i \(0.133378\pi\)
−0.997554 + 0.0698959i \(0.977733\pi\)
\(62\) −2.27972 + 3.94858i −0.289524 + 0.501470i
\(63\) 0 0
\(64\) −2.52094 4.36640i −0.315118 0.545801i
\(65\) −8.79086 + 3.19961i −1.09037 + 0.396863i
\(66\) 0 0
\(67\) −4.49273 + 3.76984i −0.548874 + 0.460560i −0.874559 0.484918i \(-0.838849\pi\)
0.325686 + 0.945478i \(0.394405\pi\)
\(68\) −2.81908 + 2.36549i −0.341863 + 0.286857i
\(69\) 0 0
\(70\) −7.00387 + 2.54920i −0.837123 + 0.304688i
\(71\) 7.65910 + 13.2660i 0.908968 + 1.57438i 0.815500 + 0.578756i \(0.196462\pi\)
0.0934675 + 0.995622i \(0.470205\pi\)
\(72\) 0 0
\(73\) −4.34002 + 7.51714i −0.507961 + 0.879815i 0.491996 + 0.870597i \(0.336267\pi\)
−0.999958 + 0.00921733i \(0.997066\pi\)
\(74\) 1.01367 5.74881i 0.117837 0.668286i
\(75\) 0 0
\(76\) 4.14543 + 1.50881i 0.475513 + 0.173073i
\(77\) −0.0616516 0.349643i −0.00702585 0.0398456i
\(78\) 0 0
\(79\) −0.971782 0.815422i −0.109334 0.0917421i 0.586482 0.809962i \(-0.300513\pi\)
−0.695816 + 0.718220i \(0.744957\pi\)
\(80\) −0.162504 −0.0181685
\(81\) 0 0
\(82\) 5.10101 0.563313
\(83\) −6.49273 5.44804i −0.712669 0.598001i 0.212677 0.977122i \(-0.431782\pi\)
−0.925347 + 0.379122i \(0.876226\pi\)
\(84\) 0 0
\(85\) 2.02094 + 11.4613i 0.219202 + 1.24316i
\(86\) −5.14543 1.87278i −0.554846 0.201947i
\(87\) 0 0
\(88\) 0.0800699 0.454099i 0.00853548 0.0484071i
\(89\) −3.86097 + 6.68739i −0.409262 + 0.708862i −0.994807 0.101778i \(-0.967547\pi\)
0.585546 + 0.810640i \(0.300880\pi\)
\(90\) 0 0
\(91\) 2.63429 + 4.56272i 0.276148 + 0.478303i
\(92\) 3.27079 1.19047i 0.341004 0.124115i
\(93\) 0 0
\(94\) −4.98293 + 4.18117i −0.513950 + 0.431255i
\(95\) 10.6873 8.96773i 1.09650 0.920069i
\(96\) 0 0
\(97\) 3.67112 1.33618i 0.372746 0.135668i −0.148853 0.988859i \(-0.547558\pi\)
0.521599 + 0.853191i \(0.325336\pi\)
\(98\) −0.979055 1.69577i −0.0988995 0.171299i
\(99\) 0 0
\(100\) 6.16385 10.6761i 0.616385 1.06761i
\(101\) −1.40895 + 7.99054i −0.140196 + 0.795089i 0.830904 + 0.556415i \(0.187824\pi\)
−0.971100 + 0.238673i \(0.923288\pi\)
\(102\) 0 0
\(103\) −17.5214 6.37727i −1.72644 0.628371i −0.728069 0.685503i \(-0.759582\pi\)
−0.998367 + 0.0571322i \(0.981804\pi\)
\(104\) 1.18820 + 6.73859i 0.116512 + 0.660774i
\(105\) 0 0
\(106\) −0.945622 0.793471i −0.0918470 0.0770688i
\(107\) 7.59627 0.734359 0.367179 0.930150i \(-0.380324\pi\)
0.367179 + 0.930150i \(0.380324\pi\)
\(108\) 0 0
\(109\) −15.6382 −1.49786 −0.748932 0.662647i \(-0.769433\pi\)
−0.748932 + 0.662647i \(0.769433\pi\)
\(110\) −0.424678 0.356347i −0.0404914 0.0339764i
\(111\) 0 0
\(112\) 0.0158921 + 0.0901285i 0.00150166 + 0.00851635i
\(113\) 2.17365 + 0.791143i 0.204480 + 0.0744245i 0.442230 0.896902i \(-0.354188\pi\)
−0.237750 + 0.971326i \(0.576410\pi\)
\(114\) 0 0
\(115\) 1.91147 10.8405i 0.178246 1.01088i
\(116\) 4.11974 7.13559i 0.382508 0.662523i
\(117\) 0 0
\(118\) −2.25150 3.89971i −0.207267 0.358997i
\(119\) 6.15910 2.24173i 0.564604 0.205499i
\(120\) 0 0
\(121\) −8.40626 + 7.05369i −0.764205 + 0.641244i
\(122\) 2.54710 2.13727i 0.230604 0.193500i
\(123\) 0 0
\(124\) −5.97653 + 2.17528i −0.536708 + 0.195346i
\(125\) −9.79473 16.9650i −0.876067 1.51739i
\(126\) 0 0
\(127\) −0.0209445 + 0.0362770i −0.00185853 + 0.00321906i −0.866953 0.498390i \(-0.833925\pi\)
0.865095 + 0.501609i \(0.167258\pi\)
\(128\) 1.18820 6.73859i 0.105023 0.595613i
\(129\) 0 0
\(130\) 7.73055 + 2.81369i 0.678014 + 0.246777i
\(131\) 3.18614 + 18.0695i 0.278374 + 1.57874i 0.728036 + 0.685539i \(0.240433\pi\)
−0.449662 + 0.893199i \(0.648456\pi\)
\(132\) 0 0
\(133\) −6.01889 5.05044i −0.521904 0.437929i
\(134\) 5.15745 0.445536
\(135\) 0 0
\(136\) 8.51249 0.729940
\(137\) 10.9645 + 9.20031i 0.936761 + 0.786036i 0.977019 0.213153i \(-0.0683734\pi\)
−0.0402576 + 0.999189i \(0.512818\pi\)
\(138\) 0 0
\(139\) 1.82248 + 10.3358i 0.154581 + 0.876672i 0.959168 + 0.282837i \(0.0912755\pi\)
−0.804587 + 0.593835i \(0.797613\pi\)
\(140\) −9.76991 3.55596i −0.825709 0.300533i
\(141\) 0 0
\(142\) 2.33915 13.2660i 0.196297 1.11325i
\(143\) −0.195937 + 0.339373i −0.0163851 + 0.0283798i
\(144\) 0 0
\(145\) −13.0287 22.5663i −1.08197 1.87403i
\(146\) 7.17277 2.61068i 0.593623 0.216061i
\(147\) 0 0
\(148\) 6.23783 5.23416i 0.512746 0.430245i
\(149\) −0.973841 + 0.817150i −0.0797802 + 0.0669435i −0.681806 0.731533i \(-0.738805\pi\)
0.602025 + 0.798477i \(0.294361\pi\)
\(150\) 0 0
\(151\) −7.38326 + 2.68729i −0.600841 + 0.218688i −0.624491 0.781032i \(-0.714693\pi\)
0.0236500 + 0.999720i \(0.492471\pi\)
\(152\) −5.10220 8.83726i −0.413843 0.716797i
\(153\) 0 0
\(154\) −0.156107 + 0.270386i −0.0125795 + 0.0217883i
\(155\) −3.49273 + 19.8082i −0.280543 + 1.59104i
\(156\) 0 0
\(157\) 11.6074 + 4.22475i 0.926372 + 0.337172i 0.760771 0.649021i \(-0.224821\pi\)
0.165602 + 0.986193i \(0.447043\pi\)
\(158\) 0.193715 + 1.09861i 0.0154112 + 0.0874011i
\(159\) 0 0
\(160\) −16.7554 14.0594i −1.32463 1.11149i
\(161\) −6.19934 −0.488576
\(162\) 0 0
\(163\) −13.7469 −1.07674 −0.538371 0.842708i \(-0.680960\pi\)
−0.538371 + 0.842708i \(0.680960\pi\)
\(164\) 5.45084 + 4.57380i 0.425639 + 0.357153i
\(165\) 0 0
\(166\) 1.29426 + 7.34013i 0.100454 + 0.569705i
\(167\) 3.49273 + 1.27125i 0.270275 + 0.0983721i 0.473603 0.880739i \(-0.342953\pi\)
−0.203327 + 0.979111i \(0.565176\pi\)
\(168\) 0 0
\(169\) −1.24763 + 7.07564i −0.0959712 + 0.544280i
\(170\) 5.11721 8.86327i 0.392472 0.679782i
\(171\) 0 0
\(172\) −3.81908 6.61484i −0.291202 0.504377i
\(173\) 1.46538 0.533356i 0.111411 0.0405503i −0.285713 0.958315i \(-0.592230\pi\)
0.397124 + 0.917765i \(0.370008\pi\)
\(174\) 0 0
\(175\) −16.8195 + 14.1133i −1.27144 + 1.06686i
\(176\) −0.00521457 + 0.00437554i −0.000393063 + 0.000329819i
\(177\) 0 0
\(178\) 6.38103 2.32251i 0.478279 0.174079i
\(179\) 6.09627 + 10.5590i 0.455656 + 0.789220i 0.998726 0.0504679i \(-0.0160713\pi\)
−0.543069 + 0.839688i \(0.682738\pi\)
\(180\) 0 0
\(181\) 8.43629 14.6121i 0.627064 1.08611i −0.361073 0.932537i \(-0.617590\pi\)
0.988138 0.153570i \(-0.0490771\pi\)
\(182\) 0.804530 4.56272i 0.0596357 0.338211i
\(183\) 0 0
\(184\) −7.56583 2.75374i −0.557760 0.203008i
\(185\) −4.47178 25.3607i −0.328772 1.86456i
\(186\) 0 0
\(187\) 0.373455 + 0.313366i 0.0273098 + 0.0229156i
\(188\) −9.07367 −0.661766
\(189\) 0 0
\(190\) −12.2686 −0.890056
\(191\) −13.3871 11.2331i −0.968658 0.812801i 0.0136814 0.999906i \(-0.495645\pi\)
−0.982340 + 0.187105i \(0.940089\pi\)
\(192\) 0 0
\(193\) −0.345952 1.96199i −0.0249022 0.141227i 0.969822 0.243815i \(-0.0783989\pi\)
−0.994724 + 0.102588i \(0.967288\pi\)
\(194\) −3.22833 1.17502i −0.231781 0.0843612i
\(195\) 0 0
\(196\) 0.474308 2.68993i 0.0338791 0.192138i
\(197\) −10.5963 + 18.3533i −0.754953 + 1.30762i 0.190445 + 0.981698i \(0.439007\pi\)
−0.945398 + 0.325919i \(0.894326\pi\)
\(198\) 0 0
\(199\) 1.54189 + 2.67063i 0.109302 + 0.189316i 0.915488 0.402346i \(-0.131805\pi\)
−0.806186 + 0.591662i \(0.798472\pi\)
\(200\) −26.7961 + 9.75297i −1.89477 + 0.689639i
\(201\) 0 0
\(202\) 5.46585 4.58639i 0.384576 0.322698i
\(203\) −11.2417 + 9.43290i −0.789012 + 0.662060i
\(204\) 0 0
\(205\) 21.1459 7.69648i 1.47689 0.537545i
\(206\) 8.19846 + 14.2002i 0.571214 + 0.989372i
\(207\) 0 0
\(208\) 0.0505072 0.0874810i 0.00350204 0.00606572i
\(209\) 0.101481 0.575529i 0.00701960 0.0398101i
\(210\) 0 0
\(211\) −0.946967 0.344668i −0.0651919 0.0237279i 0.309218 0.950991i \(-0.399933\pi\)
−0.374410 + 0.927263i \(0.622155\pi\)
\(212\) −0.299011 1.69577i −0.0205361 0.116466i
\(213\) 0 0
\(214\) −5.11721 4.29385i −0.349805 0.293522i
\(215\) −24.1557 −1.64740
\(216\) 0 0
\(217\) 11.3277 0.768974
\(218\) 10.5346 + 8.83959i 0.713494 + 0.598693i
\(219\) 0 0
\(220\) −0.134285 0.761570i −0.00905352 0.0513450i
\(221\) −6.79813 2.47432i −0.457292 0.166441i
\(222\) 0 0
\(223\) 3.17499 18.0063i 0.212613 1.20579i −0.672387 0.740199i \(-0.734731\pi\)
0.885001 0.465590i \(-0.154158\pi\)
\(224\) −6.15910 + 10.6679i −0.411522 + 0.712777i
\(225\) 0 0
\(226\) −1.01707 1.76162i −0.0676548 0.117181i
\(227\) 2.48545 0.904631i 0.164965 0.0600424i −0.258217 0.966087i \(-0.583135\pi\)
0.423183 + 0.906044i \(0.360913\pi\)
\(228\) 0 0
\(229\) −2.65270 + 2.22588i −0.175296 + 0.147090i −0.726214 0.687469i \(-0.758722\pi\)
0.550919 + 0.834559i \(0.314277\pi\)
\(230\) −7.41534 + 6.22221i −0.488953 + 0.410281i
\(231\) 0 0
\(232\) −17.9097 + 6.51860i −1.17583 + 0.427967i
\(233\) −3.06283 5.30498i −0.200653 0.347541i 0.748086 0.663602i \(-0.230973\pi\)
−0.948739 + 0.316061i \(0.897640\pi\)
\(234\) 0 0
\(235\) −14.3478 + 24.8511i −0.935945 + 1.62110i
\(236\) 1.09075 6.18594i 0.0710016 0.402670i
\(237\) 0 0
\(238\) −5.41622 1.97134i −0.351082 0.127783i
\(239\) −5.02734 28.5115i −0.325192 1.84425i −0.508325 0.861165i \(-0.669735\pi\)
0.183133 0.983088i \(-0.441376\pi\)
\(240\) 0 0
\(241\) 17.1027 + 14.3508i 1.10168 + 0.924419i 0.997537 0.0701436i \(-0.0223458\pi\)
0.104142 + 0.994562i \(0.466790\pi\)
\(242\) 9.65002 0.620326
\(243\) 0 0
\(244\) 4.63816 0.296927
\(245\) −6.61721 5.55250i −0.422758 0.354736i
\(246\) 0 0
\(247\) 1.50593 + 8.54055i 0.0958200 + 0.543422i
\(248\) 13.8246 + 5.03174i 0.877863 + 0.319516i
\(249\) 0 0
\(250\) −2.99138 + 16.9650i −0.189192 + 1.07296i
\(251\) 11.3610 19.6778i 0.717098 1.24205i −0.245047 0.969511i \(-0.578803\pi\)
0.962145 0.272539i \(-0.0878633\pi\)
\(252\) 0 0
\(253\) −0.230552 0.399328i −0.0144947 0.0251055i
\(254\) 0.0346151 0.0125989i 0.00217194 0.000790523i
\(255\) 0 0
\(256\) −12.3341 + 10.3495i −0.770881 + 0.646846i
\(257\) −15.0064 + 12.5919i −0.936073 + 0.785459i −0.976898 0.213708i \(-0.931446\pi\)
0.0408244 + 0.999166i \(0.487002\pi\)
\(258\) 0 0
\(259\) −13.6284 + 4.96032i −0.846825 + 0.308219i
\(260\) 5.73783 + 9.93821i 0.355845 + 0.616341i
\(261\) 0 0
\(262\) 8.06758 13.9735i 0.498417 0.863283i
\(263\) 3.09105 17.5302i 0.190602 1.08096i −0.727941 0.685640i \(-0.759523\pi\)
0.918543 0.395320i \(-0.129366\pi\)
\(264\) 0 0
\(265\) −5.11721 1.86251i −0.314348 0.114413i
\(266\) 1.19981 + 6.80445i 0.0735649 + 0.417207i
\(267\) 0 0
\(268\) 5.51114 + 4.62440i 0.336647 + 0.282480i
\(269\) 22.7888 1.38946 0.694729 0.719272i \(-0.255524\pi\)
0.694729 + 0.719272i \(0.255524\pi\)
\(270\) 0 0
\(271\) −3.44562 −0.209307 −0.104653 0.994509i \(-0.533373\pi\)
−0.104653 + 0.994509i \(0.533373\pi\)
\(272\) −0.0962667 0.0807773i −0.00583702 0.00489784i
\(273\) 0 0
\(274\) −2.18567 12.3955i −0.132041 0.748843i
\(275\) −1.53462 0.558554i −0.0925408 0.0336821i
\(276\) 0 0
\(277\) −0.453830 + 2.57380i −0.0272680 + 0.154645i −0.995402 0.0957898i \(-0.969462\pi\)
0.968134 + 0.250434i \(0.0805734\pi\)
\(278\) 4.61468 7.99287i 0.276770 0.479380i
\(279\) 0 0
\(280\) 12.0248 + 20.8276i 0.718620 + 1.24469i
\(281\) 12.8598 4.68058i 0.767150 0.279220i 0.0713464 0.997452i \(-0.477270\pi\)
0.695804 + 0.718232i \(0.255048\pi\)
\(282\) 0 0
\(283\) 17.5273 14.7072i 1.04189 0.874251i 0.0496744 0.998765i \(-0.484182\pi\)
0.992218 + 0.124514i \(0.0397372\pi\)
\(284\) 14.3944 12.0783i 0.854150 0.716717i
\(285\) 0 0
\(286\) 0.323826 0.117863i 0.0191482 0.00696938i
\(287\) −6.33662 10.9753i −0.374039 0.647854i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) −3.97906 + 22.5663i −0.233658 + 1.32514i
\(291\) 0 0
\(292\) 10.0055 + 3.64171i 0.585529 + 0.213115i
\(293\) 4.21641 + 23.9125i 0.246326 + 1.39698i 0.817394 + 0.576079i \(0.195418\pi\)
−0.571068 + 0.820903i \(0.693471\pi\)
\(294\) 0 0
\(295\) −15.2173 12.7689i −0.885988 0.743432i
\(296\) −18.8357 −1.09481
\(297\) 0 0
\(298\) 1.11793 0.0647597
\(299\) 5.24170 + 4.39831i 0.303135 + 0.254361i
\(300\) 0 0
\(301\) 2.36231 + 13.3973i 0.136161 + 0.772209i
\(302\) 6.49273 + 2.36316i 0.373614 + 0.135985i
\(303\) 0 0
\(304\) −0.0261591 + 0.148356i −0.00150033 + 0.00850878i
\(305\) 7.33409 12.7030i 0.419949 0.727373i
\(306\) 0 0
\(307\) 8.07444 + 13.9853i 0.460833 + 0.798186i 0.999003 0.0446505i \(-0.0142174\pi\)
−0.538170 + 0.842836i \(0.680884\pi\)
\(308\) −0.409253 + 0.148956i −0.0233193 + 0.00848754i
\(309\) 0 0
\(310\) 13.5496 11.3695i 0.769567 0.645744i
\(311\) 14.3327 12.0266i 0.812736 0.681966i −0.138523 0.990359i \(-0.544236\pi\)
0.951259 + 0.308393i \(0.0997912\pi\)
\(312\) 0 0
\(313\) −2.60607 + 0.948531i −0.147304 + 0.0536141i −0.414620 0.909995i \(-0.636085\pi\)
0.267316 + 0.963609i \(0.413863\pi\)
\(314\) −5.43124 9.40718i −0.306502 0.530878i
\(315\) 0 0
\(316\) −0.778066 + 1.34765i −0.0437696 + 0.0758112i
\(317\) 3.03580 17.2169i 0.170507 0.966995i −0.772695 0.634777i \(-0.781092\pi\)
0.943203 0.332218i \(-0.107797\pi\)
\(318\) 0 0
\(319\) −1.02569 0.373321i −0.0574277 0.0209020i
\(320\) 3.39646 + 19.2623i 0.189868 + 1.07679i
\(321\) 0 0
\(322\) 4.17617 + 3.50423i 0.232729 + 0.195283i
\(323\) 10.7888 0.600305
\(324\) 0 0
\(325\) 24.2344 1.34428
\(326\) 9.26058 + 7.77055i 0.512896 + 0.430371i
\(327\) 0 0
\(328\) −2.85814 16.2093i −0.157814 0.895009i
\(329\) 15.1861 + 5.52730i 0.837239 + 0.304730i
\(330\) 0 0
\(331\) −5.63651 + 31.9662i −0.309810 + 1.75702i 0.290139 + 0.956984i \(0.406298\pi\)
−0.599950 + 0.800038i \(0.704813\pi\)
\(332\) −5.19846 + 9.00400i −0.285303 + 0.494159i
\(333\) 0 0
\(334\) −1.63429 2.83067i −0.0894241 0.154887i
\(335\) 21.3799 7.78163i 1.16811 0.425156i
\(336\) 0 0
\(337\) 6.34730 5.32601i 0.345759 0.290126i −0.453325 0.891345i \(-0.649762\pi\)
0.799085 + 0.601219i \(0.205318\pi\)
\(338\) 4.84002 4.06126i 0.263263 0.220903i
\(339\) 0 0
\(340\) 13.4153 4.88279i 0.727549 0.264806i
\(341\) 0.421274 + 0.729669i 0.0228133 + 0.0395138i
\(342\) 0 0
\(343\) −10.0792 + 17.4577i −0.544225 + 0.942626i
\(344\) −3.06805 + 17.3998i −0.165418 + 0.938132i
\(345\) 0 0
\(346\) −1.28864 0.469026i −0.0692776 0.0252150i
\(347\) 2.59833 + 14.7358i 0.139485 + 0.791061i 0.971631 + 0.236503i \(0.0760015\pi\)
−0.832145 + 0.554558i \(0.812887\pi\)
\(348\) 0 0
\(349\) 25.7743 + 21.6272i 1.37966 + 1.15768i 0.969336 + 0.245737i \(0.0790301\pi\)
0.410328 + 0.911938i \(0.365414\pi\)
\(350\) 19.3081 1.03206
\(351\) 0 0
\(352\) −0.916222 −0.0488348
\(353\) −12.0680 10.1263i −0.642317 0.538968i 0.262412 0.964956i \(-0.415482\pi\)
−0.904729 + 0.425988i \(0.859927\pi\)
\(354\) 0 0
\(355\) −10.3191 58.5224i −0.547680 3.10605i
\(356\) 8.90110 + 3.23974i 0.471757 + 0.171706i
\(357\) 0 0
\(358\) 1.86184 10.5590i 0.0984015 0.558063i
\(359\) −9.06283 + 15.6973i −0.478318 + 0.828471i −0.999691 0.0248577i \(-0.992087\pi\)
0.521373 + 0.853329i \(0.325420\pi\)
\(360\) 0 0
\(361\) 3.03343 + 5.25406i 0.159654 + 0.276529i
\(362\) −13.9427 + 5.07472i −0.732811 + 0.266721i
\(363\) 0 0
\(364\) 4.95084 4.15425i 0.259494 0.217742i
\(365\) 25.7952 21.6447i 1.35018 1.13294i
\(366\) 0 0
\(367\) 17.9884 6.54726i 0.938989 0.341764i 0.173223 0.984883i \(-0.444582\pi\)
0.765767 + 0.643119i \(0.222360\pi\)
\(368\) 0.0594300 + 0.102936i 0.00309800 + 0.00536590i
\(369\) 0 0
\(370\) −11.3229 + 19.6119i −0.588652 + 1.01958i
\(371\) −0.532556 + 3.02027i −0.0276489 + 0.156805i
\(372\) 0 0
\(373\) 14.3302 + 5.21577i 0.741991 + 0.270063i 0.685231 0.728325i \(-0.259701\pi\)
0.0567593 + 0.998388i \(0.481923\pi\)
\(374\) −0.0744448 0.422197i −0.00384945 0.0218313i
\(375\) 0 0
\(376\) 16.0783 + 13.4913i 0.829176 + 0.695761i
\(377\) 16.1976 0.834218
\(378\) 0 0
\(379\) 9.84760 0.505837 0.252919 0.967488i \(-0.418610\pi\)
0.252919 + 0.967488i \(0.418610\pi\)
\(380\) −13.1099 11.0005i −0.672526 0.564316i
\(381\) 0 0
\(382\) 2.66860 + 15.1344i 0.136537 + 0.774341i
\(383\) −26.6780 9.70999i −1.36318 0.496157i −0.446145 0.894961i \(-0.647203\pi\)
−0.917036 + 0.398803i \(0.869426\pi\)
\(384\) 0 0
\(385\) −0.239170 + 1.35640i −0.0121892 + 0.0691286i
\(386\) −0.875982 + 1.51724i −0.0445863 + 0.0772257i
\(387\) 0 0
\(388\) −2.39615 4.15026i −0.121646 0.210698i
\(389\) −10.2280 + 3.72270i −0.518581 + 0.188748i −0.588033 0.808837i \(-0.700097\pi\)
0.0694513 + 0.997585i \(0.477875\pi\)
\(390\) 0 0
\(391\) 6.52094 5.47172i 0.329778 0.276717i
\(392\) −4.84002 + 4.06126i −0.244458 + 0.205125i
\(393\) 0 0
\(394\) 17.5125 6.37402i 0.882266 0.321119i
\(395\) 2.46064 + 4.26195i 0.123808 + 0.214442i
\(396\) 0 0
\(397\) 9.05350 15.6811i 0.454382 0.787013i −0.544270 0.838910i \(-0.683193\pi\)
0.998652 + 0.0518969i \(0.0165267\pi\)
\(398\) 0.470904 2.67063i 0.0236043 0.133867i
\(399\) 0 0
\(400\) 0.395582 + 0.143980i 0.0197791 + 0.00719900i
\(401\) 0.248970 + 1.41198i 0.0124330 + 0.0705110i 0.990393 0.138281i \(-0.0441578\pi\)
−0.977960 + 0.208792i \(0.933047\pi\)
\(402\) 0 0
\(403\) −9.57785 8.03677i −0.477107 0.400340i
\(404\) 9.95306 0.495183
\(405\) 0 0
\(406\) 12.9050 0.640463
\(407\) −0.826352 0.693392i −0.0409607 0.0343701i
\(408\) 0 0
\(409\) 1.49407 + 8.47329i 0.0738770 + 0.418977i 0.999207 + 0.0398148i \(0.0126768\pi\)
−0.925330 + 0.379163i \(0.876212\pi\)
\(410\) −18.5954 6.76817i −0.918361 0.334256i
\(411\) 0 0
\(412\) −3.97178 + 22.5251i −0.195676 + 1.10973i
\(413\) −5.59374 + 9.68864i −0.275250 + 0.476747i
\(414\) 0 0
\(415\) 16.4402 + 28.4752i 0.807016 + 1.39779i
\(416\) 12.7763 4.65020i 0.626410 0.227995i
\(417\) 0 0
\(418\) −0.393685 + 0.330341i −0.0192558 + 0.0161575i
\(419\) −9.43107 + 7.91361i −0.460738 + 0.386605i −0.843403 0.537282i \(-0.819451\pi\)
0.382664 + 0.923887i \(0.375007\pi\)
\(420\) 0 0
\(421\) −10.4461 + 3.80207i −0.509111 + 0.185301i −0.583788 0.811906i \(-0.698430\pi\)
0.0746763 + 0.997208i \(0.476208\pi\)
\(422\) 0.443096 + 0.767465i 0.0215696 + 0.0373596i
\(423\) 0 0
\(424\) −1.99154 + 3.44946i −0.0967179 + 0.167520i
\(425\) 5.23530 29.6909i 0.253949 1.44022i
\(426\) 0 0
\(427\) −7.76264 2.82537i −0.375661 0.136729i
\(428\) −1.61809 9.17664i −0.0782133 0.443569i
\(429\) 0 0
\(430\) 16.2724 + 13.6542i 0.784727 + 0.658464i
\(431\) −36.8958 −1.77721 −0.888604 0.458675i \(-0.848324\pi\)
−0.888604 + 0.458675i \(0.848324\pi\)
\(432\) 0 0
\(433\) −37.9982 −1.82608 −0.913040 0.407871i \(-0.866271\pi\)
−0.913040 + 0.407871i \(0.866271\pi\)
\(434\) −7.63088 6.40307i −0.366294 0.307357i
\(435\) 0 0
\(436\) 3.33110 + 18.8916i 0.159531 + 0.904744i
\(437\) −9.58899 3.49011i −0.458704 0.166955i
\(438\) 0 0
\(439\) 0.0350819 0.198960i 0.00167437 0.00949582i −0.983959 0.178394i \(-0.942910\pi\)
0.985633 + 0.168898i \(0.0540209\pi\)
\(440\) −0.894400 + 1.54915i −0.0426388 + 0.0738526i
\(441\) 0 0
\(442\) 3.18092 + 5.50952i 0.151301 + 0.262061i
\(443\) −19.9491 + 7.26087i −0.947810 + 0.344974i −0.769245 0.638954i \(-0.779368\pi\)
−0.178564 + 0.983928i \(0.557145\pi\)
\(444\) 0 0
\(445\) 22.9479 19.2556i 1.08783 0.912802i
\(446\) −12.3170 + 10.3352i −0.583228 + 0.489386i
\(447\) 0 0
\(448\) 10.3512 3.76752i 0.489047 0.177998i
\(449\) 16.6297 + 28.8035i 0.784804 + 1.35932i 0.929116 + 0.369788i \(0.120570\pi\)
−0.144312 + 0.989532i \(0.546097\pi\)
\(450\) 0 0
\(451\) 0.471315 0.816341i 0.0221933 0.0384400i
\(452\) 0.492726 2.79439i 0.0231759 0.131437i
\(453\) 0 0
\(454\) −2.18567 0.795519i −0.102579 0.0373355i
\(455\) −3.54916 20.1283i −0.166387 0.943629i
\(456\) 0 0
\(457\) −0.0261591 0.0219501i −0.00122367 0.00102678i 0.642176 0.766558i \(-0.278032\pi\)
−0.643399 + 0.765531i \(0.722476\pi\)
\(458\) 3.04519 0.142292
\(459\) 0 0
\(460\) −13.5030 −0.629580
\(461\) −11.4802 9.63306i −0.534688 0.448656i 0.335029 0.942208i \(-0.391254\pi\)
−0.869717 + 0.493551i \(0.835698\pi\)
\(462\) 0 0
\(463\) −5.28627 29.9799i −0.245674 1.39329i −0.818922 0.573905i \(-0.805428\pi\)
0.573248 0.819382i \(-0.305683\pi\)
\(464\) 0.264396 + 0.0962321i 0.0122743 + 0.00446746i
\(465\) 0 0
\(466\) −0.935412 + 5.30498i −0.0433321 + 0.245749i
\(467\) 0.255367 0.442308i 0.0118170 0.0204676i −0.860056 0.510199i \(-0.829572\pi\)
0.871873 + 0.489731i \(0.162905\pi\)
\(468\) 0 0
\(469\) −6.40673 11.0968i −0.295835 0.512401i
\(470\) 23.7126 8.63068i 1.09378 0.398104i
\(471\) 0 0
\(472\) −11.1304 + 9.33953i −0.512319 + 0.429887i
\(473\) −0.775129 + 0.650411i −0.0356405 + 0.0299059i
\(474\) 0 0
\(475\) −33.9616 + 12.3610i −1.55826 + 0.567162i
\(476\) −4.02007 6.96296i −0.184259 0.319147i
\(477\) 0 0
\(478\) −12.7297 + 22.0484i −0.582242 + 1.00847i
\(479\) −2.68298 + 15.2159i −0.122589 + 0.695234i 0.860122 + 0.510088i \(0.170387\pi\)
−0.982711 + 0.185147i \(0.940724\pi\)
\(480\) 0 0
\(481\) 15.0424 + 5.47497i 0.685872 + 0.249637i
\(482\) −3.40925 19.3348i −0.155287 0.880677i
\(483\) 0 0
\(484\) 10.3118 + 8.65263i 0.468718 + 0.393301i
\(485\) −15.1557 −0.688185
\(486\) 0 0
\(487\) 29.5107 1.33726 0.668629 0.743596i \(-0.266881\pi\)
0.668629 + 0.743596i \(0.266881\pi\)
\(488\) −8.21869 6.89630i −0.372043 0.312181i
\(489\) 0 0
\(490\) 1.31908 + 7.48086i 0.0595899 + 0.337951i
\(491\) −2.02734 0.737892i −0.0914926 0.0333006i 0.295868 0.955229i \(-0.404391\pi\)
−0.387361 + 0.921928i \(0.626613\pi\)
\(492\) 0 0
\(493\) 3.49912 19.8445i 0.157593 0.893752i
\(494\) 3.81315 6.60457i 0.171562 0.297153i
\(495\) 0 0
\(496\) −0.108593 0.188089i −0.00487597 0.00844543i
\(497\) −31.4488 + 11.4464i −1.41067 + 0.513442i
\(498\) 0 0
\(499\) 5.74170 4.81786i 0.257034 0.215677i −0.505160 0.863025i \(-0.668567\pi\)
0.762194 + 0.647349i \(0.224122\pi\)
\(500\) −18.4081 + 15.4462i −0.823234 + 0.690775i
\(501\) 0 0
\(502\) −18.7763 + 6.83402i −0.838028 + 0.305017i
\(503\) −14.2981 24.7651i −0.637522 1.10422i −0.985975 0.166894i \(-0.946626\pi\)
0.348453 0.937326i \(-0.386707\pi\)
\(504\) 0 0
\(505\) 15.7383 27.2595i 0.700345 1.21303i
\(506\) −0.0704123 + 0.399328i −0.00313021 + 0.0177523i
\(507\) 0 0
\(508\) 0.0482857 + 0.0175745i 0.00214233 + 0.000779745i
\(509\) −0.293796 1.66620i −0.0130223 0.0738530i 0.977604 0.210453i \(-0.0674938\pi\)
−0.990626 + 0.136600i \(0.956383\pi\)
\(510\) 0 0
\(511\) −14.5273 12.1899i −0.642652 0.539249i
\(512\) 0.473897 0.0209435
\(513\) 0 0
\(514\) 17.2267 0.759836
\(515\) 55.4115 + 46.4958i 2.44172 + 2.04885i
\(516\) 0 0
\(517\) 0.208730 + 1.18377i 0.00917994 + 0.0520620i
\(518\) 11.9846 + 4.36203i 0.526572 + 0.191657i
\(519\) 0 0
\(520\) 4.60947 26.1416i 0.202139 1.14639i
\(521\) 11.2019 19.4022i 0.490763 0.850026i −0.509181 0.860660i \(-0.670052\pi\)
0.999943 + 0.0106337i \(0.00338487\pi\)
\(522\) 0 0
\(523\) −1.21436 2.10332i −0.0531000 0.0919720i 0.838254 0.545281i \(-0.183577\pi\)
−0.891354 + 0.453309i \(0.850244\pi\)
\(524\) 21.1501 7.69800i 0.923945 0.336289i
\(525\) 0 0
\(526\) −11.9914 + 10.0620i −0.522849 + 0.438722i
\(527\) −11.9153 + 9.99816i −0.519041 + 0.435527i
\(528\) 0 0
\(529\) 14.0471 5.11273i 0.610744 0.222293i
\(530\) 2.39440 + 4.14722i 0.104006 + 0.180144i
\(531\) 0 0
\(532\) −4.81908 + 8.34689i −0.208934 + 0.361883i
\(533\) −2.42902 + 13.7756i −0.105212 + 0.596689i
\(534\) 0 0
\(535\) −27.6917 10.0789i −1.19721 0.435751i
\(536\) −2.88976 16.3886i −0.124819 0.707881i
\(537\) 0 0
\(538\) −15.3516 12.8816i −0.661856 0.555363i
\(539\) −0.361844 −0.0155857
\(540\) 0 0
\(541\) 38.9394 1.67414 0.837069 0.547098i \(-0.184267\pi\)
0.837069 + 0.547098i \(0.184267\pi\)
\(542\) 2.32114 + 1.94767i 0.0997014 + 0.0836594i
\(543\) 0 0
\(544\) −2.93717 16.6575i −0.125930 0.714184i
\(545\) 57.0078 + 20.7491i 2.44195 + 0.888796i
\(546\) 0 0
\(547\) −2.54782 + 14.4494i −0.108937 + 0.617812i 0.880638 + 0.473790i \(0.157115\pi\)
−0.989575 + 0.144021i \(0.953997\pi\)
\(548\) 8.77884 15.2054i 0.375013 0.649542i
\(549\) 0 0
\(550\) 0.718063 + 1.24372i 0.0306183 + 0.0530325i
\(551\) −22.6989 + 8.26173i −0.967007 + 0.351962i
\(552\) 0 0
\(553\) 2.12314 1.78153i 0.0902851 0.0757582i
\(554\) 1.76058 1.47730i 0.0747999 0.0627646i
\(555\) 0 0
\(556\) 12.0979 4.40328i 0.513066 0.186741i
\(557\) 5.55350 + 9.61894i 0.235309 + 0.407568i 0.959363 0.282176i \(-0.0910563\pi\)
−0.724053 + 0.689744i \(0.757723\pi\)
\(558\) 0 0
\(559\) 7.50774 13.0038i 0.317544 0.550002i
\(560\) 0.0616516 0.349643i 0.00260525 0.0147751i
\(561\) 0 0
\(562\) −11.3087 4.11603i −0.477029 0.173624i
\(563\) 2.83187 + 16.0603i 0.119349 + 0.676863i 0.984505 + 0.175359i \(0.0561086\pi\)
−0.865155 + 0.501504i \(0.832780\pi\)
\(564\) 0 0
\(565\) −6.87417 5.76811i −0.289199 0.242666i
\(566\) −20.1206 −0.845733
\(567\) 0 0
\(568\) −43.4653 −1.82376
\(569\) 27.5902 + 23.1509i 1.15664 + 0.970536i 0.999854 0.0170961i \(-0.00544212\pi\)
0.156786 + 0.987633i \(0.449887\pi\)
\(570\) 0 0
\(571\) 6.79978 + 38.5635i 0.284562 + 1.61383i 0.706846 + 0.707368i \(0.250117\pi\)
−0.422284 + 0.906464i \(0.638771\pi\)
\(572\) 0.451714 + 0.164411i 0.0188871 + 0.00687435i
\(573\) 0 0
\(574\) −1.93525 + 10.9753i −0.0807758 + 0.458102i
\(575\) −14.2579 + 24.6954i −0.594595 + 1.02987i
\(576\) 0 0
\(577\) −5.90286 10.2240i −0.245739 0.425633i 0.716600 0.697484i \(-0.245697\pi\)
−0.962339 + 0.271852i \(0.912364\pi\)
\(578\) −6.61081 + 2.40614i −0.274974 + 0.100082i
\(579\) 0 0
\(580\) −24.4859 + 20.5461i −1.01672 + 0.853131i
\(581\) 14.1853 11.9028i 0.588504 0.493813i
\(582\) 0 0
\(583\) −0.214355 + 0.0780189i −0.00887769 + 0.00323121i
\(584\) −12.3148 21.3299i −0.509590 0.882636i
\(585\) 0 0
\(586\) 10.6763 18.4920i 0.441035 0.763896i
\(587\) −6.93923 + 39.3543i −0.286413 + 1.62433i 0.413783 + 0.910375i \(0.364207\pi\)
−0.700196 + 0.713951i \(0.746904\pi\)
\(588\) 0 0
\(589\) 17.5214 + 6.37727i 0.721957 + 0.262771i
\(590\) 3.03343 + 17.2035i 0.124884 + 0.708255i
\(591\) 0 0
\(592\) 0.213011 + 0.178737i 0.00875470 + 0.00734606i
\(593\) −29.2995 −1.20319 −0.601594 0.798802i \(-0.705467\pi\)
−0.601594 + 0.798802i \(0.705467\pi\)
\(594\) 0 0
\(595\) −25.4270 −1.04240
\(596\) 1.19459 + 1.00238i 0.0489324 + 0.0410592i
\(597\) 0 0
\(598\) −1.04488 5.92582i −0.0427284 0.242325i
\(599\) −9.46451 3.44480i −0.386709 0.140751i 0.141347 0.989960i \(-0.454857\pi\)
−0.528056 + 0.849209i \(0.677079\pi\)
\(600\) 0 0
\(601\) −5.28224 + 29.9571i −0.215467 + 1.22197i 0.664627 + 0.747175i \(0.268590\pi\)
−0.880094 + 0.474799i \(0.842521\pi\)
\(602\) 5.98158 10.3604i 0.243791 0.422259i
\(603\) 0 0
\(604\) 4.81908 + 8.34689i 0.196085 + 0.339630i
\(605\) 40.0035 14.5601i 1.62637 0.591951i
\(606\) 0 0
\(607\) −17.6759 + 14.8319i −0.717444 + 0.602007i −0.926677 0.375859i \(-0.877348\pi\)
0.209233 + 0.977866i \(0.432903\pi\)
\(608\) −15.5326 + 13.0334i −0.629928 + 0.528573i
\(609\) 0 0
\(610\) −12.1211 + 4.41171i −0.490768 + 0.178625i
\(611\) −8.91875 15.4477i −0.360814 0.624948i
\(612\) 0 0
\(613\) −0.382789 + 0.663010i −0.0154607 + 0.0267787i −0.873652 0.486551i \(-0.838255\pi\)
0.858192 + 0.513330i \(0.171588\pi\)
\(614\) 2.46599 13.9853i 0.0995194 0.564403i
\(615\) 0 0
\(616\) 0.946662 + 0.344557i 0.0381421 + 0.0138826i
\(617\) −1.61287 9.14706i −0.0649319 0.368247i −0.999908 0.0135372i \(-0.995691\pi\)
0.934977 0.354710i \(-0.115420\pi\)
\(618\) 0 0
\(619\) −26.8746 22.5505i −1.08018 0.906381i −0.0842469 0.996445i \(-0.526848\pi\)
−0.995936 + 0.0900639i \(0.971293\pi\)
\(620\) 24.6732 0.990901
\(621\) 0 0
\(622\) −16.4534 −0.659720
\(623\) −12.9238 10.8444i −0.517781 0.434470i
\(624\) 0 0
\(625\) 4.47090 + 25.3558i 0.178836 + 1.01423i
\(626\) 2.29174 + 0.834124i 0.0915962 + 0.0333383i
\(627\) 0 0
\(628\) 2.63119 14.9222i 0.104996 0.595461i
\(629\) 9.95723 17.2464i 0.397021 0.687660i
\(630\) 0 0
\(631\) −17.8810 30.9709i −0.711833 1.23293i −0.964168 0.265291i \(-0.914532\pi\)
0.252336 0.967640i \(-0.418801\pi\)
\(632\) 3.38248 1.23112i 0.134548 0.0489715i
\(633\) 0 0
\(634\) −11.7770 + 9.88210i −0.467725 + 0.392468i
\(635\) 0.124485 0.104455i 0.00494004 0.00414519i
\(636\) 0 0
\(637\) 5.04576 1.83651i 0.199920 0.0727650i
\(638\) 0.479933 + 0.831268i 0.0190007 + 0.0329102i
\(639\) 0 0
\(640\) −13.2724 + 22.9885i −0.524639 + 0.908702i
\(641\) 0.508151 2.88187i 0.0200708 0.113827i −0.973126 0.230271i \(-0.926039\pi\)
0.993197 + 0.116444i \(0.0371497\pi\)
\(642\) 0 0
\(643\) 19.0303 + 6.92648i 0.750483 + 0.273154i 0.688809 0.724943i \(-0.258134\pi\)
0.0616741 + 0.998096i \(0.480356\pi\)
\(644\) 1.32053 + 7.48909i 0.0520361 + 0.295111i
\(645\) 0 0
\(646\) −7.26786 6.09845i −0.285950 0.239940i
\(647\) 10.7219 0.421523 0.210761 0.977538i \(-0.432406\pi\)
0.210761 + 0.977538i \(0.432406\pi\)
\(648\) 0 0
\(649\) −0.832119 −0.0326635
\(650\) −16.3255 13.6987i −0.640338 0.537307i
\(651\) 0 0
\(652\) 2.92824 + 16.6069i 0.114679 + 0.650376i
\(653\) −33.5724 12.2193i −1.31379 0.478180i −0.412326 0.911036i \(-0.635284\pi\)
−0.901463 + 0.432856i \(0.857506\pi\)
\(654\) 0 0
\(655\) 12.3603 70.0985i 0.482955 2.73897i
\(656\) −0.121492 + 0.210430i −0.00474347 + 0.00821593i
\(657\) 0 0
\(658\) −7.10576 12.3075i −0.277011 0.479798i
\(659\) −29.0043 + 10.5567i −1.12985 + 0.411231i −0.838237 0.545306i \(-0.816414\pi\)
−0.291611 + 0.956537i \(0.594191\pi\)
\(660\) 0 0
\(661\) −7.54395 + 6.33012i −0.293426 + 0.246213i −0.777602 0.628757i \(-0.783564\pi\)
0.484176 + 0.874971i \(0.339119\pi\)
\(662\) 21.8662 18.3479i 0.849853 0.713112i
\(663\) 0 0
\(664\) 22.5993 8.22546i 0.877021 0.319210i
\(665\) 15.2404 + 26.3971i 0.590996 + 1.02363i
\(666\) 0 0
\(667\) −9.52956 + 16.5057i −0.368986 + 0.639103i
\(668\) 0.791737 4.49016i 0.0306332 0.173730i
\(669\) 0 0
\(670\) −18.8011 6.84305i −0.726351 0.264370i
\(671\) −0.106696 0.605102i −0.00411895 0.0233597i
\(672\) 0 0
\(673\) −15.0890 12.6612i −0.581638 0.488052i 0.303847 0.952721i \(-0.401729\pi\)
−0.885485 + 0.464669i \(0.846173\pi\)
\(674\) −7.28642 −0.280662
\(675\) 0 0
\(676\) 8.81345 0.338979
\(677\) −21.7993 18.2918i −0.837816 0.703011i 0.119256 0.992864i \(-0.461949\pi\)
−0.957071 + 0.289853i \(0.906394\pi\)
\(678\) 0 0
\(679\) 1.48215 + 8.40571i 0.0568799 + 0.322582i
\(680\) −31.0317 11.2946i −1.19001 0.433128i
\(681\) 0 0
\(682\) 0.128660 0.729669i 0.00492666 0.0279405i
\(683\) −6.25537 + 10.8346i −0.239355 + 0.414575i −0.960529 0.278179i \(-0.910269\pi\)
0.721174 + 0.692754i \(0.243603\pi\)
\(684\) 0 0
\(685\) −27.7631 48.0871i −1.06077 1.83731i
\(686\) 16.6579 6.06299i 0.636002 0.231486i
\(687\) 0 0
\(688\) 0.199807 0.167658i 0.00761758 0.00639191i
\(689\) 2.59311 2.17588i 0.0987897 0.0828944i
\(690\) 0 0
\(691\) −40.0548 + 14.5788i −1.52376 + 0.554603i −0.962083 0.272756i \(-0.912065\pi\)
−0.561675 + 0.827358i \(0.689843\pi\)
\(692\) −0.956462 1.65664i −0.0363592 0.0629760i
\(693\) 0 0
\(694\) 6.57919 11.3955i 0.249743 0.432567i
\(695\) 7.07011 40.0966i 0.268184 1.52095i
\(696\) 0 0
\(697\) 16.3525 + 5.95183i 0.619396 + 0.225442i
\(698\) −5.13785 29.1382i −0.194471 1.10290i
\(699\) 0 0
\(700\) 20.6322 + 17.3125i 0.779825 + 0.654351i
\(701\) 51.7701 1.95533 0.977665 0.210167i \(-0.0674008\pi\)
0.977665 + 0.210167i \(0.0674008\pi\)
\(702\) 0 0
\(703\) −23.8726 −0.900371
\(704\) 0.627640 + 0.526653i 0.0236551 + 0.0198490i
\(705\) 0 0
\(706\) 2.40565 + 13.6431i 0.0905378 + 0.513466i
\(707\) −16.6579 6.06299i −0.626485 0.228022i
\(708\) 0 0
\(709\) 2.63223 14.9281i 0.0988553 0.560636i −0.894642 0.446783i \(-0.852570\pi\)
0.993498 0.113853i \(-0.0363194\pi\)
\(710\) −26.1288 + 45.2564i −0.980597 + 1.69844i
\(711\) 0 0
\(712\) −10.9555 18.9754i −0.410574 0.711135i
\(713\) 13.8246 5.03174i 0.517735 0.188440i
\(714\) 0 0
\(715\) 1.16456 0.977185i 0.0435522 0.0365446i
\(716\) 11.4572 9.61376i 0.428177 0.359283i
\(717\) 0 0
\(718\) 14.9782 5.45161i 0.558981 0.203452i
\(719\) 1.30747 + 2.26460i 0.0487603 + 0.0844553i 0.889375 0.457178i \(-0.151140\pi\)
−0.840615 + 0.541633i \(0.817806\pi\)
\(720\) 0 0
\(721\) 20.3687 35.2796i 0.758570 1.31388i
\(722\) 0.926433 5.25406i 0.0344783 0.195536i
\(723\) 0 0
\(724\) −19.4491 7.07889i −0.722819 0.263085i
\(725\) 11.7216 + 66.4767i 0.435330 + 2.46888i
\(726\) 0 0
\(727\) −3.14022 2.63495i −0.116464 0.0977250i 0.582696 0.812690i \(-0.301998\pi\)
−0.699160 + 0.714965i \(0.746442\pi\)
\(728\) −14.9495 −0.554067
\(729\) 0 0
\(730\) −29.6117 −1.09598
\(731\) −14.3097 12.0073i −0.529265 0.444106i
\(732\) 0 0
\(733\) −6.63475 37.6275i −0.245060 1.38981i −0.820353 0.571858i \(-0.806223\pi\)
0.575293 0.817948i \(-0.304888\pi\)
\(734\) −15.8188 5.75756i −0.583882 0.212516i
\(735\) 0 0
\(736\) −2.77807 + 15.7552i −0.102401 + 0.580744i
\(737\) 0.476529 0.825373i 0.0175532 0.0304030i
\(738\) 0 0
\(739\) 12.1047 + 20.9660i 0.445279 + 0.771247i 0.998072 0.0620725i \(-0.0197710\pi\)
−0.552792 + 0.833319i \(0.686438\pi\)
\(740\) −29.6844 + 10.8042i −1.09122 + 0.397171i
\(741\) 0 0
\(742\) 2.06599 1.73357i 0.0758448 0.0636414i
\(743\) −2.53667 + 2.12852i −0.0930616 + 0.0780879i −0.688131 0.725586i \(-0.741569\pi\)
0.595070 + 0.803674i \(0.297124\pi\)
\(744\) 0 0
\(745\) 4.63429 1.68674i 0.169787 0.0617974i
\(746\) −6.70527 11.6139i −0.245497 0.425214i
\(747\) 0 0
\(748\) 0.299011 0.517902i 0.0109329 0.0189364i
\(749\) −2.88191 + 16.3441i −0.105303 + 0.597202i
\(750\) 0 0
\(751\) −12.8841 4.68944i −0.470149 0.171120i 0.0960710 0.995374i \(-0.469372\pi\)
−0.566220 + 0.824254i \(0.691595\pi\)
\(752\) −0.0538049 0.305143i −0.00196206 0.0111274i
\(753\) 0 0
\(754\) −10.9115 9.15581i −0.397372 0.333435i
\(755\) 30.4807 1.10931
\(756\) 0 0
\(757\) 12.3833 0.450079 0.225040 0.974350i \(-0.427749\pi\)
0.225040 + 0.974350i \(0.427749\pi\)
\(758\) −6.63382 5.56643i −0.240951 0.202182i
\(759\) 0 0
\(760\) 6.87417 + 38.9854i 0.249352 + 1.41415i
\(761\) −7.12536 2.59342i −0.258294 0.0940114i 0.209628 0.977781i \(-0.432775\pi\)
−0.467922 + 0.883770i \(0.654997\pi\)
\(762\) 0 0
\(763\) 5.93289 33.6471i 0.214785 1.21811i
\(764\) −10.7185 + 18.5650i −0.387783 + 0.671660i
\(765\) 0 0
\(766\) 12.4829 + 21.6211i 0.451026 + 0.781201i
\(767\) 11.6035 4.22334i 0.418980 0.152496i
\(768\) 0 0
\(769\) 2.46451 2.06797i 0.0888724 0.0745728i −0.597269 0.802041i \(-0.703748\pi\)
0.686141 + 0.727468i \(0.259303\pi\)
\(770\) 0.927833 0.778544i 0.0334368 0.0280568i
\(771\) 0 0
\(772\) −2.29648 + 0.835852i −0.0826523 + 0.0300830i
\(773\) 0.0922341 + 0.159754i 0.00331743 + 0.00574596i 0.867679 0.497124i \(-0.165611\pi\)
−0.864362 + 0.502870i \(0.832277\pi\)
\(774\) 0 0
\(775\) 26.0526 45.1245i 0.935838 1.62092i
\(776\) −1.92495 + 10.9169i −0.0691015 + 0.391894i
\(777\) 0 0
\(778\) 8.99437 + 3.27368i 0.322464 + 0.117367i
\(779\) −3.62243 20.5438i −0.129787 0.736058i
\(780\) 0 0
\(781\) −1.90689 1.60007i −0.0682338 0.0572550i
\(782\) −7.48576 −0.267690
\(783\) 0 0
\(784\) 0.0932736 0.00333120
\(785\) −36.7085 30.8021i −1.31018 1.09937i
\(786\) 0 0
\(787\) −0.0830066 0.470754i −0.00295887 0.0167806i 0.983293 0.182032i \(-0.0582675\pi\)
−0.986251 + 0.165252i \(0.947156\pi\)
\(788\) 24.4287 + 8.89132i 0.870237 + 0.316740i
\(789\) 0 0
\(790\) 0.751497 4.26195i 0.0267370 0.151633i
\(791\) −2.52687 + 4.37667i −0.0898453 + 0.155617i
\(792\) 0 0
\(793\) 4.55896 + 7.89636i 0.161894 + 0.280408i
\(794\) −14.9628 + 5.44600i −0.531008 + 0.193271i
\(795\) 0 0
\(796\) 2.89780 2.43155i 0.102710 0.0861839i
\(797\) 11.1068 9.31970i 0.393422 0.330121i −0.424522 0.905418i \(-0.639558\pi\)
0.817945 + 0.575297i \(0.195113\pi\)
\(798\) 0 0
\(799\) −20.8525 + 7.58969i −0.737709 + 0.268504i
\(800\) 28.3307 + 49.0702i 1.00164 + 1.73489i
\(801\) 0 0
\(802\) 0.630415 1.09191i 0.0222607 0.0385567i
\(803\) 0.244938 1.38911i 0.00864367 0.0490207i
\(804\) 0 0
\(805\) 22.5993 + 8.22546i 0.796519 + 0.289909i
\(806\) 1.90925 + 10.8279i 0.0672506 + 0.381397i
\(807\) 0 0
\(808\) −17.6366 14.7988i −0.620452 0.520621i
\(809\) −14.8743 −0.522954 −0.261477 0.965210i \(-0.584210\pi\)
−0.261477 + 0.965210i \(0.584210\pi\)
\(810\) 0 0
\(811\) 21.5963 0.758347 0.379174 0.925325i \(-0.376208\pi\)
0.379174 + 0.925325i \(0.376208\pi\)
\(812\) 13.7900 + 11.5712i 0.483933 + 0.406068i
\(813\) 0 0
\(814\) 0.164725 + 0.934204i 0.00577362 + 0.0327438i
\(815\) 50.1134 + 18.2398i 1.75540 + 0.638912i
\(816\) 0 0
\(817\) −3.88847 + 22.0526i −0.136040 + 0.771523i
\(818\) 3.78312 6.55255i 0.132274 0.229105i
\(819\) 0 0
\(820\) −13.8020 23.9058i −0.481987 0.834826i
\(821\) 3.08347 1.12229i 0.107614 0.0391683i −0.287652 0.957735i \(-0.592875\pi\)
0.395266 + 0.918567i \(0.370652\pi\)
\(822\) 0 0
\(823\) 10.5189 8.82639i 0.366665 0.307669i −0.440775 0.897617i \(-0.645296\pi\)
0.807441 + 0.589949i \(0.200852\pi\)
\(824\) 40.5296 34.0084i 1.41192 1.18474i
\(825\) 0 0
\(826\) 9.24480 3.36483i 0.321668 0.117077i
\(827\) −10.1163 17.5220i −0.351779 0.609300i 0.634782 0.772691i \(-0.281090\pi\)
−0.986561 + 0.163392i \(0.947757\pi\)
\(828\) 0 0
\(829\) −12.7638 + 22.1076i −0.443306 + 0.767828i −0.997932 0.0642710i \(-0.979528\pi\)
0.554627 + 0.832099i \(0.312861\pi\)
\(830\) 5.02094 28.4752i 0.174280 0.988388i
\(831\) 0 0
\(832\) −11.4251 4.15841i −0.396096 0.144167i
\(833\) −1.15998 6.57856i −0.0401908 0.227934i
\(834\) 0 0
\(835\) −11.0458 9.26849i −0.382254 0.320749i
\(836\) −0.716881 −0.0247939
\(837\) 0 0
\(838\) 10.8265 0.373994
\(839\) 13.3139 + 11.1717i 0.459646 + 0.385688i 0.843001 0.537913i \(-0.180787\pi\)
−0.383355 + 0.923601i \(0.625231\pi\)
\(840\) 0 0
\(841\) 2.79860 + 15.8717i 0.0965035 + 0.547298i
\(842\) 9.18614 + 3.34348i 0.316575 + 0.115224i
\(843\) 0 0
\(844\) −0.214660 + 1.21740i −0.00738890 + 0.0419045i
\(845\) 13.9363 24.1384i 0.479423 0.830385i
\(846\) 0 0
\(847\) −11.9875 20.7630i −0.411896 0.713424i
\(848\) 0.0552549 0.0201112i 0.00189746 0.000690620i
\(849\) 0 0
\(850\) −20.3097 + 17.0419i −0.696618 + 0.584532i
\(851\) −14.4290 + 12.1074i −0.494620 + 0.415036i
\(852\) 0 0
\(853\) −12.5005 + 4.54980i −0.428008 + 0.155782i −0.547037 0.837109i \(-0.684244\pi\)
0.119029 + 0.992891i \(0.462022\pi\)
\(854\) 3.63223 + 6.29120i 0.124292 + 0.215280i
\(855\) 0 0
\(856\) −10.7772 + 18.6666i −0.368357 + 0.638013i
\(857\) −3.45929 + 19.6186i −0.118167 + 0.670159i 0.866966 + 0.498367i \(0.166067\pi\)
−0.985133 + 0.171792i \(0.945044\pi\)
\(858\) 0 0
\(859\) −24.7558 9.01039i −0.844658 0.307430i −0.116798 0.993156i \(-0.537263\pi\)
−0.727860 + 0.685725i \(0.759485\pi\)
\(860\) 5.14543 + 29.1812i 0.175458 + 0.995070i
\(861\) 0 0
\(862\) 24.8548 + 20.8556i 0.846557 + 0.710346i
\(863\) 38.2995 1.30373 0.651866 0.758334i \(-0.273987\pi\)
0.651866 + 0.758334i \(0.273987\pi\)
\(864\) 0 0
\(865\) −6.04963 −0.205694
\(866\) 25.5974 + 21.4788i 0.869837 + 0.729880i
\(867\) 0 0
\(868\) −2.41292 13.6844i −0.0819000 0.464478i
\(869\) 0.193715 + 0.0705066i 0.00657134 + 0.00239177i
\(870\) 0 0
\(871\) −2.45589 + 13.9280i −0.0832146 + 0.471934i
\(872\) 22.1866 38.4283i 0.751333 1.30135i
\(873\) 0 0
\(874\) 4.48680 + 7.77136i 0.151768 + 0.262870i
\(875\) 40.2178 14.6381i 1.35961 0.494858i
\(876\) 0 0
\(877\) −20.7271 + 17.3921i −0.699906 + 0.587291i −0.921747 0.387792i \(-0.873238\pi\)
0.221841 + 0.975083i \(0.428793\pi\)
\(878\) −0.136096 + 0.114198i −0.00459303 + 0.00385401i
\(879\) 0 0
\(880\) 0.0248149 0.00903189i 0.000836511 0.000304465i
\(881\) −15.2888 26.4810i −0.515093 0.892167i −0.999847 0.0175162i \(-0.994424\pi\)
0.484754 0.874651i \(-0.338909\pi\)
\(882\) 0 0
\(883\) −22.0526 + 38.1963i −0.742130 + 1.28541i 0.209394 + 0.977831i \(0.432851\pi\)
−0.951524 + 0.307575i \(0.900482\pi\)
\(884\) −1.54101 + 8.73951i −0.0518298 + 0.293942i
\(885\) 0 0
\(886\) 17.5429 + 6.38510i 0.589366 + 0.214512i
\(887\) −1.36912 7.76466i −0.0459705 0.260712i 0.953157 0.302476i \(-0.0978132\pi\)
−0.999127 + 0.0417644i \(0.986702\pi\)
\(888\) 0 0
\(889\) −0.0701076 0.0588272i −0.00235133 0.00197300i
\(890\) −26.3432 −0.883025
\(891\) 0 0
\(892\) −22.4287 −0.750969
\(893\) 20.3778 + 17.0990i 0.681917 + 0.572196i
\(894\) 0 0
\(895\) −8.21348 46.5809i −0.274546 1.55703i
\(896\) 14.0480 + 5.11305i 0.469310 + 0.170815i
\(897\) 0 0
\(898\) 5.07883 28.8035i 0.169483 0.961185i
\(899\) 17.4128 30.1599i 0.580750 1.00589i
\(900\) 0 0
\(901\) −2.10560 3.64701i −0.0701477 0.121499i
\(902\) −0.778943 + 0.283512i −0.0259360 + 0.00943993i
\(903\) 0 0
\(904\) −5.02797 + 4.21897i −0.167228 + 0.140321i
\(905\) −50.1416 + 42.0738i −1.66676 + 1.39858i
\(906\) 0 0
\(907\) 12.1284 4.41436i 0.402715 0.146576i −0.132718 0.991154i \(-0.542370\pi\)
0.535433 + 0.844577i \(0.320148\pi\)
\(908\) −1.62226 2.80984i −0.0538367 0.0932479i
\(909\) 0 0
\(910\) −8.98680 + 15.5656i −0.297909 + 0.515994i
\(911\) 3.67886 20.8639i 0.121886 0.691251i −0.861223 0.508228i \(-0.830301\pi\)
0.983109 0.183023i \(-0.0585882\pi\)
\(912\) 0 0
\(913\) 1.29426 + 0.471073i 0.0428339 + 0.0155902i
\(914\) 0.00521457 + 0.0295733i 0.000172483 + 0.000978197i
\(915\) 0 0
\(916\) 3.25402 + 2.73045i 0.107516 + 0.0902166i
\(917\) −40.0871 −1.32379
\(918\) 0 0
\(919\) 31.4688 1.03806 0.519031 0.854756i \(-0.326293\pi\)
0.519031 + 0.854756i \(0.326293\pi\)
\(920\) 23.9270 + 20.0771i 0.788848 + 0.661922i
\(921\) 0 0
\(922\) 2.28848 + 12.9786i 0.0753669 + 0.427427i
\(923\) 34.7117 + 12.6340i 1.14255 + 0.415854i
\(924\) 0 0
\(925\) −11.5842 + 65.6975i −0.380888 + 2.16012i
\(926\) −13.3853 + 23.1840i −0.439869 + 0.761875i
\(927\) 0 0
\(928\) 18.9354 + 32.7971i 0.621585 + 1.07662i
\(929\) 2.18644 0.795800i 0.0717348 0.0261093i −0.305904 0.952063i \(-0.598958\pi\)
0.377638 + 0.925953i \(0.376736\pi\)
\(930\) 0 0
\(931\) −6.13429 + 5.14728i −0.201043 + 0.168695i
\(932\) −5.75624 + 4.83006i −0.188552 + 0.158214i
\(933\) 0 0
\(934\) −0.422046 + 0.153612i −0.0138098 + 0.00502634i
\(935\) −0.945622 1.63787i −0.0309252 0.0535639i
\(936\) 0 0
\(937\) 5.49912 9.52476i 0.179649 0.311160i −0.762112 0.647446i \(-0.775837\pi\)
0.941760 + 0.336285i \(0.109171\pi\)
\(938\) −1.95666 + 11.0968i −0.0638872 + 0.362323i
\(939\) 0 0
\(940\) 33.0774 + 12.0392i 1.07887 + 0.392675i
\(941\) −4.18556 23.7375i −0.136445 0.773821i −0.973842 0.227225i \(-0.927035\pi\)
0.837397 0.546596i \(-0.184076\pi\)
\(942\) 0 0
\(943\) −12.6086 10.5799i −0.410592 0.344528i
\(944\) 0.214498 0.00698131
\(945\) 0 0
\(946\) 0.889814 0.0289304
\(947\) −9.13088 7.66172i −0.296714 0.248972i 0.482261 0.876028i \(-0.339816\pi\)
−0.778975 + 0.627055i \(0.784260\pi\)
\(948\) 0 0
\(949\) 3.63475 + 20.6137i 0.117989 + 0.669149i
\(950\) 29.8653 + 10.8701i 0.968958 + 0.352672i
\(951\) 0 0
\(952\) −3.22951 + 18.3155i −0.104669 + 0.593608i
\(953\) 18.4145 31.8948i 0.596503 1.03317i −0.396830 0.917892i \(-0.629890\pi\)
0.993333 0.115281i \(-0.0367770\pi\)
\(954\) 0 0
\(955\) 33.8974 + 58.7120i 1.09689 + 1.89988i
\(956\) −33.3723 + 12.1465i −1.07934 + 0.392846i
\(957\) 0 0
\(958\) 10.4083 8.73362i 0.336278 0.282170i
\(959\) −23.9552 + 20.1008i −0.773553 + 0.649088i
\(960\) 0 0
\(961\) 3.86959 1.40841i 0.124825 0.0454327i
\(962\) −7.03849 12.1910i −0.226930 0.393054i
\(963\) 0 0
\(964\) 13.6934 23.7177i 0.441035 0.763895i
\(965\) −1.34208 + 7.61132i −0.0432031 + 0.245017i
\(966\) 0 0
\(967\) −50.3303 18.3187i −1.61851 0.589090i −0.635415 0.772171i \(-0.719171\pi\)
−0.983098 + 0.183081i \(0.941393\pi\)
\(968\) −5.40697 30.6645i −0.173787 0.985594i
\(969\) 0 0
\(970\) 10.2096 + 8.56688i 0.327811 + 0.275066i
\(971\) 53.2327 1.70832 0.854159 0.520012i \(-0.174073\pi\)
0.854159 + 0.520012i \(0.174073\pi\)
\(972\) 0 0
\(973\) −22.9299 −0.735100
\(974\) −19.8799 16.6812i −0.636992 0.534499i
\(975\) 0 0
\(976\) 0.0275033 + 0.155979i 0.000880358 + 0.00499276i
\(977\) −12.6454 4.60256i −0.404563 0.147249i 0.131720 0.991287i \(-0.457950\pi\)
−0.536283 + 0.844038i \(0.680172\pi\)
\(978\) 0 0
\(979\) 0.217901 1.23578i 0.00696416 0.0394957i
\(980\) −5.29813 + 9.17664i −0.169243 + 0.293137i
\(981\) 0 0
\(982\) 0.948615 + 1.64305i 0.0302715 + 0.0524318i
\(983\) 9.62361 3.50271i 0.306945 0.111719i −0.183955 0.982935i \(-0.558890\pi\)
0.490900 + 0.871216i \(0.336668\pi\)
\(984\) 0 0
\(985\) 62.9796 52.8461i 2.00670 1.68382i
\(986\) −13.5744 + 11.3903i −0.432298 + 0.362741i
\(987\) 0 0
\(988\) 9.99660 3.63846i 0.318034 0.115755i
\(989\) 8.83409 + 15.3011i 0.280908 + 0.486547i
\(990\) 0 0
\(991\) −1.00000 + 1.73205i −0.0317660 + 0.0550204i −0.881471 0.472237i \(-0.843446\pi\)
0.849705 + 0.527258i \(0.176780\pi\)
\(992\) 5.07620 28.7886i 0.161169 0.914038i
\(993\) 0 0
\(994\) 27.6556 + 10.0658i 0.877182 + 0.319268i
\(995\) −2.07738 11.7814i −0.0658574 0.373496i
\(996\) 0 0
\(997\) 29.4939 + 24.7483i 0.934081 + 0.783787i 0.976546 0.215311i \(-0.0690764\pi\)
−0.0424642 + 0.999098i \(0.513521\pi\)
\(998\) −6.59121 −0.208641
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.e.b.406.1 6
3.2 odd 2 729.2.e.g.406.1 6
9.2 odd 6 729.2.e.h.649.1 6
9.4 even 3 729.2.e.i.163.1 6
9.5 odd 6 729.2.e.a.163.1 6
9.7 even 3 729.2.e.c.649.1 6
27.2 odd 18 243.2.c.f.82.1 6
27.4 even 9 729.2.e.c.82.1 6
27.5 odd 18 729.2.e.g.325.1 6
27.7 even 9 243.2.a.f.1.1 yes 3
27.11 odd 18 243.2.c.f.163.1 6
27.13 even 9 729.2.e.i.568.1 6
27.14 odd 18 729.2.e.a.568.1 6
27.16 even 9 243.2.c.e.163.3 6
27.20 odd 18 243.2.a.e.1.3 3
27.22 even 9 inner 729.2.e.b.325.1 6
27.23 odd 18 729.2.e.h.82.1 6
27.25 even 9 243.2.c.e.82.3 6
108.7 odd 18 3888.2.a.bk.1.3 3
108.47 even 18 3888.2.a.bd.1.1 3
135.34 even 18 6075.2.a.bq.1.3 3
135.74 odd 18 6075.2.a.bv.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
243.2.a.e.1.3 3 27.20 odd 18
243.2.a.f.1.1 yes 3 27.7 even 9
243.2.c.e.82.3 6 27.25 even 9
243.2.c.e.163.3 6 27.16 even 9
243.2.c.f.82.1 6 27.2 odd 18
243.2.c.f.163.1 6 27.11 odd 18
729.2.e.a.163.1 6 9.5 odd 6
729.2.e.a.568.1 6 27.14 odd 18
729.2.e.b.325.1 6 27.22 even 9 inner
729.2.e.b.406.1 6 1.1 even 1 trivial
729.2.e.c.82.1 6 27.4 even 9
729.2.e.c.649.1 6 9.7 even 3
729.2.e.g.325.1 6 27.5 odd 18
729.2.e.g.406.1 6 3.2 odd 2
729.2.e.h.82.1 6 27.23 odd 18
729.2.e.h.649.1 6 9.2 odd 6
729.2.e.i.163.1 6 9.4 even 3
729.2.e.i.568.1 6 27.13 even 9
3888.2.a.bd.1.1 3 108.47 even 18
3888.2.a.bk.1.3 3 108.7 odd 18
6075.2.a.bq.1.3 3 135.34 even 18
6075.2.a.bv.1.1 3 135.74 odd 18