Properties

Label 729.2.e.h.82.1
Level $729$
Weight $2$
Character 729.82
Analytic conductor $5.821$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 82.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 729.82
Dual form 729.2.e.h.649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.152704 + 0.866025i) q^{2} +(1.15270 - 0.419550i) q^{4} +(-2.97178 - 2.49362i) q^{5} +(2.05303 + 0.747243i) q^{7} +(1.41875 + 2.45734i) q^{8} +(1.70574 - 2.95442i) q^{10} +(-0.124485 + 0.104455i) q^{11} +(0.418748 - 2.37484i) q^{13} +(-0.333626 + 1.89209i) q^{14} +(-0.0320889 + 0.0269258i) q^{16} +(1.50000 - 2.59808i) q^{17} +(-1.79813 - 3.11446i) q^{19} +(-4.47178 - 1.62760i) q^{20} +(-0.109470 - 0.0918566i) q^{22} +(2.66637 - 0.970481i) q^{23} +(1.74510 + 9.89695i) q^{25} +2.12061 q^{26} +2.68004 q^{28} +(-1.16637 - 6.61484i) q^{29} +(4.87211 - 1.77330i) q^{31} +(4.31908 + 3.62414i) q^{32} +(2.47906 + 0.902302i) q^{34} +(-4.23783 - 7.34013i) q^{35} +(3.31908 - 5.74881i) q^{37} +(2.42262 - 2.03282i) q^{38} +(1.91147 - 10.8405i) q^{40} +(1.00727 - 5.71253i) q^{41} +(-4.76991 + 4.00243i) q^{43} +(-0.0996702 + 0.172634i) q^{44} +(1.24763 + 2.16095i) q^{46} +(6.95084 + 2.52990i) q^{47} +(-1.70574 - 1.43128i) q^{49} +(-8.30453 + 3.02260i) q^{50} +(-0.513671 - 2.91317i) q^{52} -1.40373 q^{53} +0.630415 q^{55} +(1.07650 + 6.10516i) q^{56} +(5.55051 - 2.02022i) q^{58} +(3.92262 + 3.29147i) q^{59} +(3.55303 + 1.29320i) q^{61} +(2.27972 + 3.94858i) q^{62} +(-2.52094 + 4.36640i) q^{64} +(-7.16637 + 6.01330i) q^{65} +(-1.01842 + 5.77574i) q^{67} +(0.639033 - 3.62414i) q^{68} +(5.70961 - 4.79093i) q^{70} +(-7.65910 + 13.2660i) q^{71} +(-4.34002 - 7.51714i) q^{73} +(5.48545 + 1.99654i) q^{74} +(-3.37939 - 2.83564i) q^{76} +(-0.333626 + 0.121430i) q^{77} +(-0.220285 - 1.24930i) q^{79} +0.162504 q^{80} +5.10101 q^{82} +(1.47178 + 8.34689i) q^{83} +(-10.9363 + 3.98048i) q^{85} +(-4.19459 - 3.51968i) q^{86} +(-0.433296 - 0.157707i) q^{88} +(3.86097 + 6.68739i) q^{89} +(2.63429 - 4.56272i) q^{91} +(2.66637 - 2.23735i) q^{92} +(-1.12954 + 6.40593i) q^{94} +(-2.42262 + 13.7394i) q^{95} +(-2.99273 + 2.51120i) q^{97} +(0.979055 - 1.69577i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 9 q^{4} - 3 q^{5} + 6 q^{8} + 12 q^{11} - 21 q^{14} + 9 q^{16} + 9 q^{17} + 3 q^{19} - 12 q^{20} - 18 q^{22} - 3 q^{23} + 9 q^{25} + 24 q^{26} - 24 q^{28} + 12 q^{29} + 9 q^{32} + 18 q^{34}+ \cdots + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.152704 + 0.866025i 0.107978 + 0.612372i 0.989989 + 0.141144i \(0.0450781\pi\)
−0.882011 + 0.471228i \(0.843811\pi\)
\(3\) 0 0
\(4\) 1.15270 0.419550i 0.576352 0.209775i
\(5\) −2.97178 2.49362i −1.32902 1.11518i −0.984305 0.176474i \(-0.943531\pi\)
−0.344716 0.938707i \(-0.612025\pi\)
\(6\) 0 0
\(7\) 2.05303 + 0.747243i 0.775974 + 0.282431i 0.699493 0.714640i \(-0.253409\pi\)
0.0764810 + 0.997071i \(0.475632\pi\)
\(8\) 1.41875 + 2.45734i 0.501603 + 0.868802i
\(9\) 0 0
\(10\) 1.70574 2.95442i 0.539401 0.934271i
\(11\) −0.124485 + 0.104455i −0.0375337 + 0.0314945i −0.661362 0.750067i \(-0.730021\pi\)
0.623828 + 0.781562i \(0.285577\pi\)
\(12\) 0 0
\(13\) 0.418748 2.37484i 0.116140 0.658662i −0.870040 0.492982i \(-0.835907\pi\)
0.986180 0.165680i \(-0.0529819\pi\)
\(14\) −0.333626 + 1.89209i −0.0891652 + 0.505681i
\(15\) 0 0
\(16\) −0.0320889 + 0.0269258i −0.00802222 + 0.00673144i
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) −1.79813 3.11446i −0.412520 0.714506i 0.582645 0.812727i \(-0.302018\pi\)
−0.995165 + 0.0982214i \(0.968685\pi\)
\(20\) −4.47178 1.62760i −0.999921 0.363941i
\(21\) 0 0
\(22\) −0.109470 0.0918566i −0.0233392 0.0195839i
\(23\) 2.66637 0.970481i 0.555977 0.202359i −0.0487229 0.998812i \(-0.515515\pi\)
0.604700 + 0.796453i \(0.293293\pi\)
\(24\) 0 0
\(25\) 1.74510 + 9.89695i 0.349020 + 1.97939i
\(26\) 2.12061 0.415887
\(27\) 0 0
\(28\) 2.68004 0.506481
\(29\) −1.16637 6.61484i −0.216590 1.22834i −0.878126 0.478430i \(-0.841206\pi\)
0.661535 0.749914i \(-0.269905\pi\)
\(30\) 0 0
\(31\) 4.87211 1.77330i 0.875057 0.318495i 0.134844 0.990867i \(-0.456947\pi\)
0.740213 + 0.672372i \(0.234725\pi\)
\(32\) 4.31908 + 3.62414i 0.763512 + 0.640663i
\(33\) 0 0
\(34\) 2.47906 + 0.902302i 0.425155 + 0.154744i
\(35\) −4.23783 7.34013i −0.716323 1.24071i
\(36\) 0 0
\(37\) 3.31908 5.74881i 0.545653 0.945099i −0.452912 0.891555i \(-0.649615\pi\)
0.998566 0.0535438i \(-0.0170517\pi\)
\(38\) 2.42262 2.03282i 0.393001 0.329767i
\(39\) 0 0
\(40\) 1.91147 10.8405i 0.302231 1.71403i
\(41\) 1.00727 5.71253i 0.157310 0.892148i −0.799334 0.600887i \(-0.794814\pi\)
0.956644 0.291261i \(-0.0940748\pi\)
\(42\) 0 0
\(43\) −4.76991 + 4.00243i −0.727405 + 0.610365i −0.929423 0.369016i \(-0.879695\pi\)
0.202018 + 0.979382i \(0.435250\pi\)
\(44\) −0.0996702 + 0.172634i −0.0150259 + 0.0260255i
\(45\) 0 0
\(46\) 1.24763 + 2.16095i 0.183952 + 0.318615i
\(47\) 6.95084 + 2.52990i 1.01388 + 0.369024i 0.794923 0.606710i \(-0.207511\pi\)
0.218961 + 0.975734i \(0.429733\pi\)
\(48\) 0 0
\(49\) −1.70574 1.43128i −0.243677 0.204469i
\(50\) −8.30453 + 3.02260i −1.17444 + 0.427460i
\(51\) 0 0
\(52\) −0.513671 2.91317i −0.0712333 0.403984i
\(53\) −1.40373 −0.192818 −0.0964088 0.995342i \(-0.530736\pi\)
−0.0964088 + 0.995342i \(0.530736\pi\)
\(54\) 0 0
\(55\) 0.630415 0.0850051
\(56\) 1.07650 + 6.10516i 0.143854 + 0.815836i
\(57\) 0 0
\(58\) 5.55051 2.02022i 0.728817 0.265268i
\(59\) 3.92262 + 3.29147i 0.510681 + 0.428513i 0.861369 0.507980i \(-0.169608\pi\)
−0.350687 + 0.936493i \(0.614052\pi\)
\(60\) 0 0
\(61\) 3.55303 + 1.29320i 0.454919 + 0.165577i 0.559309 0.828959i \(-0.311067\pi\)
−0.104389 + 0.994536i \(0.533289\pi\)
\(62\) 2.27972 + 3.94858i 0.289524 + 0.501470i
\(63\) 0 0
\(64\) −2.52094 + 4.36640i −0.315118 + 0.545801i
\(65\) −7.16637 + 6.01330i −0.888879 + 0.745858i
\(66\) 0 0
\(67\) −1.01842 + 5.77574i −0.124420 + 0.705619i 0.857231 + 0.514932i \(0.172183\pi\)
−0.981651 + 0.190687i \(0.938928\pi\)
\(68\) 0.639033 3.62414i 0.0774941 0.439491i
\(69\) 0 0
\(70\) 5.70961 4.79093i 0.682429 0.572626i
\(71\) −7.65910 + 13.2660i −0.908968 + 1.57438i −0.0934675 + 0.995622i \(0.529795\pi\)
−0.815500 + 0.578756i \(0.803538\pi\)
\(72\) 0 0
\(73\) −4.34002 7.51714i −0.507961 0.879815i −0.999958 0.00921733i \(-0.997066\pi\)
0.491996 0.870597i \(-0.336267\pi\)
\(74\) 5.48545 + 1.99654i 0.637671 + 0.232093i
\(75\) 0 0
\(76\) −3.37939 2.83564i −0.387642 0.325270i
\(77\) −0.333626 + 0.121430i −0.0380202 + 0.0138382i
\(78\) 0 0
\(79\) −0.220285 1.24930i −0.0247840 0.140557i 0.969905 0.243484i \(-0.0782903\pi\)
−0.994689 + 0.102927i \(0.967179\pi\)
\(80\) 0.162504 0.0181685
\(81\) 0 0
\(82\) 5.10101 0.563313
\(83\) 1.47178 + 8.34689i 0.161549 + 0.916190i 0.952552 + 0.304377i \(0.0984483\pi\)
−0.791003 + 0.611813i \(0.790441\pi\)
\(84\) 0 0
\(85\) −10.9363 + 3.98048i −1.18621 + 0.431744i
\(86\) −4.19459 3.51968i −0.452315 0.379537i
\(87\) 0 0
\(88\) −0.433296 0.157707i −0.0461895 0.0168116i
\(89\) 3.86097 + 6.68739i 0.409262 + 0.708862i 0.994807 0.101778i \(-0.0324530\pi\)
−0.585546 + 0.810640i \(0.699120\pi\)
\(90\) 0 0
\(91\) 2.63429 4.56272i 0.276148 0.478303i
\(92\) 2.66637 2.23735i 0.277989 0.233260i
\(93\) 0 0
\(94\) −1.12954 + 6.40593i −0.116503 + 0.660721i
\(95\) −2.42262 + 13.7394i −0.248555 + 1.40963i
\(96\) 0 0
\(97\) −2.99273 + 2.51120i −0.303865 + 0.254973i −0.781951 0.623340i \(-0.785775\pi\)
0.478086 + 0.878313i \(0.341331\pi\)
\(98\) 0.979055 1.69577i 0.0988995 0.171299i
\(99\) 0 0
\(100\) 6.16385 + 10.6761i 0.616385 + 1.06761i
\(101\) −7.62449 2.77509i −0.758665 0.276131i −0.0664176 0.997792i \(-0.521157\pi\)
−0.692247 + 0.721661i \(0.743379\pi\)
\(102\) 0 0
\(103\) 14.2836 + 11.9854i 1.40740 + 1.18095i 0.957698 + 0.287775i \(0.0929155\pi\)
0.449705 + 0.893177i \(0.351529\pi\)
\(104\) 6.42989 2.34029i 0.630503 0.229484i
\(105\) 0 0
\(106\) −0.214355 1.21567i −0.0208200 0.118076i
\(107\) −7.59627 −0.734359 −0.367179 0.930150i \(-0.619676\pi\)
−0.367179 + 0.930150i \(0.619676\pi\)
\(108\) 0 0
\(109\) −15.6382 −1.49786 −0.748932 0.662647i \(-0.769433\pi\)
−0.748932 + 0.662647i \(0.769433\pi\)
\(110\) 0.0962667 + 0.545955i 0.00917867 + 0.0520548i
\(111\) 0 0
\(112\) −0.0859997 + 0.0313013i −0.00812620 + 0.00295770i
\(113\) 1.77197 + 1.48686i 0.166693 + 0.139872i 0.722318 0.691561i \(-0.243077\pi\)
−0.555625 + 0.831433i \(0.687521\pi\)
\(114\) 0 0
\(115\) −10.3439 3.76487i −0.964573 0.351076i
\(116\) −4.11974 7.13559i −0.382508 0.662523i
\(117\) 0 0
\(118\) −2.25150 + 3.89971i −0.207267 + 0.358997i
\(119\) 5.02094 4.21307i 0.460269 0.386212i
\(120\) 0 0
\(121\) −1.90554 + 10.8069i −0.173231 + 0.982444i
\(122\) −0.577382 + 3.27449i −0.0522737 + 0.296459i
\(123\) 0 0
\(124\) 4.87211 4.08819i 0.437529 0.367130i
\(125\) 9.79473 16.9650i 0.876067 1.51739i
\(126\) 0 0
\(127\) −0.0209445 0.0362770i −0.00185853 0.00321906i 0.865095 0.501609i \(-0.167258\pi\)
−0.866953 + 0.498390i \(0.833925\pi\)
\(128\) 6.42989 + 2.34029i 0.568328 + 0.206854i
\(129\) 0 0
\(130\) −6.30200 5.28801i −0.552722 0.463789i
\(131\) 17.2417 6.27546i 1.50641 0.548290i 0.548702 0.836018i \(-0.315122\pi\)
0.957712 + 0.287728i \(0.0929000\pi\)
\(132\) 0 0
\(133\) −1.36437 7.73773i −0.118306 0.670946i
\(134\) −5.15745 −0.445536
\(135\) 0 0
\(136\) 8.51249 0.729940
\(137\) −2.48545 14.0957i −0.212347 1.20428i −0.885452 0.464731i \(-0.846151\pi\)
0.673106 0.739546i \(-0.264960\pi\)
\(138\) 0 0
\(139\) −9.86231 + 3.58959i −0.836510 + 0.304465i −0.724528 0.689245i \(-0.757942\pi\)
−0.111982 + 0.993710i \(0.535720\pi\)
\(140\) −7.96451 6.68302i −0.673124 0.564818i
\(141\) 0 0
\(142\) −12.6582 4.60722i −1.06225 0.386629i
\(143\) 0.195937 + 0.339373i 0.0163851 + 0.0283798i
\(144\) 0 0
\(145\) −13.0287 + 22.5663i −1.08197 + 1.87403i
\(146\) 5.84730 4.90646i 0.483926 0.406062i
\(147\) 0 0
\(148\) 1.41400 8.01919i 0.116230 0.659174i
\(149\) 0.220752 1.25195i 0.0180847 0.102563i −0.974429 0.224694i \(-0.927862\pi\)
0.992514 + 0.122131i \(0.0389728\pi\)
\(150\) 0 0
\(151\) 6.01889 5.05044i 0.489810 0.410999i −0.364148 0.931341i \(-0.618640\pi\)
0.853958 + 0.520342i \(0.174195\pi\)
\(152\) 5.10220 8.83726i 0.413843 0.716797i
\(153\) 0 0
\(154\) −0.156107 0.270386i −0.0125795 0.0217883i
\(155\) −18.9008 6.87933i −1.51815 0.552561i
\(156\) 0 0
\(157\) −9.46245 7.93994i −0.755186 0.633676i 0.181683 0.983357i \(-0.441845\pi\)
−0.936869 + 0.349681i \(0.886290\pi\)
\(158\) 1.04829 0.381545i 0.0833971 0.0303541i
\(159\) 0 0
\(160\) −3.79813 21.5403i −0.300269 1.70291i
\(161\) 6.19934 0.488576
\(162\) 0 0
\(163\) −13.7469 −1.07674 −0.538371 0.842708i \(-0.680960\pi\)
−0.538371 + 0.842708i \(0.680960\pi\)
\(164\) −1.23560 7.00746i −0.0964845 0.547191i
\(165\) 0 0
\(166\) −7.00387 + 2.54920i −0.543606 + 0.197856i
\(167\) 2.84730 + 2.38917i 0.220330 + 0.184879i 0.746271 0.665642i \(-0.231842\pi\)
−0.525941 + 0.850521i \(0.676287\pi\)
\(168\) 0 0
\(169\) 6.75150 + 2.45734i 0.519346 + 0.189026i
\(170\) −5.11721 8.86327i −0.392472 0.679782i
\(171\) 0 0
\(172\) −3.81908 + 6.61484i −0.291202 + 0.504377i
\(173\) 1.19459 1.00238i 0.0908232 0.0762097i −0.596246 0.802802i \(-0.703342\pi\)
0.687069 + 0.726592i \(0.258897\pi\)
\(174\) 0 0
\(175\) −3.81268 + 21.6228i −0.288212 + 1.63453i
\(176\) 0.00118205 0.00670372i 8.91001e−5 0.000505312i
\(177\) 0 0
\(178\) −5.20187 + 4.36488i −0.389896 + 0.327162i
\(179\) −6.09627 + 10.5590i −0.455656 + 0.789220i −0.998726 0.0504679i \(-0.983929\pi\)
0.543069 + 0.839688i \(0.317262\pi\)
\(180\) 0 0
\(181\) 8.43629 + 14.6121i 0.627064 + 1.08611i 0.988138 + 0.153570i \(0.0490771\pi\)
−0.361073 + 0.932537i \(0.617590\pi\)
\(182\) 4.35369 + 1.58461i 0.322717 + 0.117459i
\(183\) 0 0
\(184\) 6.16772 + 5.17533i 0.454690 + 0.381530i
\(185\) −24.1989 + 8.80769i −1.77914 + 0.647554i
\(186\) 0 0
\(187\) 0.0846555 + 0.480105i 0.00619062 + 0.0351088i
\(188\) 9.07367 0.661766
\(189\) 0 0
\(190\) −12.2686 −0.890056
\(191\) 3.03462 + 17.2102i 0.219577 + 1.24528i 0.872785 + 0.488105i \(0.162312\pi\)
−0.653208 + 0.757179i \(0.726577\pi\)
\(192\) 0 0
\(193\) 1.87211 0.681393i 0.134758 0.0490477i −0.273761 0.961798i \(-0.588268\pi\)
0.408519 + 0.912750i \(0.366046\pi\)
\(194\) −2.63176 2.20831i −0.188949 0.158547i
\(195\) 0 0
\(196\) −2.56670 0.934204i −0.183336 0.0667288i
\(197\) 10.5963 + 18.3533i 0.754953 + 1.30762i 0.945398 + 0.325919i \(0.105674\pi\)
−0.190445 + 0.981698i \(0.560993\pi\)
\(198\) 0 0
\(199\) 1.54189 2.67063i 0.109302 0.189316i −0.806186 0.591662i \(-0.798472\pi\)
0.915488 + 0.402346i \(0.131805\pi\)
\(200\) −21.8444 + 18.3296i −1.54463 + 1.29610i
\(201\) 0 0
\(202\) 1.23901 7.02676i 0.0871763 0.494401i
\(203\) 2.54829 14.4520i 0.178855 1.01433i
\(204\) 0 0
\(205\) −17.2383 + 14.4646i −1.20397 + 1.01025i
\(206\) −8.19846 + 14.2002i −0.571214 + 0.989372i
\(207\) 0 0
\(208\) 0.0505072 + 0.0874810i 0.00350204 + 0.00606572i
\(209\) 0.549163 + 0.199879i 0.0379864 + 0.0138259i
\(210\) 0 0
\(211\) 0.771974 + 0.647763i 0.0531449 + 0.0445939i 0.668973 0.743287i \(-0.266734\pi\)
−0.615828 + 0.787880i \(0.711179\pi\)
\(212\) −1.61809 + 0.588936i −0.111131 + 0.0404483i
\(213\) 0 0
\(214\) −1.15998 6.57856i −0.0792944 0.449701i
\(215\) 24.1557 1.64740
\(216\) 0 0
\(217\) 11.3277 0.768974
\(218\) −2.38800 13.5430i −0.161736 0.917250i
\(219\) 0 0
\(220\) 0.726682 0.264490i 0.0489929 0.0178319i
\(221\) −5.54189 4.65020i −0.372788 0.312806i
\(222\) 0 0
\(223\) −17.1814 6.25351i −1.15055 0.418766i −0.304838 0.952404i \(-0.598602\pi\)
−0.845713 + 0.533638i \(0.820825\pi\)
\(224\) 6.15910 + 10.6679i 0.411522 + 0.712777i
\(225\) 0 0
\(226\) −1.01707 + 1.76162i −0.0676548 + 0.117181i
\(227\) 2.02616 1.70015i 0.134481 0.112843i −0.573066 0.819509i \(-0.694246\pi\)
0.707547 + 0.706666i \(0.249802\pi\)
\(228\) 0 0
\(229\) −0.601319 + 3.41025i −0.0397363 + 0.225356i −0.998209 0.0598300i \(-0.980944\pi\)
0.958472 + 0.285186i \(0.0920553\pi\)
\(230\) 1.68092 9.53298i 0.110837 0.628586i
\(231\) 0 0
\(232\) 14.6001 12.2510i 0.958546 0.804316i
\(233\) 3.06283 5.30498i 0.200653 0.347541i −0.748086 0.663602i \(-0.769027\pi\)
0.948739 + 0.316061i \(0.102360\pi\)
\(234\) 0 0
\(235\) −14.3478 24.8511i −0.935945 1.62110i
\(236\) 5.90255 + 2.14835i 0.384223 + 0.139846i
\(237\) 0 0
\(238\) 4.41534 + 3.70491i 0.286204 + 0.240154i
\(239\) −27.2053 + 9.90193i −1.75977 + 0.640503i −0.999954 0.00963943i \(-0.996932\pi\)
−0.759813 + 0.650142i \(0.774709\pi\)
\(240\) 0 0
\(241\) 3.87686 + 21.9868i 0.249730 + 1.41629i 0.809245 + 0.587471i \(0.199876\pi\)
−0.559515 + 0.828820i \(0.689012\pi\)
\(242\) −9.65002 −0.620326
\(243\) 0 0
\(244\) 4.63816 0.296927
\(245\) 1.50000 + 8.50692i 0.0958315 + 0.543487i
\(246\) 0 0
\(247\) −8.14930 + 2.96610i −0.518528 + 0.188729i
\(248\) 11.2699 + 9.45658i 0.715640 + 0.600494i
\(249\) 0 0
\(250\) 16.1878 + 5.89187i 1.02381 + 0.372635i
\(251\) −11.3610 19.6778i −0.717098 1.24205i −0.962145 0.272539i \(-0.912137\pi\)
0.245047 0.969511i \(-0.421197\pi\)
\(252\) 0 0
\(253\) −0.230552 + 0.399328i −0.0144947 + 0.0251055i
\(254\) 0.0282185 0.0236781i 0.00177059 0.00148570i
\(255\) 0 0
\(256\) −2.79591 + 15.8564i −0.174744 + 0.991025i
\(257\) 3.40167 19.2919i 0.212191 1.20339i −0.673525 0.739164i \(-0.735221\pi\)
0.885716 0.464228i \(-0.153668\pi\)
\(258\) 0 0
\(259\) 11.1099 9.32234i 0.690338 0.579262i
\(260\) −5.73783 + 9.93821i −0.355845 + 0.616341i
\(261\) 0 0
\(262\) 8.06758 + 13.9735i 0.498417 + 0.863283i
\(263\) 16.7271 + 6.08818i 1.03144 + 0.375414i 0.801629 0.597822i \(-0.203967\pi\)
0.229811 + 0.973235i \(0.426189\pi\)
\(264\) 0 0
\(265\) 4.17159 + 3.50038i 0.256259 + 0.215027i
\(266\) 6.49273 2.36316i 0.398095 0.144895i
\(267\) 0 0
\(268\) 1.24928 + 7.08499i 0.0763116 + 0.432785i
\(269\) −22.7888 −1.38946 −0.694729 0.719272i \(-0.744476\pi\)
−0.694729 + 0.719272i \(0.744476\pi\)
\(270\) 0 0
\(271\) −3.44562 −0.209307 −0.104653 0.994509i \(-0.533373\pi\)
−0.104653 + 0.994509i \(0.533373\pi\)
\(272\) 0.0218219 + 0.123758i 0.00132315 + 0.00750393i
\(273\) 0 0
\(274\) 11.8277 4.30493i 0.714537 0.260070i
\(275\) −1.25103 1.04974i −0.0754399 0.0633016i
\(276\) 0 0
\(277\) 2.45589 + 0.893871i 0.147560 + 0.0537075i 0.414744 0.909938i \(-0.363871\pi\)
−0.267184 + 0.963645i \(0.586093\pi\)
\(278\) −4.61468 7.99287i −0.276770 0.479380i
\(279\) 0 0
\(280\) 12.0248 20.8276i 0.718620 1.24469i
\(281\) 10.4834 8.79661i 0.625387 0.524762i −0.274105 0.961700i \(-0.588382\pi\)
0.899492 + 0.436938i \(0.143937\pi\)
\(282\) 0 0
\(283\) 3.97313 22.5327i 0.236178 1.33943i −0.603941 0.797029i \(-0.706404\pi\)
0.840119 0.542402i \(-0.182485\pi\)
\(284\) −3.26295 + 18.5051i −0.193620 + 1.09807i
\(285\) 0 0
\(286\) −0.263985 + 0.221510i −0.0156098 + 0.0130981i
\(287\) 6.33662 10.9753i 0.374039 0.647854i
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) −21.5326 7.83721i −1.26444 0.460217i
\(291\) 0 0
\(292\) −8.15657 6.84418i −0.477327 0.400525i
\(293\) 22.8170 8.30472i 1.33298 0.485167i 0.425388 0.905011i \(-0.360138\pi\)
0.907596 + 0.419844i \(0.137915\pi\)
\(294\) 0 0
\(295\) −3.44949 19.5630i −0.200837 1.13900i
\(296\) 18.8357 1.09481
\(297\) 0 0
\(298\) 1.11793 0.0647597
\(299\) −1.18820 6.73859i −0.0687152 0.389703i
\(300\) 0 0
\(301\) −12.7836 + 4.65284i −0.736834 + 0.268186i
\(302\) 5.29292 + 4.44129i 0.304573 + 0.255567i
\(303\) 0 0
\(304\) 0.141559 + 0.0515234i 0.00811898 + 0.00295507i
\(305\) −7.33409 12.7030i −0.419949 0.727373i
\(306\) 0 0
\(307\) 8.07444 13.9853i 0.460833 0.798186i −0.538170 0.842836i \(-0.680884\pi\)
0.999003 + 0.0446505i \(0.0142174\pi\)
\(308\) −0.333626 + 0.279945i −0.0190101 + 0.0159514i
\(309\) 0 0
\(310\) 3.07145 17.4191i 0.174447 0.989337i
\(311\) −3.24897 + 18.4258i −0.184232 + 1.04483i 0.742706 + 0.669618i \(0.233542\pi\)
−0.926938 + 0.375215i \(0.877569\pi\)
\(312\) 0 0
\(313\) 2.12449 1.78265i 0.120083 0.100762i −0.580769 0.814069i \(-0.697248\pi\)
0.700852 + 0.713307i \(0.252803\pi\)
\(314\) 5.43124 9.40718i 0.306502 0.530878i
\(315\) 0 0
\(316\) −0.778066 1.34765i −0.0437696 0.0758112i
\(317\) 16.4281 + 5.97935i 0.922696 + 0.335834i 0.759311 0.650728i \(-0.225536\pi\)
0.163386 + 0.986562i \(0.447759\pi\)
\(318\) 0 0
\(319\) 0.836152 + 0.701615i 0.0468155 + 0.0392829i
\(320\) 18.3799 6.68972i 1.02746 0.373967i
\(321\) 0 0
\(322\) 0.946662 + 5.36879i 0.0527554 + 0.299191i
\(323\) −10.7888 −0.600305
\(324\) 0 0
\(325\) 24.2344 1.34428
\(326\) −2.09920 11.9052i −0.116264 0.659367i
\(327\) 0 0
\(328\) 15.4667 5.62943i 0.854007 0.310833i
\(329\) 12.3799 + 10.3879i 0.682523 + 0.572705i
\(330\) 0 0
\(331\) 30.5018 + 11.1018i 1.67653 + 0.610207i 0.992828 0.119553i \(-0.0381460\pi\)
0.683703 + 0.729760i \(0.260368\pi\)
\(332\) 5.19846 + 9.00400i 0.285303 + 0.494159i
\(333\) 0 0
\(334\) −1.63429 + 2.83067i −0.0894241 + 0.154887i
\(335\) 17.4290 14.6247i 0.952249 0.799032i
\(336\) 0 0
\(337\) 1.43882 8.15993i 0.0783773 0.444500i −0.920213 0.391418i \(-0.871985\pi\)
0.998590 0.0530814i \(-0.0169043\pi\)
\(338\) −1.09714 + 6.22221i −0.0596768 + 0.338444i
\(339\) 0 0
\(340\) −10.9363 + 9.17664i −0.593104 + 0.497673i
\(341\) −0.421274 + 0.729669i −0.0228133 + 0.0395138i
\(342\) 0 0
\(343\) −10.0792 17.4577i −0.544225 0.942626i
\(344\) −16.6027 6.04288i −0.895156 0.325810i
\(345\) 0 0
\(346\) 1.05051 + 0.881480i 0.0564756 + 0.0473887i
\(347\) 14.0608 5.11770i 0.754822 0.274733i 0.0641886 0.997938i \(-0.479554\pi\)
0.690633 + 0.723205i \(0.257332\pi\)
\(348\) 0 0
\(349\) 5.84255 + 33.1347i 0.312744 + 1.77366i 0.584598 + 0.811323i \(0.301252\pi\)
−0.271853 + 0.962339i \(0.587637\pi\)
\(350\) −19.3081 −1.03206
\(351\) 0 0
\(352\) −0.916222 −0.0488348
\(353\) 2.73560 + 15.5144i 0.145602 + 0.825747i 0.966882 + 0.255223i \(0.0821489\pi\)
−0.821281 + 0.570524i \(0.806740\pi\)
\(354\) 0 0
\(355\) 55.8414 20.3246i 2.96375 1.07872i
\(356\) 7.25624 + 6.08871i 0.384580 + 0.322701i
\(357\) 0 0
\(358\) −10.0753 3.66712i −0.532497 0.193813i
\(359\) 9.06283 + 15.6973i 0.478318 + 0.828471i 0.999691 0.0248577i \(-0.00791328\pi\)
−0.521373 + 0.853329i \(0.674580\pi\)
\(360\) 0 0
\(361\) 3.03343 5.25406i 0.159654 0.276529i
\(362\) −11.3662 + 9.53736i −0.597393 + 0.501272i
\(363\) 0 0
\(364\) 1.12226 6.36467i 0.0588226 0.333600i
\(365\) −5.84730 + 33.1617i −0.306061 + 1.73576i
\(366\) 0 0
\(367\) −14.6643 + 12.3048i −0.765471 + 0.642306i −0.939545 0.342426i \(-0.888751\pi\)
0.174074 + 0.984733i \(0.444307\pi\)
\(368\) −0.0594300 + 0.102936i −0.00309800 + 0.00536590i
\(369\) 0 0
\(370\) −11.3229 19.6119i −0.588652 1.01958i
\(371\) −2.88191 1.04893i −0.149621 0.0544577i
\(372\) 0 0
\(373\) −11.6821 9.80245i −0.604876 0.507552i 0.288132 0.957591i \(-0.406966\pi\)
−0.893009 + 0.450039i \(0.851410\pi\)
\(374\) −0.402856 + 0.146628i −0.0208312 + 0.00758193i
\(375\) 0 0
\(376\) 3.64466 + 20.6699i 0.187959 + 1.06597i
\(377\) −16.1976 −0.834218
\(378\) 0 0
\(379\) 9.84760 0.505837 0.252919 0.967488i \(-0.418610\pi\)
0.252919 + 0.967488i \(0.418610\pi\)
\(380\) 2.97178 + 16.8538i 0.152449 + 0.864582i
\(381\) 0 0
\(382\) −14.4410 + 5.25611i −0.738868 + 0.268926i
\(383\) −21.7481 18.2488i −1.11128 0.932471i −0.113144 0.993579i \(-0.536092\pi\)
−0.998131 + 0.0611076i \(0.980537\pi\)
\(384\) 0 0
\(385\) 1.29426 + 0.471073i 0.0659617 + 0.0240081i
\(386\) 0.875982 + 1.51724i 0.0445863 + 0.0772257i
\(387\) 0 0
\(388\) −2.39615 + 4.15026i −0.121646 + 0.210698i
\(389\) −8.33796 + 6.99638i −0.422752 + 0.354731i −0.829209 0.558939i \(-0.811209\pi\)
0.406457 + 0.913670i \(0.366764\pi\)
\(390\) 0 0
\(391\) 1.47818 8.38316i 0.0747547 0.423955i
\(392\) 1.09714 6.22221i 0.0554141 0.314269i
\(393\) 0 0
\(394\) −14.2763 + 11.9792i −0.719230 + 0.603506i
\(395\) −2.46064 + 4.26195i −0.123808 + 0.214442i
\(396\) 0 0
\(397\) 9.05350 + 15.6811i 0.454382 + 0.787013i 0.998652 0.0518969i \(-0.0165267\pi\)
−0.544270 + 0.838910i \(0.683193\pi\)
\(398\) 2.54829 + 0.927500i 0.127734 + 0.0464914i
\(399\) 0 0
\(400\) −0.322481 0.270594i −0.0161241 0.0135297i
\(401\) 1.34730 0.490376i 0.0672808 0.0244882i −0.308161 0.951334i \(-0.599713\pi\)
0.375441 + 0.926846i \(0.377491\pi\)
\(402\) 0 0
\(403\) −2.17112 12.3130i −0.108151 0.613356i
\(404\) −9.95306 −0.495183
\(405\) 0 0
\(406\) 12.9050 0.640463
\(407\) 0.187319 + 1.06234i 0.00928505 + 0.0526581i
\(408\) 0 0
\(409\) −8.08512 + 2.94274i −0.399784 + 0.145509i −0.534084 0.845431i \(-0.679343\pi\)
0.134301 + 0.990941i \(0.457121\pi\)
\(410\) −15.1591 12.7200i −0.748655 0.628196i
\(411\) 0 0
\(412\) 21.4932 + 7.82288i 1.05889 + 0.385406i
\(413\) 5.59374 + 9.68864i 0.275250 + 0.476747i
\(414\) 0 0
\(415\) 16.4402 28.4752i 0.807016 1.39779i
\(416\) 10.4153 8.73951i 0.510654 0.428490i
\(417\) 0 0
\(418\) −0.0892411 + 0.506111i −0.00436492 + 0.0247547i
\(419\) 2.13785 12.1244i 0.104441 0.592314i −0.887001 0.461767i \(-0.847216\pi\)
0.991442 0.130547i \(-0.0416732\pi\)
\(420\) 0 0
\(421\) 8.51573 7.14555i 0.415031 0.348253i −0.411238 0.911528i \(-0.634903\pi\)
0.826269 + 0.563275i \(0.190459\pi\)
\(422\) −0.443096 + 0.767465i −0.0215696 + 0.0373596i
\(423\) 0 0
\(424\) −1.99154 3.44946i −0.0967179 0.167520i
\(425\) 28.3307 + 10.3115i 1.37424 + 0.500183i
\(426\) 0 0
\(427\) 6.32816 + 5.30996i 0.306241 + 0.256967i
\(428\) −8.75624 + 3.18701i −0.423249 + 0.154050i
\(429\) 0 0
\(430\) 3.68866 + 20.9194i 0.177883 + 1.00883i
\(431\) 36.8958 1.77721 0.888604 0.458675i \(-0.151676\pi\)
0.888604 + 0.458675i \(0.151676\pi\)
\(432\) 0 0
\(433\) −37.9982 −1.82608 −0.913040 0.407871i \(-0.866271\pi\)
−0.913040 + 0.407871i \(0.866271\pi\)
\(434\) 1.72978 + 9.81007i 0.0830321 + 0.470899i
\(435\) 0 0
\(436\) −18.0262 + 6.56099i −0.863296 + 0.314214i
\(437\) −7.81702 6.55926i −0.373939 0.313772i
\(438\) 0 0
\(439\) −0.189845 0.0690979i −0.00906081 0.00329786i 0.337486 0.941331i \(-0.390424\pi\)
−0.346547 + 0.938033i \(0.612646\pi\)
\(440\) 0.894400 + 1.54915i 0.0426388 + 0.0738526i
\(441\) 0 0
\(442\) 3.18092 5.50952i 0.151301 0.262061i
\(443\) −16.2626 + 13.6460i −0.772661 + 0.648340i −0.941389 0.337323i \(-0.890479\pi\)
0.168728 + 0.985663i \(0.446034\pi\)
\(444\) 0 0
\(445\) 5.20187 29.5013i 0.246592 1.39849i
\(446\) 2.79204 15.8345i 0.132207 0.749783i
\(447\) 0 0
\(448\) −8.43835 + 7.08062i −0.398674 + 0.334528i
\(449\) −16.6297 + 28.8035i −0.784804 + 1.35932i 0.144312 + 0.989532i \(0.453903\pi\)
−0.929116 + 0.369788i \(0.879430\pi\)
\(450\) 0 0
\(451\) 0.471315 + 0.816341i 0.0221933 + 0.0384400i
\(452\) 2.66637 + 0.970481i 0.125416 + 0.0456476i
\(453\) 0 0
\(454\) 1.78177 + 1.49509i 0.0836228 + 0.0701679i
\(455\) −19.2062 + 6.99049i −0.900401 + 0.327719i
\(456\) 0 0
\(457\) −0.00592979 0.0336295i −0.000277384 0.00157312i 0.984669 0.174435i \(-0.0558098\pi\)
−0.984946 + 0.172862i \(0.944699\pi\)
\(458\) −3.04519 −0.142292
\(459\) 0 0
\(460\) −13.5030 −0.629580
\(461\) 2.60236 + 14.7587i 0.121204 + 0.687382i 0.983490 + 0.180961i \(0.0579207\pi\)
−0.862286 + 0.506421i \(0.830968\pi\)
\(462\) 0 0
\(463\) 28.6065 10.4119i 1.32946 0.483883i 0.422981 0.906138i \(-0.360984\pi\)
0.906477 + 0.422255i \(0.138761\pi\)
\(464\) 0.215537 + 0.180857i 0.0100061 + 0.00839609i
\(465\) 0 0
\(466\) 5.06196 + 1.84240i 0.234491 + 0.0853476i
\(467\) −0.255367 0.442308i −0.0118170 0.0204676i 0.860056 0.510199i \(-0.170428\pi\)
−0.871873 + 0.489731i \(0.837095\pi\)
\(468\) 0 0
\(469\) −6.40673 + 11.0968i −0.295835 + 0.512401i
\(470\) 19.3307 16.2204i 0.891658 0.748190i
\(471\) 0 0
\(472\) −2.52306 + 14.3090i −0.116133 + 0.658624i
\(473\) 0.175708 0.996487i 0.00807904 0.0458185i
\(474\) 0 0
\(475\) 27.6857 23.2311i 1.27031 1.06592i
\(476\) 4.02007 6.96296i 0.184259 0.319147i
\(477\) 0 0
\(478\) −12.7297 22.0484i −0.582242 1.00847i
\(479\) −14.5189 5.28444i −0.663385 0.241452i −0.0116878 0.999932i \(-0.503720\pi\)
−0.651697 + 0.758479i \(0.725943\pi\)
\(480\) 0 0
\(481\) −12.2626 10.2896i −0.559128 0.469164i
\(482\) −18.4491 + 6.71492i −0.840333 + 0.305856i
\(483\) 0 0
\(484\) 2.33750 + 13.2566i 0.106250 + 0.602573i
\(485\) 15.1557 0.688185
\(486\) 0 0
\(487\) 29.5107 1.33726 0.668629 0.743596i \(-0.266881\pi\)
0.668629 + 0.743596i \(0.266881\pi\)
\(488\) 1.86303 + 10.5657i 0.0843352 + 0.478289i
\(489\) 0 0
\(490\) −7.13816 + 2.59808i −0.322469 + 0.117369i
\(491\) −1.65270 1.38678i −0.0745855 0.0625846i 0.604733 0.796428i \(-0.293280\pi\)
−0.679318 + 0.733844i \(0.737724\pi\)
\(492\) 0 0
\(493\) −18.9354 6.89193i −0.852808 0.310397i
\(494\) −3.81315 6.60457i −0.171562 0.297153i
\(495\) 0 0
\(496\) −0.108593 + 0.188089i −0.00487597 + 0.00844543i
\(497\) −25.6373 + 21.5122i −1.14999 + 0.964955i
\(498\) 0 0
\(499\) 1.30154 7.38138i 0.0582648 0.330436i −0.941717 0.336405i \(-0.890789\pi\)
0.999982 + 0.00596898i \(0.00190000\pi\)
\(500\) 4.17277 23.6650i 0.186612 1.05833i
\(501\) 0 0
\(502\) 15.3066 12.8438i 0.683167 0.573245i
\(503\) 14.2981 24.7651i 0.637522 1.10422i −0.348453 0.937326i \(-0.613293\pi\)
0.985975 0.166894i \(-0.0533739\pi\)
\(504\) 0 0
\(505\) 15.7383 + 27.2595i 0.700345 + 1.21303i
\(506\) −0.381034 0.138685i −0.0169390 0.00616530i
\(507\) 0 0
\(508\) −0.0393628 0.0330293i −0.00174644 0.00146544i
\(509\) −1.58987 + 0.578665i −0.0704698 + 0.0256489i −0.377015 0.926207i \(-0.623049\pi\)
0.306545 + 0.951856i \(0.400827\pi\)
\(510\) 0 0
\(511\) −3.29308 18.6760i −0.145677 0.826177i
\(512\) −0.473897 −0.0209435
\(513\) 0 0
\(514\) 17.2267 0.759836
\(515\) −12.5608 71.2357i −0.553494 3.13902i
\(516\) 0 0
\(517\) −1.12954 + 0.411118i −0.0496770 + 0.0180810i
\(518\) 9.76991 + 8.19793i 0.429265 + 0.360196i
\(519\) 0 0
\(520\) −24.9440 9.07888i −1.09387 0.398135i
\(521\) −11.2019 19.4022i −0.490763 0.850026i 0.509181 0.860660i \(-0.329948\pi\)
−0.999943 + 0.0106337i \(0.996615\pi\)
\(522\) 0 0
\(523\) −1.21436 + 2.10332i −0.0531000 + 0.0919720i −0.891354 0.453309i \(-0.850244\pi\)
0.838254 + 0.545281i \(0.183577\pi\)
\(524\) 17.2417 14.4675i 0.753207 0.632016i
\(525\) 0 0
\(526\) −2.71823 + 15.4158i −0.118520 + 0.672162i
\(527\) 2.70099 15.3181i 0.117657 0.667266i
\(528\) 0 0
\(529\) −11.4513 + 9.60878i −0.497883 + 0.417773i
\(530\) −2.39440 + 4.14722i −0.104006 + 0.180144i
\(531\) 0 0
\(532\) −4.81908 8.34689i −0.208934 0.361883i
\(533\) −13.1446 4.78423i −0.569354 0.207228i
\(534\) 0 0
\(535\) 22.5744 + 18.9422i 0.975978 + 0.818943i
\(536\) −15.6379 + 5.69171i −0.675452 + 0.245845i
\(537\) 0 0
\(538\) −3.47993 19.7357i −0.150031 0.850866i
\(539\) 0.361844 0.0155857
\(540\) 0 0
\(541\) 38.9394 1.67414 0.837069 0.547098i \(-0.184267\pi\)
0.837069 + 0.547098i \(0.184267\pi\)
\(542\) −0.526159 2.98400i −0.0226005 0.128174i
\(543\) 0 0
\(544\) 15.8944 5.78509i 0.681467 0.248034i
\(545\) 46.4732 + 38.9956i 1.99069 + 1.67039i
\(546\) 0 0
\(547\) 13.7875 + 5.01822i 0.589509 + 0.214564i 0.619513 0.784986i \(-0.287330\pi\)
−0.0300044 + 0.999550i \(0.509552\pi\)
\(548\) −8.77884 15.2054i −0.375013 0.649542i
\(549\) 0 0
\(550\) 0.718063 1.24372i 0.0306183 0.0530325i
\(551\) −18.5043 + 15.5270i −0.788311 + 0.661472i
\(552\) 0 0
\(553\) 0.481277 2.72946i 0.0204660 0.116068i
\(554\) −0.399091 + 2.26336i −0.0169558 + 0.0961609i
\(555\) 0 0
\(556\) −9.86231 + 8.27546i −0.418255 + 0.350958i
\(557\) −5.55350 + 9.61894i −0.235309 + 0.407568i −0.959363 0.282176i \(-0.908944\pi\)
0.724053 + 0.689744i \(0.242277\pi\)
\(558\) 0 0
\(559\) 7.50774 + 13.0038i 0.317544 + 0.550002i
\(560\) 0.333626 + 0.121430i 0.0140983 + 0.00513135i
\(561\) 0 0
\(562\) 9.21894 + 7.73561i 0.388878 + 0.326307i
\(563\) 15.3246 5.57770i 0.645855 0.235072i 0.00173729 0.999998i \(-0.499447\pi\)
0.644117 + 0.764927i \(0.277225\pi\)
\(564\) 0 0
\(565\) −1.55825 8.83726i −0.0655560 0.371786i
\(566\) 20.1206 0.845733
\(567\) 0 0
\(568\) −43.4653 −1.82376
\(569\) −6.25418 35.4692i −0.262189 1.48695i −0.776922 0.629597i \(-0.783220\pi\)
0.514733 0.857351i \(-0.327891\pi\)
\(570\) 0 0
\(571\) −36.7968 + 13.3930i −1.53990 + 0.560478i −0.966021 0.258462i \(-0.916784\pi\)
−0.573879 + 0.818940i \(0.694562\pi\)
\(572\) 0.368241 + 0.308991i 0.0153969 + 0.0129196i
\(573\) 0 0
\(574\) 10.4726 + 3.81170i 0.437116 + 0.159097i
\(575\) 14.2579 + 24.6954i 0.594595 + 1.02987i
\(576\) 0 0
\(577\) −5.90286 + 10.2240i −0.245739 + 0.425633i −0.962339 0.271852i \(-0.912364\pi\)
0.716600 + 0.697484i \(0.245697\pi\)
\(578\) −5.38919 + 4.52206i −0.224161 + 0.188093i
\(579\) 0 0
\(580\) −5.55051 + 31.4785i −0.230472 + 1.30707i
\(581\) −3.21554 + 18.2362i −0.133403 + 0.756566i
\(582\) 0 0
\(583\) 0.174744 0.146628i 0.00723716 0.00607269i
\(584\) 12.3148 21.3299i 0.509590 0.882636i
\(585\) 0 0
\(586\) 10.6763 + 18.4920i 0.441035 + 0.763896i
\(587\) −37.5514 13.6676i −1.54991 0.564123i −0.581516 0.813535i \(-0.697540\pi\)
−0.968397 + 0.249412i \(0.919763\pi\)
\(588\) 0 0
\(589\) −14.2836 11.9854i −0.588545 0.493848i
\(590\) 16.4153 5.97470i 0.675809 0.245974i
\(591\) 0 0
\(592\) 0.0482857 + 0.273842i 0.00198453 + 0.0112548i
\(593\) 29.2995 1.20319 0.601594 0.798802i \(-0.294533\pi\)
0.601594 + 0.798802i \(0.294533\pi\)
\(594\) 0 0
\(595\) −25.4270 −1.04240
\(596\) −0.270792 1.53574i −0.0110921 0.0629063i
\(597\) 0 0
\(598\) 5.65435 2.05802i 0.231224 0.0841585i
\(599\) −7.71554 6.47410i −0.315248 0.264525i 0.471409 0.881915i \(-0.343746\pi\)
−0.786657 + 0.617390i \(0.788190\pi\)
\(600\) 0 0
\(601\) 28.5847 + 10.4040i 1.16599 + 0.424387i 0.851235 0.524784i \(-0.175854\pi\)
0.314759 + 0.949172i \(0.398076\pi\)
\(602\) −5.98158 10.3604i −0.243791 0.422259i
\(603\) 0 0
\(604\) 4.81908 8.34689i 0.196085 0.339630i
\(605\) 32.6111 27.3640i 1.32583 1.11250i
\(606\) 0 0
\(607\) −4.00681 + 22.7237i −0.162631 + 0.922328i 0.788842 + 0.614596i \(0.210681\pi\)
−0.951473 + 0.307732i \(0.900430\pi\)
\(608\) 3.52094 19.9683i 0.142793 0.809820i
\(609\) 0 0
\(610\) 9.88120 8.29131i 0.400078 0.335705i
\(611\) 8.91875 15.4477i 0.360814 0.624948i
\(612\) 0 0
\(613\) −0.382789 0.663010i −0.0154607 0.0267787i 0.858192 0.513330i \(-0.171588\pi\)
−0.873652 + 0.486551i \(0.838255\pi\)
\(614\) 13.3447 + 4.85706i 0.538547 + 0.196015i
\(615\) 0 0
\(616\) −0.771726 0.647555i −0.0310937 0.0260907i
\(617\) −8.72803 + 3.17674i −0.351377 + 0.127891i −0.511678 0.859177i \(-0.670976\pi\)
0.160301 + 0.987068i \(0.448754\pi\)
\(618\) 0 0
\(619\) −6.09199 34.5494i −0.244858 1.38866i −0.820823 0.571182i \(-0.806485\pi\)
0.575966 0.817474i \(-0.304626\pi\)
\(620\) −24.6732 −0.990901
\(621\) 0 0
\(622\) −16.4534 −0.659720
\(623\) 2.92959 + 16.6145i 0.117371 + 0.665647i
\(624\) 0 0
\(625\) −24.1942 + 8.80596i −0.967767 + 0.352238i
\(626\) 1.86824 + 1.56764i 0.0746699 + 0.0626555i
\(627\) 0 0
\(628\) −14.2386 5.18243i −0.568182 0.206801i
\(629\) −9.95723 17.2464i −0.397021 0.687660i
\(630\) 0 0
\(631\) −17.8810 + 30.9709i −0.711833 + 1.23293i 0.252336 + 0.967640i \(0.418801\pi\)
−0.964168 + 0.265291i \(0.914532\pi\)
\(632\) 2.75743 2.31376i 0.109685 0.0920362i
\(633\) 0 0
\(634\) −2.66964 + 15.1403i −0.106025 + 0.601296i
\(635\) −0.0282185 + 0.160035i −0.00111982 + 0.00635080i
\(636\) 0 0
\(637\) −4.11334 + 3.45150i −0.162976 + 0.136754i
\(638\) −0.479933 + 0.831268i −0.0190007 + 0.0329102i
\(639\) 0 0
\(640\) −13.2724 22.9885i −0.524639 0.908702i
\(641\) 2.74985 + 1.00086i 0.108612 + 0.0395317i 0.395755 0.918356i \(-0.370483\pi\)
−0.287142 + 0.957888i \(0.592705\pi\)
\(642\) 0 0
\(643\) −15.5137 13.0175i −0.611799 0.513361i 0.283414 0.958998i \(-0.408533\pi\)
−0.895214 + 0.445637i \(0.852977\pi\)
\(644\) 7.14600 2.60093i 0.281592 0.102491i
\(645\) 0 0
\(646\) −1.64749 9.34337i −0.0648196 0.367610i
\(647\) −10.7219 −0.421523 −0.210761 0.977538i \(-0.567594\pi\)
−0.210761 + 0.977538i \(0.567594\pi\)
\(648\) 0 0
\(649\) −0.832119 −0.0326635
\(650\) 3.70068 + 20.9876i 0.145153 + 0.823202i
\(651\) 0 0
\(652\) −15.8461 + 5.76751i −0.620582 + 0.225873i
\(653\) −27.3685 22.9649i −1.07101 0.898685i −0.0758669 0.997118i \(-0.524172\pi\)
−0.995144 + 0.0984334i \(0.968617\pi\)
\(654\) 0 0
\(655\) −66.8872 24.3449i −2.61350 0.951236i
\(656\) 0.121492 + 0.210430i 0.00474347 + 0.00821593i
\(657\) 0 0
\(658\) −7.10576 + 12.3075i −0.277011 + 0.479798i
\(659\) −23.6446 + 19.8401i −0.921061 + 0.772862i −0.974191 0.225726i \(-0.927525\pi\)
0.0531299 + 0.998588i \(0.483080\pi\)
\(660\) 0 0
\(661\) −1.71007 + 9.69831i −0.0665142 + 0.377221i 0.933321 + 0.359044i \(0.116897\pi\)
−0.999835 + 0.0181766i \(0.994214\pi\)
\(662\) −4.95666 + 28.1106i −0.192646 + 1.09255i
\(663\) 0 0
\(664\) −18.4231 + 15.4588i −0.714954 + 0.599918i
\(665\) −15.2404 + 26.3971i −0.590996 + 1.02363i
\(666\) 0 0
\(667\) −9.52956 16.5057i −0.368986 0.639103i
\(668\) 4.28446 + 1.55942i 0.165771 + 0.0603357i
\(669\) 0 0
\(670\) 15.3268 + 12.8607i 0.592127 + 0.496853i
\(671\) −0.577382 + 0.210150i −0.0222896 + 0.00811274i
\(672\) 0 0
\(673\) −3.42040 19.3980i −0.131847 0.747739i −0.977004 0.213222i \(-0.931604\pi\)
0.845157 0.534518i \(-0.179507\pi\)
\(674\) 7.28642 0.280662
\(675\) 0 0
\(676\) 8.81345 0.338979
\(677\) 4.94150 + 28.0247i 0.189917 + 1.07708i 0.919473 + 0.393153i \(0.128616\pi\)
−0.729555 + 0.683922i \(0.760273\pi\)
\(678\) 0 0
\(679\) −8.02064 + 2.91927i −0.307804 + 0.112031i
\(680\) −25.2973 21.2269i −0.970105 0.814015i
\(681\) 0 0
\(682\) −0.696242 0.253411i −0.0266605 0.00970362i
\(683\) 6.25537 + 10.8346i 0.239355 + 0.414575i 0.960529 0.278179i \(-0.0897307\pi\)
−0.721174 + 0.692754i \(0.756397\pi\)
\(684\) 0 0
\(685\) −27.7631 + 48.0871i −1.06077 + 1.83731i
\(686\) 13.5797 11.3947i 0.518474 0.435051i
\(687\) 0 0
\(688\) 0.0452926 0.256867i 0.00172677 0.00979297i
\(689\) −0.587811 + 3.33364i −0.0223938 + 0.127002i
\(690\) 0 0
\(691\) 32.6530 27.3991i 1.24218 1.04231i 0.244828 0.969566i \(-0.421268\pi\)
0.997351 0.0727455i \(-0.0231761\pi\)
\(692\) 0.956462 1.65664i 0.0363592 0.0629760i
\(693\) 0 0
\(694\) 6.57919 + 11.3955i 0.249743 + 0.432567i
\(695\) 38.2597 + 13.9254i 1.45127 + 0.528220i
\(696\) 0 0
\(697\) −13.3307 11.1858i −0.504936 0.423691i
\(698\) −27.8033 + 10.1196i −1.05237 + 0.383032i
\(699\) 0 0
\(700\) 4.67695 + 26.5243i 0.176772 + 1.00252i
\(701\) −51.7701 −1.95533 −0.977665 0.210167i \(-0.932599\pi\)
−0.977665 + 0.210167i \(0.932599\pi\)
\(702\) 0 0
\(703\) −23.8726 −0.900371
\(704\) −0.142275 0.806879i −0.00536217 0.0304104i
\(705\) 0 0
\(706\) −13.0181 + 4.73821i −0.489943 + 0.178325i
\(707\) −13.5797 11.3947i −0.510716 0.428541i
\(708\) 0 0
\(709\) −14.2442 5.18447i −0.534953 0.194707i 0.0603955 0.998175i \(-0.480764\pi\)
−0.595349 + 0.803468i \(0.702986\pi\)
\(710\) 26.1288 + 45.2564i 0.980597 + 1.69844i
\(711\) 0 0
\(712\) −10.9555 + 18.9754i −0.410574 + 0.711135i
\(713\) 11.2699 9.45658i 0.422062 0.354152i
\(714\) 0 0
\(715\) 0.263985 1.49713i 0.00987248 0.0559896i
\(716\) −2.59714 + 14.7291i −0.0970598 + 0.550454i
\(717\) 0 0
\(718\) −12.2103 + 10.2457i −0.455685 + 0.382365i
\(719\) −1.30747 + 2.26460i −0.0487603 + 0.0844553i −0.889375 0.457178i \(-0.848860\pi\)
0.840615 + 0.541633i \(0.182194\pi\)
\(720\) 0 0
\(721\) 20.3687 + 35.2796i 0.758570 + 1.31388i
\(722\) 5.01337 + 1.82472i 0.186578 + 0.0679089i
\(723\) 0 0
\(724\) 15.8550 + 13.3040i 0.589248 + 0.494438i
\(725\) 63.4313 23.0871i 2.35578 0.857433i
\(726\) 0 0
\(727\) −0.711829 4.03698i −0.0264003 0.149723i 0.968758 0.248007i \(-0.0797757\pi\)
−0.995158 + 0.0982840i \(0.968665\pi\)
\(728\) 14.9495 0.554067
\(729\) 0 0
\(730\) −29.6117 −1.09598
\(731\) 3.24376 + 18.3963i 0.119975 + 0.680410i
\(732\) 0 0
\(733\) 35.9038 13.0679i 1.32614 0.482674i 0.420717 0.907192i \(-0.361779\pi\)
0.905420 + 0.424518i \(0.139556\pi\)
\(734\) −12.8956 10.8207i −0.475985 0.399399i
\(735\) 0 0
\(736\) 15.0334 + 5.47172i 0.554140 + 0.201690i
\(737\) −0.476529 0.825373i −0.0175532 0.0304030i
\(738\) 0 0
\(739\) 12.1047 20.9660i 0.445279 0.771247i −0.552792 0.833319i \(-0.686438\pi\)
0.998072 + 0.0620725i \(0.0197710\pi\)
\(740\) −24.1989 + 20.3053i −0.889570 + 0.746438i
\(741\) 0 0
\(742\) 0.468322 2.65598i 0.0171926 0.0975042i
\(743\) 0.575017 3.26109i 0.0210953 0.119638i −0.972442 0.233146i \(-0.925098\pi\)
0.993537 + 0.113509i \(0.0362090\pi\)
\(744\) 0 0
\(745\) −3.77790 + 3.17004i −0.138412 + 0.116141i
\(746\) 6.70527 11.6139i 0.245497 0.425214i
\(747\) 0 0
\(748\) 0.299011 + 0.517902i 0.0109329 + 0.0189364i
\(749\) −15.5954 5.67626i −0.569843 0.207406i
\(750\) 0 0
\(751\) 10.5032 + 8.81327i 0.383269 + 0.321601i 0.813984 0.580887i \(-0.197294\pi\)
−0.430715 + 0.902488i \(0.641739\pi\)
\(752\) −0.291164 + 0.105975i −0.0106177 + 0.00386451i
\(753\) 0 0
\(754\) −2.47343 14.0275i −0.0900770 0.510852i
\(755\) −30.4807 −1.10931
\(756\) 0 0
\(757\) 12.3833 0.450079 0.225040 0.974350i \(-0.427749\pi\)
0.225040 + 0.974350i \(0.427749\pi\)
\(758\) 1.50376 + 8.52827i 0.0546192 + 0.309761i
\(759\) 0 0
\(760\) −37.1994 + 13.5395i −1.34936 + 0.491128i
\(761\) −5.80865 4.87404i −0.210563 0.176684i 0.531406 0.847117i \(-0.321664\pi\)
−0.741970 + 0.670433i \(0.766108\pi\)
\(762\) 0 0
\(763\) −32.1057 11.6855i −1.16230 0.423044i
\(764\) 10.7185 + 18.5650i 0.387783 + 0.671660i
\(765\) 0 0
\(766\) 12.4829 21.6211i 0.451026 0.781201i
\(767\) 9.45929 7.93729i 0.341555 0.286599i
\(768\) 0 0
\(769\) 0.558659 3.16831i 0.0201457 0.114252i −0.973077 0.230482i \(-0.925970\pi\)
0.993222 + 0.116230i \(0.0370809\pi\)
\(770\) −0.210323 + 1.19280i −0.00757950 + 0.0429855i
\(771\) 0 0
\(772\) 1.87211 1.57089i 0.0673788 0.0565375i
\(773\) −0.0922341 + 0.159754i −0.00331743 + 0.00574596i −0.867679 0.497124i \(-0.834389\pi\)
0.864362 + 0.502870i \(0.167723\pi\)
\(774\) 0 0
\(775\) 26.0526 + 45.1245i 0.935838 + 1.62092i
\(776\) −10.4168 3.79140i −0.373941 0.136103i
\(777\) 0 0
\(778\) −7.33228 6.15251i −0.262875 0.220578i
\(779\) −19.6027 + 7.13479i −0.702338 + 0.255630i
\(780\) 0 0
\(781\) −0.432257 2.45145i −0.0154674 0.0877197i
\(782\) 7.48576 0.267690
\(783\) 0 0
\(784\) 0.0932736 0.00333120
\(785\) 8.32114 + 47.1915i 0.296994 + 1.68434i
\(786\) 0 0
\(787\) 0.449188 0.163491i 0.0160118 0.00582783i −0.334002 0.942572i \(-0.608399\pi\)
0.350014 + 0.936745i \(0.386177\pi\)
\(788\) 19.9145 + 16.7102i 0.709424 + 0.595277i
\(789\) 0 0
\(790\) −4.06670 1.48016i −0.144687 0.0526617i
\(791\) 2.52687 + 4.37667i 0.0898453 + 0.155617i
\(792\) 0 0
\(793\) 4.55896 7.89636i 0.161894 0.280408i
\(794\) −12.1977 + 10.2351i −0.432882 + 0.363231i
\(795\) 0 0
\(796\) 0.656879 3.72534i 0.0232824 0.132041i
\(797\) −2.51770 + 14.2786i −0.0891816 + 0.505774i 0.907194 + 0.420712i \(0.138220\pi\)
−0.996376 + 0.0850617i \(0.972891\pi\)
\(798\) 0 0
\(799\) 16.9991 14.2640i 0.601386 0.504623i
\(800\) −28.3307 + 49.0702i −1.00164 + 1.73489i
\(801\) 0 0
\(802\) 0.630415 + 1.09191i 0.0222607 + 0.0385567i
\(803\) 1.32547 + 0.482433i 0.0467750 + 0.0170247i
\(804\) 0 0
\(805\) −18.4231 15.4588i −0.649328 0.544851i
\(806\) 10.3319 3.76049i 0.363925 0.132458i
\(807\) 0 0
\(808\) −3.99788 22.6731i −0.140645 0.797638i
\(809\) 14.8743 0.522954 0.261477 0.965210i \(-0.415790\pi\)
0.261477 + 0.965210i \(0.415790\pi\)
\(810\) 0 0
\(811\) 21.5963 0.758347 0.379174 0.925325i \(-0.376208\pi\)
0.379174 + 0.925325i \(0.376208\pi\)
\(812\) −3.12594 17.7281i −0.109699 0.622133i
\(813\) 0 0
\(814\) −0.891407 + 0.324446i −0.0312438 + 0.0113718i
\(815\) 40.8528 + 34.2796i 1.43101 + 1.20076i
\(816\) 0 0
\(817\) 21.0424 + 7.65879i 0.736179 + 0.267947i
\(818\) −3.78312 6.55255i −0.132274 0.229105i
\(819\) 0 0
\(820\) −13.8020 + 23.9058i −0.481987 + 0.834826i
\(821\) 2.51367 2.10922i 0.0877277 0.0736123i −0.597869 0.801594i \(-0.703986\pi\)
0.685597 + 0.727981i \(0.259541\pi\)
\(822\) 0 0
\(823\) 2.38444 13.5228i 0.0831163 0.471376i −0.914631 0.404290i \(-0.867519\pi\)
0.997747 0.0670860i \(-0.0213702\pi\)
\(824\) −9.18732 + 52.1039i −0.320055 + 1.81512i
\(825\) 0 0
\(826\) −7.53643 + 6.32381i −0.262226 + 0.220034i
\(827\) 10.1163 17.5220i 0.351779 0.609300i −0.634782 0.772691i \(-0.718910\pi\)
0.986561 + 0.163392i \(0.0522434\pi\)
\(828\) 0 0
\(829\) −12.7638 22.1076i −0.443306 0.767828i 0.554627 0.832099i \(-0.312861\pi\)
−0.997932 + 0.0642710i \(0.979528\pi\)
\(830\) 27.1707 + 9.88933i 0.943109 + 0.343264i
\(831\) 0 0
\(832\) 9.31386 + 7.81526i 0.322900 + 0.270945i
\(833\) −6.27719 + 2.28471i −0.217492 + 0.0791605i
\(834\) 0 0
\(835\) −2.50387 14.2002i −0.0866500 0.491417i
\(836\) 0.716881 0.0247939
\(837\) 0 0
\(838\) 10.8265 0.373994
\(839\) −3.01801 17.1160i −0.104193 0.590909i −0.991539 0.129805i \(-0.958565\pi\)
0.887346 0.461104i \(-0.152546\pi\)
\(840\) 0 0
\(841\) −15.1446 + 5.51217i −0.522226 + 0.190075i
\(842\) 7.48861 + 6.28369i 0.258074 + 0.216550i
\(843\) 0 0
\(844\) 1.16163 + 0.422797i 0.0399848 + 0.0145533i
\(845\) −13.9363 24.1384i −0.479423 0.830385i
\(846\) 0 0
\(847\) −11.9875 + 20.7630i −0.411896 + 0.713424i
\(848\) 0.0450442 0.0377966i 0.00154683 0.00129794i
\(849\) 0 0
\(850\) −4.60385 + 26.1097i −0.157911 + 0.895555i
\(851\) 3.27079 18.5496i 0.112121 0.635872i
\(852\) 0 0
\(853\) 10.1905 8.55082i 0.348915 0.292775i −0.451439 0.892302i \(-0.649089\pi\)
0.800354 + 0.599527i \(0.204645\pi\)
\(854\) −3.63223 + 6.29120i −0.124292 + 0.215280i
\(855\) 0 0
\(856\) −10.7772 18.6666i −0.368357 0.638013i
\(857\) −18.7199 6.81348i −0.639459 0.232744i 0.00188429 0.999998i \(-0.499400\pi\)
−0.641343 + 0.767254i \(0.721622\pi\)
\(858\) 0 0
\(859\) 20.1811 + 16.9340i 0.688572 + 0.577780i 0.918497 0.395428i \(-0.129404\pi\)
−0.229925 + 0.973208i \(0.573848\pi\)
\(860\) 27.8444 10.1345i 0.949485 0.345584i
\(861\) 0 0
\(862\) 5.63412 + 31.9527i 0.191899 + 1.08831i
\(863\) −38.2995 −1.30373 −0.651866 0.758334i \(-0.726013\pi\)
−0.651866 + 0.758334i \(0.726013\pi\)
\(864\) 0 0
\(865\) −6.04963 −0.205694
\(866\) −5.80247 32.9074i −0.197176 1.11824i
\(867\) 0 0
\(868\) 13.0575 4.75253i 0.443200 0.161311i
\(869\) 0.157918 + 0.132509i 0.00535701 + 0.00449506i
\(870\) 0 0
\(871\) 13.2900 + 4.83716i 0.450314 + 0.163901i
\(872\) −22.1866 38.4283i −0.751333 1.30135i
\(873\) 0 0
\(874\) 4.48680 7.77136i 0.151768 0.262870i
\(875\) 32.7859 27.5106i 1.10836 0.930028i
\(876\) 0 0
\(877\) −4.69846 + 26.6463i −0.158656 + 0.899782i 0.796711 + 0.604360i \(0.206571\pi\)
−0.955367 + 0.295422i \(0.904540\pi\)
\(878\) 0.0308505 0.174962i 0.00104116 0.00590468i
\(879\) 0 0
\(880\) −0.0202293 + 0.0169744i −0.000681930 + 0.000572207i
\(881\) 15.2888 26.4810i 0.515093 0.892167i −0.484754 0.874651i \(-0.661091\pi\)
0.999847 0.0175162i \(-0.00557586\pi\)
\(882\) 0 0
\(883\) −22.0526 38.1963i −0.742130 1.28541i −0.951524 0.307575i \(-0.900482\pi\)
0.209394 0.977831i \(-0.432851\pi\)
\(884\) −8.33915 3.03520i −0.280476 0.102085i
\(885\) 0 0
\(886\) −14.3011 12.0001i −0.480456 0.403150i
\(887\) −7.40895 + 2.69664i −0.248768 + 0.0905442i −0.463395 0.886152i \(-0.653369\pi\)
0.214627 + 0.976696i \(0.431147\pi\)
\(888\) 0 0
\(889\) −0.0158921 0.0901285i −0.000533004 0.00302281i
\(890\) 26.3432 0.883025
\(891\) 0 0
\(892\) −22.4287 −0.750969
\(893\) −4.61927 26.1972i −0.154578 0.876655i
\(894\) 0 0
\(895\) 44.4470 16.1774i 1.48570 0.540751i
\(896\) 11.4520 + 9.60938i 0.382585 + 0.321027i
\(897\) 0 0
\(898\) −27.4840 10.0033i −0.917152 0.333816i
\(899\) −17.4128 30.1599i −0.580750 1.00589i
\(900\) 0 0
\(901\) −2.10560 + 3.64701i −0.0701477 + 0.121499i
\(902\) −0.635001 + 0.532829i −0.0211432 + 0.0177413i
\(903\) 0 0
\(904\) −1.13975 + 6.46383i −0.0379075 + 0.214984i
\(905\) 11.3662 64.4608i 0.377825 2.14275i
\(906\) 0 0
\(907\) −9.88713 + 8.29628i −0.328297 + 0.275474i −0.792005 0.610514i \(-0.790963\pi\)
0.463709 + 0.885988i \(0.346518\pi\)
\(908\) 1.62226 2.80984i 0.0538367 0.0932479i
\(909\) 0 0
\(910\) −8.98680 15.5656i −0.297909 0.515994i
\(911\) 19.9081 + 7.24595i 0.659584 + 0.240069i 0.650057 0.759886i \(-0.274745\pi\)
0.00952715 + 0.999955i \(0.496967\pi\)
\(912\) 0 0
\(913\) −1.05509 0.885328i −0.0349185 0.0293001i
\(914\) 0.0282185 0.0102707i 0.000933385 0.000339724i
\(915\) 0 0
\(916\) 0.737627 + 4.18329i 0.0243719 + 0.138220i
\(917\) 40.0871 1.32379
\(918\) 0 0
\(919\) 31.4688 1.03806 0.519031 0.854756i \(-0.326293\pi\)
0.519031 + 0.854756i \(0.326293\pi\)
\(920\) −5.42380 30.7599i −0.178817 1.01412i
\(921\) 0 0
\(922\) −12.3840 + 4.50742i −0.407846 + 0.148444i
\(923\) 28.2973 + 23.7442i 0.931416 + 0.781550i
\(924\) 0 0
\(925\) 62.6878 + 22.8165i 2.06116 + 0.750202i
\(926\) 13.3853 + 23.1840i 0.439869 + 0.761875i
\(927\) 0 0
\(928\) 18.9354 32.7971i 0.621585 1.07662i
\(929\) 1.78240 1.49561i 0.0584788 0.0490695i −0.613080 0.790021i \(-0.710070\pi\)
0.671559 + 0.740951i \(0.265625\pi\)
\(930\) 0 0
\(931\) −1.39053 + 7.88609i −0.0455728 + 0.258456i
\(932\) 1.30483 7.40008i 0.0427413 0.242398i
\(933\) 0 0
\(934\) 0.344055 0.288696i 0.0112578 0.00944643i
\(935\) 0.945622 1.63787i 0.0309252 0.0535639i
\(936\) 0 0
\(937\) 5.49912 + 9.52476i 0.179649 + 0.311160i 0.941760 0.336285i \(-0.109171\pi\)
−0.762112 + 0.647446i \(0.775837\pi\)
\(938\) −10.5884 3.85387i −0.345724 0.125833i
\(939\) 0 0
\(940\) −26.9650 22.6263i −0.879500 0.737989i
\(941\) −22.6501 + 8.24395i −0.738371 + 0.268745i −0.683704 0.729759i \(-0.739632\pi\)
−0.0546673 + 0.998505i \(0.517410\pi\)
\(942\) 0 0
\(943\) −2.85814 16.2093i −0.0930737 0.527847i
\(944\) −0.214498 −0.00698131
\(945\) 0 0
\(946\) 0.889814 0.0289304
\(947\) 2.06980 + 11.7384i 0.0672596 + 0.381448i 0.999793 + 0.0203634i \(0.00648231\pi\)
−0.932533 + 0.361085i \(0.882407\pi\)
\(948\) 0 0
\(949\) −19.6694 + 7.15906i −0.638495 + 0.232393i
\(950\) 24.3464 + 20.4291i 0.789902 + 0.662807i
\(951\) 0 0
\(952\) 17.4764 + 6.36090i 0.566414 + 0.206158i
\(953\) −18.4145 31.8948i −0.596503 1.03317i −0.993333 0.115281i \(-0.963223\pi\)
0.396830 0.917892i \(-0.370110\pi\)
\(954\) 0 0
\(955\) 33.8974 58.7120i 1.09689 1.89988i
\(956\) −27.2053 + 22.8280i −0.879883 + 0.738310i
\(957\) 0 0
\(958\) 2.35937 13.3807i 0.0762279 0.432310i
\(959\) 5.43020 30.7962i 0.175350 0.994460i
\(960\) 0 0
\(961\) −3.15451 + 2.64695i −0.101759 + 0.0853856i
\(962\) 7.03849 12.1910i 0.226930 0.393054i
\(963\) 0 0
\(964\) 13.6934 + 23.7177i 0.441035 + 0.763895i
\(965\) −7.26264 2.64339i −0.233793 0.0850936i
\(966\) 0 0
\(967\) 41.0296 + 34.4279i 1.31942 + 1.10713i 0.986427 + 0.164200i \(0.0525042\pi\)
0.332996 + 0.942928i \(0.391940\pi\)
\(968\) −29.2597 + 10.6497i −0.940443 + 0.342293i
\(969\) 0 0
\(970\) 2.31433 + 13.1252i 0.0743087 + 0.421425i
\(971\) −53.2327 −1.70832 −0.854159 0.520012i \(-0.825927\pi\)
−0.854159 + 0.520012i \(0.825927\pi\)
\(972\) 0 0
\(973\) −22.9299 −0.735100
\(974\) 4.50640 + 25.5570i 0.144394 + 0.818901i
\(975\) 0 0
\(976\) −0.148833 + 0.0541709i −0.00476404 + 0.00173397i
\(977\) −10.3086 8.64998i −0.329803 0.276737i 0.462817 0.886454i \(-0.346839\pi\)
−0.792620 + 0.609717i \(0.791283\pi\)
\(978\) 0 0
\(979\) −1.17917 0.429182i −0.0376864 0.0137167i
\(980\) 5.29813 + 9.17664i 0.169243 + 0.293137i
\(981\) 0 0
\(982\) 0.948615 1.64305i 0.0302715 0.0524318i
\(983\) 7.84524 6.58294i 0.250224 0.209963i −0.509045 0.860740i \(-0.670001\pi\)
0.759269 + 0.650777i \(0.225557\pi\)
\(984\) 0 0
\(985\) 14.2763 80.9650i 0.454881 2.57976i
\(986\) 3.07708 17.4510i 0.0979941 0.555752i
\(987\) 0 0
\(988\) −8.14930 + 6.83807i −0.259264 + 0.217548i
\(989\) −8.83409 + 15.3011i −0.280908 + 0.486547i
\(990\) 0 0
\(991\) −1.00000 1.73205i −0.0317660 0.0550204i 0.849705 0.527258i \(-0.176780\pi\)
−0.881471 + 0.472237i \(0.843446\pi\)
\(992\) 27.4697 + 9.99816i 0.872165 + 0.317442i
\(993\) 0 0
\(994\) −22.5450 18.9175i −0.715085 0.600028i
\(995\) −11.2417 + 4.09164i −0.356386 + 0.129714i
\(996\) 0 0
\(997\) 6.68573 + 37.9166i 0.211739 + 1.20083i 0.886476 + 0.462774i \(0.153146\pi\)
−0.674737 + 0.738058i \(0.735743\pi\)
\(998\) 6.59121 0.208641
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.e.h.82.1 6
3.2 odd 2 729.2.e.c.82.1 6
9.2 odd 6 729.2.e.b.325.1 6
9.4 even 3 729.2.e.a.568.1 6
9.5 odd 6 729.2.e.i.568.1 6
9.7 even 3 729.2.e.g.325.1 6
27.2 odd 18 729.2.e.c.649.1 6
27.4 even 9 243.2.c.f.163.1 6
27.5 odd 18 243.2.a.f.1.1 yes 3
27.7 even 9 729.2.e.g.406.1 6
27.11 odd 18 729.2.e.i.163.1 6
27.13 even 9 243.2.c.f.82.1 6
27.14 odd 18 243.2.c.e.82.3 6
27.16 even 9 729.2.e.a.163.1 6
27.20 odd 18 729.2.e.b.406.1 6
27.22 even 9 243.2.a.e.1.3 3
27.23 odd 18 243.2.c.e.163.3 6
27.25 even 9 inner 729.2.e.h.649.1 6
108.59 even 18 3888.2.a.bk.1.3 3
108.103 odd 18 3888.2.a.bd.1.1 3
135.49 even 18 6075.2.a.bv.1.1 3
135.59 odd 18 6075.2.a.bq.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
243.2.a.e.1.3 3 27.22 even 9
243.2.a.f.1.1 yes 3 27.5 odd 18
243.2.c.e.82.3 6 27.14 odd 18
243.2.c.e.163.3 6 27.23 odd 18
243.2.c.f.82.1 6 27.13 even 9
243.2.c.f.163.1 6 27.4 even 9
729.2.e.a.163.1 6 27.16 even 9
729.2.e.a.568.1 6 9.4 even 3
729.2.e.b.325.1 6 9.2 odd 6
729.2.e.b.406.1 6 27.20 odd 18
729.2.e.c.82.1 6 3.2 odd 2
729.2.e.c.649.1 6 27.2 odd 18
729.2.e.g.325.1 6 9.7 even 3
729.2.e.g.406.1 6 27.7 even 9
729.2.e.h.82.1 6 1.1 even 1 trivial
729.2.e.h.649.1 6 27.25 even 9 inner
729.2.e.i.163.1 6 27.11 odd 18
729.2.e.i.568.1 6 9.5 odd 6
3888.2.a.bd.1.1 3 108.103 odd 18
3888.2.a.bk.1.3 3 108.59 even 18
6075.2.a.bq.1.3 3 135.59 odd 18
6075.2.a.bv.1.1 3 135.49 even 18