Properties

Label 729.2.g.d.190.5
Level $729$
Weight $2$
Character 729.190
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 190.5
Character \(\chi\) \(=\) 729.190
Dual form 729.2.g.d.541.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.197225 - 0.264919i) q^{2} +(0.542322 + 1.81148i) q^{4} +(-2.51951 - 1.65711i) q^{5} +(-0.00631548 - 0.00669402i) q^{7} +(1.20756 + 0.439517i) q^{8} +(-0.935909 + 0.340643i) q^{10} +(-3.18003 - 1.59707i) q^{11} +(1.40228 - 3.25085i) q^{13} +(-0.00301894 + 0.000352863i) q^{14} +(-2.80509 + 1.84493i) q^{16} +(-3.09319 - 2.59549i) q^{17} +(5.54096 - 4.64941i) q^{19} +(1.63544 - 5.46274i) q^{20} +(-1.05027 + 0.527467i) q^{22} +(3.52849 - 3.73998i) q^{23} +(1.62154 + 3.75915i) q^{25} +(-0.584647 - 1.01264i) q^{26} +(0.00870107 - 0.0150707i) q^{28} +(4.72215 + 0.551940i) q^{29} +(-8.79465 - 2.08437i) q^{31} +(-0.213914 + 3.67276i) q^{32} +(-1.29765 + 0.307548i) q^{34} +(0.00481921 + 0.0273311i) q^{35} +(0.0241986 - 0.137237i) q^{37} +(-0.138903 - 2.38488i) q^{38} +(-2.31414 - 3.10843i) q^{40} +(-2.15318 - 2.89222i) q^{41} +(-0.0714431 - 1.22663i) q^{43} +(1.16847 - 6.62670i) q^{44} +(-0.294886 - 1.67238i) q^{46} +(-1.01434 + 0.240402i) q^{47} +(0.407009 - 6.98807i) q^{49} +(1.31568 + 0.311821i) q^{50} +(6.64935 + 0.777197i) q^{52} +(1.88778 - 3.26973i) q^{53} +(5.36561 + 9.29351i) q^{55} +(-0.00468420 - 0.0108592i) q^{56} +(1.07754 - 1.14213i) q^{58} +(4.63792 - 2.32925i) q^{59} +(-1.96546 + 6.56510i) q^{61} +(-2.28671 + 1.91878i) q^{62} +(-4.21308 - 3.53519i) q^{64} +(-8.92009 + 5.86684i) q^{65} +(-8.26821 + 0.966415i) q^{67} +(3.02419 - 7.01085i) q^{68} +(0.00819099 + 0.00411367i) q^{70} +(-2.49894 + 0.909541i) q^{71} +(2.10657 + 0.766729i) q^{73} +(-0.0315840 - 0.0334771i) q^{74} +(11.4273 + 7.51586i) q^{76} +(0.00939260 + 0.0313735i) q^{77} +(-2.46941 + 3.31699i) q^{79} +10.1247 q^{80} -1.19086 q^{82} +(-7.70358 + 10.3477i) q^{83} +(3.49231 + 11.6651i) q^{85} +(-0.339047 - 0.222995i) q^{86} +(-3.13814 - 3.32624i) q^{88} +(-9.21313 - 3.35330i) q^{89} +(-0.0306173 + 0.0111438i) q^{91} +(8.68850 + 4.36353i) q^{92} +(-0.136365 + 0.316129i) q^{94} +(-21.6651 + 2.53229i) q^{95} +(13.1887 - 8.67437i) q^{97} +(-1.77100 - 1.48604i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} + 45 q^{20} + 9 q^{22} - 45 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{19}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.197225 0.264919i 0.139459 0.187326i −0.726907 0.686736i \(-0.759043\pi\)
0.866365 + 0.499411i \(0.166450\pi\)
\(3\) 0 0
\(4\) 0.542322 + 1.81148i 0.271161 + 0.905741i
\(5\) −2.51951 1.65711i −1.12676 0.741082i −0.157598 0.987503i \(-0.550375\pi\)
−0.969163 + 0.246421i \(0.920745\pi\)
\(6\) 0 0
\(7\) −0.00631548 0.00669402i −0.00238703 0.00253010i 0.726179 0.687506i \(-0.241294\pi\)
−0.728566 + 0.684976i \(0.759813\pi\)
\(8\) 1.20756 + 0.439517i 0.426938 + 0.155393i
\(9\) 0 0
\(10\) −0.935909 + 0.340643i −0.295961 + 0.107721i
\(11\) −3.18003 1.59707i −0.958815 0.481535i −0.100658 0.994921i \(-0.532095\pi\)
−0.858158 + 0.513386i \(0.828391\pi\)
\(12\) 0 0
\(13\) 1.40228 3.25085i 0.388923 0.901624i −0.605469 0.795869i \(-0.707015\pi\)
0.994392 0.105756i \(-0.0337261\pi\)
\(14\) −0.00301894 0.000352863i −0.000806845 9.43066e-5i
\(15\) 0 0
\(16\) −2.80509 + 1.84493i −0.701271 + 0.461233i
\(17\) −3.09319 2.59549i −0.750208 0.629500i 0.185350 0.982673i \(-0.440658\pi\)
−0.935558 + 0.353173i \(0.885103\pi\)
\(18\) 0 0
\(19\) 5.54096 4.64941i 1.27118 1.06665i 0.276786 0.960931i \(-0.410731\pi\)
0.994396 0.105717i \(-0.0337139\pi\)
\(20\) 1.63544 5.46274i 0.365695 1.22151i
\(21\) 0 0
\(22\) −1.05027 + 0.527467i −0.223919 + 0.112456i
\(23\) 3.52849 3.73998i 0.735742 0.779841i −0.246160 0.969229i \(-0.579169\pi\)
0.981902 + 0.189388i \(0.0606505\pi\)
\(24\) 0 0
\(25\) 1.62154 + 3.75915i 0.324308 + 0.751830i
\(26\) −0.584647 1.01264i −0.114659 0.198595i
\(27\) 0 0
\(28\) 0.00870107 0.0150707i 0.00164435 0.00284809i
\(29\) 4.72215 + 0.551940i 0.876882 + 0.102493i 0.542611 0.839984i \(-0.317436\pi\)
0.334271 + 0.942477i \(0.391510\pi\)
\(30\) 0 0
\(31\) −8.79465 2.08437i −1.57957 0.374364i −0.655074 0.755565i \(-0.727362\pi\)
−0.924492 + 0.381201i \(0.875511\pi\)
\(32\) −0.213914 + 3.67276i −0.0378150 + 0.649258i
\(33\) 0 0
\(34\) −1.29765 + 0.307548i −0.222545 + 0.0527440i
\(35\) 0.00481921 + 0.0273311i 0.000814596 + 0.00461980i
\(36\) 0 0
\(37\) 0.0241986 0.137237i 0.00397822 0.0225616i −0.982754 0.184918i \(-0.940798\pi\)
0.986732 + 0.162356i \(0.0519093\pi\)
\(38\) −0.138903 2.38488i −0.0225331 0.386879i
\(39\) 0 0
\(40\) −2.31414 3.10843i −0.365898 0.491486i
\(41\) −2.15318 2.89222i −0.336270 0.451689i 0.601538 0.798844i \(-0.294555\pi\)
−0.937808 + 0.347156i \(0.887148\pi\)
\(42\) 0 0
\(43\) −0.0714431 1.22663i −0.0108950 0.187059i −0.999365 0.0356406i \(-0.988653\pi\)
0.988470 0.151419i \(-0.0483842\pi\)
\(44\) 1.16847 6.62670i 0.176153 0.999012i
\(45\) 0 0
\(46\) −0.294886 1.67238i −0.0434785 0.246579i
\(47\) −1.01434 + 0.240402i −0.147956 + 0.0350662i −0.303926 0.952696i \(-0.598298\pi\)
0.155970 + 0.987762i \(0.450150\pi\)
\(48\) 0 0
\(49\) 0.407009 6.98807i 0.0581441 0.998296i
\(50\) 1.31568 + 0.311821i 0.186065 + 0.0440981i
\(51\) 0 0
\(52\) 6.64935 + 0.777197i 0.922099 + 0.107778i
\(53\) 1.88778 3.26973i 0.259307 0.449133i −0.706750 0.707464i \(-0.749839\pi\)
0.966056 + 0.258331i \(0.0831726\pi\)
\(54\) 0 0
\(55\) 5.36561 + 9.29351i 0.723499 + 1.25314i
\(56\) −0.00468420 0.0108592i −0.000625953 0.00145112i
\(57\) 0 0
\(58\) 1.07754 1.14213i 0.141488 0.149969i
\(59\) 4.63792 2.32925i 0.603806 0.303243i −0.120509 0.992712i \(-0.538453\pi\)
0.724315 + 0.689470i \(0.242156\pi\)
\(60\) 0 0
\(61\) −1.96546 + 6.56510i −0.251652 + 0.840575i 0.735047 + 0.678016i \(0.237160\pi\)
−0.986699 + 0.162559i \(0.948025\pi\)
\(62\) −2.28671 + 1.91878i −0.290412 + 0.243685i
\(63\) 0 0
\(64\) −4.21308 3.53519i −0.526635 0.441899i
\(65\) −8.92009 + 5.86684i −1.10640 + 0.727691i
\(66\) 0 0
\(67\) −8.26821 + 0.966415i −1.01012 + 0.118066i −0.605024 0.796207i \(-0.706837\pi\)
−0.405098 + 0.914273i \(0.632763\pi\)
\(68\) 3.02419 7.01085i 0.366736 0.850190i
\(69\) 0 0
\(70\) 0.00819099 + 0.00411367i 0.000979010 + 0.000491677i
\(71\) −2.49894 + 0.909541i −0.296570 + 0.107943i −0.486020 0.873948i \(-0.661552\pi\)
0.189450 + 0.981890i \(0.439330\pi\)
\(72\) 0 0
\(73\) 2.10657 + 0.766729i 0.246555 + 0.0897388i 0.462342 0.886702i \(-0.347009\pi\)
−0.215786 + 0.976441i \(0.569232\pi\)
\(74\) −0.0315840 0.0334771i −0.00367157 0.00389164i
\(75\) 0 0
\(76\) 11.4273 + 7.51586i 1.31080 + 0.862129i
\(77\) 0.00939260 + 0.0313735i 0.00107039 + 0.00357534i
\(78\) 0 0
\(79\) −2.46941 + 3.31699i −0.277830 + 0.373190i −0.919033 0.394181i \(-0.871028\pi\)
0.641203 + 0.767371i \(0.278436\pi\)
\(80\) 10.1247 1.13198
\(81\) 0 0
\(82\) −1.19086 −0.131509
\(83\) −7.70358 + 10.3477i −0.845578 + 1.13581i 0.143679 + 0.989624i \(0.454107\pi\)
−0.989257 + 0.146184i \(0.953301\pi\)
\(84\) 0 0
\(85\) 3.49231 + 11.6651i 0.378795 + 1.26526i
\(86\) −0.339047 0.222995i −0.0365604 0.0240462i
\(87\) 0 0
\(88\) −3.13814 3.32624i −0.334527 0.354578i
\(89\) −9.21313 3.35330i −0.976590 0.355450i −0.196076 0.980589i \(-0.562820\pi\)
−0.780513 + 0.625139i \(0.785042\pi\)
\(90\) 0 0
\(91\) −0.0306173 + 0.0111438i −0.00320957 + 0.00116819i
\(92\) 8.68850 + 4.36353i 0.905838 + 0.454929i
\(93\) 0 0
\(94\) −0.136365 + 0.316129i −0.0140650 + 0.0326062i
\(95\) −21.6651 + 2.53229i −2.22279 + 0.259807i
\(96\) 0 0
\(97\) 13.1887 8.67437i 1.33911 0.880749i 0.340876 0.940108i \(-0.389276\pi\)
0.998237 + 0.0593596i \(0.0189059\pi\)
\(98\) −1.77100 1.48604i −0.178898 0.150113i
\(99\) 0 0
\(100\) −5.93024 + 4.97606i −0.593024 + 0.497606i
\(101\) 5.52059 18.4401i 0.549319 1.83485i −0.00115077 0.999999i \(-0.500366\pi\)
0.550470 0.834855i \(-0.314449\pi\)
\(102\) 0 0
\(103\) 7.80287 3.91875i 0.768840 0.386126i −0.0207311 0.999785i \(-0.506599\pi\)
0.789571 + 0.613659i \(0.210303\pi\)
\(104\) 3.12214 3.30928i 0.306151 0.324502i
\(105\) 0 0
\(106\) −0.493896 1.14498i −0.0479715 0.111210i
\(107\) 7.06211 + 12.2319i 0.682720 + 1.18251i 0.974147 + 0.225913i \(0.0725365\pi\)
−0.291427 + 0.956593i \(0.594130\pi\)
\(108\) 0 0
\(109\) −3.80056 + 6.58277i −0.364028 + 0.630515i −0.988620 0.150437i \(-0.951932\pi\)
0.624592 + 0.780951i \(0.285265\pi\)
\(110\) 3.52025 + 0.411458i 0.335643 + 0.0392310i
\(111\) 0 0
\(112\) 0.0300655 + 0.00712565i 0.00284092 + 0.000673311i
\(113\) −1.12179 + 19.2605i −0.105529 + 1.81187i 0.366639 + 0.930363i \(0.380508\pi\)
−0.472169 + 0.881508i \(0.656529\pi\)
\(114\) 0 0
\(115\) −15.0877 + 3.57584i −1.40693 + 0.333449i
\(116\) 1.56110 + 8.85342i 0.144944 + 0.822020i
\(117\) 0 0
\(118\) 0.297650 1.68806i 0.0274009 0.155398i
\(119\) 0.00216069 + 0.0370976i 0.000198070 + 0.00340074i
\(120\) 0 0
\(121\) 0.993214 + 1.33412i 0.0902922 + 0.121283i
\(122\) 1.35158 + 1.81549i 0.122366 + 0.164366i
\(123\) 0 0
\(124\) −0.993734 17.0618i −0.0892400 1.53219i
\(125\) −0.474449 + 2.69073i −0.0424360 + 0.240667i
\(126\) 0 0
\(127\) −1.36077 7.71730i −0.120749 0.684800i −0.983742 0.179585i \(-0.942524\pi\)
0.862994 0.505214i \(-0.168587\pi\)
\(128\) −8.92709 + 2.11576i −0.789051 + 0.187008i
\(129\) 0 0
\(130\) −0.205027 + 3.52018i −0.0179821 + 0.308740i
\(131\) 4.20527 + 0.996668i 0.367417 + 0.0870793i 0.410177 0.912006i \(-0.365467\pi\)
−0.0427602 + 0.999085i \(0.513615\pi\)
\(132\) 0 0
\(133\) −0.0661171 0.00772798i −0.00573308 0.000670101i
\(134\) −1.37467 + 2.38100i −0.118754 + 0.205687i
\(135\) 0 0
\(136\) −2.59445 4.49373i −0.222473 0.385334i
\(137\) 0.0466346 + 0.108111i 0.00398426 + 0.00923656i 0.920197 0.391456i \(-0.128029\pi\)
−0.916212 + 0.400693i \(0.868769\pi\)
\(138\) 0 0
\(139\) −0.893528 + 0.947084i −0.0757881 + 0.0803307i −0.764158 0.645029i \(-0.776845\pi\)
0.688370 + 0.725360i \(0.258327\pi\)
\(140\) −0.0468963 + 0.0235522i −0.00396346 + 0.00199052i
\(141\) 0 0
\(142\) −0.251899 + 0.841400i −0.0211389 + 0.0706087i
\(143\) −9.65114 + 8.09827i −0.807069 + 0.677211i
\(144\) 0 0
\(145\) −10.9829 9.21575i −0.912081 0.765326i
\(146\) 0.618588 0.406852i 0.0511947 0.0336713i
\(147\) 0 0
\(148\) 0.261726 0.0305913i 0.0215137 0.00251459i
\(149\) −2.74784 + 6.37022i −0.225112 + 0.521869i −0.992916 0.118816i \(-0.962090\pi\)
0.767804 + 0.640685i \(0.221349\pi\)
\(150\) 0 0
\(151\) −8.43639 4.23692i −0.686544 0.344795i 0.0710946 0.997470i \(-0.477351\pi\)
−0.757639 + 0.652674i \(0.773647\pi\)
\(152\) 8.73454 3.17911i 0.708465 0.257860i
\(153\) 0 0
\(154\) 0.0101639 + 0.00369934i 0.000819027 + 0.000298102i
\(155\) 18.7042 + 19.8253i 1.50236 + 1.59241i
\(156\) 0 0
\(157\) −5.12881 3.37327i −0.409323 0.269216i 0.328105 0.944641i \(-0.393590\pi\)
−0.737429 + 0.675425i \(0.763960\pi\)
\(158\) 0.391704 + 1.30838i 0.0311623 + 0.104089i
\(159\) 0 0
\(160\) 6.62513 8.89909i 0.523762 0.703535i
\(161\) −0.0473197 −0.00372931
\(162\) 0 0
\(163\) 1.40640 0.110158 0.0550788 0.998482i \(-0.482459\pi\)
0.0550788 + 0.998482i \(0.482459\pi\)
\(164\) 4.07149 5.46896i 0.317930 0.427054i
\(165\) 0 0
\(166\) 1.22196 + 4.08164i 0.0948428 + 0.316797i
\(167\) 12.2870 + 8.08129i 0.950797 + 0.625349i 0.927278 0.374374i \(-0.122143\pi\)
0.0235192 + 0.999723i \(0.492513\pi\)
\(168\) 0 0
\(169\) 0.319491 + 0.338641i 0.0245762 + 0.0260493i
\(170\) 3.77908 + 1.37547i 0.289842 + 0.105494i
\(171\) 0 0
\(172\) 2.18327 0.794647i 0.166473 0.0605912i
\(173\) −6.85105 3.44072i −0.520875 0.261593i 0.168879 0.985637i \(-0.445985\pi\)
−0.689754 + 0.724043i \(0.742282\pi\)
\(174\) 0 0
\(175\) 0.0149230 0.0345954i 0.00112807 0.00261517i
\(176\) 11.8667 1.38702i 0.894490 0.104551i
\(177\) 0 0
\(178\) −2.70541 + 1.77937i −0.202779 + 0.133370i
\(179\) 4.59366 + 3.85454i 0.343347 + 0.288102i 0.798112 0.602509i \(-0.205832\pi\)
−0.454765 + 0.890611i \(0.650277\pi\)
\(180\) 0 0
\(181\) 7.92436 6.64933i 0.589013 0.494241i −0.298880 0.954291i \(-0.596613\pi\)
0.887893 + 0.460050i \(0.152169\pi\)
\(182\) −0.00308629 + 0.0103089i −0.000228771 + 0.000764149i
\(183\) 0 0
\(184\) 5.90466 2.96543i 0.435297 0.218615i
\(185\) −0.288385 + 0.305671i −0.0212025 + 0.0224734i
\(186\) 0 0
\(187\) 5.69125 + 13.1938i 0.416185 + 0.964826i
\(188\) −0.985580 1.70707i −0.0718808 0.124501i
\(189\) 0 0
\(190\) −3.60204 + 6.23892i −0.261320 + 0.452619i
\(191\) 15.7686 + 1.84308i 1.14097 + 0.133361i 0.665520 0.746380i \(-0.268210\pi\)
0.475454 + 0.879741i \(0.342284\pi\)
\(192\) 0 0
\(193\) 19.1266 + 4.53308i 1.37676 + 0.326298i 0.851371 0.524564i \(-0.175772\pi\)
0.525389 + 0.850862i \(0.323920\pi\)
\(194\) 0.303141 5.20474i 0.0217643 0.373678i
\(195\) 0 0
\(196\) 12.8795 3.05250i 0.919964 0.218036i
\(197\) −0.0147762 0.0837998i −0.00105276 0.00597049i 0.984277 0.176633i \(-0.0565204\pi\)
−0.985330 + 0.170662i \(0.945409\pi\)
\(198\) 0 0
\(199\) −3.10186 + 17.5915i −0.219885 + 1.24703i 0.652340 + 0.757927i \(0.273788\pi\)
−0.872225 + 0.489105i \(0.837324\pi\)
\(200\) 0.305900 + 5.25210i 0.0216304 + 0.371379i
\(201\) 0 0
\(202\) −3.79632 5.09934i −0.267108 0.358788i
\(203\) −0.0261280 0.0350959i −0.00183382 0.00246325i
\(204\) 0 0
\(205\) 0.632234 + 10.8550i 0.0441571 + 0.758149i
\(206\) 0.500769 2.84000i 0.0348902 0.197872i
\(207\) 0 0
\(208\) 2.06409 + 11.7060i 0.143119 + 0.811667i
\(209\) −25.0459 + 5.93598i −1.73246 + 0.410600i
\(210\) 0 0
\(211\) −0.453749 + 7.79057i −0.0312374 + 0.536325i 0.945999 + 0.324170i \(0.105085\pi\)
−0.977236 + 0.212154i \(0.931952\pi\)
\(212\) 6.94685 + 1.64643i 0.477112 + 0.113078i
\(213\) 0 0
\(214\) 4.63329 + 0.541554i 0.316725 + 0.0370199i
\(215\) −1.85266 + 3.20890i −0.126350 + 0.218845i
\(216\) 0 0
\(217\) 0.0415896 + 0.0720354i 0.00282329 + 0.00489008i
\(218\) 0.994333 + 2.30512i 0.0673447 + 0.156123i
\(219\) 0 0
\(220\) −13.9251 + 14.7598i −0.938832 + 0.995104i
\(221\) −12.7751 + 6.41589i −0.859345 + 0.431579i
\(222\) 0 0
\(223\) 6.44347 21.5227i 0.431486 1.44126i −0.415472 0.909606i \(-0.636384\pi\)
0.846959 0.531659i \(-0.178431\pi\)
\(224\) 0.0259365 0.0217633i 0.00173295 0.00145412i
\(225\) 0 0
\(226\) 4.88121 + 4.09582i 0.324693 + 0.272450i
\(227\) −13.5423 + 8.90691i −0.898834 + 0.591172i −0.912654 0.408732i \(-0.865971\pi\)
0.0138207 + 0.999904i \(0.495601\pi\)
\(228\) 0 0
\(229\) 14.4985 1.69463i 0.958088 0.111984i 0.377346 0.926072i \(-0.376837\pi\)
0.580742 + 0.814088i \(0.302763\pi\)
\(230\) −2.02835 + 4.70224i −0.133745 + 0.310057i
\(231\) 0 0
\(232\) 5.45970 + 2.74197i 0.358447 + 0.180019i
\(233\) −9.97733 + 3.63145i −0.653637 + 0.237904i −0.647487 0.762077i \(-0.724180\pi\)
−0.00615012 + 0.999981i \(0.501958\pi\)
\(234\) 0 0
\(235\) 2.95400 + 1.07517i 0.192698 + 0.0701363i
\(236\) 6.73464 + 7.13830i 0.438388 + 0.464664i
\(237\) 0 0
\(238\) 0.0102540 + 0.00674416i 0.000664668 + 0.000437159i
\(239\) −1.45377 4.85595i −0.0940369 0.314105i 0.898010 0.439975i \(-0.145013\pi\)
−0.992047 + 0.125870i \(0.959828\pi\)
\(240\) 0 0
\(241\) −0.212191 + 0.285023i −0.0136685 + 0.0183599i −0.808905 0.587940i \(-0.799939\pi\)
0.795236 + 0.606299i \(0.207347\pi\)
\(242\) 0.549319 0.0353116
\(243\) 0 0
\(244\) −12.9585 −0.829581
\(245\) −12.6055 + 16.9321i −0.805334 + 1.08175i
\(246\) 0 0
\(247\) −7.34458 24.5326i −0.467325 1.56097i
\(248\) −9.70397 6.38240i −0.616203 0.405283i
\(249\) 0 0
\(250\) 0.619252 + 0.656369i 0.0391650 + 0.0415124i
\(251\) 20.8143 + 7.57577i 1.31378 + 0.478179i 0.901462 0.432859i \(-0.142495\pi\)
0.412323 + 0.911038i \(0.364717\pi\)
\(252\) 0 0
\(253\) −17.1937 + 6.25801i −1.08096 + 0.393438i
\(254\) −2.31283 1.16155i −0.145120 0.0728820i
\(255\) 0 0
\(256\) 3.15657 7.31774i 0.197285 0.457359i
\(257\) 20.3852 2.38269i 1.27159 0.148628i 0.546606 0.837390i \(-0.315919\pi\)
0.724988 + 0.688762i \(0.241845\pi\)
\(258\) 0 0
\(259\) −0.00107149 0.000704731i −6.65793e−5 4.37899e-5i
\(260\) −15.4652 12.9769i −0.959113 0.804791i
\(261\) 0 0
\(262\) 1.09342 0.917488i 0.0675517 0.0566826i
\(263\) 6.36750 21.2689i 0.392637 1.31150i −0.502064 0.864831i \(-0.667426\pi\)
0.894700 0.446667i \(-0.147389\pi\)
\(264\) 0 0
\(265\) −10.1746 + 5.10988i −0.625021 + 0.313897i
\(266\) −0.0150872 + 0.0159915i −0.000925055 + 0.000980501i
\(267\) 0 0
\(268\) −6.23468 14.4536i −0.380843 0.882894i
\(269\) −8.77459 15.1980i −0.534996 0.926641i −0.999164 0.0408933i \(-0.986980\pi\)
0.464167 0.885748i \(-0.346354\pi\)
\(270\) 0 0
\(271\) 11.7223 20.3037i 0.712082 1.23336i −0.251992 0.967729i \(-0.581086\pi\)
0.964074 0.265633i \(-0.0855809\pi\)
\(272\) 13.4652 + 1.57385i 0.816446 + 0.0954288i
\(273\) 0 0
\(274\) 0.0378381 + 0.00896780i 0.00228589 + 0.000541765i
\(275\) 0.847087 14.5439i 0.0510813 0.877032i
\(276\) 0 0
\(277\) 0.335217 0.0794478i 0.0201412 0.00477356i −0.220533 0.975380i \(-0.570780\pi\)
0.240674 + 0.970606i \(0.422631\pi\)
\(278\) 0.0746746 + 0.423500i 0.00447868 + 0.0253999i
\(279\) 0 0
\(280\) −0.00619298 + 0.0351222i −0.000370102 + 0.00209895i
\(281\) −1.75863 30.1945i −0.104911 1.80125i −0.483145 0.875540i \(-0.660506\pi\)
0.378234 0.925710i \(-0.376531\pi\)
\(282\) 0 0
\(283\) −3.30186 4.43517i −0.196275 0.263643i 0.693080 0.720861i \(-0.256253\pi\)
−0.889355 + 0.457218i \(0.848846\pi\)
\(284\) −3.00285 4.03353i −0.178186 0.239346i
\(285\) 0 0
\(286\) 0.241940 + 4.15394i 0.0143062 + 0.245628i
\(287\) −0.00576222 + 0.0326792i −0.000340133 + 0.00192899i
\(288\) 0 0
\(289\) −0.120790 0.685032i −0.00710527 0.0402960i
\(290\) −4.60752 + 1.09200i −0.270563 + 0.0641246i
\(291\) 0 0
\(292\) −0.246476 + 4.23183i −0.0144239 + 0.247649i
\(293\) −19.4630 4.61281i −1.13704 0.269483i −0.381361 0.924426i \(-0.624544\pi\)
−0.755678 + 0.654943i \(0.772693\pi\)
\(294\) 0 0
\(295\) −15.5451 1.81697i −0.905072 0.105788i
\(296\) 0.0895392 0.155086i 0.00520436 0.00901421i
\(297\) 0 0
\(298\) 1.14565 + 1.98432i 0.0663655 + 0.114948i
\(299\) −7.21020 16.7151i −0.416977 0.966660i
\(300\) 0 0
\(301\) −0.00775989 + 0.00822500i −0.000447272 + 0.000474081i
\(302\) −2.78630 + 1.39933i −0.160334 + 0.0805226i
\(303\) 0 0
\(304\) −6.96499 + 23.2647i −0.399470 + 1.33432i
\(305\) 15.8311 13.2839i 0.906487 0.760632i
\(306\) 0 0
\(307\) 0.858198 + 0.720114i 0.0489799 + 0.0410991i 0.666949 0.745103i \(-0.267600\pi\)
−0.617969 + 0.786202i \(0.712044\pi\)
\(308\) −0.0517386 + 0.0340290i −0.00294808 + 0.00193898i
\(309\) 0 0
\(310\) 8.94102 1.04506i 0.507816 0.0593552i
\(311\) −0.326814 + 0.757641i −0.0185319 + 0.0429619i −0.927231 0.374490i \(-0.877818\pi\)
0.908699 + 0.417452i \(0.137077\pi\)
\(312\) 0 0
\(313\) 1.04206 + 0.523341i 0.0589006 + 0.0295810i 0.478006 0.878357i \(-0.341360\pi\)
−0.419105 + 0.907938i \(0.637656\pi\)
\(314\) −1.90517 + 0.693424i −0.107515 + 0.0391322i
\(315\) 0 0
\(316\) −7.34788 2.67441i −0.413351 0.150447i
\(317\) 3.18438 + 3.37524i 0.178853 + 0.189573i 0.810598 0.585604i \(-0.199142\pi\)
−0.631745 + 0.775176i \(0.717661\pi\)
\(318\) 0 0
\(319\) −14.1351 9.29680i −0.791414 0.520521i
\(320\) 4.75670 + 15.8885i 0.265908 + 0.888194i
\(321\) 0 0
\(322\) −0.00933260 + 0.0125359i −0.000520085 + 0.000698596i
\(323\) −29.2067 −1.62511
\(324\) 0 0
\(325\) 14.4943 0.803999
\(326\) 0.277376 0.372581i 0.0153624 0.0206353i
\(327\) 0 0
\(328\) −1.32892 4.43889i −0.0733771 0.245097i
\(329\) 0.00801527 + 0.00527172i 0.000441896 + 0.000290640i
\(330\) 0 0
\(331\) 4.56840 + 4.84222i 0.251102 + 0.266152i 0.840648 0.541583i \(-0.182175\pi\)
−0.589546 + 0.807735i \(0.700693\pi\)
\(332\) −22.9225 8.34311i −1.25804 0.457888i
\(333\) 0 0
\(334\) 4.56418 1.66123i 0.249741 0.0908982i
\(335\) 22.4333 + 11.2664i 1.22566 + 0.615551i
\(336\) 0 0
\(337\) −6.57079 + 15.2328i −0.357934 + 0.829784i 0.640170 + 0.768233i \(0.278864\pi\)
−0.998104 + 0.0615509i \(0.980395\pi\)
\(338\) 0.152724 0.0178508i 0.00830707 0.000970958i
\(339\) 0 0
\(340\) −19.2372 + 12.6525i −1.04329 + 0.686180i
\(341\) 24.6384 + 20.6741i 1.33424 + 1.11956i
\(342\) 0 0
\(343\) −0.0986981 + 0.0828175i −0.00532920 + 0.00447173i
\(344\) 0.452852 1.51263i 0.0244162 0.0815557i
\(345\) 0 0
\(346\) −2.26271 + 1.13637i −0.121644 + 0.0610918i
\(347\) −9.41754 + 9.98201i −0.505560 + 0.535862i −0.929009 0.370058i \(-0.879338\pi\)
0.423449 + 0.905920i \(0.360819\pi\)
\(348\) 0 0
\(349\) −5.59590 12.9727i −0.299542 0.694415i 0.700269 0.713879i \(-0.253063\pi\)
−0.999811 + 0.0194637i \(0.993804\pi\)
\(350\) −0.00622179 0.0107765i −0.000332569 0.000576026i
\(351\) 0 0
\(352\) 6.54591 11.3378i 0.348898 0.604309i
\(353\) −9.19481 1.07472i −0.489390 0.0572015i −0.132181 0.991226i \(-0.542198\pi\)
−0.357210 + 0.934024i \(0.616272\pi\)
\(354\) 0 0
\(355\) 7.80333 + 1.84942i 0.414158 + 0.0981572i
\(356\) 1.07797 18.5080i 0.0571322 0.980921i
\(357\) 0 0
\(358\) 1.92712 0.456736i 0.101852 0.0241393i
\(359\) −3.82037 21.6664i −0.201631 1.14351i −0.902653 0.430368i \(-0.858384\pi\)
0.701022 0.713140i \(-0.252727\pi\)
\(360\) 0 0
\(361\) 5.78583 32.8131i 0.304517 1.72700i
\(362\) −0.198652 3.41072i −0.0104409 0.179264i
\(363\) 0 0
\(364\) −0.0367913 0.0494192i −0.00192839 0.00259027i
\(365\) −4.03698 5.42260i −0.211305 0.283832i
\(366\) 0 0
\(367\) 1.14897 + 19.7270i 0.0599757 + 1.02974i 0.885281 + 0.465056i \(0.153966\pi\)
−0.825305 + 0.564687i \(0.808997\pi\)
\(368\) −2.99770 + 17.0008i −0.156266 + 0.886229i
\(369\) 0 0
\(370\) 0.0241011 + 0.136684i 0.00125296 + 0.00710588i
\(371\) −0.0338099 + 0.00801310i −0.00175532 + 0.000416019i
\(372\) 0 0
\(373\) −0.431505 + 7.40865i −0.0223425 + 0.383605i 0.968538 + 0.248864i \(0.0800573\pi\)
−0.990881 + 0.134741i \(0.956980\pi\)
\(374\) 4.61773 + 1.09442i 0.238777 + 0.0565913i
\(375\) 0 0
\(376\) −1.33053 0.155517i −0.0686170 0.00802018i
\(377\) 8.41606 14.5770i 0.433449 0.750756i
\(378\) 0 0
\(379\) 4.80243 + 8.31805i 0.246684 + 0.427269i 0.962604 0.270913i \(-0.0873257\pi\)
−0.715920 + 0.698183i \(0.753992\pi\)
\(380\) −16.3367 37.8727i −0.838053 1.94283i
\(381\) 0 0
\(382\) 3.59822 3.81389i 0.184101 0.195135i
\(383\) 8.16588 4.10106i 0.417257 0.209554i −0.227769 0.973715i \(-0.573143\pi\)
0.645026 + 0.764161i \(0.276847\pi\)
\(384\) 0 0
\(385\) 0.0283245 0.0946105i 0.00144355 0.00482180i
\(386\) 4.97312 4.17295i 0.253125 0.212397i
\(387\) 0 0
\(388\) 22.8660 + 19.1869i 1.16085 + 0.974065i
\(389\) 13.3115 8.75510i 0.674919 0.443901i −0.165231 0.986255i \(-0.552837\pi\)
0.840150 + 0.542353i \(0.182467\pi\)
\(390\) 0 0
\(391\) −20.6214 + 2.41030i −1.04287 + 0.121894i
\(392\) 3.56286 8.25964i 0.179952 0.417175i
\(393\) 0 0
\(394\) −0.0251143 0.0126129i −0.00126524 0.000635428i
\(395\) 11.7183 4.26512i 0.589613 0.214602i
\(396\) 0 0
\(397\) −5.92327 2.15589i −0.297280 0.108201i 0.189074 0.981963i \(-0.439451\pi\)
−0.486354 + 0.873762i \(0.661674\pi\)
\(398\) 4.04856 + 4.29122i 0.202936 + 0.215100i
\(399\) 0 0
\(400\) −11.4839 7.55310i −0.574197 0.377655i
\(401\) −9.17353 30.6417i −0.458104 1.53017i −0.805581 0.592485i \(-0.798147\pi\)
0.347477 0.937688i \(-0.387038\pi\)
\(402\) 0 0
\(403\) −19.1086 + 25.6672i −0.951865 + 1.27858i
\(404\) 36.3978 1.81086
\(405\) 0 0
\(406\) −0.0144506 −0.000717173
\(407\) −0.296129 + 0.397771i −0.0146786 + 0.0197168i
\(408\) 0 0
\(409\) −10.2848 34.3537i −0.508552 1.69868i −0.697405 0.716677i \(-0.745662\pi\)
0.188853 0.982005i \(-0.439523\pi\)
\(410\) 3.00039 + 1.97339i 0.148179 + 0.0974588i
\(411\) 0 0
\(412\) 11.3304 + 12.0095i 0.558210 + 0.591668i
\(413\) −0.0448827 0.0163360i −0.00220853 0.000803841i
\(414\) 0 0
\(415\) 36.5566 13.3055i 1.79449 0.653142i
\(416\) 11.6396 + 5.84564i 0.570680 + 0.286606i
\(417\) 0 0
\(418\) −3.36711 + 7.80583i −0.164691 + 0.381796i
\(419\) 7.19967 0.841521i 0.351727 0.0411110i 0.0616049 0.998101i \(-0.480378\pi\)
0.290122 + 0.956990i \(0.406304\pi\)
\(420\) 0 0
\(421\) 2.42843 1.59720i 0.118354 0.0778428i −0.488952 0.872311i \(-0.662621\pi\)
0.607306 + 0.794468i \(0.292250\pi\)
\(422\) 1.97437 + 1.65670i 0.0961111 + 0.0806467i
\(423\) 0 0
\(424\) 3.71672 3.11870i 0.180500 0.151457i
\(425\) 4.74112 15.8364i 0.229978 0.768181i
\(426\) 0 0
\(427\) 0.0563597 0.0283049i 0.00272744 0.00136977i
\(428\) −18.3280 + 19.4265i −0.885917 + 0.939017i
\(429\) 0 0
\(430\) 0.484707 + 1.12368i 0.0233747 + 0.0541886i
\(431\) −0.349866 0.605986i −0.0168525 0.0291893i 0.857476 0.514524i \(-0.172031\pi\)
−0.874329 + 0.485334i \(0.838698\pi\)
\(432\) 0 0
\(433\) −8.81031 + 15.2599i −0.423397 + 0.733344i −0.996269 0.0863000i \(-0.972496\pi\)
0.572873 + 0.819644i \(0.305829\pi\)
\(434\) 0.0272860 + 0.00318928i 0.00130977 + 0.000153090i
\(435\) 0 0
\(436\) −13.9857 3.31467i −0.669793 0.158744i
\(437\) 2.16249 37.1285i 0.103446 1.77610i
\(438\) 0 0
\(439\) 23.4934 5.56804i 1.12128 0.265748i 0.372151 0.928172i \(-0.378620\pi\)
0.749129 + 0.662424i \(0.230472\pi\)
\(440\) 2.39465 + 13.5808i 0.114161 + 0.647437i
\(441\) 0 0
\(442\) −0.819872 + 4.64973i −0.0389974 + 0.221165i
\(443\) 0.397074 + 6.81750i 0.0188656 + 0.323909i 0.994516 + 0.104580i \(0.0333498\pi\)
−0.975651 + 0.219329i \(0.929613\pi\)
\(444\) 0 0
\(445\) 17.6558 + 23.7159i 0.836966 + 1.12424i
\(446\) −4.43095 5.95179i −0.209811 0.281826i
\(447\) 0 0
\(448\) 0.00294297 + 0.0505288i 0.000139042 + 0.00238726i
\(449\) 0.451728 2.56188i 0.0213184 0.120902i −0.972291 0.233772i \(-0.924893\pi\)
0.993610 + 0.112870i \(0.0360042\pi\)
\(450\) 0 0
\(451\) 2.22809 + 12.6361i 0.104917 + 0.595012i
\(452\) −35.4983 + 8.41326i −1.66970 + 0.395727i
\(453\) 0 0
\(454\) −0.311268 + 5.34427i −0.0146085 + 0.250819i
\(455\) 0.0956074 + 0.0226594i 0.00448214 + 0.00106229i
\(456\) 0 0
\(457\) −7.71397 0.901634i −0.360844 0.0421767i −0.0662607 0.997802i \(-0.521107\pi\)
−0.294584 + 0.955626i \(0.595181\pi\)
\(458\) 2.41052 4.17515i 0.112636 0.195092i
\(459\) 0 0
\(460\) −14.6599 25.3918i −0.683523 1.18390i
\(461\) 0.268889 + 0.623356i 0.0125234 + 0.0290326i 0.924363 0.381514i \(-0.124597\pi\)
−0.911840 + 0.410547i \(0.865338\pi\)
\(462\) 0 0
\(463\) 13.8822 14.7142i 0.645159 0.683829i −0.319423 0.947612i \(-0.603489\pi\)
0.964582 + 0.263783i \(0.0849704\pi\)
\(464\) −14.2643 + 7.16382i −0.662205 + 0.332572i
\(465\) 0 0
\(466\) −1.00574 + 3.35939i −0.0465898 + 0.155621i
\(467\) 6.20374 5.20555i 0.287075 0.240884i −0.487866 0.872919i \(-0.662224\pi\)
0.774940 + 0.632035i \(0.217780\pi\)
\(468\) 0 0
\(469\) 0.0586869 + 0.0492442i 0.00270991 + 0.00227388i
\(470\) 0.867435 0.570521i 0.0400118 0.0263162i
\(471\) 0 0
\(472\) 6.62432 0.774272i 0.304909 0.0356387i
\(473\) −1.73182 + 4.01482i −0.0796294 + 0.184602i
\(474\) 0 0
\(475\) 26.4627 + 13.2901i 1.21419 + 0.609791i
\(476\) −0.0660299 + 0.0240329i −0.00302648 + 0.00110155i
\(477\) 0 0
\(478\) −1.57315 0.572580i −0.0719542 0.0261892i
\(479\) 19.9734 + 21.1705i 0.912606 + 0.967306i 0.999582 0.0289044i \(-0.00920184\pi\)
−0.0869760 + 0.996210i \(0.527720\pi\)
\(480\) 0 0
\(481\) −0.412204 0.271111i −0.0187949 0.0123616i
\(482\) 0.0336584 + 0.112427i 0.00153310 + 0.00512090i
\(483\) 0 0
\(484\) −1.87809 + 2.52271i −0.0853677 + 0.114669i
\(485\) −47.6036 −2.16157
\(486\) 0 0
\(487\) 3.59484 0.162898 0.0814489 0.996678i \(-0.474045\pi\)
0.0814489 + 0.996678i \(0.474045\pi\)
\(488\) −5.25889 + 7.06391i −0.238059 + 0.319768i
\(489\) 0 0
\(490\) 1.99952 + 6.67885i 0.0903289 + 0.301720i
\(491\) 28.0965 + 18.4794i 1.26798 + 0.833963i 0.991881 0.127167i \(-0.0405883\pi\)
0.276098 + 0.961130i \(0.410959\pi\)
\(492\) 0 0
\(493\) −13.1739 13.9636i −0.593325 0.628888i
\(494\) −7.94768 2.89272i −0.357583 0.130150i
\(495\) 0 0
\(496\) 28.5153 10.3787i 1.28037 0.466018i
\(497\) 0.0218705 + 0.0109838i 0.000981026 + 0.000492690i
\(498\) 0 0
\(499\) −5.43495 + 12.5996i −0.243302 + 0.564037i −0.995485 0.0949171i \(-0.969741\pi\)
0.752184 + 0.658954i \(0.229001\pi\)
\(500\) −5.13152 + 0.599789i −0.229489 + 0.0268234i
\(501\) 0 0
\(502\) 6.11205 4.01996i 0.272794 0.179419i
\(503\) −2.12583 1.78378i −0.0947859 0.0795348i 0.594163 0.804344i \(-0.297483\pi\)
−0.688949 + 0.724810i \(0.741928\pi\)
\(504\) 0 0
\(505\) −44.4664 + 37.3118i −1.97873 + 1.66035i
\(506\) −1.73316 + 5.78917i −0.0770486 + 0.257360i
\(507\) 0 0
\(508\) 13.2418 6.65027i 0.587509 0.295058i
\(509\) 5.02620 5.32746i 0.222783 0.236136i −0.606336 0.795209i \(-0.707361\pi\)
0.829119 + 0.559073i \(0.188843\pi\)
\(510\) 0 0
\(511\) −0.00817150 0.0189437i −0.000361486 0.000838019i
\(512\) −10.4904 18.1700i −0.463616 0.803007i
\(513\) 0 0
\(514\) 3.38924 5.87034i 0.149493 0.258930i
\(515\) −26.1533 3.05688i −1.15245 0.134702i
\(516\) 0 0
\(517\) 3.60956 + 0.855481i 0.158748 + 0.0376240i
\(518\) −2.46281e−5 0 0.000422848i −1.08210e−6 0 1.85789e-5i
\(519\) 0 0
\(520\) −13.3501 + 3.16404i −0.585442 + 0.138752i
\(521\) −6.17963 35.0464i −0.270734 1.53541i −0.752193 0.658942i \(-0.771004\pi\)
0.481459 0.876469i \(-0.340107\pi\)
\(522\) 0 0
\(523\) −5.30847 + 30.1059i −0.232123 + 1.31644i 0.616465 + 0.787383i \(0.288564\pi\)
−0.848588 + 0.529054i \(0.822547\pi\)
\(524\) 0.475167 + 8.15829i 0.0207577 + 0.356397i
\(525\) 0 0
\(526\) −4.37870 5.88162i −0.190921 0.256451i
\(527\) 21.7935 + 29.2738i 0.949342 + 1.27519i
\(528\) 0 0
\(529\) −0.199888 3.43194i −0.00869077 0.149215i
\(530\) −0.652980 + 3.70324i −0.0283637 + 0.160858i
\(531\) 0 0
\(532\) −0.0218577 0.123961i −0.000947650 0.00537439i
\(533\) −12.4215 + 2.94396i −0.538036 + 0.127517i
\(534\) 0 0
\(535\) 2.47658 42.5212i 0.107072 1.83835i
\(536\) −10.4091 2.46701i −0.449606 0.106559i
\(537\) 0 0
\(538\) −5.75681 0.672874i −0.248194 0.0290097i
\(539\) −12.4548 + 21.5723i −0.536464 + 0.929183i
\(540\) 0 0
\(541\) −14.2816 24.7364i −0.614012 1.06350i −0.990557 0.137102i \(-0.956221\pi\)
0.376545 0.926398i \(-0.377112\pi\)
\(542\) −3.06689 7.10986i −0.131734 0.305394i
\(543\) 0 0
\(544\) 10.1943 10.8053i 0.437077 0.463274i
\(545\) 20.4840 10.2874i 0.877436 0.440665i
\(546\) 0 0
\(547\) 8.57611 28.6462i 0.366688 1.22482i −0.553335 0.832959i \(-0.686645\pi\)
0.920023 0.391864i \(-0.128170\pi\)
\(548\) −0.170550 + 0.143109i −0.00728555 + 0.00611331i
\(549\) 0 0
\(550\) −3.68589 3.09283i −0.157167 0.131879i
\(551\) 28.7314 18.8970i 1.22400 0.805038i
\(552\) 0 0
\(553\) 0.0377995 0.00441812i 0.00160740 0.000187878i
\(554\) 0.0450658 0.104474i 0.00191466 0.00443868i
\(555\) 0 0
\(556\) −2.20021 1.10499i −0.0933095 0.0468618i
\(557\) −11.4069 + 4.15178i −0.483327 + 0.175917i −0.572180 0.820128i \(-0.693902\pi\)
0.0888529 + 0.996045i \(0.471680\pi\)
\(558\) 0 0
\(559\) −4.08778 1.48783i −0.172895 0.0629285i
\(560\) −0.0639424 0.0677750i −0.00270206 0.00286402i
\(561\) 0 0
\(562\) −8.34591 5.48919i −0.352051 0.231548i
\(563\) 5.27258 + 17.6116i 0.222213 + 0.742242i 0.994290 + 0.106713i \(0.0340327\pi\)
−0.772077 + 0.635529i \(0.780782\pi\)
\(564\) 0 0
\(565\) 34.7431 46.6681i 1.46165 1.96334i
\(566\) −1.82617 −0.0767595
\(567\) 0 0
\(568\) −3.41739 −0.143390
\(569\) 5.09492 6.84367i 0.213590 0.286901i −0.682397 0.730982i \(-0.739062\pi\)
0.895987 + 0.444081i \(0.146470\pi\)
\(570\) 0 0
\(571\) 11.8721 + 39.6555i 0.496830 + 1.65953i 0.727200 + 0.686426i \(0.240821\pi\)
−0.230370 + 0.973103i \(0.573994\pi\)
\(572\) −19.9039 13.0910i −0.832224 0.547362i
\(573\) 0 0
\(574\) 0.00752086 + 0.00797165i 0.000313915 + 0.000332730i
\(575\) 19.7808 + 7.19960i 0.824914 + 0.300244i
\(576\) 0 0
\(577\) −41.2655 + 15.0194i −1.71791 + 0.625266i −0.997655 0.0684479i \(-0.978195\pi\)
−0.720250 + 0.693714i \(0.755973\pi\)
\(578\) −0.205300 0.103106i −0.00853936 0.00428863i
\(579\) 0 0
\(580\) 10.7379 24.8932i 0.445867 1.03364i
\(581\) 0.117920 0.0137828i 0.00489213 0.000571808i
\(582\) 0 0
\(583\) −11.2252 + 7.38293i −0.464901 + 0.305770i
\(584\) 2.20682 + 1.85174i 0.0913190 + 0.0766258i
\(585\) 0 0
\(586\) −5.06059 + 4.24634i −0.209051 + 0.175415i
\(587\) −3.77189 + 12.5990i −0.155683 + 0.520016i −0.999872 0.0160298i \(-0.994897\pi\)
0.844189 + 0.536046i \(0.180083\pi\)
\(588\) 0 0
\(589\) −58.4219 + 29.3406i −2.40723 + 1.20896i
\(590\) −3.54723 + 3.75984i −0.146037 + 0.154790i
\(591\) 0 0
\(592\) 0.185314 + 0.429606i 0.00761636 + 0.0176567i
\(593\) 10.7252 + 18.5766i 0.440432 + 0.762850i 0.997721 0.0674679i \(-0.0214920\pi\)
−0.557290 + 0.830318i \(0.688159\pi\)
\(594\) 0 0
\(595\) 0.0560310 0.0970486i 0.00229705 0.00397860i
\(596\) −13.0298 1.52296i −0.533719 0.0623829i
\(597\) 0 0
\(598\) −5.85017 1.38652i −0.239231 0.0566989i
\(599\) −1.30398 + 22.3884i −0.0532790 + 0.914766i 0.860727 + 0.509066i \(0.170009\pi\)
−0.914007 + 0.405700i \(0.867028\pi\)
\(600\) 0 0
\(601\) 9.25757 2.19409i 0.377624 0.0894986i −0.0374204 0.999300i \(-0.511914\pi\)
0.415045 + 0.909801i \(0.363766\pi\)
\(602\) 0.000648515 0.00367791i 2.64315e−5 0.000149900i
\(603\) 0 0
\(604\) 3.09986 17.5802i 0.126131 0.715326i
\(605\) −0.291636 5.00720i −0.0118567 0.203572i
\(606\) 0 0
\(607\) 14.6385 + 19.6629i 0.594157 + 0.798091i 0.992898 0.118972i \(-0.0379600\pi\)
−0.398741 + 0.917064i \(0.630553\pi\)
\(608\) 15.8909 + 21.3452i 0.644461 + 0.865661i
\(609\) 0 0
\(610\) −0.396862 6.81386i −0.0160685 0.275885i
\(611\) −0.640872 + 3.63457i −0.0259269 + 0.147039i
\(612\) 0 0
\(613\) −1.29645 7.35253i −0.0523631 0.296966i 0.947368 0.320146i \(-0.103732\pi\)
−0.999731 + 0.0231801i \(0.992621\pi\)
\(614\) 0.360029 0.0853285i 0.0145296 0.00344358i
\(615\) 0 0
\(616\) −0.00244701 + 0.0420136i −9.85930e−5 + 0.00169278i
\(617\) 13.9222 + 3.29962i 0.560486 + 0.132838i 0.501087 0.865397i \(-0.332934\pi\)
0.0593988 + 0.998234i \(0.481082\pi\)
\(618\) 0 0
\(619\) 4.14941 + 0.484997i 0.166779 + 0.0194937i 0.199073 0.979985i \(-0.436207\pi\)
−0.0322935 + 0.999478i \(0.510281\pi\)
\(620\) −25.7695 + 44.6341i −1.03493 + 1.79255i
\(621\) 0 0
\(622\) 0.136257 + 0.236004i 0.00546342 + 0.00946292i
\(623\) 0.0357382 + 0.0828506i 0.00143182 + 0.00331934i
\(624\) 0 0
\(625\) 19.7015 20.8824i 0.788060 0.835294i
\(626\) 0.344162 0.172845i 0.0137555 0.00690827i
\(627\) 0 0
\(628\) 3.32915 11.1201i 0.132848 0.443742i
\(629\) −0.431048 + 0.361692i −0.0171870 + 0.0144216i
\(630\) 0 0
\(631\) 14.2403 + 11.9490i 0.566896 + 0.475683i 0.880614 0.473834i \(-0.157130\pi\)
−0.313718 + 0.949516i \(0.601575\pi\)
\(632\) −4.43983 + 2.92012i −0.176607 + 0.116156i
\(633\) 0 0
\(634\) 1.52220 0.177920i 0.0604544 0.00706610i
\(635\) −9.35994 + 21.6988i −0.371438 + 0.861090i
\(636\) 0 0
\(637\) −22.1465 11.1224i −0.877474 0.440684i
\(638\) −5.25068 + 1.91109i −0.207877 + 0.0756609i
\(639\) 0 0
\(640\) 25.9980 + 9.46249i 1.02766 + 0.374038i
\(641\) 11.0207 + 11.6813i 0.435293 + 0.461384i 0.907468 0.420121i \(-0.138012\pi\)
−0.472175 + 0.881505i \(0.656531\pi\)
\(642\) 0 0
\(643\) 22.3940 + 14.7288i 0.883133 + 0.580846i 0.908058 0.418844i \(-0.137564\pi\)
−0.0249254 + 0.999689i \(0.507935\pi\)
\(644\) −0.0256625 0.0857187i −0.00101124 0.00337779i
\(645\) 0 0
\(646\) −5.76029 + 7.73741i −0.226635 + 0.304424i
\(647\) 16.2621 0.639328 0.319664 0.947531i \(-0.396430\pi\)
0.319664 + 0.947531i \(0.396430\pi\)
\(648\) 0 0
\(649\) −18.4687 −0.724960
\(650\) 2.85863 3.83981i 0.112125 0.150610i
\(651\) 0 0
\(652\) 0.762720 + 2.54766i 0.0298704 + 0.0997742i
\(653\) −36.5341 24.0289i −1.42969 0.940322i −0.999290 0.0376835i \(-0.988002\pi\)
−0.430400 0.902638i \(-0.641628\pi\)
\(654\) 0 0
\(655\) −8.94366 9.47973i −0.349458 0.370404i
\(656\) 11.3758 + 4.14045i 0.444150 + 0.161657i
\(657\) 0 0
\(658\) 0.00297738 0.00108368i 0.000116071 4.22462e-5i
\(659\) 23.8182 + 11.9619i 0.927824 + 0.465971i 0.847498 0.530798i \(-0.178108\pi\)
0.0803258 + 0.996769i \(0.474404\pi\)
\(660\) 0 0
\(661\) −6.93400 + 16.0748i −0.269701 + 0.625238i −0.998211 0.0597979i \(-0.980954\pi\)
0.728509 + 0.685036i \(0.240214\pi\)
\(662\) 2.18379 0.255249i 0.0848755 0.00992053i
\(663\) 0 0
\(664\) −13.8505 + 9.10965i −0.537505 + 0.353523i
\(665\) 0.153777 + 0.129034i 0.00596321 + 0.00500373i
\(666\) 0 0
\(667\) 18.7263 15.7133i 0.725086 0.608420i
\(668\) −7.97560 + 26.6403i −0.308585 + 1.03075i
\(669\) 0 0
\(670\) 7.40909 3.72098i 0.286238 0.143754i
\(671\) 16.7352 17.7382i 0.646054 0.684777i
\(672\) 0 0
\(673\) 3.17172 + 7.35287i 0.122261 + 0.283432i 0.968344 0.249618i \(-0.0803050\pi\)
−0.846084 + 0.533050i \(0.821046\pi\)
\(674\) 2.73953 + 4.74501i 0.105523 + 0.182771i
\(675\) 0 0
\(676\) −0.440175 + 0.762405i −0.0169298 + 0.0293233i
\(677\) 42.1885 + 4.93113i 1.62144 + 0.189519i 0.877787 0.479051i \(-0.159019\pi\)
0.743650 + 0.668569i \(0.233093\pi\)
\(678\) 0 0
\(679\) −0.141360 0.0335028i −0.00542488 0.00128572i
\(680\) −0.909838 + 15.6213i −0.0348907 + 0.599050i
\(681\) 0 0
\(682\) 10.3362 2.44973i 0.395795 0.0938051i
\(683\) 3.92505 + 22.2600i 0.150188 + 0.851757i 0.963054 + 0.269307i \(0.0867947\pi\)
−0.812867 + 0.582450i \(0.802094\pi\)
\(684\) 0 0
\(685\) 0.0616556 0.349666i 0.00235574 0.0133601i
\(686\) 0.00247421 + 0.0424806i 9.44659e−5 + 0.00162192i
\(687\) 0 0
\(688\) 2.46346 + 3.30899i 0.0939183 + 0.126154i
\(689\) −7.98222 10.7220i −0.304099 0.408475i
\(690\) 0 0
\(691\) 0.493311 + 8.46982i 0.0187664 + 0.322207i 0.994606 + 0.103721i \(0.0330749\pi\)
−0.975840 + 0.218486i \(0.929888\pi\)
\(692\) 2.51734 14.2765i 0.0956948 0.542712i
\(693\) 0 0
\(694\) 0.787049 + 4.46358i 0.0298760 + 0.169435i
\(695\) 3.82068 0.905518i 0.144927 0.0343483i
\(696\) 0 0
\(697\) −0.846552 + 14.5347i −0.0320654 + 0.550542i
\(698\) −4.54037 1.07609i −0.171856 0.0407305i
\(699\) 0 0
\(700\) 0.0707621 + 0.00827090i 0.00267456 + 0.000312611i
\(701\) 18.1146 31.3755i 0.684181 1.18504i −0.289513 0.957174i \(-0.593493\pi\)
0.973694 0.227861i \(-0.0731733\pi\)
\(702\) 0 0
\(703\) −0.503988 0.872933i −0.0190083 0.0329233i
\(704\) 7.75176 + 17.9706i 0.292155 + 0.677293i
\(705\) 0 0
\(706\) −2.09816 + 2.22391i −0.0789651 + 0.0836981i
\(707\) −0.158303 + 0.0795029i −0.00595361 + 0.00299001i
\(708\) 0 0
\(709\) 2.93989 9.81990i 0.110410 0.368794i −0.884870 0.465837i \(-0.845753\pi\)
0.995280 + 0.0970430i \(0.0309384\pi\)
\(710\) 2.02896 1.70250i 0.0761453 0.0638935i
\(711\) 0 0
\(712\) −9.65159 8.09865i −0.361709 0.303510i
\(713\) −38.8274 + 25.5372i −1.45410 + 0.956375i
\(714\) 0 0
\(715\) 37.7359 4.41070i 1.41124 0.164951i
\(716\) −4.49119 + 10.4117i −0.167844 + 0.389105i
\(717\) 0 0
\(718\) −6.49330 3.26106i −0.242328 0.121702i
\(719\) 34.8714 12.6922i 1.30048 0.473338i 0.403330 0.915055i \(-0.367853\pi\)
0.897154 + 0.441717i \(0.145630\pi\)
\(720\) 0 0
\(721\) −0.0755111 0.0274838i −0.00281218 0.00102355i
\(722\) −7.55168 8.00431i −0.281044 0.297890i
\(723\) 0 0
\(724\) 16.3427 + 10.7488i 0.607372 + 0.399475i
\(725\) 5.58233 + 18.6463i 0.207322 + 0.692505i
\(726\) 0 0
\(727\) −19.8968 + 26.7260i −0.737930 + 0.991212i 0.261730 + 0.965141i \(0.415707\pi\)
−0.999660 + 0.0260709i \(0.991700\pi\)
\(728\) −0.0418702 −0.00155181
\(729\) 0 0
\(730\) −2.23274 −0.0826374
\(731\) −2.96272 + 3.97963i −0.109580 + 0.147192i
\(732\) 0 0
\(733\) 10.7746 + 35.9896i 0.397969 + 1.32931i 0.888897 + 0.458107i \(0.151473\pi\)
−0.490928 + 0.871200i \(0.663342\pi\)
\(734\) 5.45266 + 3.58627i 0.201261 + 0.132372i
\(735\) 0 0
\(736\) 12.9813 + 13.7593i 0.478496 + 0.507176i
\(737\) 27.8366 + 10.1317i 1.02537 + 0.373206i
\(738\) 0 0
\(739\) −12.4039 + 4.51464i −0.456283 + 0.166074i −0.559929 0.828541i \(-0.689172\pi\)
0.103645 + 0.994614i \(0.466949\pi\)
\(740\) −0.710115 0.356633i −0.0261043 0.0131101i
\(741\) 0 0
\(742\) −0.00454533 + 0.0105373i −0.000166864 + 0.000386835i
\(743\) 6.82008 0.797153i 0.250204 0.0292447i 0.00993379 0.999951i \(-0.496838\pi\)
0.240271 + 0.970706i \(0.422764\pi\)
\(744\) 0 0
\(745\) 17.4794 11.4964i 0.640395 0.421195i
\(746\) 1.87759 + 1.57548i 0.0687433 + 0.0576825i
\(747\) 0 0
\(748\) −20.8138 + 17.4649i −0.761029 + 0.638579i
\(749\) 0.0372802 0.124524i 0.00136219 0.00455002i
\(750\) 0 0
\(751\) 16.1685 8.12014i 0.589998 0.296308i −0.128641 0.991691i \(-0.541062\pi\)
0.718639 + 0.695383i \(0.244765\pi\)
\(752\) 2.40177 2.54573i 0.0875836 0.0928332i
\(753\) 0 0
\(754\) −2.20188 5.10452i −0.0801876 0.185896i
\(755\) 14.2346 + 24.6550i 0.518049 + 0.897288i
\(756\) 0 0
\(757\) −2.10262 + 3.64185i −0.0764211 + 0.132365i −0.901703 0.432355i \(-0.857683\pi\)
0.825282 + 0.564720i \(0.191016\pi\)
\(758\) 3.15076 + 0.368271i 0.114441 + 0.0133762i
\(759\) 0 0
\(760\) −27.2750 6.46428i −0.989367 0.234484i
\(761\) −1.13750 + 19.5301i −0.0412344 + 0.707967i 0.912825 + 0.408350i \(0.133896\pi\)
−0.954060 + 0.299617i \(0.903141\pi\)
\(762\) 0 0
\(763\) 0.0680676 0.0161323i 0.00246421 0.000584029i
\(764\) 5.21294 + 29.5640i 0.188597 + 1.06959i
\(765\) 0 0
\(766\) 0.524065 2.97212i 0.0189353 0.107387i
\(767\) −1.06838 18.3435i −0.0385771 0.662344i
\(768\) 0 0
\(769\) 14.1295 + 18.9792i 0.509524 + 0.684409i 0.980226 0.197883i \(-0.0634067\pi\)
−0.470702 + 0.882292i \(0.655999\pi\)
\(770\) −0.0194778 0.0261632i −0.000701930 0.000942856i
\(771\) 0 0
\(772\) 2.16117 + 37.1058i 0.0777821 + 1.33547i
\(773\) −7.96472 + 45.1702i −0.286471 + 1.62466i 0.413511 + 0.910499i \(0.364302\pi\)
−0.699983 + 0.714160i \(0.746809\pi\)
\(774\) 0 0
\(775\) −6.42541 36.4403i −0.230807 1.30897i
\(776\) 19.7387 4.67817i 0.708580 0.167936i
\(777\) 0 0
\(778\) 0.305963 5.25318i 0.0109693 0.188336i
\(779\) −25.3778 6.01465i −0.909254 0.215497i
\(780\) 0 0
\(781\) 9.39932 + 1.09862i 0.336334 + 0.0393118i
\(782\) −3.42851 + 5.93836i −0.122603 + 0.212355i
\(783\) 0 0
\(784\) 11.7508 + 20.3530i 0.419673 + 0.726894i
\(785\) 7.33222 + 16.9980i 0.261698 + 0.606685i
\(786\) 0 0
\(787\) −9.21684 + 9.76928i −0.328545 + 0.348237i −0.870498 0.492171i \(-0.836203\pi\)
0.541953 + 0.840408i \(0.317685\pi\)
\(788\) 0.143788 0.0722132i 0.00512225 0.00257249i
\(789\) 0 0
\(790\) 1.18123 3.94559i 0.0420263 0.140378i
\(791\) 0.136015 0.114130i 0.00483612 0.00405799i
\(792\) 0 0
\(793\) 18.5860 + 15.5955i 0.660010 + 0.553814i
\(794\) −1.73935 + 1.14399i −0.0617273 + 0.0405987i
\(795\) 0 0
\(796\) −33.5490 + 3.92131i −1.18911 + 0.138987i
\(797\) 12.7849 29.6387i 0.452864 1.04986i −0.526941 0.849902i \(-0.676661\pi\)
0.979805 0.199955i \(-0.0640796\pi\)
\(798\) 0 0
\(799\) 3.76149 + 1.88909i 0.133072 + 0.0668313i
\(800\) −14.1533 + 5.15139i −0.500395 + 0.182129i
\(801\) 0 0
\(802\) −9.92680 3.61306i −0.350527 0.127582i
\(803\) −5.47444 5.80256i −0.193189 0.204768i
\(804\) 0 0
\(805\) 0.119223 + 0.0784139i 0.00420204 + 0.00276373i
\(806\) 3.03105 + 10.1244i 0.106764 + 0.356617i
\(807\) 0 0
\(808\) 14.7712 19.8411i 0.519648 0.698008i
\(809\) −17.1245 −0.602066 −0.301033 0.953614i \(-0.597332\pi\)
−0.301033 + 0.953614i \(0.597332\pi\)
\(810\) 0 0
\(811\) −12.0048 −0.421545 −0.210772 0.977535i \(-0.567598\pi\)
−0.210772 + 0.977535i \(0.567598\pi\)
\(812\) 0.0494059 0.0663636i 0.00173381 0.00232891i
\(813\) 0 0
\(814\) 0.0469729 + 0.156900i 0.00164640 + 0.00549935i
\(815\) −3.54344 2.33056i −0.124121 0.0816358i
\(816\) 0 0
\(817\) −6.09897 6.46454i −0.213376 0.226165i
\(818\) −11.1294 4.05076i −0.389129 0.141631i
\(819\) 0 0
\(820\) −19.3208 + 7.03221i −0.674713 + 0.245575i
\(821\) −32.3108 16.2271i −1.12765 0.566329i −0.215634 0.976474i \(-0.569182\pi\)
−0.912020 + 0.410145i \(0.865478\pi\)
\(822\) 0 0
\(823\) 21.0664 48.8374i 0.734328 1.70236i 0.0227664 0.999741i \(-0.492753\pi\)
0.711562 0.702623i \(-0.247988\pi\)
\(824\) 11.1448 1.30264i 0.388248 0.0453797i
\(825\) 0 0
\(826\) −0.0131797 + 0.00866841i −0.000458580 + 0.000301613i
\(827\) 14.2860 + 11.9874i 0.496773 + 0.416842i 0.856446 0.516236i \(-0.172667\pi\)
−0.359673 + 0.933078i \(0.617112\pi\)
\(828\) 0 0
\(829\) 34.9024 29.2866i 1.21221 1.01716i 0.213014 0.977049i \(-0.431672\pi\)
0.999195 0.0401151i \(-0.0127725\pi\)
\(830\) 3.68498 12.3087i 0.127908 0.427241i
\(831\) 0 0
\(832\) −17.4003 + 8.73876i −0.603247 + 0.302962i
\(833\) −19.3965 + 20.5590i −0.672047 + 0.712328i
\(834\) 0 0
\(835\) −17.5657 40.7218i −0.607886 1.40924i
\(836\) −24.3358 42.1509i −0.841673 1.45782i
\(837\) 0 0
\(838\) 1.19702 2.07330i 0.0413503 0.0716208i
\(839\) −6.63491 0.775510i −0.229062 0.0267736i 0.000787266 1.00000i \(-0.499749\pi\)
−0.229850 + 0.973226i \(0.573823\pi\)
\(840\) 0 0
\(841\) −6.22422 1.47517i −0.214628 0.0508678i
\(842\) 0.0558171 0.958342i 0.00192358 0.0330266i
\(843\) 0 0
\(844\) −14.3585 + 3.40304i −0.494242 + 0.117137i
\(845\) −0.243797 1.38264i −0.00838688 0.0475643i
\(846\) 0 0
\(847\) 0.00265799 0.0150742i 9.13295e−5 0.000517955i
\(848\) 0.737053 + 12.6547i 0.0253105 + 0.434565i
\(849\) 0 0
\(850\) −3.26030 4.37935i −0.111827 0.150210i
\(851\) −0.427879 0.574742i −0.0146675 0.0197019i
\(852\) 0 0
\(853\) −2.71619 46.6352i −0.0930005 1.59676i −0.645842 0.763471i \(-0.723494\pi\)
0.552842 0.833286i \(-0.313543\pi\)
\(854\) 0.00361702 0.0205132i 0.000123772 0.000701946i
\(855\) 0 0
\(856\) 3.15180 + 17.8747i 0.107726 + 0.610946i
\(857\) 50.1724 11.8911i 1.71386 0.406192i 0.747678 0.664061i \(-0.231169\pi\)
0.966180 + 0.257869i \(0.0830204\pi\)
\(858\) 0 0
\(859\) −1.19840 + 20.5757i −0.0408888 + 0.702034i 0.914118 + 0.405449i \(0.132885\pi\)
−0.955007 + 0.296585i \(0.904152\pi\)
\(860\) −6.81761 1.61580i −0.232478 0.0550984i
\(861\) 0 0
\(862\) −0.229539 0.0268293i −0.00781814 0.000913809i
\(863\) 26.9774 46.7263i 0.918322 1.59058i 0.116359 0.993207i \(-0.462878\pi\)
0.801963 0.597373i \(-0.203789\pi\)
\(864\) 0 0
\(865\) 11.5596 + 20.0219i 0.393040 + 0.680765i
\(866\) 2.30502 + 5.34364i 0.0783279 + 0.181584i
\(867\) 0 0
\(868\) −0.107936 + 0.114405i −0.00366358 + 0.00388317i
\(869\) 13.1503 6.60431i 0.446092 0.224036i
\(870\) 0 0
\(871\) −8.45268 + 28.2339i −0.286408 + 0.956669i
\(872\) −7.48265 + 6.27869i −0.253395 + 0.212623i
\(873\) 0 0
\(874\) −9.40954 7.89554i −0.318282 0.267071i
\(875\) 0.0210082 0.0138173i 0.000710207 0.000467110i
\(876\) 0 0
\(877\) −16.1066 + 1.88260i −0.543883 + 0.0635708i −0.383598 0.923500i \(-0.625315\pi\)
−0.160285 + 0.987071i \(0.551241\pi\)
\(878\) 3.15840 7.32200i 0.106591 0.247105i
\(879\) 0 0
\(880\) −32.1969 16.1699i −1.08536 0.545087i
\(881\) −36.0488 + 13.1207i −1.21451 + 0.442047i −0.868267 0.496097i \(-0.834766\pi\)
−0.346246 + 0.938144i \(0.612544\pi\)
\(882\) 0 0
\(883\) −51.0003 18.5626i −1.71630 0.624681i −0.718788 0.695229i \(-0.755303\pi\)
−0.997508 + 0.0705487i \(0.977525\pi\)
\(884\) −18.5505 19.6624i −0.623920 0.661317i
\(885\) 0 0
\(886\) 1.88439 + 1.23939i 0.0633075 + 0.0416380i
\(887\) 1.07207 + 3.58098i 0.0359967 + 0.120237i 0.974100 0.226119i \(-0.0726039\pi\)
−0.938103 + 0.346357i \(0.887419\pi\)
\(888\) 0 0
\(889\) −0.0430658 + 0.0578475i −0.00144438 + 0.00194014i
\(890\) 9.76493 0.327321
\(891\) 0 0
\(892\) 42.4824 1.42242
\(893\) −4.50266 + 6.04812i −0.150676 + 0.202393i
\(894\) 0 0
\(895\) −5.18640 17.3238i −0.173362 0.579070i
\(896\) 0.0705418 + 0.0463961i 0.00235664 + 0.00154998i
\(897\) 0 0
\(898\) −0.589597 0.624936i −0.0196751 0.0208544i
\(899\) −40.3792 14.6968i −1.34672 0.490167i
\(900\) 0 0
\(901\) −14.3258 + 5.21418i −0.477263 + 0.173710i
\(902\) 3.78698 + 1.90189i 0.126093 + 0.0633261i
\(903\) 0 0
\(904\) −9.81993 + 22.7651i −0.326606 + 0.757158i
\(905\) −30.9842 + 3.62154i −1.02995 + 0.120384i
\(906\) 0 0
\(907\) 15.8640 10.4339i 0.526756 0.346453i −0.258113 0.966115i \(-0.583101\pi\)
0.784869 + 0.619662i \(0.212730\pi\)
\(908\) −23.4790 19.7012i −0.779178 0.653808i
\(909\) 0 0
\(910\) 0.0248590 0.0208592i 0.000824068 0.000691475i
\(911\) −4.20720 + 14.0530i −0.139391 + 0.465598i −0.998969 0.0454071i \(-0.985541\pi\)
0.859578 + 0.511005i \(0.170727\pi\)
\(912\) 0 0
\(913\) 41.0237 20.6029i 1.35768 0.681855i
\(914\) −1.76024 + 1.86575i −0.0582237 + 0.0617135i
\(915\) 0 0
\(916\) 10.9327 + 25.3447i 0.361225 + 0.837414i
\(917\) −0.0198866 0.0344446i −0.000656714 0.00113746i
\(918\) 0 0
\(919\) −14.0757 + 24.3798i −0.464315 + 0.804216i −0.999170 0.0407270i \(-0.987033\pi\)
0.534856 + 0.844943i \(0.320366\pi\)
\(920\) −19.7909 2.31323i −0.652488 0.0762649i
\(921\) 0 0
\(922\) 0.218170 + 0.0517073i 0.00718505 + 0.00170289i
\(923\) −0.547437 + 9.39913i −0.0180191 + 0.309376i
\(924\) 0 0
\(925\) 0.555133 0.131569i 0.0182527 0.00432596i
\(926\) −1.16017 6.57965i −0.0381256 0.216221i
\(927\) 0 0
\(928\) −3.03728 + 17.2253i −0.0997035 + 0.565447i
\(929\) 2.19545 + 37.6944i 0.0720304 + 1.23671i 0.819758 + 0.572709i \(0.194108\pi\)
−0.747728 + 0.664005i \(0.768855\pi\)
\(930\) 0 0
\(931\) −30.2352 40.6130i −0.990920 1.33104i
\(932\) −11.9892 16.1043i −0.392721 0.527515i
\(933\) 0 0
\(934\) −0.155518 2.67015i −0.00508872 0.0873699i
\(935\) 7.52440 42.6730i 0.246074 1.39556i
\(936\) 0 0
\(937\) 4.74619 + 26.9170i 0.155051 + 0.879339i 0.958739 + 0.284288i \(0.0917572\pi\)
−0.803688 + 0.595051i \(0.797132\pi\)
\(938\) 0.0246202 0.00583509i 0.000803877 0.000190522i
\(939\) 0 0
\(940\) −0.345629 + 5.93422i −0.0112732 + 0.193553i
\(941\) 48.2438 + 11.4340i 1.57270 + 0.372738i 0.922184 0.386752i \(-0.126403\pi\)
0.650520 + 0.759489i \(0.274551\pi\)
\(942\) 0 0
\(943\) −18.4143 2.15233i −0.599653 0.0700894i
\(944\) −8.71245 + 15.0904i −0.283566 + 0.491151i
\(945\) 0 0
\(946\) 0.722042 + 1.25061i 0.0234756 + 0.0406610i
\(947\) 2.62943 + 6.09569i 0.0854449 + 0.198083i 0.955581 0.294727i \(-0.0952288\pi\)
−0.870137 + 0.492811i \(0.835970\pi\)
\(948\) 0 0
\(949\) 5.44652 5.77298i 0.176802 0.187399i
\(950\) 8.73988 4.38933i 0.283559 0.142409i
\(951\) 0 0
\(952\) −0.0136959 + 0.0457474i −0.000443885 + 0.00148268i
\(953\) −3.58202 + 3.00567i −0.116033 + 0.0973632i −0.698958 0.715163i \(-0.746353\pi\)
0.582925 + 0.812526i \(0.301908\pi\)
\(954\) 0 0
\(955\) −36.6750 30.7739i −1.18677 0.995822i
\(956\) 8.00805 5.26697i 0.258999 0.170346i
\(957\) 0 0
\(958\) 9.54770 1.11597i 0.308472 0.0360552i
\(959\) 0.000429178 0 0.000994947i 1.38589e−5 0 3.21285e-5i
\(960\) 0 0
\(961\) 45.2987 + 22.7499i 1.46125 + 0.733866i
\(962\) −0.153119 + 0.0557307i −0.00493675 + 0.00179683i
\(963\) 0 0
\(964\) −0.631389 0.229807i −0.0203357 0.00740158i
\(965\) −40.6778 43.1160i −1.30947 1.38795i
\(966\) 0 0
\(967\) 7.81249 + 5.13836i 0.251233 + 0.165238i 0.668879 0.743371i \(-0.266774\pi\)
−0.417646 + 0.908610i \(0.637145\pi\)
\(968\) 0.613001 + 2.04756i 0.0197026 + 0.0658112i
\(969\) 0 0
\(970\) −9.38860 + 12.6111i −0.301450 + 0.404917i
\(971\) 33.5606 1.07701 0.538505 0.842622i \(-0.318989\pi\)
0.538505 + 0.842622i \(0.318989\pi\)
\(972\) 0 0
\(973\) 0.0119829 0.000384153
\(974\) 0.708990 0.952339i 0.0227175 0.0305149i
\(975\) 0 0
\(976\) −6.59888 22.0418i −0.211225 0.705541i
\(977\) −5.89799 3.87917i −0.188693 0.124106i 0.451647 0.892196i \(-0.350836\pi\)
−0.640341 + 0.768091i \(0.721207\pi\)
\(978\) 0 0
\(979\) 23.9426 + 25.3776i 0.765208 + 0.811073i
\(980\) −37.5084 13.6519i −1.19816 0.436095i
\(981\) 0 0
\(982\) 10.4369 3.79871i 0.333054 0.121222i
\(983\) −37.4968 18.8316i −1.19596 0.600635i −0.264469 0.964394i \(-0.585197\pi\)
−0.931493 + 0.363759i \(0.881493\pi\)
\(984\) 0 0
\(985\) −0.101637 + 0.235621i −0.00323842 + 0.00750749i
\(986\) −6.29743 + 0.736064i −0.200551 + 0.0234411i
\(987\) 0 0
\(988\) 40.4573 26.6092i 1.28712 0.846550i
\(989\) −4.83966 4.06096i −0.153892 0.129131i
\(990\) 0 0
\(991\) 10.7027 8.98062i 0.339982 0.285279i −0.456770 0.889585i \(-0.650994\pi\)
0.796753 + 0.604306i \(0.206549\pi\)
\(992\) 9.53669 31.8548i 0.302790 1.01139i
\(993\) 0 0
\(994\) 0.00722321 0.00362763i 0.000229106 0.000115061i
\(995\) 36.9663 39.1820i 1.17191 1.24215i
\(996\) 0 0
\(997\) 6.96965 + 16.1575i 0.220731 + 0.511712i 0.992215 0.124537i \(-0.0397445\pi\)
−0.771484 + 0.636249i \(0.780485\pi\)
\(998\) 2.26597 + 3.92477i 0.0717280 + 0.124237i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.d.190.5 144
3.2 odd 2 729.2.g.a.190.4 144
9.2 odd 6 729.2.g.b.433.5 144
9.4 even 3 81.2.g.a.31.5 144
9.5 odd 6 243.2.g.a.145.4 144
9.7 even 3 729.2.g.c.433.4 144
81.7 even 27 inner 729.2.g.d.541.5 144
81.13 even 27 6561.2.a.c.1.43 72
81.20 odd 54 243.2.g.a.181.4 144
81.34 even 27 729.2.g.c.298.4 144
81.47 odd 54 729.2.g.b.298.5 144
81.61 even 27 81.2.g.a.34.5 yes 144
81.68 odd 54 6561.2.a.d.1.30 72
81.74 odd 54 729.2.g.a.541.4 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.31.5 144 9.4 even 3
81.2.g.a.34.5 yes 144 81.61 even 27
243.2.g.a.145.4 144 9.5 odd 6
243.2.g.a.181.4 144 81.20 odd 54
729.2.g.a.190.4 144 3.2 odd 2
729.2.g.a.541.4 144 81.74 odd 54
729.2.g.b.298.5 144 81.47 odd 54
729.2.g.b.433.5 144 9.2 odd 6
729.2.g.c.298.4 144 81.34 even 27
729.2.g.c.433.4 144 9.7 even 3
729.2.g.d.190.5 144 1.1 even 1 trivial
729.2.g.d.541.5 144 81.7 even 27 inner
6561.2.a.c.1.43 72 81.13 even 27
6561.2.a.d.1.30 72 81.68 odd 54