Properties

Label 729.2.g.d.514.5
Level $729$
Weight $2$
Character 729.514
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 514.5
Character \(\chi\) \(=\) 729.514
Dual form 729.2.g.d.217.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0454430 + 0.780226i) q^{2} +(1.37979 - 0.161274i) q^{4} +(-1.44081 - 0.341479i) q^{5} +(-2.26996 + 3.04908i) q^{7} +(0.459961 + 2.60857i) q^{8} +(0.200956 - 1.13968i) q^{10} +(-3.46856 - 3.67646i) q^{11} +(-4.01443 + 2.01612i) q^{13} +(-2.48212 - 1.63252i) q^{14} +(0.689105 - 0.163321i) q^{16} +(-4.30582 + 1.56719i) q^{17} +(4.19524 + 1.52694i) q^{19} +(-2.04309 - 0.238803i) q^{20} +(2.71085 - 2.87333i) q^{22} +(-2.06314 - 2.77128i) q^{23} +(-2.50883 - 1.25998i) q^{25} +(-1.75546 - 3.04054i) q^{26} +(-2.64032 + 4.57318i) q^{28} +(-0.545523 + 0.358796i) q^{29} +(0.260680 - 0.604325i) q^{31} +(1.67812 + 5.60530i) q^{32} +(-1.41843 - 3.28829i) q^{34} +(4.31178 - 3.61801i) q^{35} +(0.766165 + 0.642889i) q^{37} +(-1.00072 + 3.34263i) q^{38} +(0.228053 - 3.91553i) q^{40} +(0.0397020 - 0.681658i) q^{41} +(-2.40716 + 8.04048i) q^{43} +(-5.37881 - 4.51336i) q^{44} +(2.06847 - 1.73565i) q^{46} +(3.14280 + 7.28584i) q^{47} +(-2.13657 - 7.13664i) q^{49} +(0.869061 - 2.01471i) q^{50} +(-5.21392 + 3.42925i) q^{52} +(-2.07469 + 3.59347i) q^{53} +(3.74212 + 6.48154i) q^{55} +(-8.99782 - 4.51888i) q^{56} +(-0.304732 - 0.409326i) q^{58} +(-3.61647 + 3.83324i) q^{59} +(6.74505 + 0.788383i) q^{61} +(0.483356 + 0.175927i) q^{62} +(-2.96617 + 1.07960i) q^{64} +(6.47250 - 1.53401i) q^{65} +(-4.42909 - 2.91306i) q^{67} +(-5.68837 + 2.85681i) q^{68} +(3.01881 + 3.19975i) q^{70} +(-1.06500 + 6.03991i) q^{71} +(-0.764322 - 4.33469i) q^{73} +(-0.466781 + 0.626996i) q^{74} +(6.03481 + 1.43028i) q^{76} +(19.0833 - 2.23052i) q^{77} +(-0.653695 - 11.2235i) q^{79} -1.04864 q^{80} +0.533651 q^{82} +(-0.0942903 - 1.61890i) q^{83} +(6.73904 - 0.787681i) q^{85} +(-6.38278 - 1.51275i) q^{86} +(7.99490 - 10.7390i) q^{88} +(-0.181087 - 1.02699i) q^{89} +(2.96526 - 16.8168i) q^{91} +(-3.29364 - 3.49105i) q^{92} +(-5.54178 + 2.78318i) q^{94} +(-5.52314 - 3.63263i) q^{95} +(4.85369 - 1.15034i) q^{97} +(5.47110 - 1.99132i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} + 45 q^{20} + 9 q^{22} - 45 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0454430 + 0.780226i 0.0321330 + 0.551703i 0.975507 + 0.219970i \(0.0705961\pi\)
−0.943374 + 0.331732i \(0.892367\pi\)
\(3\) 0 0
\(4\) 1.37979 0.161274i 0.689895 0.0806371i
\(5\) −1.44081 0.341479i −0.644351 0.152714i −0.104568 0.994518i \(-0.533346\pi\)
−0.539784 + 0.841804i \(0.681494\pi\)
\(6\) 0 0
\(7\) −2.26996 + 3.04908i −0.857963 + 1.15244i 0.129024 + 0.991642i \(0.458816\pi\)
−0.986987 + 0.160803i \(0.948592\pi\)
\(8\) 0.459961 + 2.60857i 0.162621 + 0.922268i
\(9\) 0 0
\(10\) 0.200956 1.13968i 0.0635478 0.360398i
\(11\) −3.46856 3.67646i −1.04581 1.10850i −0.993949 0.109841i \(-0.964966\pi\)
−0.0518624 0.998654i \(-0.516516\pi\)
\(12\) 0 0
\(13\) −4.01443 + 2.01612i −1.11340 + 0.559171i −0.907774 0.419459i \(-0.862220\pi\)
−0.205627 + 0.978630i \(0.565924\pi\)
\(14\) −2.48212 1.63252i −0.663376 0.436309i
\(15\) 0 0
\(16\) 0.689105 0.163321i 0.172276 0.0408303i
\(17\) −4.30582 + 1.56719i −1.04431 + 0.380099i −0.806514 0.591215i \(-0.798648\pi\)
−0.237800 + 0.971314i \(0.576426\pi\)
\(18\) 0 0
\(19\) 4.19524 + 1.52694i 0.962455 + 0.350305i 0.774995 0.631967i \(-0.217752\pi\)
0.187460 + 0.982272i \(0.439975\pi\)
\(20\) −2.04309 0.238803i −0.456849 0.0533980i
\(21\) 0 0
\(22\) 2.71085 2.87333i 0.577955 0.612597i
\(23\) −2.06314 2.77128i −0.430195 0.577852i 0.533183 0.846000i \(-0.320996\pi\)
−0.963378 + 0.268148i \(0.913588\pi\)
\(24\) 0 0
\(25\) −2.50883 1.25998i −0.501766 0.251996i
\(26\) −1.75546 3.04054i −0.344273 0.596299i
\(27\) 0 0
\(28\) −2.64032 + 4.57318i −0.498974 + 0.864249i
\(29\) −0.545523 + 0.358796i −0.101301 + 0.0666267i −0.599149 0.800638i \(-0.704494\pi\)
0.497848 + 0.867264i \(0.334124\pi\)
\(30\) 0 0
\(31\) 0.260680 0.604325i 0.0468196 0.108540i −0.893201 0.449657i \(-0.851546\pi\)
0.940021 + 0.341117i \(0.110805\pi\)
\(32\) 1.67812 + 5.60530i 0.296652 + 0.990886i
\(33\) 0 0
\(34\) −1.41843 3.28829i −0.243259 0.563937i
\(35\) 4.31178 3.61801i 0.728824 0.611556i
\(36\) 0 0
\(37\) 0.766165 + 0.642889i 0.125957 + 0.105690i 0.703590 0.710606i \(-0.251579\pi\)
−0.577633 + 0.816296i \(0.696024\pi\)
\(38\) −1.00072 + 3.34263i −0.162338 + 0.542245i
\(39\) 0 0
\(40\) 0.228053 3.91553i 0.0360584 0.619099i
\(41\) 0.0397020 0.681658i 0.00620042 0.106457i −0.993788 0.111291i \(-0.964502\pi\)
0.999988 + 0.00483359i \(0.00153858\pi\)
\(42\) 0 0
\(43\) −2.40716 + 8.04048i −0.367089 + 1.22616i 0.552578 + 0.833461i \(0.313644\pi\)
−0.919666 + 0.392700i \(0.871541\pi\)
\(44\) −5.37881 4.51336i −0.810886 0.680414i
\(45\) 0 0
\(46\) 2.06847 1.73565i 0.304979 0.255908i
\(47\) 3.14280 + 7.28584i 0.458425 + 1.06275i 0.978053 + 0.208356i \(0.0668112\pi\)
−0.519628 + 0.854392i \(0.673930\pi\)
\(48\) 0 0
\(49\) −2.13657 7.13664i −0.305224 1.01952i
\(50\) 0.869061 2.01471i 0.122904 0.284923i
\(51\) 0 0
\(52\) −5.21392 + 3.42925i −0.723040 + 0.475551i
\(53\) −2.07469 + 3.59347i −0.284981 + 0.493601i −0.972605 0.232466i \(-0.925321\pi\)
0.687624 + 0.726067i \(0.258654\pi\)
\(54\) 0 0
\(55\) 3.74212 + 6.48154i 0.504587 + 0.873971i
\(56\) −8.99782 4.51888i −1.20238 0.603860i
\(57\) 0 0
\(58\) −0.304732 0.409326i −0.0400133 0.0537471i
\(59\) −3.61647 + 3.83324i −0.470825 + 0.499045i −0.918648 0.395077i \(-0.870718\pi\)
0.447823 + 0.894122i \(0.352199\pi\)
\(60\) 0 0
\(61\) 6.74505 + 0.788383i 0.863615 + 0.100942i 0.536355 0.843992i \(-0.319801\pi\)
0.327260 + 0.944934i \(0.393875\pi\)
\(62\) 0.483356 + 0.175927i 0.0613862 + 0.0223428i
\(63\) 0 0
\(64\) −2.96617 + 1.07960i −0.370771 + 0.134950i
\(65\) 6.47250 1.53401i 0.802815 0.190271i
\(66\) 0 0
\(67\) −4.42909 2.91306i −0.541099 0.355886i 0.249351 0.968413i \(-0.419783\pi\)
−0.790450 + 0.612527i \(0.790153\pi\)
\(68\) −5.68837 + 2.85681i −0.689817 + 0.346439i
\(69\) 0 0
\(70\) 3.01881 + 3.19975i 0.360816 + 0.382443i
\(71\) −1.06500 + 6.03991i −0.126392 + 0.716805i 0.854079 + 0.520143i \(0.174121\pi\)
−0.980471 + 0.196662i \(0.936990\pi\)
\(72\) 0 0
\(73\) −0.764322 4.33469i −0.0894571 0.507337i −0.996306 0.0858796i \(-0.972630\pi\)
0.906848 0.421457i \(-0.138481\pi\)
\(74\) −0.466781 + 0.626996i −0.0542622 + 0.0728868i
\(75\) 0 0
\(76\) 6.03481 + 1.43028i 0.692240 + 0.164064i
\(77\) 19.0833 2.23052i 2.17475 0.254191i
\(78\) 0 0
\(79\) −0.653695 11.2235i −0.0735465 1.26274i −0.810070 0.586333i \(-0.800571\pi\)
0.736524 0.676412i \(-0.236466\pi\)
\(80\) −1.04864 −0.117242
\(81\) 0 0
\(82\) 0.533651 0.0589319
\(83\) −0.0942903 1.61890i −0.0103497 0.177698i −0.999521 0.0309347i \(-0.990152\pi\)
0.989172 0.146763i \(-0.0468854\pi\)
\(84\) 0 0
\(85\) 6.73904 0.787681i 0.730952 0.0854360i
\(86\) −6.38278 1.51275i −0.688273 0.163124i
\(87\) 0 0
\(88\) 7.99490 10.7390i 0.852259 1.14478i
\(89\) −0.181087 1.02699i −0.0191952 0.108861i 0.973705 0.227813i \(-0.0731576\pi\)
−0.992900 + 0.118952i \(0.962046\pi\)
\(90\) 0 0
\(91\) 2.96526 16.8168i 0.310844 1.76288i
\(92\) −3.29364 3.49105i −0.343385 0.363967i
\(93\) 0 0
\(94\) −5.54178 + 2.78318i −0.571591 + 0.287064i
\(95\) −5.52314 3.63263i −0.566662 0.372700i
\(96\) 0 0
\(97\) 4.85369 1.15034i 0.492817 0.116800i 0.0233097 0.999728i \(-0.492580\pi\)
0.469508 + 0.882928i \(0.344431\pi\)
\(98\) 5.47110 1.99132i 0.552664 0.201153i
\(99\) 0 0
\(100\) −3.66486 1.33390i −0.366486 0.133390i
\(101\) 9.50577 + 1.11107i 0.945859 + 0.110555i 0.575018 0.818141i \(-0.304995\pi\)
0.370842 + 0.928696i \(0.379069\pi\)
\(102\) 0 0
\(103\) −2.23381 + 2.36770i −0.220104 + 0.233297i −0.828011 0.560711i \(-0.810528\pi\)
0.607907 + 0.794008i \(0.292009\pi\)
\(104\) −7.10567 9.54457i −0.696768 0.935922i
\(105\) 0 0
\(106\) −2.89800 1.45543i −0.281479 0.141364i
\(107\) −8.40680 14.5610i −0.812716 1.40767i −0.910956 0.412503i \(-0.864655\pi\)
0.0982402 0.995163i \(-0.468679\pi\)
\(108\) 0 0
\(109\) −3.81772 + 6.61249i −0.365671 + 0.633361i −0.988884 0.148691i \(-0.952494\pi\)
0.623212 + 0.782053i \(0.285827\pi\)
\(110\) −4.88701 + 3.21424i −0.465958 + 0.306465i
\(111\) 0 0
\(112\) −1.06626 + 2.47187i −0.100752 + 0.233570i
\(113\) 2.87359 + 9.59845i 0.270324 + 0.902947i 0.980098 + 0.198516i \(0.0636123\pi\)
−0.709773 + 0.704430i \(0.751203\pi\)
\(114\) 0 0
\(115\) 2.02627 + 4.69742i 0.188950 + 0.438036i
\(116\) −0.694842 + 0.583042i −0.0645144 + 0.0541340i
\(117\) 0 0
\(118\) −3.15514 2.64747i −0.290454 0.243720i
\(119\) 4.99553 16.6862i 0.457940 1.52962i
\(120\) 0 0
\(121\) −0.845852 + 14.5227i −0.0768956 + 1.32025i
\(122\) −0.308602 + 5.29849i −0.0279395 + 0.479703i
\(123\) 0 0
\(124\) 0.262222 0.875882i 0.0235482 0.0786565i
\(125\) 8.85601 + 7.43107i 0.792105 + 0.664655i
\(126\) 0 0
\(127\) 2.97665 2.49770i 0.264135 0.221635i −0.501096 0.865392i \(-0.667070\pi\)
0.765230 + 0.643757i \(0.222625\pi\)
\(128\) 3.65789 + 8.47994i 0.323315 + 0.749528i
\(129\) 0 0
\(130\) 1.49100 + 4.98030i 0.130770 + 0.436801i
\(131\) −6.59441 + 15.2876i −0.576157 + 1.33568i 0.342088 + 0.939668i \(0.388866\pi\)
−0.918245 + 0.396013i \(0.870393\pi\)
\(132\) 0 0
\(133\) −14.1788 + 9.32554i −1.22946 + 0.808627i
\(134\) 2.07157 3.58807i 0.178956 0.309962i
\(135\) 0 0
\(136\) −6.06863 10.5112i −0.520380 0.901325i
\(137\) 8.28923 + 4.16301i 0.708197 + 0.355670i 0.766161 0.642649i \(-0.222165\pi\)
−0.0579639 + 0.998319i \(0.518461\pi\)
\(138\) 0 0
\(139\) 9.50746 + 12.7707i 0.806412 + 1.08320i 0.994874 + 0.101119i \(0.0322422\pi\)
−0.188462 + 0.982080i \(0.560350\pi\)
\(140\) 5.36586 5.68748i 0.453498 0.480680i
\(141\) 0 0
\(142\) −4.76089 0.556468i −0.399525 0.0466978i
\(143\) 21.3365 + 7.76585i 1.78425 + 0.649413i
\(144\) 0 0
\(145\) 0.908517 0.330673i 0.0754483 0.0274609i
\(146\) 3.34730 0.793325i 0.277025 0.0656560i
\(147\) 0 0
\(148\) 1.16083 + 0.763489i 0.0954195 + 0.0627584i
\(149\) 20.8590 10.4758i 1.70883 0.858208i 0.722924 0.690928i \(-0.242798\pi\)
0.985909 0.167281i \(-0.0534986\pi\)
\(150\) 0 0
\(151\) 1.60038 + 1.69630i 0.130237 + 0.138043i 0.789210 0.614123i \(-0.210490\pi\)
−0.658973 + 0.752167i \(0.729009\pi\)
\(152\) −2.05349 + 11.6459i −0.166560 + 0.944608i
\(153\) 0 0
\(154\) 2.60751 + 14.7879i 0.210119 + 1.19165i
\(155\) −0.581956 + 0.781702i −0.0467438 + 0.0627878i
\(156\) 0 0
\(157\) −19.1527 4.53927i −1.52855 0.362273i −0.621541 0.783382i \(-0.713493\pi\)
−0.907010 + 0.421109i \(0.861641\pi\)
\(158\) 8.72717 1.02006i 0.694296 0.0811516i
\(159\) 0 0
\(160\) −0.503760 8.64923i −0.0398257 0.683782i
\(161\) 13.1331 1.03503
\(162\) 0 0
\(163\) −17.6622 −1.38341 −0.691707 0.722179i \(-0.743141\pi\)
−0.691707 + 0.722179i \(0.743141\pi\)
\(164\) −0.0551534 0.946947i −0.00430676 0.0739442i
\(165\) 0 0
\(166\) 1.25882 0.147135i 0.0977037 0.0114199i
\(167\) 3.29876 + 0.781820i 0.255266 + 0.0604991i 0.356256 0.934388i \(-0.384053\pi\)
−0.100991 + 0.994887i \(0.532201\pi\)
\(168\) 0 0
\(169\) 4.28782 5.75954i 0.329832 0.443042i
\(170\) 0.920811 + 5.22218i 0.0706230 + 0.400523i
\(171\) 0 0
\(172\) −2.02465 + 11.4824i −0.154378 + 0.875524i
\(173\) 12.8183 + 13.5866i 0.974557 + 1.03297i 0.999446 + 0.0332802i \(0.0105954\pi\)
−0.0248887 + 0.999690i \(0.507923\pi\)
\(174\) 0 0
\(175\) 9.53672 4.78952i 0.720908 0.362054i
\(176\) −2.99065 1.96698i −0.225429 0.148267i
\(177\) 0 0
\(178\) 0.793058 0.187958i 0.0594422 0.0140881i
\(179\) −11.1678 + 4.06476i −0.834723 + 0.303814i −0.723796 0.690014i \(-0.757604\pi\)
−0.110927 + 0.993829i \(0.535382\pi\)
\(180\) 0 0
\(181\) 14.8329 + 5.39873i 1.10252 + 0.401284i 0.828244 0.560367i \(-0.189340\pi\)
0.274275 + 0.961651i \(0.411562\pi\)
\(182\) 13.2557 + 1.54937i 0.982575 + 0.114847i
\(183\) 0 0
\(184\) 6.28011 6.65652i 0.462976 0.490725i
\(185\) −0.884368 1.18791i −0.0650200 0.0873370i
\(186\) 0 0
\(187\) 20.6967 + 10.3943i 1.51349 + 0.760105i
\(188\) 5.51142 + 9.54607i 0.401962 + 0.696219i
\(189\) 0 0
\(190\) 2.58328 4.47437i 0.187411 0.324605i
\(191\) −4.81793 + 3.16881i −0.348614 + 0.229287i −0.711724 0.702459i \(-0.752085\pi\)
0.363110 + 0.931746i \(0.381715\pi\)
\(192\) 0 0
\(193\) 0.0696139 0.161383i 0.00501092 0.0116166i −0.915692 0.401880i \(-0.868357\pi\)
0.920703 + 0.390264i \(0.127616\pi\)
\(194\) 1.11809 + 3.73470i 0.0802745 + 0.268136i
\(195\) 0 0
\(196\) −4.09897 9.50249i −0.292784 0.678749i
\(197\) 8.59155 7.20917i 0.612123 0.513632i −0.283194 0.959063i \(-0.591394\pi\)
0.895316 + 0.445431i \(0.146950\pi\)
\(198\) 0 0
\(199\) −15.6873 13.1632i −1.11204 0.933114i −0.113866 0.993496i \(-0.536324\pi\)
−0.998175 + 0.0603824i \(0.980768\pi\)
\(200\) 2.13278 7.12399i 0.150811 0.503742i
\(201\) 0 0
\(202\) −0.434911 + 7.46714i −0.0306002 + 0.525386i
\(203\) 0.144315 2.47779i 0.0101289 0.173907i
\(204\) 0 0
\(205\) −0.289975 + 0.968584i −0.0202527 + 0.0676489i
\(206\) −1.94885 1.63528i −0.135783 0.113935i
\(207\) 0 0
\(208\) −2.43709 + 2.04496i −0.168982 + 0.141792i
\(209\) −8.93772 20.7200i −0.618235 1.43323i
\(210\) 0 0
\(211\) −0.341693 1.14134i −0.0235231 0.0785728i 0.945422 0.325848i \(-0.105650\pi\)
−0.968945 + 0.247276i \(0.920465\pi\)
\(212\) −2.28310 + 5.29283i −0.156804 + 0.363513i
\(213\) 0 0
\(214\) 10.9788 7.22090i 0.750498 0.493610i
\(215\) 6.21393 10.7628i 0.423786 0.734019i
\(216\) 0 0
\(217\) 1.25090 + 2.16663i 0.0849168 + 0.147080i
\(218\) −5.33272 2.67819i −0.361177 0.181390i
\(219\) 0 0
\(220\) 6.20864 + 8.33965i 0.418587 + 0.562259i
\(221\) 14.1257 14.9724i 0.950200 1.00715i
\(222\) 0 0
\(223\) 14.7991 + 1.72977i 0.991024 + 0.115834i 0.596126 0.802891i \(-0.296706\pi\)
0.394898 + 0.918725i \(0.370780\pi\)
\(224\) −20.9003 7.60707i −1.39646 0.508269i
\(225\) 0 0
\(226\) −7.35838 + 2.67823i −0.489472 + 0.178153i
\(227\) −23.9357 + 5.67287i −1.58867 + 0.376522i −0.927532 0.373743i \(-0.878074\pi\)
−0.661138 + 0.750265i \(0.729926\pi\)
\(228\) 0 0
\(229\) −1.27577 0.839089i −0.0843054 0.0554486i 0.506656 0.862148i \(-0.330881\pi\)
−0.590962 + 0.806699i \(0.701252\pi\)
\(230\) −3.57297 + 1.79441i −0.235594 + 0.118320i
\(231\) 0 0
\(232\) −1.18686 1.25800i −0.0779213 0.0825918i
\(233\) 2.44148 13.8463i 0.159946 0.907101i −0.794177 0.607687i \(-0.792098\pi\)
0.954123 0.299414i \(-0.0967912\pi\)
\(234\) 0 0
\(235\) −2.04023 11.5707i −0.133090 0.754791i
\(236\) −4.37177 + 5.87231i −0.284578 + 0.382255i
\(237\) 0 0
\(238\) 13.2460 + 3.13937i 0.858613 + 0.203495i
\(239\) 22.7624 2.66054i 1.47238 0.172096i 0.658258 0.752793i \(-0.271294\pi\)
0.814120 + 0.580696i \(0.197220\pi\)
\(240\) 0 0
\(241\) 0.411011 + 7.05678i 0.0264755 + 0.454567i 0.985329 + 0.170666i \(0.0545918\pi\)
−0.958853 + 0.283902i \(0.908371\pi\)
\(242\) −11.3694 −0.730855
\(243\) 0 0
\(244\) 9.43390 0.603943
\(245\) 0.641385 + 11.0122i 0.0409766 + 0.703541i
\(246\) 0 0
\(247\) −19.9200 + 2.32831i −1.26748 + 0.148147i
\(248\) 1.69632 + 0.402036i 0.107717 + 0.0255293i
\(249\) 0 0
\(250\) −5.39547 + 7.24737i −0.341239 + 0.458364i
\(251\) 0.0115419 + 0.0654574i 0.000728518 + 0.00413163i 0.985170 0.171582i \(-0.0548878\pi\)
−0.984441 + 0.175714i \(0.943777\pi\)
\(252\) 0 0
\(253\) −3.03237 + 17.1974i −0.190644 + 1.08119i
\(254\) 2.08404 + 2.20895i 0.130764 + 0.138602i
\(255\) 0 0
\(256\) −12.0916 + 6.07263i −0.755725 + 0.379539i
\(257\) −16.1614 10.6295i −1.00812 0.663052i −0.0658251 0.997831i \(-0.520968\pi\)
−0.942297 + 0.334779i \(0.891338\pi\)
\(258\) 0 0
\(259\) −3.69938 + 0.876770i −0.229868 + 0.0544798i
\(260\) 8.68330 3.16046i 0.538515 0.196003i
\(261\) 0 0
\(262\) −12.2274 4.45042i −0.755413 0.274948i
\(263\) −14.9583 1.74837i −0.922367 0.107809i −0.358364 0.933582i \(-0.616665\pi\)
−0.564003 + 0.825773i \(0.690739\pi\)
\(264\) 0 0
\(265\) 4.21634 4.46906i 0.259008 0.274532i
\(266\) −7.92035 10.6389i −0.485628 0.652312i
\(267\) 0 0
\(268\) −6.58101 3.30511i −0.401999 0.201892i
\(269\) 5.86823 + 10.1641i 0.357792 + 0.619715i 0.987592 0.157043i \(-0.0501962\pi\)
−0.629799 + 0.776758i \(0.716863\pi\)
\(270\) 0 0
\(271\) 1.44013 2.49438i 0.0874817 0.151523i −0.818964 0.573844i \(-0.805451\pi\)
0.906446 + 0.422322i \(0.138785\pi\)
\(272\) −2.71121 + 1.78319i −0.164391 + 0.108122i
\(273\) 0 0
\(274\) −2.87140 + 6.65665i −0.173468 + 0.402143i
\(275\) 4.06976 + 13.5939i 0.245416 + 0.819746i
\(276\) 0 0
\(277\) −0.911389 2.11284i −0.0547601 0.126948i 0.888640 0.458606i \(-0.151651\pi\)
−0.943400 + 0.331658i \(0.892392\pi\)
\(278\) −9.53200 + 7.99830i −0.571692 + 0.479706i
\(279\) 0 0
\(280\) 11.4211 + 9.58343i 0.682540 + 0.572719i
\(281\) −1.81991 + 6.07893i −0.108567 + 0.362639i −0.994957 0.100300i \(-0.968020\pi\)
0.886390 + 0.462939i \(0.153205\pi\)
\(282\) 0 0
\(283\) 0.853670 14.6569i 0.0507454 0.871265i −0.872872 0.487949i \(-0.837745\pi\)
0.923617 0.383316i \(-0.125218\pi\)
\(284\) −0.495393 + 8.50556i −0.0293961 + 0.504712i
\(285\) 0 0
\(286\) −5.08952 + 17.0002i −0.300950 + 1.00524i
\(287\) 1.98831 + 1.66839i 0.117366 + 0.0984819i
\(288\) 0 0
\(289\) 3.06122 2.56867i 0.180072 0.151098i
\(290\) 0.299285 + 0.693822i 0.0175746 + 0.0407426i
\(291\) 0 0
\(292\) −1.75368 5.85769i −0.102626 0.342795i
\(293\) −10.0427 + 23.2816i −0.586701 + 1.36013i 0.323606 + 0.946192i \(0.395105\pi\)
−0.910307 + 0.413934i \(0.864155\pi\)
\(294\) 0 0
\(295\) 6.51964 4.28803i 0.379588 0.249659i
\(296\) −1.32461 + 2.29430i −0.0769916 + 0.133353i
\(297\) 0 0
\(298\) 9.12136 + 15.7987i 0.528386 + 0.915191i
\(299\) 13.8696 + 6.96556i 0.802098 + 0.402829i
\(300\) 0 0
\(301\) −19.0519 25.5912i −1.09813 1.47505i
\(302\) −1.25077 + 1.32574i −0.0719739 + 0.0762879i
\(303\) 0 0
\(304\) 3.14035 + 0.367054i 0.180111 + 0.0210520i
\(305\) −9.44914 3.43921i −0.541056 0.196928i
\(306\) 0 0
\(307\) 11.4486 4.16694i 0.653405 0.237820i 0.00601852 0.999982i \(-0.498084\pi\)
0.647386 + 0.762162i \(0.275862\pi\)
\(308\) 25.9713 6.15530i 1.47985 0.350731i
\(309\) 0 0
\(310\) −0.636350 0.418534i −0.0361422 0.0237711i
\(311\) −22.4620 + 11.2809i −1.27370 + 0.639679i −0.951691 0.307056i \(-0.900656\pi\)
−0.322014 + 0.946735i \(0.604360\pi\)
\(312\) 0 0
\(313\) −20.2873 21.5033i −1.14671 1.21544i −0.973041 0.230632i \(-0.925921\pi\)
−0.173664 0.984805i \(-0.555561\pi\)
\(314\) 2.67130 15.1497i 0.150750 0.854947i
\(315\) 0 0
\(316\) −2.71203 15.3807i −0.152563 0.865230i
\(317\) 2.56069 3.43961i 0.143823 0.193188i −0.724374 0.689407i \(-0.757871\pi\)
0.868197 + 0.496219i \(0.165279\pi\)
\(318\) 0 0
\(319\) 3.21128 + 0.761087i 0.179797 + 0.0426127i
\(320\) 4.64235 0.542613i 0.259515 0.0303330i
\(321\) 0 0
\(322\) 0.596807 + 10.2468i 0.0332588 + 0.571031i
\(323\) −20.4570 −1.13826
\(324\) 0 0
\(325\) 12.6118 0.699576
\(326\) −0.802624 13.7805i −0.0444533 0.763233i
\(327\) 0 0
\(328\) 1.79641 0.209970i 0.0991902 0.0115937i
\(329\) −29.3491 6.95587i −1.61807 0.383490i
\(330\) 0 0
\(331\) −16.6197 + 22.3242i −0.913503 + 1.22705i 0.0599599 + 0.998201i \(0.480903\pi\)
−0.973463 + 0.228846i \(0.926505\pi\)
\(332\) −0.391188 2.21854i −0.0214692 0.121758i
\(333\) 0 0
\(334\) −0.460091 + 2.60930i −0.0251750 + 0.142775i
\(335\) 5.38674 + 5.70961i 0.294309 + 0.311949i
\(336\) 0 0
\(337\) 24.0402 12.0735i 1.30956 0.657683i 0.349354 0.936991i \(-0.386401\pi\)
0.960202 + 0.279307i \(0.0901049\pi\)
\(338\) 4.68859 + 3.08374i 0.255026 + 0.167733i
\(339\) 0 0
\(340\) 9.17143 2.17367i 0.497390 0.117884i
\(341\) −3.12596 + 1.13776i −0.169280 + 0.0616130i
\(342\) 0 0
\(343\) 1.60598 + 0.584529i 0.0867148 + 0.0315616i
\(344\) −22.0813 2.58094i −1.19055 0.139155i
\(345\) 0 0
\(346\) −10.0181 + 10.6186i −0.538577 + 0.570859i
\(347\) −18.2126 24.4638i −0.977703 1.31328i −0.949529 0.313680i \(-0.898438\pi\)
−0.0281743 0.999603i \(-0.508969\pi\)
\(348\) 0 0
\(349\) −7.12702 3.57932i −0.381500 0.191597i 0.247705 0.968835i \(-0.420323\pi\)
−0.629206 + 0.777239i \(0.716620\pi\)
\(350\) 4.17028 + 7.22314i 0.222911 + 0.386093i
\(351\) 0 0
\(352\) 14.7870 25.6119i 0.788151 1.36512i
\(353\) 18.2389 11.9959i 0.970756 0.638476i 0.0381118 0.999273i \(-0.487866\pi\)
0.932644 + 0.360797i \(0.117495\pi\)
\(354\) 0 0
\(355\) 3.59697 8.33871i 0.190907 0.442573i
\(356\) −0.415490 1.38783i −0.0220209 0.0735549i
\(357\) 0 0
\(358\) −3.67893 8.52871i −0.194437 0.450757i
\(359\) −13.2606 + 11.1269i −0.699866 + 0.587258i −0.921736 0.387819i \(-0.873229\pi\)
0.221869 + 0.975076i \(0.428784\pi\)
\(360\) 0 0
\(361\) 0.713665 + 0.598836i 0.0375613 + 0.0315177i
\(362\) −3.53818 + 11.8183i −0.185962 + 0.621158i
\(363\) 0 0
\(364\) 1.37931 23.6819i 0.0722957 1.24127i
\(365\) −0.378959 + 6.50647i −0.0198356 + 0.340564i
\(366\) 0 0
\(367\) 6.85653 22.9024i 0.357908 1.19550i −0.569672 0.821872i \(-0.692930\pi\)
0.927580 0.373624i \(-0.121885\pi\)
\(368\) −1.87433 1.57275i −0.0977062 0.0819853i
\(369\) 0 0
\(370\) 0.886651 0.743989i 0.0460948 0.0386781i
\(371\) −6.24733 14.4829i −0.324345 0.751916i
\(372\) 0 0
\(373\) 3.30709 + 11.0464i 0.171235 + 0.571963i 0.999925 + 0.0122560i \(0.00390131\pi\)
−0.828690 + 0.559707i \(0.810914\pi\)
\(374\) −7.16937 + 16.6205i −0.370719 + 0.859423i
\(375\) 0 0
\(376\) −17.5600 + 11.5494i −0.905589 + 0.595615i
\(377\) 1.46658 2.54020i 0.0755329 0.130827i
\(378\) 0 0
\(379\) −10.3656 17.9537i −0.532443 0.922218i −0.999282 0.0378763i \(-0.987941\pi\)
0.466839 0.884342i \(-0.345393\pi\)
\(380\) −8.20663 4.12152i −0.420991 0.211430i
\(381\) 0 0
\(382\) −2.69132 3.61508i −0.137700 0.184963i
\(383\) 10.8805 11.5326i 0.555967 0.589290i −0.387040 0.922063i \(-0.626503\pi\)
0.943007 + 0.332772i \(0.107984\pi\)
\(384\) 0 0
\(385\) −28.2572 3.30279i −1.44012 0.168326i
\(386\) 0.129079 + 0.0469808i 0.00656994 + 0.00239126i
\(387\) 0 0
\(388\) 6.51155 2.37001i 0.330574 0.120319i
\(389\) −27.7406 + 6.57464i −1.40650 + 0.333347i −0.862636 0.505825i \(-0.831188\pi\)
−0.543866 + 0.839172i \(0.683040\pi\)
\(390\) 0 0
\(391\) 13.2266 + 8.69929i 0.668899 + 0.439942i
\(392\) 17.6337 8.85596i 0.890635 0.447293i
\(393\) 0 0
\(394\) 6.01520 + 6.37574i 0.303041 + 0.321205i
\(395\) −2.89074 + 16.3942i −0.145449 + 0.824882i
\(396\) 0 0
\(397\) 5.49087 + 31.1403i 0.275579 + 1.56289i 0.737117 + 0.675765i \(0.236187\pi\)
−0.461538 + 0.887120i \(0.652702\pi\)
\(398\) 9.55738 12.8378i 0.479068 0.643500i
\(399\) 0 0
\(400\) −1.93463 0.458515i −0.0967314 0.0229258i
\(401\) −16.9325 + 1.97912i −0.845568 + 0.0988328i −0.527835 0.849347i \(-0.676996\pi\)
−0.317734 + 0.948180i \(0.602922\pi\)
\(402\) 0 0
\(403\) 0.171910 + 2.95158i 0.00856345 + 0.147029i
\(404\) 13.2952 0.661458
\(405\) 0 0
\(406\) 1.93980 0.0962705
\(407\) −0.293936 5.04668i −0.0145698 0.250155i
\(408\) 0 0
\(409\) 23.6758 2.76730i 1.17069 0.136834i 0.491555 0.870846i \(-0.336429\pi\)
0.679136 + 0.734012i \(0.262354\pi\)
\(410\) −0.768892 0.182231i −0.0379728 0.00899973i
\(411\) 0 0
\(412\) −2.70034 + 3.62719i −0.133036 + 0.178699i
\(413\) −3.47862 19.7282i −0.171172 0.970762i
\(414\) 0 0
\(415\) −0.416966 + 2.36473i −0.0204681 + 0.116080i
\(416\) −18.0376 19.1188i −0.884368 0.937375i
\(417\) 0 0
\(418\) 15.7601 7.91501i 0.770851 0.387136i
\(419\) 13.1474 + 8.64720i 0.642294 + 0.422443i 0.828439 0.560079i \(-0.189229\pi\)
−0.186146 + 0.982522i \(0.559600\pi\)
\(420\) 0 0
\(421\) −22.9228 + 5.43281i −1.11719 + 0.264779i −0.747425 0.664346i \(-0.768710\pi\)
−0.369766 + 0.929125i \(0.620562\pi\)
\(422\) 0.874971 0.318464i 0.0425929 0.0155026i
\(423\) 0 0
\(424\) −10.3281 3.75912i −0.501577 0.182559i
\(425\) 12.7772 + 1.49344i 0.619784 + 0.0724424i
\(426\) 0 0
\(427\) −17.7148 + 18.7766i −0.857280 + 0.908664i
\(428\) −13.9479 18.7353i −0.674199 0.905606i
\(429\) 0 0
\(430\) 8.67982 + 4.35917i 0.418578 + 0.210218i
\(431\) 0.705848 + 1.22256i 0.0339995 + 0.0588888i 0.882524 0.470267i \(-0.155842\pi\)
−0.848525 + 0.529155i \(0.822509\pi\)
\(432\) 0 0
\(433\) −6.50524 + 11.2674i −0.312622 + 0.541477i −0.978929 0.204200i \(-0.934541\pi\)
0.666307 + 0.745677i \(0.267874\pi\)
\(434\) −1.63361 + 1.07444i −0.0784159 + 0.0515750i
\(435\) 0 0
\(436\) −4.20123 + 9.73954i −0.201202 + 0.466440i
\(437\) −4.42379 14.7765i −0.211619 0.706856i
\(438\) 0 0
\(439\) 8.21406 + 19.0423i 0.392036 + 0.908840i 0.993904 + 0.110246i \(0.0351637\pi\)
−0.601869 + 0.798595i \(0.705577\pi\)
\(440\) −15.1863 + 12.7428i −0.723979 + 0.607490i
\(441\) 0 0
\(442\) 12.3238 + 10.3409i 0.586182 + 0.491865i
\(443\) −9.74198 + 32.5405i −0.462855 + 1.54604i 0.334417 + 0.942425i \(0.391461\pi\)
−0.797273 + 0.603619i \(0.793725\pi\)
\(444\) 0 0
\(445\) −0.0897847 + 1.54154i −0.00425621 + 0.0730762i
\(446\) −0.677095 + 11.6253i −0.0320614 + 0.550473i
\(447\) 0 0
\(448\) 3.44129 11.4947i 0.162586 0.543075i
\(449\) 0.919709 + 0.771727i 0.0434038 + 0.0364201i 0.664231 0.747527i \(-0.268759\pi\)
−0.620828 + 0.783947i \(0.713203\pi\)
\(450\) 0 0
\(451\) −2.64380 + 2.21841i −0.124492 + 0.104461i
\(452\) 5.51293 + 12.7804i 0.259306 + 0.601140i
\(453\) 0 0
\(454\) −5.51383 18.4175i −0.258777 0.864375i
\(455\) −10.0150 + 23.2173i −0.469509 + 1.08844i
\(456\) 0 0
\(457\) 26.7801 17.6135i 1.25272 0.823926i 0.262702 0.964877i \(-0.415386\pi\)
0.990017 + 0.140951i \(0.0450161\pi\)
\(458\) 0.596704 1.03352i 0.0278821 0.0482933i
\(459\) 0 0
\(460\) 3.55340 + 6.15466i 0.165678 + 0.286963i
\(461\) 0.300873 + 0.151104i 0.0140130 + 0.00703761i 0.455792 0.890086i \(-0.349356\pi\)
−0.441779 + 0.897124i \(0.645652\pi\)
\(462\) 0 0
\(463\) −1.76325 2.36845i −0.0819451 0.110071i 0.759260 0.650787i \(-0.225561\pi\)
−0.841205 + 0.540716i \(0.818153\pi\)
\(464\) −0.317324 + 0.336343i −0.0147314 + 0.0156144i
\(465\) 0 0
\(466\) 10.9142 + 1.27568i 0.505590 + 0.0590950i
\(467\) −3.55605 1.29430i −0.164554 0.0598929i 0.258429 0.966030i \(-0.416795\pi\)
−0.422984 + 0.906137i \(0.639017\pi\)
\(468\) 0 0
\(469\) 18.9360 6.89213i 0.874382 0.318249i
\(470\) 8.93506 2.11765i 0.412144 0.0976799i
\(471\) 0 0
\(472\) −11.6627 7.67068i −0.536819 0.353072i
\(473\) 37.9099 19.0391i 1.74310 0.875418i
\(474\) 0 0
\(475\) −8.60123 9.11677i −0.394651 0.418306i
\(476\) 4.20172 23.8292i 0.192586 1.09221i
\(477\) 0 0
\(478\) 3.11022 + 17.6389i 0.142258 + 0.806785i
\(479\) −1.89106 + 2.54013i −0.0864047 + 0.116062i −0.843224 0.537563i \(-0.819345\pi\)
0.756819 + 0.653625i \(0.226752\pi\)
\(480\) 0 0
\(481\) −4.37186 1.03615i −0.199339 0.0472443i
\(482\) −5.48721 + 0.641362i −0.249935 + 0.0292133i
\(483\) 0 0
\(484\) 1.17504 + 20.1747i 0.0534110 + 0.917032i
\(485\) −7.38607 −0.335384
\(486\) 0 0
\(487\) 1.22501 0.0555106 0.0277553 0.999615i \(-0.491164\pi\)
0.0277553 + 0.999615i \(0.491164\pi\)
\(488\) 1.04591 + 17.9575i 0.0473460 + 0.812900i
\(489\) 0 0
\(490\) −8.56282 + 1.00085i −0.386829 + 0.0452138i
\(491\) −39.4547 9.35094i −1.78057 0.422002i −0.797212 0.603700i \(-0.793693\pi\)
−0.983354 + 0.181698i \(0.941841\pi\)
\(492\) 0 0
\(493\) 1.78662 2.39985i 0.0804653 0.108084i
\(494\) −2.72183 15.4363i −0.122461 0.694512i
\(495\) 0 0
\(496\) 0.0809373 0.459018i 0.00363419 0.0206105i
\(497\) −15.9987 16.9576i −0.717639 0.760652i
\(498\) 0 0
\(499\) −36.7745 + 18.4688i −1.64625 + 0.826778i −0.648396 + 0.761303i \(0.724560\pi\)
−0.997854 + 0.0654753i \(0.979144\pi\)
\(500\) 13.4179 + 8.82507i 0.600065 + 0.394669i
\(501\) 0 0
\(502\) −0.0505470 + 0.0119799i −0.00225602 + 0.000534687i
\(503\) 9.54144 3.47280i 0.425432 0.154845i −0.120426 0.992722i \(-0.538426\pi\)
0.545858 + 0.837878i \(0.316204\pi\)
\(504\) 0 0
\(505\) −13.3166 4.84686i −0.592582 0.215682i
\(506\) −13.5557 1.58443i −0.602623 0.0704366i
\(507\) 0 0
\(508\) 3.70433 3.92636i 0.164353 0.174204i
\(509\) 14.4794 + 19.4492i 0.641789 + 0.862073i 0.997363 0.0725757i \(-0.0231219\pi\)
−0.355574 + 0.934648i \(0.615714\pi\)
\(510\) 0 0
\(511\) 14.9518 + 7.50907i 0.661428 + 0.332182i
\(512\) 3.94773 + 6.83768i 0.174467 + 0.302186i
\(513\) 0 0
\(514\) 7.55901 13.0926i 0.333414 0.577490i
\(515\) 4.02703 2.64862i 0.177452 0.116712i
\(516\) 0 0
\(517\) 15.8851 36.8258i 0.698626 1.61960i
\(518\) −0.852189 2.84651i −0.0374430 0.125068i
\(519\) 0 0
\(520\) 6.97867 + 16.1784i 0.306035 + 0.709469i
\(521\) −4.86477 + 4.08202i −0.213129 + 0.178837i −0.743102 0.669178i \(-0.766646\pi\)
0.529973 + 0.848014i \(0.322202\pi\)
\(522\) 0 0
\(523\) 21.5335 + 18.0688i 0.941595 + 0.790092i 0.977862 0.209250i \(-0.0671024\pi\)
−0.0362674 + 0.999342i \(0.511547\pi\)
\(524\) −6.63341 + 22.1571i −0.289782 + 0.967939i
\(525\) 0 0
\(526\) 0.684376 11.7503i 0.0298402 0.512337i
\(527\) −0.175350 + 3.01065i −0.00763838 + 0.131146i
\(528\) 0 0
\(529\) 3.17303 10.5987i 0.137958 0.460812i
\(530\) 3.67848 + 3.08661i 0.159783 + 0.134074i
\(531\) 0 0
\(532\) −18.0598 + 15.1540i −0.782991 + 0.657008i
\(533\) 1.21492 + 2.81651i 0.0526242 + 0.121997i
\(534\) 0 0
\(535\) 7.14035 + 23.8504i 0.308704 + 1.03114i
\(536\) 5.56170 12.8935i 0.240229 0.556913i
\(537\) 0 0
\(538\) −7.66360 + 5.04043i −0.330401 + 0.217308i
\(539\) −18.8268 + 32.6089i −0.810926 + 1.40457i
\(540\) 0 0
\(541\) −1.34390 2.32771i −0.0577788 0.100076i 0.835689 0.549203i \(-0.185068\pi\)
−0.893468 + 0.449127i \(0.851735\pi\)
\(542\) 2.01162 + 1.01028i 0.0864066 + 0.0433950i
\(543\) 0 0
\(544\) −16.0102 21.5055i −0.686433 0.922039i
\(545\) 7.75865 8.22369i 0.332344 0.352264i
\(546\) 0 0
\(547\) −32.5857 3.80872i −1.39326 0.162849i −0.613881 0.789399i \(-0.710392\pi\)
−0.779381 + 0.626550i \(0.784466\pi\)
\(548\) 12.1088 + 4.40724i 0.517262 + 0.188268i
\(549\) 0 0
\(550\) −10.4214 + 3.79308i −0.444370 + 0.161737i
\(551\) −2.83646 + 0.672254i −0.120837 + 0.0286390i
\(552\) 0 0
\(553\) 35.7053 + 23.4837i 1.51834 + 0.998630i
\(554\) 1.60707 0.807103i 0.0682780 0.0342905i
\(555\) 0 0
\(556\) 15.1779 + 16.0876i 0.643686 + 0.682267i
\(557\) 1.71906 9.74928i 0.0728390 0.413090i −0.926485 0.376331i \(-0.877185\pi\)
0.999324 0.0367591i \(-0.0117034\pi\)
\(558\) 0 0
\(559\) −6.54721 37.1311i −0.276917 1.57048i
\(560\) 2.38037 3.19740i 0.100589 0.135115i
\(561\) 0 0
\(562\) −4.82564 1.14370i −0.203557 0.0482440i
\(563\) 6.98793 0.816772i 0.294506 0.0344228i 0.0324431 0.999474i \(-0.489671\pi\)
0.262063 + 0.965051i \(0.415597\pi\)
\(564\) 0 0
\(565\) −0.862634 14.8108i −0.0362913 0.623097i
\(566\) 11.4745 0.482310
\(567\) 0 0
\(568\) −16.2454 −0.681640
\(569\) −0.228981 3.93146i −0.00959940 0.164815i −0.999701 0.0244612i \(-0.992213\pi\)
0.990101 0.140354i \(-0.0448241\pi\)
\(570\) 0 0
\(571\) −25.3946 + 2.96820i −1.06273 + 0.124215i −0.629448 0.777043i \(-0.716719\pi\)
−0.433282 + 0.901258i \(0.642645\pi\)
\(572\) 30.6923 + 7.27421i 1.28331 + 0.304150i
\(573\) 0 0
\(574\) −1.21136 + 1.62715i −0.0505614 + 0.0679157i
\(575\) 1.68431 + 9.55219i 0.0702405 + 0.398354i
\(576\) 0 0
\(577\) 0.816045 4.62802i 0.0339724 0.192667i −0.963099 0.269149i \(-0.913258\pi\)
0.997071 + 0.0764818i \(0.0243687\pi\)
\(578\) 2.14325 + 2.27172i 0.0891476 + 0.0944909i
\(579\) 0 0
\(580\) 1.20023 0.602780i 0.0498370 0.0250291i
\(581\) 5.15020 + 3.38734i 0.213666 + 0.140530i
\(582\) 0 0
\(583\) 20.4075 4.83666i 0.845191 0.200314i
\(584\) 10.9558 3.98757i 0.453353 0.165007i
\(585\) 0 0
\(586\) −18.6213 6.77759i −0.769238 0.279980i
\(587\) −27.5853 3.22426i −1.13857 0.133079i −0.474152 0.880443i \(-0.657245\pi\)
−0.664415 + 0.747363i \(0.731319\pi\)
\(588\) 0 0
\(589\) 2.01639 2.13725i 0.0830838 0.0880637i
\(590\) 3.64190 + 4.89193i 0.149935 + 0.201397i
\(591\) 0 0
\(592\) 0.632966 + 0.317887i 0.0260147 + 0.0130651i
\(593\) 7.16631 + 12.4124i 0.294285 + 0.509717i 0.974818 0.223000i \(-0.0715851\pi\)
−0.680533 + 0.732717i \(0.738252\pi\)
\(594\) 0 0
\(595\) −12.8956 + 22.3359i −0.528669 + 0.915682i
\(596\) 27.0915 17.8184i 1.10971 0.729869i
\(597\) 0 0
\(598\) −4.80443 + 11.1379i −0.196468 + 0.455464i
\(599\) −7.88798 26.3477i −0.322294 1.07654i −0.953618 0.301018i \(-0.902674\pi\)
0.631324 0.775519i \(-0.282512\pi\)
\(600\) 0 0
\(601\) 7.42657 + 17.2167i 0.302936 + 0.702285i 0.999890 0.0148309i \(-0.00472101\pi\)
−0.696954 + 0.717116i \(0.745462\pi\)
\(602\) 19.1011 16.0277i 0.778503 0.653242i
\(603\) 0 0
\(604\) 2.48176 + 2.08244i 0.100981 + 0.0847333i
\(605\) 6.17792 20.6357i 0.251168 0.838960i
\(606\) 0 0
\(607\) −1.53553 + 26.3640i −0.0623252 + 1.07008i 0.811660 + 0.584130i \(0.198564\pi\)
−0.873985 + 0.485952i \(0.838473\pi\)
\(608\) −1.51887 + 26.0780i −0.0615983 + 1.05760i
\(609\) 0 0
\(610\) 2.25396 7.52875i 0.0912602 0.304830i
\(611\) −27.3057 22.9122i −1.10467 0.926928i
\(612\) 0 0
\(613\) −26.7821 + 22.4728i −1.08172 + 0.907670i −0.996062 0.0886553i \(-0.971743\pi\)
−0.0856560 + 0.996325i \(0.527299\pi\)
\(614\) 3.77141 + 8.74312i 0.152202 + 0.352843i
\(615\) 0 0
\(616\) 14.5960 + 48.7542i 0.588092 + 1.96436i
\(617\) −2.83253 + 6.56654i −0.114033 + 0.264359i −0.965669 0.259775i \(-0.916352\pi\)
0.851636 + 0.524134i \(0.175611\pi\)
\(618\) 0 0
\(619\) 15.7252 10.3426i 0.632050 0.415706i −0.192657 0.981266i \(-0.561710\pi\)
0.824707 + 0.565560i \(0.191340\pi\)
\(620\) −0.676908 + 1.17244i −0.0271853 + 0.0470863i
\(621\) 0 0
\(622\) −9.82235 17.0128i −0.393841 0.682152i
\(623\) 3.54245 + 1.77908i 0.141925 + 0.0712775i
\(624\) 0 0
\(625\) −1.83983 2.47133i −0.0735934 0.0988530i
\(626\) 15.8555 16.8058i 0.633713 0.671696i
\(627\) 0 0
\(628\) −27.1587 3.17440i −1.08375 0.126672i
\(629\) −4.30649 1.56744i −0.171711 0.0624978i
\(630\) 0 0
\(631\) −22.0642 + 8.03070i −0.878361 + 0.319697i −0.741548 0.670900i \(-0.765908\pi\)
−0.136813 + 0.990597i \(0.543686\pi\)
\(632\) 28.9766 6.86759i 1.15263 0.273178i
\(633\) 0 0
\(634\) 2.80004 + 1.84161i 0.111204 + 0.0731398i
\(635\) −5.14171 + 2.58226i −0.204042 + 0.102474i
\(636\) 0 0
\(637\) 22.9654 + 24.3419i 0.909923 + 0.964463i
\(638\) −0.447890 + 2.54011i −0.0177321 + 0.100564i
\(639\) 0 0
\(640\) −2.37461 13.4671i −0.0938648 0.532334i
\(641\) −2.60302 + 3.49646i −0.102813 + 0.138102i −0.850552 0.525891i \(-0.823732\pi\)
0.747739 + 0.663993i \(0.231139\pi\)
\(642\) 0 0
\(643\) 18.4995 + 4.38447i 0.729550 + 0.172906i 0.578573 0.815631i \(-0.303610\pi\)
0.150977 + 0.988537i \(0.451758\pi\)
\(644\) 18.1209 2.11803i 0.714064 0.0834621i
\(645\) 0 0
\(646\) −0.929625 15.9610i −0.0365756 0.627979i
\(647\) −20.6268 −0.810924 −0.405462 0.914112i \(-0.632889\pi\)
−0.405462 + 0.914112i \(0.632889\pi\)
\(648\) 0 0
\(649\) 26.6367 1.04558
\(650\) 0.573117 + 9.84004i 0.0224795 + 0.385958i
\(651\) 0 0
\(652\) −24.3702 + 2.84846i −0.954410 + 0.111554i
\(653\) 5.82928 + 1.38157i 0.228117 + 0.0540648i 0.343085 0.939304i \(-0.388528\pi\)
−0.114967 + 0.993369i \(0.536676\pi\)
\(654\) 0 0
\(655\) 14.7217 19.7747i 0.575225 0.772661i
\(656\) −0.0839701 0.476218i −0.00327848 0.0185932i
\(657\) 0 0
\(658\) 4.09344 23.2150i 0.159579 0.905016i
\(659\) 26.6529 + 28.2504i 1.03825 + 1.10048i 0.994843 + 0.101423i \(0.0323394\pi\)
0.0434061 + 0.999058i \(0.486179\pi\)
\(660\) 0 0
\(661\) 27.6987 13.9108i 1.07736 0.541068i 0.180583 0.983560i \(-0.442202\pi\)
0.896773 + 0.442491i \(0.145905\pi\)
\(662\) −18.1731 11.9527i −0.706319 0.464553i
\(663\) 0 0
\(664\) 4.17964 0.990594i 0.162202 0.0384425i
\(665\) 23.6135 8.59460i 0.915691 0.333284i
\(666\) 0 0
\(667\) 2.11981 + 0.771549i 0.0820795 + 0.0298745i
\(668\) 4.67768 + 0.546743i 0.180985 + 0.0211541i
\(669\) 0 0
\(670\) −4.21000 + 4.46233i −0.162646 + 0.172395i
\(671\) −20.4972 27.5325i −0.791285 1.06288i
\(672\) 0 0
\(673\) −34.4849 17.3190i −1.32930 0.667598i −0.364650 0.931145i \(-0.618811\pi\)
−0.964646 + 0.263547i \(0.915108\pi\)
\(674\) 10.5125 + 18.2082i 0.404926 + 0.701352i
\(675\) 0 0
\(676\) 4.98742 8.63847i 0.191824 0.332249i
\(677\) −3.33250 + 2.19182i −0.128078 + 0.0842386i −0.611932 0.790911i \(-0.709607\pi\)
0.483853 + 0.875149i \(0.339237\pi\)
\(678\) 0 0
\(679\) −7.51016 + 17.4105i −0.288214 + 0.668154i
\(680\) 5.15441 + 17.2169i 0.197663 + 0.660239i
\(681\) 0 0
\(682\) −1.02976 2.38725i −0.0394316 0.0914127i
\(683\) 32.2624 27.0713i 1.23449 1.03586i 0.236551 0.971619i \(-0.423983\pi\)
0.997935 0.0642370i \(-0.0204614\pi\)
\(684\) 0 0
\(685\) −10.5217 8.82872i −0.402012 0.337328i
\(686\) −0.383084 + 1.27959i −0.0146262 + 0.0488550i
\(687\) 0 0
\(688\) −0.345609 + 5.93388i −0.0131762 + 0.226227i
\(689\) 1.08383 18.6086i 0.0412905 0.708930i
\(690\) 0 0
\(691\) 2.45234 8.19140i 0.0932916 0.311616i −0.898589 0.438792i \(-0.855406\pi\)
0.991880 + 0.127177i \(0.0405916\pi\)
\(692\) 19.8777 + 16.6794i 0.755638 + 0.634056i
\(693\) 0 0
\(694\) 18.2596 15.3216i 0.693125 0.581601i
\(695\) −9.33753 21.6468i −0.354193 0.821111i
\(696\) 0 0
\(697\) 0.897337 + 2.99731i 0.0339891 + 0.113531i
\(698\) 2.46881 5.72333i 0.0934457 0.216631i
\(699\) 0 0
\(700\) 12.3862 8.14656i 0.468156 0.307911i
\(701\) −0.440975 + 0.763791i −0.0166554 + 0.0288480i −0.874233 0.485507i \(-0.838635\pi\)
0.857578 + 0.514355i \(0.171968\pi\)
\(702\) 0 0
\(703\) 2.23259 + 3.86697i 0.0842039 + 0.145845i
\(704\) 14.2574 + 7.16036i 0.537348 + 0.269866i
\(705\) 0 0
\(706\) 10.1883 + 13.6853i 0.383443 + 0.515053i
\(707\) −24.9654 + 26.4618i −0.938921 + 0.995198i
\(708\) 0 0
\(709\) 39.9617 + 4.67085i 1.50079 + 0.175417i 0.826453 0.563005i \(-0.190355\pi\)
0.674338 + 0.738423i \(0.264429\pi\)
\(710\) 6.66953 + 2.42751i 0.250303 + 0.0911028i
\(711\) 0 0
\(712\) 2.59569 0.944754i 0.0972777 0.0354062i
\(713\) −2.21257 + 0.524390i −0.0828615 + 0.0196385i
\(714\) 0 0
\(715\) −28.0900 18.4751i −1.05051 0.690930i
\(716\) −14.7537 + 7.40960i −0.551372 + 0.276910i
\(717\) 0 0
\(718\) −9.28413 9.84060i −0.346481 0.367248i
\(719\) −2.39151 + 13.5629i −0.0891883 + 0.505812i 0.907186 + 0.420730i \(0.138226\pi\)
−0.996374 + 0.0850815i \(0.972885\pi\)
\(720\) 0 0
\(721\) −2.14866 12.1857i −0.0800203 0.453817i
\(722\) −0.434796 + 0.584032i −0.0161814 + 0.0217354i
\(723\) 0 0
\(724\) 21.3369 + 5.05695i 0.792981 + 0.187940i
\(725\) 1.82070 0.212809i 0.0676190 0.00790353i
\(726\) 0 0
\(727\) 0.725932 + 12.4638i 0.0269233 + 0.462256i 0.984646 + 0.174563i \(0.0558512\pi\)
−0.957723 + 0.287693i \(0.907112\pi\)
\(728\) 45.2317 1.67640
\(729\) 0 0
\(730\) −5.09374 −0.188528
\(731\) −2.23616 38.3933i −0.0827072 1.42003i
\(732\) 0 0
\(733\) 26.6912 3.11976i 0.985864 0.115231i 0.392145 0.919903i \(-0.371733\pi\)
0.593719 + 0.804673i \(0.297659\pi\)
\(734\) 18.1806 + 4.30889i 0.671059 + 0.159044i
\(735\) 0 0
\(736\) 12.0717 16.2151i 0.444967 0.597695i
\(737\) 4.65283 + 26.3875i 0.171389 + 0.971996i
\(738\) 0 0
\(739\) −4.23374 + 24.0107i −0.155740 + 0.883248i 0.802365 + 0.596833i \(0.203575\pi\)
−0.958106 + 0.286415i \(0.907536\pi\)
\(740\) −1.41182 1.49644i −0.0518996 0.0550103i
\(741\) 0 0
\(742\) 11.0161 5.53247i 0.404412 0.203103i
\(743\) 30.1360 + 19.8208i 1.10558 + 0.727154i 0.964826 0.262890i \(-0.0846757\pi\)
0.140758 + 0.990044i \(0.455046\pi\)
\(744\) 0 0
\(745\) −33.6311 + 7.97072i −1.23215 + 0.292025i
\(746\) −8.46844 + 3.08226i −0.310052 + 0.112850i
\(747\) 0 0
\(748\) 30.2335 + 11.0041i 1.10544 + 0.402349i
\(749\) 63.4808 + 7.41984i 2.31954 + 0.271115i
\(750\) 0 0
\(751\) 1.60334 1.69945i 0.0585069 0.0620137i −0.697459 0.716625i \(-0.745686\pi\)
0.755966 + 0.654611i \(0.227168\pi\)
\(752\) 3.35565 + 4.50742i 0.122368 + 0.164369i
\(753\) 0 0
\(754\) 2.04857 + 1.02883i 0.0746047 + 0.0374679i
\(755\) −1.72660 2.99055i −0.0628372 0.108837i
\(756\) 0 0
\(757\) 8.08646 14.0062i 0.293907 0.509063i −0.680823 0.732448i \(-0.738378\pi\)
0.974730 + 0.223386i \(0.0717109\pi\)
\(758\) 13.5369 8.90334i 0.491681 0.323384i
\(759\) 0 0
\(760\) 6.93553 16.0784i 0.251578 0.583223i
\(761\) 13.0085 + 43.4514i 0.471557 + 1.57511i 0.781215 + 0.624262i \(0.214600\pi\)
−0.309657 + 0.950848i \(0.600214\pi\)
\(762\) 0 0
\(763\) −11.4959 26.6506i −0.416181 0.964817i
\(764\) −6.13669 + 5.14929i −0.222018 + 0.186295i
\(765\) 0 0
\(766\) 9.49250 + 7.96515i 0.342978 + 0.287793i
\(767\) 6.78980 22.6795i 0.245165 0.818910i
\(768\) 0 0
\(769\) −1.06788 + 18.3348i −0.0385087 + 0.661168i 0.922729 + 0.385448i \(0.125953\pi\)
−0.961238 + 0.275720i \(0.911084\pi\)
\(770\) 1.29283 22.1971i 0.0465904 0.799927i
\(771\) 0 0
\(772\) 0.0700256 0.233902i 0.00252028 0.00841831i
\(773\) 22.5821 + 18.9486i 0.812222 + 0.681536i 0.951137 0.308769i \(-0.0999169\pi\)
−0.138915 + 0.990304i \(0.544361\pi\)
\(774\) 0 0
\(775\) −1.41544 + 1.18769i −0.0508441 + 0.0426633i
\(776\) 5.23326 + 12.1321i 0.187863 + 0.435515i
\(777\) 0 0
\(778\) −6.39031 21.3451i −0.229104 0.765260i
\(779\) 1.20741 2.79910i 0.0432601 0.100288i
\(780\) 0 0
\(781\) 25.8995 17.0344i 0.926758 0.609538i
\(782\) −6.18635 + 10.7151i −0.221224 + 0.383170i
\(783\) 0 0
\(784\) −2.63788 4.56895i −0.0942102 0.163177i
\(785\) 26.0454 + 13.0805i 0.929599 + 0.466862i
\(786\) 0 0
\(787\) 19.1430 + 25.7135i 0.682375 + 0.916588i 0.999494 0.0317973i \(-0.0101231\pi\)
−0.317120 + 0.948386i \(0.602716\pi\)
\(788\) 10.6919 11.3327i 0.380882 0.403712i
\(789\) 0 0
\(790\) −12.9225 1.51043i −0.459764 0.0537387i
\(791\) −35.7894 13.0263i −1.27252 0.463161i
\(792\) 0 0
\(793\) −28.6670 + 10.4339i −1.01799 + 0.370520i
\(794\) −24.0469 + 5.69922i −0.853393 + 0.202258i
\(795\) 0 0
\(796\) −23.7680 15.6325i −0.842435 0.554079i
\(797\) 10.5327 5.28974i 0.373088 0.187372i −0.252368 0.967631i \(-0.581209\pi\)
0.625456 + 0.780259i \(0.284913\pi\)
\(798\) 0 0
\(799\) −24.9506 26.4461i −0.882689 0.935596i
\(800\) 2.85246 16.1771i 0.100850 0.571948i
\(801\) 0 0
\(802\) −2.31363 13.1212i −0.0816970 0.463327i
\(803\) −13.2852 + 17.8451i −0.468825 + 0.629741i
\(804\) 0 0
\(805\) −18.9223 4.48468i −0.666925 0.158064i
\(806\) −2.29509 + 0.268257i −0.0808410 + 0.00944895i
\(807\) 0 0
\(808\) 1.47399 + 25.3075i 0.0518549 + 0.890314i
\(809\) 21.4155 0.752929 0.376464 0.926431i \(-0.377140\pi\)
0.376464 + 0.926431i \(0.377140\pi\)
\(810\) 0 0
\(811\) 1.73790 0.0610258 0.0305129 0.999534i \(-0.490286\pi\)
0.0305129 + 0.999534i \(0.490286\pi\)
\(812\) −0.200480 3.44211i −0.00703547 0.120794i
\(813\) 0 0
\(814\) 3.92419 0.458672i 0.137543 0.0160765i
\(815\) 25.4480 + 6.03128i 0.891404 + 0.211267i
\(816\) 0 0
\(817\) −22.3760 + 30.0562i −0.782837 + 1.05153i
\(818\) 3.23502 + 18.3467i 0.113110 + 0.641477i
\(819\) 0 0
\(820\) −0.243897 + 1.38321i −0.00851725 + 0.0483037i
\(821\) 6.12045 + 6.48730i 0.213605 + 0.226408i 0.825313 0.564675i \(-0.190999\pi\)
−0.611708 + 0.791084i \(0.709517\pi\)
\(822\) 0 0
\(823\) 1.65516 0.831255i 0.0576954 0.0289757i −0.419718 0.907655i \(-0.637871\pi\)
0.477413 + 0.878679i \(0.341575\pi\)
\(824\) −7.20378 4.73800i −0.250955 0.165056i
\(825\) 0 0
\(826\) 15.2344 3.61061i 0.530072 0.125629i
\(827\) −19.7686 + 7.19517i −0.687420 + 0.250200i −0.662030 0.749477i \(-0.730305\pi\)
−0.0253900 + 0.999678i \(0.508083\pi\)
\(828\) 0 0
\(829\) −5.33030 1.94007i −0.185129 0.0673814i 0.247792 0.968813i \(-0.420295\pi\)
−0.432921 + 0.901432i \(0.642517\pi\)
\(830\) −1.86397 0.217867i −0.0646995 0.00756228i
\(831\) 0 0
\(832\) 9.73087 10.3141i 0.337357 0.357578i
\(833\) 20.3841 + 27.3807i 0.706269 + 0.948683i
\(834\) 0 0
\(835\) −4.48592 2.25291i −0.155242 0.0779653i
\(836\) −15.6738 27.1478i −0.542089 0.938925i
\(837\) 0 0
\(838\) −6.14931 + 10.6509i −0.212424 + 0.367930i
\(839\) −19.9919 + 13.1489i −0.690196 + 0.453949i −0.845540 0.533911i \(-0.820722\pi\)
0.155345 + 0.987860i \(0.450351\pi\)
\(840\) 0 0
\(841\) −11.3175 + 26.2368i −0.390257 + 0.904717i
\(842\) −5.28050 17.6381i −0.181978 0.607849i
\(843\) 0 0
\(844\) −0.655533 1.51970i −0.0225644 0.0523101i
\(845\) −8.14471 + 6.83422i −0.280186 + 0.235104i
\(846\) 0 0
\(847\) −42.3609 35.5450i −1.45554 1.22134i
\(848\) −0.842792 + 2.81512i −0.0289416 + 0.0966717i
\(849\) 0 0
\(850\) −0.584586 + 10.0370i −0.0200511 + 0.344265i
\(851\) 0.200918 3.44963i 0.00688738 0.118252i
\(852\) 0 0
\(853\) −1.93688 + 6.46964i −0.0663176 + 0.221516i −0.984724 0.174122i \(-0.944291\pi\)
0.918406 + 0.395638i \(0.129477\pi\)
\(854\) −15.4550 12.9683i −0.528860 0.443766i
\(855\) 0 0
\(856\) 34.1166 28.6272i 1.16608 0.978457i
\(857\) −7.46865 17.3143i −0.255124 0.591444i 0.741730 0.670698i \(-0.234005\pi\)
−0.996854 + 0.0792539i \(0.974746\pi\)
\(858\) 0 0
\(859\) −9.29717 31.0547i −0.317215 1.05957i −0.956774 0.290831i \(-0.906068\pi\)
0.639559 0.768742i \(-0.279117\pi\)
\(860\) 6.83814 15.8526i 0.233179 0.540569i
\(861\) 0 0
\(862\) −0.921800 + 0.606277i −0.0313966 + 0.0206499i
\(863\) 23.6121 40.8973i 0.803765 1.39216i −0.113357 0.993554i \(-0.536160\pi\)
0.917122 0.398607i \(-0.130506\pi\)
\(864\) 0 0
\(865\) −13.8292 23.9529i −0.470208 0.814424i
\(866\) −9.08673 4.56353i −0.308780 0.155075i
\(867\) 0 0
\(868\) 2.07540 + 2.78775i 0.0704438 + 0.0946224i
\(869\) −38.9955 + 41.3328i −1.32283 + 1.40212i
\(870\) 0 0
\(871\) 23.6533 + 2.76468i 0.801462 + 0.0936775i
\(872\) −19.0051 6.91730i −0.643595 0.234249i
\(873\) 0 0
\(874\) 11.3280 4.12304i 0.383174 0.139464i
\(875\) −42.7607 + 10.1345i −1.44558 + 0.342608i
\(876\) 0 0
\(877\) −4.70518 3.09464i −0.158883 0.104499i 0.467578 0.883952i \(-0.345127\pi\)
−0.626461 + 0.779453i \(0.715497\pi\)
\(878\) −14.4840 + 7.27416i −0.488813 + 0.245491i
\(879\) 0 0
\(880\) 3.63729 + 3.85530i 0.122613 + 0.129962i
\(881\) −0.984686 + 5.58443i −0.0331749 + 0.188144i −0.996892 0.0787820i \(-0.974897\pi\)
0.963717 + 0.266926i \(0.0860080\pi\)
\(882\) 0 0
\(883\) 5.95650 + 33.7810i 0.200452 + 1.13682i 0.904437 + 0.426606i \(0.140291\pi\)
−0.703985 + 0.710215i \(0.748598\pi\)
\(884\) 17.0759 22.9369i 0.574324 0.771452i
\(885\) 0 0
\(886\) −25.8316 6.12221i −0.867830 0.205680i
\(887\) −26.7020 + 3.12102i −0.896567 + 0.104794i −0.551879 0.833924i \(-0.686089\pi\)
−0.344687 + 0.938718i \(0.612015\pi\)
\(888\) 0 0
\(889\) 0.858840 + 14.7457i 0.0288046 + 0.494556i
\(890\) −1.20683 −0.0404531
\(891\) 0 0
\(892\) 20.6987 0.693043
\(893\) 2.05976 + 35.3647i 0.0689273 + 1.18344i
\(894\) 0 0
\(895\) 17.4788 2.04298i 0.584252 0.0682892i
\(896\) −34.1593 8.09590i −1.14118 0.270465i
\(897\) 0 0
\(898\) −0.560327 + 0.752650i −0.0186984 + 0.0251163i
\(899\) 0.0746222 + 0.423204i 0.00248879 + 0.0141146i
\(900\) 0 0
\(901\) 3.30159 18.7243i 0.109992 0.623796i
\(902\) −1.85100 1.96195i −0.0616317 0.0653258i
\(903\) 0 0
\(904\) −23.7165 + 11.9109i −0.788798 + 0.396149i
\(905\) −19.5279 12.8437i −0.649128 0.426938i
\(906\) 0 0
\(907\) 29.6181 7.01961i 0.983452 0.233082i 0.292724 0.956197i \(-0.405438\pi\)
0.690728 + 0.723115i \(0.257290\pi\)
\(908\) −32.1114 + 11.6876i −1.06565 + 0.387866i
\(909\) 0 0
\(910\) −18.5699 6.75888i −0.615585 0.224055i
\(911\) −13.9708 1.63296i −0.462875 0.0541023i −0.118540 0.992949i \(-0.537821\pi\)
−0.344335 + 0.938847i \(0.611895\pi\)
\(912\) 0 0
\(913\) −5.62478 + 5.96192i −0.186153 + 0.197311i
\(914\) 14.9595 + 20.0941i 0.494816 + 0.664653i
\(915\) 0 0
\(916\) −1.89562 0.952017i −0.0626331 0.0314555i
\(917\) −31.6440 54.8090i −1.04498 1.80995i
\(918\) 0 0
\(919\) −14.5007 + 25.1160i −0.478335 + 0.828501i −0.999691 0.0248384i \(-0.992093\pi\)
0.521356 + 0.853339i \(0.325426\pi\)
\(920\) −11.3215 + 7.44628i −0.373260 + 0.245497i
\(921\) 0 0
\(922\) −0.104223 + 0.241615i −0.00343239 + 0.00795717i
\(923\) −7.90183 26.3939i −0.260092 0.868767i
\(924\) 0 0
\(925\) −1.11215 2.57825i −0.0365672 0.0847724i
\(926\) 1.76780 1.48336i 0.0580935 0.0487462i
\(927\) 0 0
\(928\) −2.92661 2.45572i −0.0960706 0.0806128i
\(929\) 12.7796 42.6869i 0.419286 1.40051i −0.444104 0.895975i \(-0.646478\pi\)
0.863390 0.504537i \(-0.168337\pi\)
\(930\) 0 0
\(931\) 1.93382 33.2024i 0.0633783 1.08816i
\(932\) 1.13567 19.4987i 0.0372002 0.638702i
\(933\) 0 0
\(934\) 0.848246 2.83334i 0.0277555 0.0927097i
\(935\) −26.2707 22.0437i −0.859143 0.720907i
\(936\) 0 0
\(937\) −15.7744 + 13.2363i −0.515326 + 0.432409i −0.862999 0.505206i \(-0.831416\pi\)
0.347673 + 0.937616i \(0.386972\pi\)
\(938\) 6.23793 + 14.4611i 0.203676 + 0.472173i
\(939\) 0 0
\(940\) −4.68115 15.6361i −0.152682 0.509995i
\(941\) 22.4902 52.1381i 0.733160 1.69966i 0.0188529 0.999822i \(-0.493999\pi\)
0.714307 0.699833i \(-0.246742\pi\)
\(942\) 0 0
\(943\) −1.97098 + 1.29633i −0.0641838 + 0.0422144i
\(944\) −1.86608 + 3.23215i −0.0607359 + 0.105198i
\(945\) 0 0
\(946\) 16.5775 + 28.7131i 0.538982 + 0.933544i
\(947\) −14.0976 7.08007i −0.458110 0.230071i 0.204751 0.978814i \(-0.434362\pi\)
−0.662861 + 0.748743i \(0.730658\pi\)
\(948\) 0 0
\(949\) 11.8076 + 15.8603i 0.383290 + 0.514848i
\(950\) 6.72227 7.12519i 0.218099 0.231172i
\(951\) 0 0
\(952\) 45.8249 + 5.35617i 1.48519 + 0.173594i
\(953\) 47.3933 + 17.2497i 1.53522 + 0.558774i 0.964893 0.262645i \(-0.0845947\pi\)
0.570326 + 0.821418i \(0.306817\pi\)
\(954\) 0 0
\(955\) 8.02382 2.92043i 0.259645 0.0945030i
\(956\) 30.9783 7.34198i 1.00191 0.237457i
\(957\) 0 0
\(958\) −2.06781 1.36002i −0.0668080 0.0439403i
\(959\) −31.5096 + 15.8247i −1.01750 + 0.511006i
\(960\) 0 0
\(961\) 20.9762 + 22.2335i 0.676653 + 0.717210i
\(962\) 0.609760 3.45812i 0.0196594 0.111494i
\(963\) 0 0
\(964\) 1.70519 + 9.67059i 0.0549203 + 0.311469i
\(965\) −0.155410 + 0.208751i −0.00500281 + 0.00671994i
\(966\) 0 0
\(967\) 21.3040 + 5.04915i 0.685092 + 0.162370i 0.558399 0.829572i \(-0.311416\pi\)
0.126692 + 0.991942i \(0.459564\pi\)
\(968\) −38.2725 + 4.47342i −1.23013 + 0.143781i
\(969\) 0 0
\(970\) −0.335645 5.76280i −0.0107769 0.185032i
\(971\) −21.3313 −0.684555 −0.342277 0.939599i \(-0.611198\pi\)
−0.342277 + 0.939599i \(0.611198\pi\)
\(972\) 0 0
\(973\) −60.5205 −1.94020
\(974\) 0.0556682 + 0.955786i 0.00178372 + 0.0306254i
\(975\) 0 0
\(976\) 4.77681 0.558329i 0.152902 0.0178717i
\(977\) 6.97799 + 1.65381i 0.223246 + 0.0529102i 0.340716 0.940166i \(-0.389330\pi\)
−0.117471 + 0.993076i \(0.537479\pi\)
\(978\) 0 0
\(979\) −3.14760 + 4.22796i −0.100598 + 0.135126i
\(980\) 2.66095 + 15.0910i 0.0850011 + 0.482065i
\(981\) 0 0
\(982\) 5.50290 31.2085i 0.175605 0.995904i
\(983\) 28.4197 + 30.1231i 0.906447 + 0.960777i 0.999391 0.0348939i \(-0.0111093\pi\)
−0.0929443 + 0.995671i \(0.529628\pi\)
\(984\) 0 0
\(985\) −14.8406 + 7.45323i −0.472861 + 0.237480i
\(986\) 1.95361 + 1.28491i 0.0622156 + 0.0409199i
\(987\) 0 0
\(988\) −27.1099 + 6.42517i −0.862481 + 0.204412i
\(989\) 27.2487 9.91773i 0.866460 0.315365i
\(990\) 0 0
\(991\) 51.2878 + 18.6672i 1.62921 + 0.592984i 0.985105 0.171953i \(-0.0550079\pi\)
0.644105 + 0.764937i \(0.277230\pi\)
\(992\) 3.82487 + 0.447063i 0.121440 + 0.0141943i
\(993\) 0 0
\(994\) 12.5037 13.2532i 0.396594 0.420365i
\(995\) 18.1075 + 24.3226i 0.574046 + 0.771077i
\(996\) 0 0
\(997\) −23.6921 11.8986i −0.750338 0.376834i 0.0321637 0.999483i \(-0.489760\pi\)
−0.782501 + 0.622649i \(0.786056\pi\)
\(998\) −16.0810 27.8531i −0.509035 0.881674i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.d.514.5 144
3.2 odd 2 729.2.g.a.514.4 144
9.2 odd 6 729.2.g.b.28.4 144
9.4 even 3 81.2.g.a.13.4 144
9.5 odd 6 243.2.g.a.10.5 144
9.7 even 3 729.2.g.c.28.5 144
81.2 odd 54 729.2.g.a.217.4 144
81.22 even 27 6561.2.a.c.1.30 72
81.25 even 27 729.2.g.c.703.5 144
81.29 odd 54 243.2.g.a.73.5 144
81.52 even 27 81.2.g.a.25.4 yes 144
81.56 odd 54 729.2.g.b.703.4 144
81.59 odd 54 6561.2.a.d.1.43 72
81.79 even 27 inner 729.2.g.d.217.5 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.4 144 9.4 even 3
81.2.g.a.25.4 yes 144 81.52 even 27
243.2.g.a.10.5 144 9.5 odd 6
243.2.g.a.73.5 144 81.29 odd 54
729.2.g.a.217.4 144 81.2 odd 54
729.2.g.a.514.4 144 3.2 odd 2
729.2.g.b.28.4 144 9.2 odd 6
729.2.g.b.703.4 144 81.56 odd 54
729.2.g.c.28.5 144 9.7 even 3
729.2.g.c.703.5 144 81.25 even 27
729.2.g.d.217.5 144 81.79 even 27 inner
729.2.g.d.514.5 144 1.1 even 1 trivial
6561.2.a.c.1.30 72 81.22 even 27
6561.2.a.d.1.43 72 81.59 odd 54