Properties

Label 729.2.g.d.703.6
Level $729$
Weight $2$
Character 729.703
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 703.6
Character \(\chi\) \(=\) 729.703
Dual form 729.2.g.d.28.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.890910 + 0.585961i) q^{2} +(-0.341789 - 0.792356i) q^{4} +(0.585850 + 0.620965i) q^{5} +(0.284505 - 0.0332539i) q^{7} +(0.530120 - 3.00646i) q^{8} +(0.158079 + 0.896509i) q^{10} +(-0.519011 - 1.73362i) q^{11} +(-0.325075 - 5.58132i) q^{13} +(0.272954 + 0.137083i) q^{14} +(1.04960 - 1.11251i) q^{16} +(4.42908 + 1.61205i) q^{17} +(-1.75427 + 0.638503i) q^{19} +(0.291788 - 0.676441i) q^{20} +(0.553440 - 1.84862i) q^{22} +(1.34612 + 0.157339i) q^{23} +(0.248347 - 4.26396i) q^{25} +(2.98082 - 5.16294i) q^{26} +(-0.123590 - 0.214064i) q^{28} +(5.35083 - 2.68729i) q^{29} +(-2.54206 + 3.41458i) q^{31} +(-4.35412 + 1.03194i) q^{32} +(3.00131 + 4.03146i) q^{34} +(0.187327 + 0.157186i) q^{35} +(-5.46107 + 4.58238i) q^{37} +(-1.93704 - 0.459086i) q^{38} +(2.17748 - 1.43215i) q^{40} +(9.58849 - 6.30645i) q^{41} +(12.3767 + 2.93332i) q^{43} +(-1.19625 + 1.00377i) q^{44} +(1.10708 + 0.928949i) q^{46} +(-1.22397 - 1.64408i) q^{47} +(-6.73148 + 1.59539i) q^{49} +(2.71977 - 3.65328i) q^{50} +(-4.31129 + 2.16521i) q^{52} +(-1.54131 - 2.66962i) q^{53} +(0.772454 - 1.33793i) q^{55} +(0.0508455 - 0.872983i) q^{56} +(6.34175 + 0.741244i) q^{58} +(0.361763 - 1.20837i) q^{59} +(1.09744 - 2.54416i) q^{61} +(-4.26556 + 1.55254i) q^{62} +(-7.35831 - 2.67821i) q^{64} +(3.27536 - 3.47168i) q^{65} +(-5.61273 - 2.81882i) q^{67} +(-0.236491 - 4.06039i) q^{68} +(0.0747867 + 0.249805i) q^{70} +(2.24048 + 12.7064i) q^{71} +(-1.11508 + 6.32396i) q^{73} +(-7.55042 + 0.882517i) q^{74} +(1.10551 + 1.17178i) q^{76} +(-0.205311 - 0.475965i) q^{77} +(-5.95312 - 3.91543i) q^{79} +1.30574 q^{80} +12.2378 q^{82} +(11.3260 + 7.44925i) q^{83} +(1.59375 + 3.69472i) q^{85} +(9.30768 + 9.86557i) q^{86} +(-5.48720 + 0.641362i) q^{88} +(-0.0750415 + 0.425581i) q^{89} +(-0.278086 - 1.57711i) q^{91} +(-0.335421 - 1.12038i) q^{92} +(-0.127083 - 2.18193i) q^{94} +(-1.42423 - 0.715275i) q^{95} +(-6.92494 + 7.34001i) q^{97} +(-6.93197 - 2.52303i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 9 q^{2} + 9 q^{4} + 9 q^{5} + 9 q^{7} - 18 q^{8} - 18 q^{10} + 9 q^{11} + 9 q^{13} + 9 q^{14} + 9 q^{16} - 18 q^{17} - 18 q^{19} + 45 q^{20} + 9 q^{22} - 45 q^{23} + 9 q^{25} + 45 q^{26} - 9 q^{28}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.890910 + 0.585961i 0.629968 + 0.414337i 0.823945 0.566669i \(-0.191768\pi\)
−0.193977 + 0.981006i \(0.562139\pi\)
\(3\) 0 0
\(4\) −0.341789 0.792356i −0.170894 0.396178i
\(5\) 0.585850 + 0.620965i 0.262000 + 0.277704i 0.844998 0.534770i \(-0.179602\pi\)
−0.582998 + 0.812474i \(0.698120\pi\)
\(6\) 0 0
\(7\) 0.284505 0.0332539i 0.107533 0.0125688i −0.0621562 0.998066i \(-0.519798\pi\)
0.169689 + 0.985498i \(0.445724\pi\)
\(8\) 0.530120 3.00646i 0.187426 1.06295i
\(9\) 0 0
\(10\) 0.158079 + 0.896509i 0.0499889 + 0.283501i
\(11\) −0.519011 1.73362i −0.156488 0.522706i 0.843406 0.537277i \(-0.180547\pi\)
−0.999894 + 0.0145710i \(0.995362\pi\)
\(12\) 0 0
\(13\) −0.325075 5.58132i −0.0901596 1.54798i −0.675602 0.737266i \(-0.736116\pi\)
0.585443 0.810714i \(-0.300921\pi\)
\(14\) 0.272954 + 0.137083i 0.0729501 + 0.0366369i
\(15\) 0 0
\(16\) 1.04960 1.11251i 0.262400 0.278128i
\(17\) 4.42908 + 1.61205i 1.07421 + 0.390980i 0.817749 0.575574i \(-0.195222\pi\)
0.256460 + 0.966555i \(0.417444\pi\)
\(18\) 0 0
\(19\) −1.75427 + 0.638503i −0.402458 + 0.146483i −0.535315 0.844652i \(-0.679807\pi\)
0.132857 + 0.991135i \(0.457585\pi\)
\(20\) 0.291788 0.676441i 0.0652458 0.151257i
\(21\) 0 0
\(22\) 0.553440 1.84862i 0.117994 0.394127i
\(23\) 1.34612 + 0.157339i 0.280686 + 0.0328074i 0.255271 0.966870i \(-0.417835\pi\)
0.0254146 + 0.999677i \(0.491909\pi\)
\(24\) 0 0
\(25\) 0.248347 4.26396i 0.0496694 0.852791i
\(26\) 2.98082 5.16294i 0.584587 1.01254i
\(27\) 0 0
\(28\) −0.123590 0.214064i −0.0233563 0.0404542i
\(29\) 5.35083 2.68729i 0.993624 0.499017i 0.123762 0.992312i \(-0.460504\pi\)
0.869862 + 0.493295i \(0.164208\pi\)
\(30\) 0 0
\(31\) −2.54206 + 3.41458i −0.456568 + 0.613277i −0.969482 0.245163i \(-0.921159\pi\)
0.512914 + 0.858440i \(0.328566\pi\)
\(32\) −4.35412 + 1.03194i −0.769706 + 0.182424i
\(33\) 0 0
\(34\) 3.00131 + 4.03146i 0.514721 + 0.691390i
\(35\) 0.187327 + 0.157186i 0.0316641 + 0.0265693i
\(36\) 0 0
\(37\) −5.46107 + 4.58238i −0.897794 + 0.753339i −0.969758 0.244068i \(-0.921518\pi\)
0.0719637 + 0.997407i \(0.477073\pi\)
\(38\) −1.93704 0.459086i −0.314229 0.0744736i
\(39\) 0 0
\(40\) 2.17748 1.43215i 0.344290 0.226443i
\(41\) 9.58849 6.30645i 1.49747 0.984902i 0.504907 0.863174i \(-0.331527\pi\)
0.992563 0.121728i \(-0.0388437\pi\)
\(42\) 0 0
\(43\) 12.3767 + 2.93332i 1.88742 + 0.447328i 0.999910 0.0134525i \(-0.00428219\pi\)
0.887514 + 0.460780i \(0.152430\pi\)
\(44\) −1.19625 + 1.00377i −0.180342 + 0.151325i
\(45\) 0 0
\(46\) 1.10708 + 0.928949i 0.163230 + 0.136966i
\(47\) −1.22397 1.64408i −0.178535 0.239814i 0.703843 0.710356i \(-0.251466\pi\)
−0.882378 + 0.470542i \(0.844059\pi\)
\(48\) 0 0
\(49\) −6.73148 + 1.59539i −0.961640 + 0.227913i
\(50\) 2.71977 3.65328i 0.384633 0.516652i
\(51\) 0 0
\(52\) −4.31129 + 2.16521i −0.597868 + 0.300261i
\(53\) −1.54131 2.66962i −0.211715 0.366701i 0.740537 0.672016i \(-0.234571\pi\)
−0.952251 + 0.305315i \(0.901238\pi\)
\(54\) 0 0
\(55\) 0.772454 1.33793i 0.104158 0.180406i
\(56\) 0.0508455 0.872983i 0.00679452 0.116657i
\(57\) 0 0
\(58\) 6.34175 + 0.741244i 0.832713 + 0.0973301i
\(59\) 0.361763 1.20837i 0.0470975 0.157317i −0.931206 0.364493i \(-0.881242\pi\)
0.978304 + 0.207177i \(0.0664275\pi\)
\(60\) 0 0
\(61\) 1.09744 2.54416i 0.140513 0.325747i −0.833399 0.552672i \(-0.813608\pi\)
0.973912 + 0.226926i \(0.0728674\pi\)
\(62\) −4.26556 + 1.55254i −0.541726 + 0.197172i
\(63\) 0 0
\(64\) −7.35831 2.67821i −0.919789 0.334776i
\(65\) 3.27536 3.47168i 0.406258 0.430609i
\(66\) 0 0
\(67\) −5.61273 2.81882i −0.685705 0.344374i 0.0716021 0.997433i \(-0.477189\pi\)
−0.757307 + 0.653060i \(0.773485\pi\)
\(68\) −0.236491 4.06039i −0.0286787 0.492395i
\(69\) 0 0
\(70\) 0.0747867 + 0.249805i 0.00893872 + 0.0298574i
\(71\) 2.24048 + 12.7064i 0.265896 + 1.50797i 0.766472 + 0.642278i \(0.222011\pi\)
−0.500576 + 0.865693i \(0.666878\pi\)
\(72\) 0 0
\(73\) −1.11508 + 6.32396i −0.130511 + 0.740164i 0.847370 + 0.531002i \(0.178184\pi\)
−0.977881 + 0.209161i \(0.932927\pi\)
\(74\) −7.55042 + 0.882517i −0.877718 + 0.102591i
\(75\) 0 0
\(76\) 1.10551 + 1.17178i 0.126811 + 0.134412i
\(77\) −0.205311 0.475965i −0.0233974 0.0542412i
\(78\) 0 0
\(79\) −5.95312 3.91543i −0.669778 0.440520i 0.168545 0.985694i \(-0.446093\pi\)
−0.838323 + 0.545174i \(0.816464\pi\)
\(80\) 1.30574 0.145986
\(81\) 0 0
\(82\) 12.2378 1.35144
\(83\) 11.3260 + 7.44925i 1.24319 + 0.817661i 0.988772 0.149433i \(-0.0477447\pi\)
0.254421 + 0.967094i \(0.418115\pi\)
\(84\) 0 0
\(85\) 1.59375 + 3.69472i 0.172866 + 0.400749i
\(86\) 9.30768 + 9.86557i 1.00367 + 1.06383i
\(87\) 0 0
\(88\) −5.48720 + 0.641362i −0.584937 + 0.0683694i
\(89\) −0.0750415 + 0.425581i −0.00795438 + 0.0451115i −0.988527 0.151047i \(-0.951736\pi\)
0.980572 + 0.196158i \(0.0628467\pi\)
\(90\) 0 0
\(91\) −0.278086 1.57711i −0.0291514 0.165326i
\(92\) −0.335421 1.12038i −0.0349700 0.116808i
\(93\) 0 0
\(94\) −0.127083 2.18193i −0.0131076 0.225049i
\(95\) −1.42423 0.715275i −0.146123 0.0733857i
\(96\) 0 0
\(97\) −6.92494 + 7.34001i −0.703121 + 0.745265i −0.976234 0.216717i \(-0.930465\pi\)
0.273114 + 0.961982i \(0.411947\pi\)
\(98\) −6.93197 2.52303i −0.700235 0.254865i
\(99\) 0 0
\(100\) −3.46345 + 1.26059i −0.346345 + 0.126059i
\(101\) −3.67502 + 8.51965i −0.365678 + 0.847737i 0.631689 + 0.775222i \(0.282362\pi\)
−0.997367 + 0.0725151i \(0.976897\pi\)
\(102\) 0 0
\(103\) −4.20365 + 14.0412i −0.414198 + 1.38352i 0.455634 + 0.890167i \(0.349413\pi\)
−0.869831 + 0.493349i \(0.835772\pi\)
\(104\) −16.9524 1.98145i −1.66232 0.194297i
\(105\) 0 0
\(106\) 0.191128 3.28154i 0.0185640 0.318731i
\(107\) 0.0376376 0.0651902i 0.00363856 0.00630218i −0.864200 0.503148i \(-0.832175\pi\)
0.867839 + 0.496846i \(0.165508\pi\)
\(108\) 0 0
\(109\) −2.64599 4.58298i −0.253440 0.438970i 0.711031 0.703161i \(-0.248229\pi\)
−0.964470 + 0.264191i \(0.914895\pi\)
\(110\) 1.47216 0.739347i 0.140365 0.0704939i
\(111\) 0 0
\(112\) 0.261622 0.351419i 0.0247210 0.0332060i
\(113\) −18.0181 + 4.27037i −1.69500 + 0.401722i −0.960807 0.277219i \(-0.910587\pi\)
−0.734193 + 0.678941i \(0.762439\pi\)
\(114\) 0 0
\(115\) 0.690923 + 0.928071i 0.0644289 + 0.0865430i
\(116\) −3.95814 3.32128i −0.367504 0.308373i
\(117\) 0 0
\(118\) 1.03036 0.864571i 0.0948520 0.0795903i
\(119\) 1.31370 + 0.311354i 0.120427 + 0.0285417i
\(120\) 0 0
\(121\) 6.45430 4.24506i 0.586755 0.385915i
\(122\) 2.46850 1.62356i 0.223488 0.146990i
\(123\) 0 0
\(124\) 3.57441 + 0.847151i 0.320992 + 0.0760764i
\(125\) 6.06315 5.08759i 0.542305 0.455048i
\(126\) 0 0
\(127\) 8.52895 + 7.15664i 0.756822 + 0.635049i 0.937297 0.348531i \(-0.113319\pi\)
−0.180476 + 0.983579i \(0.557764\pi\)
\(128\) 0.357982 + 0.480853i 0.0316414 + 0.0425018i
\(129\) 0 0
\(130\) 4.95232 1.17372i 0.434347 0.102942i
\(131\) 0.164790 0.221351i 0.0143977 0.0193395i −0.794866 0.606785i \(-0.792459\pi\)
0.809264 + 0.587445i \(0.199866\pi\)
\(132\) 0 0
\(133\) −0.477868 + 0.239994i −0.0414364 + 0.0208101i
\(134\) −3.34872 5.80016i −0.289285 0.501057i
\(135\) 0 0
\(136\) 7.19452 12.4613i 0.616925 1.06855i
\(137\) −0.612702 + 10.5197i −0.0523466 + 0.898757i 0.865274 + 0.501299i \(0.167144\pi\)
−0.917621 + 0.397458i \(0.869893\pi\)
\(138\) 0 0
\(139\) −0.538250 0.0629124i −0.0456537 0.00533616i 0.0932354 0.995644i \(-0.470279\pi\)
−0.138889 + 0.990308i \(0.544353\pi\)
\(140\) 0.0605210 0.202154i 0.00511496 0.0170851i
\(141\) 0 0
\(142\) −5.44938 + 12.6331i −0.457302 + 1.06014i
\(143\) −9.50717 + 3.46033i −0.795029 + 0.289367i
\(144\) 0 0
\(145\) 4.80349 + 1.74833i 0.398908 + 0.145191i
\(146\) −4.69903 + 4.98068i −0.388895 + 0.412204i
\(147\) 0 0
\(148\) 5.49741 + 2.76090i 0.451884 + 0.226945i
\(149\) 1.14216 + 19.6101i 0.0935693 + 1.60652i 0.639566 + 0.768736i \(0.279114\pi\)
−0.545997 + 0.837787i \(0.683849\pi\)
\(150\) 0 0
\(151\) −4.25389 14.2090i −0.346177 1.15631i −0.936947 0.349471i \(-0.886361\pi\)
0.590770 0.806840i \(-0.298824\pi\)
\(152\) 0.989660 + 5.61264i 0.0802720 + 0.455245i
\(153\) 0 0
\(154\) 0.0959829 0.544346i 0.00773452 0.0438647i
\(155\) −3.60960 + 0.421902i −0.289930 + 0.0338880i
\(156\) 0 0
\(157\) −4.00801 4.24824i −0.319874 0.339047i 0.547406 0.836867i \(-0.315615\pi\)
−0.867280 + 0.497820i \(0.834134\pi\)
\(158\) −3.00941 6.97659i −0.239415 0.555027i
\(159\) 0 0
\(160\) −3.19166 2.09919i −0.252323 0.165955i
\(161\) 0.388211 0.0305953
\(162\) 0 0
\(163\) −6.88988 −0.539657 −0.269828 0.962908i \(-0.586967\pi\)
−0.269828 + 0.962908i \(0.586967\pi\)
\(164\) −8.27419 5.44202i −0.646106 0.424951i
\(165\) 0 0
\(166\) 5.72551 + 13.2732i 0.444385 + 1.03020i
\(167\) 12.1766 + 12.9064i 0.942252 + 0.998728i 1.00000 0.000397221i \(0.000126439\pi\)
−0.0577483 + 0.998331i \(0.518392\pi\)
\(168\) 0 0
\(169\) −18.1334 + 2.11949i −1.39488 + 0.163038i
\(170\) −0.745077 + 4.22554i −0.0571448 + 0.324084i
\(171\) 0 0
\(172\) −1.90597 10.8093i −0.145329 0.824202i
\(173\) −4.01157 13.3996i −0.304994 1.01875i −0.963842 0.266474i \(-0.914141\pi\)
0.658848 0.752276i \(-0.271044\pi\)
\(174\) 0 0
\(175\) −0.0711371 1.22138i −0.00537746 0.0923274i
\(176\) −2.47343 1.24220i −0.186442 0.0936345i
\(177\) 0 0
\(178\) −0.316229 + 0.335183i −0.0237024 + 0.0251230i
\(179\) 9.85261 + 3.58606i 0.736418 + 0.268034i 0.682879 0.730531i \(-0.260728\pi\)
0.0535392 + 0.998566i \(0.482950\pi\)
\(180\) 0 0
\(181\) 11.6610 4.24426i 0.866755 0.315473i 0.129903 0.991527i \(-0.458533\pi\)
0.736852 + 0.676054i \(0.236311\pi\)
\(182\) 0.676372 1.56801i 0.0501361 0.116228i
\(183\) 0 0
\(184\) 1.18664 3.96365i 0.0874803 0.292204i
\(185\) −6.04487 0.706543i −0.444427 0.0519461i
\(186\) 0 0
\(187\) 0.495943 8.51501i 0.0362669 0.622679i
\(188\) −0.884358 + 1.53175i −0.0644984 + 0.111715i
\(189\) 0 0
\(190\) −0.849737 1.47179i −0.0616464 0.106775i
\(191\) −12.6284 + 6.34222i −0.913759 + 0.458907i −0.842589 0.538557i \(-0.818970\pi\)
−0.0711702 + 0.997464i \(0.522673\pi\)
\(192\) 0 0
\(193\) 13.1675 17.6871i 0.947820 1.27314i −0.0141245 0.999900i \(-0.504496\pi\)
0.961945 0.273243i \(-0.0880965\pi\)
\(194\) −10.4705 + 2.48154i −0.751735 + 0.178164i
\(195\) 0 0
\(196\) 3.56486 + 4.78844i 0.254633 + 0.342031i
\(197\) −1.28639 1.07941i −0.0916516 0.0769049i 0.595811 0.803125i \(-0.296831\pi\)
−0.687462 + 0.726220i \(0.741275\pi\)
\(198\) 0 0
\(199\) 8.18059 6.86433i 0.579906 0.486599i −0.305010 0.952349i \(-0.598660\pi\)
0.884916 + 0.465750i \(0.154215\pi\)
\(200\) −12.6878 3.00706i −0.897161 0.212631i
\(201\) 0 0
\(202\) −8.26629 + 5.43682i −0.581614 + 0.382534i
\(203\) 1.43298 0.942484i 0.100575 0.0661494i
\(204\) 0 0
\(205\) 9.53350 + 2.25948i 0.665849 + 0.157809i
\(206\) −11.9726 + 10.0462i −0.834173 + 0.699954i
\(207\) 0 0
\(208\) −6.55049 5.49652i −0.454195 0.381115i
\(209\) 2.01741 + 2.70985i 0.139547 + 0.187444i
\(210\) 0 0
\(211\) −10.1652 + 2.40919i −0.699798 + 0.165855i −0.565089 0.825030i \(-0.691158\pi\)
−0.134709 + 0.990885i \(0.543010\pi\)
\(212\) −1.58849 + 2.13371i −0.109098 + 0.146544i
\(213\) 0 0
\(214\) 0.0717306 0.0360245i 0.00490341 0.00246258i
\(215\) 5.42938 + 9.40396i 0.370281 + 0.641345i
\(216\) 0 0
\(217\) −0.609682 + 1.05600i −0.0413879 + 0.0716860i
\(218\) 0.328112 5.63347i 0.0222226 0.381547i
\(219\) 0 0
\(220\) −1.32413 0.154769i −0.0892730 0.0104345i
\(221\) 7.55761 25.2442i 0.508380 1.69811i
\(222\) 0 0
\(223\) 5.39966 12.5178i 0.361588 0.838256i −0.636184 0.771538i \(-0.719488\pi\)
0.997772 0.0667182i \(-0.0212528\pi\)
\(224\) −1.20445 + 0.438385i −0.0804759 + 0.0292908i
\(225\) 0 0
\(226\) −18.5548 6.75338i −1.23424 0.449228i
\(227\) 8.98971 9.52854i 0.596668 0.632431i −0.356708 0.934216i \(-0.616101\pi\)
0.953376 + 0.301785i \(0.0975824\pi\)
\(228\) 0 0
\(229\) 1.54142 + 0.774128i 0.101860 + 0.0511559i 0.499000 0.866602i \(-0.333701\pi\)
−0.397140 + 0.917758i \(0.629997\pi\)
\(230\) 0.0717373 + 1.23168i 0.00473021 + 0.0812146i
\(231\) 0 0
\(232\) −5.24264 17.5116i −0.344196 1.14970i
\(233\) −4.21198 23.8873i −0.275936 1.56491i −0.735972 0.677011i \(-0.763275\pi\)
0.460036 0.887900i \(-0.347836\pi\)
\(234\) 0 0
\(235\) 0.303852 1.72323i 0.0198211 0.112411i
\(236\) −1.08111 + 0.126363i −0.0703741 + 0.00822555i
\(237\) 0 0
\(238\) 0.987951 + 1.04717i 0.0640394 + 0.0678778i
\(239\) 8.77100 + 20.3335i 0.567349 + 1.31526i 0.924488 + 0.381211i \(0.124493\pi\)
−0.357139 + 0.934051i \(0.616248\pi\)
\(240\) 0 0
\(241\) 15.1000 + 9.93144i 0.972677 + 0.639740i 0.933153 0.359479i \(-0.117045\pi\)
0.0395241 + 0.999219i \(0.487416\pi\)
\(242\) 8.23764 0.529536
\(243\) 0 0
\(244\) −2.39098 −0.153067
\(245\) −4.93432 3.24535i −0.315242 0.207338i
\(246\) 0 0
\(247\) 4.13396 + 9.58361i 0.263038 + 0.609790i
\(248\) 8.91821 + 9.45275i 0.566307 + 0.600250i
\(249\) 0 0
\(250\) 8.38285 0.979815i 0.530178 0.0619689i
\(251\) −1.74420 + 9.89185i −0.110093 + 0.624368i 0.878970 + 0.476876i \(0.158231\pi\)
−0.989063 + 0.147492i \(0.952880\pi\)
\(252\) 0 0
\(253\) −0.425886 2.41532i −0.0267752 0.151850i
\(254\) 3.40502 + 11.3735i 0.213650 + 0.713640i
\(255\) 0 0
\(256\) 0.947781 + 16.2728i 0.0592363 + 1.01705i
\(257\) −8.19846 4.11742i −0.511406 0.256838i 0.174331 0.984687i \(-0.444224\pi\)
−0.685737 + 0.727849i \(0.740520\pi\)
\(258\) 0 0
\(259\) −1.40132 + 1.48531i −0.0870739 + 0.0922929i
\(260\) −3.87029 1.40867i −0.240025 0.0873620i
\(261\) 0 0
\(262\) 0.276516 0.100643i 0.0170832 0.00621777i
\(263\) −9.41306 + 21.8219i −0.580434 + 1.34560i 0.334653 + 0.942342i \(0.391381\pi\)
−0.915087 + 0.403257i \(0.867878\pi\)
\(264\) 0 0
\(265\) 0.754766 2.52109i 0.0463649 0.154870i
\(266\) −0.566364 0.0661985i −0.0347260 0.00405889i
\(267\) 0 0
\(268\) −0.315139 + 5.41072i −0.0192502 + 0.330513i
\(269\) 3.35091 5.80395i 0.204309 0.353873i −0.745604 0.666390i \(-0.767839\pi\)
0.949912 + 0.312517i \(0.101172\pi\)
\(270\) 0 0
\(271\) 4.74494 + 8.21848i 0.288235 + 0.499237i 0.973388 0.229161i \(-0.0735984\pi\)
−0.685154 + 0.728398i \(0.740265\pi\)
\(272\) 6.44220 3.23539i 0.390616 0.196175i
\(273\) 0 0
\(274\) −6.70998 + 9.01307i −0.405365 + 0.544499i
\(275\) −7.52097 + 1.78250i −0.453532 + 0.107489i
\(276\) 0 0
\(277\) −0.827868 1.11202i −0.0497418 0.0668148i 0.776556 0.630048i \(-0.216965\pi\)
−0.826298 + 0.563233i \(0.809557\pi\)
\(278\) −0.442668 0.371442i −0.0265494 0.0222776i
\(279\) 0 0
\(280\) 0.571880 0.479864i 0.0341764 0.0286774i
\(281\) 15.5815 + 3.69287i 0.929512 + 0.220298i 0.667366 0.744730i \(-0.267422\pi\)
0.262146 + 0.965028i \(0.415570\pi\)
\(282\) 0 0
\(283\) 0.262449 0.172616i 0.0156010 0.0102609i −0.541685 0.840582i \(-0.682213\pi\)
0.557286 + 0.830321i \(0.311843\pi\)
\(284\) 9.30221 6.11816i 0.551985 0.363046i
\(285\) 0 0
\(286\) −10.4976 2.48799i −0.620739 0.147118i
\(287\) 2.51826 2.11307i 0.148648 0.124731i
\(288\) 0 0
\(289\) 3.99528 + 3.35244i 0.235016 + 0.197202i
\(290\) 3.25503 + 4.37226i 0.191142 + 0.256748i
\(291\) 0 0
\(292\) 5.39195 1.27792i 0.315540 0.0747844i
\(293\) 11.1446 14.9698i 0.651076 0.874547i −0.346915 0.937897i \(-0.612771\pi\)
0.997991 + 0.0633491i \(0.0201782\pi\)
\(294\) 0 0
\(295\) 0.962295 0.483283i 0.0560270 0.0281378i
\(296\) 10.8817 + 18.8477i 0.632488 + 1.09550i
\(297\) 0 0
\(298\) −10.4732 + 18.1401i −0.606696 + 1.05083i
\(299\) 0.440569 7.56428i 0.0254788 0.437454i
\(300\) 0 0
\(301\) 3.61877 + 0.422974i 0.208583 + 0.0243798i
\(302\) 4.53607 15.1515i 0.261022 0.871873i
\(303\) 0 0
\(304\) −1.13095 + 2.62183i −0.0648642 + 0.150372i
\(305\) 2.22277 0.809023i 0.127276 0.0463245i
\(306\) 0 0
\(307\) 25.4414 + 9.25992i 1.45202 + 0.528491i 0.943154 0.332356i \(-0.107843\pi\)
0.508864 + 0.860847i \(0.330066\pi\)
\(308\) −0.306960 + 0.325359i −0.0174907 + 0.0185391i
\(309\) 0 0
\(310\) −3.46305 1.73921i −0.196688 0.0987804i
\(311\) 0.719941 + 12.3609i 0.0408241 + 0.700923i 0.955183 + 0.296017i \(0.0956586\pi\)
−0.914359 + 0.404906i \(0.867304\pi\)
\(312\) 0 0
\(313\) 6.15560 + 20.5611i 0.347935 + 1.16218i 0.935595 + 0.353076i \(0.114864\pi\)
−0.587660 + 0.809108i \(0.699951\pi\)
\(314\) −1.08147 6.13334i −0.0610311 0.346124i
\(315\) 0 0
\(316\) −1.06770 + 6.05524i −0.0600629 + 0.340634i
\(317\) 23.4460 2.74044i 1.31686 0.153919i 0.571511 0.820595i \(-0.306358\pi\)
0.745348 + 0.666676i \(0.232283\pi\)
\(318\) 0 0
\(319\) −7.43587 7.88156i −0.416329 0.441283i
\(320\) −2.64780 6.13828i −0.148016 0.343140i
\(321\) 0 0
\(322\) 0.345861 + 0.227476i 0.0192741 + 0.0126768i
\(323\) −8.79912 −0.489596
\(324\) 0 0
\(325\) −23.8792 −1.32458
\(326\) −6.13826 4.03720i −0.339967 0.223600i
\(327\) 0 0
\(328\) −13.8770 32.1706i −0.766232 1.77633i
\(329\) −0.402900 0.427049i −0.0222126 0.0235439i
\(330\) 0 0
\(331\) 0.842076 0.0984246i 0.0462847 0.00540990i −0.0929190 0.995674i \(-0.529620\pi\)
0.139204 + 0.990264i \(0.455546\pi\)
\(332\) 2.03134 11.5203i 0.111484 0.632259i
\(333\) 0 0
\(334\) 3.28558 + 18.6334i 0.179779 + 1.01958i
\(335\) −1.53783 5.13672i −0.0840207 0.280649i
\(336\) 0 0
\(337\) −0.118835 2.04032i −0.00647336 0.111143i 0.993524 0.113626i \(-0.0362467\pi\)
−0.999997 + 0.00248306i \(0.999210\pi\)
\(338\) −17.3971 8.73718i −0.946280 0.475240i
\(339\) 0 0
\(340\) 2.38281 2.52563i 0.129226 0.136972i
\(341\) 7.23894 + 2.63476i 0.392011 + 0.142680i
\(342\) 0 0
\(343\) −3.74626 + 1.36353i −0.202279 + 0.0736236i
\(344\) 15.3801 35.6550i 0.829237 1.92239i
\(345\) 0 0
\(346\) 4.27767 14.2884i 0.229969 0.768151i
\(347\) 6.45936 + 0.754991i 0.346757 + 0.0405300i 0.287689 0.957724i \(-0.407113\pi\)
0.0590678 + 0.998254i \(0.481187\pi\)
\(348\) 0 0
\(349\) −0.384965 + 6.60959i −0.0206067 + 0.353803i 0.972206 + 0.234126i \(0.0752229\pi\)
−0.992813 + 0.119677i \(0.961814\pi\)
\(350\) 0.652302 1.12982i 0.0348670 0.0603914i
\(351\) 0 0
\(352\) 4.04883 + 7.01279i 0.215804 + 0.373783i
\(353\) −0.270111 + 0.135655i −0.0143765 + 0.00722017i −0.455973 0.889994i \(-0.650709\pi\)
0.441596 + 0.897214i \(0.354412\pi\)
\(354\) 0 0
\(355\) −6.57763 + 8.83530i −0.349105 + 0.468929i
\(356\) 0.362860 0.0859995i 0.0192316 0.00455796i
\(357\) 0 0
\(358\) 6.67650 + 8.96809i 0.352864 + 0.473978i
\(359\) 3.14494 + 2.63892i 0.165984 + 0.139277i 0.721996 0.691897i \(-0.243225\pi\)
−0.556012 + 0.831174i \(0.687669\pi\)
\(360\) 0 0
\(361\) −11.8851 + 9.97274i −0.625529 + 0.524881i
\(362\) 12.8759 + 3.05164i 0.676740 + 0.160390i
\(363\) 0 0
\(364\) −1.15458 + 0.759381i −0.0605166 + 0.0398024i
\(365\) −4.58023 + 3.01246i −0.239740 + 0.157680i
\(366\) 0 0
\(367\) −8.75239 2.07435i −0.456871 0.108280i −0.00426466 0.999991i \(-0.501357\pi\)
−0.452606 + 0.891711i \(0.649506\pi\)
\(368\) 1.58793 1.33243i 0.0827767 0.0694579i
\(369\) 0 0
\(370\) −4.97142 4.17152i −0.258452 0.216867i
\(371\) −0.527285 0.708267i −0.0273753 0.0367714i
\(372\) 0 0
\(373\) 5.11858 1.21313i 0.265030 0.0628133i −0.0959522 0.995386i \(-0.530590\pi\)
0.360982 + 0.932573i \(0.382441\pi\)
\(374\) 5.43130 7.29550i 0.280846 0.377242i
\(375\) 0 0
\(376\) −5.59173 + 2.80827i −0.288371 + 0.144826i
\(377\) −16.7380 28.9911i −0.862053 1.49312i
\(378\) 0 0
\(379\) −3.76722 + 6.52502i −0.193509 + 0.335168i −0.946411 0.322965i \(-0.895320\pi\)
0.752902 + 0.658133i \(0.228654\pi\)
\(380\) −0.0799664 + 1.37297i −0.00410219 + 0.0704319i
\(381\) 0 0
\(382\) −14.9671 1.74940i −0.765782 0.0895070i
\(383\) 10.2165 34.1256i 0.522040 1.74374i −0.135955 0.990715i \(-0.543410\pi\)
0.657996 0.753022i \(-0.271404\pi\)
\(384\) 0 0
\(385\) 0.175276 0.406335i 0.00893288 0.0207088i
\(386\) 22.0950 8.04193i 1.12461 0.409324i
\(387\) 0 0
\(388\) 8.18276 + 2.97828i 0.415417 + 0.151199i
\(389\) −8.68991 + 9.21077i −0.440596 + 0.467005i −0.909173 0.416418i \(-0.863285\pi\)
0.468577 + 0.883423i \(0.344767\pi\)
\(390\) 0 0
\(391\) 5.70844 + 2.86689i 0.288688 + 0.144985i
\(392\) 1.22798 + 21.0837i 0.0620226 + 1.06489i
\(393\) 0 0
\(394\) −0.513567 1.71543i −0.0258731 0.0864223i
\(395\) −1.05629 5.99053i −0.0531478 0.301416i
\(396\) 0 0
\(397\) 1.88601 10.6961i 0.0946564 0.536823i −0.900196 0.435486i \(-0.856577\pi\)
0.994852 0.101337i \(-0.0323122\pi\)
\(398\) 11.3104 1.32200i 0.566939 0.0662656i
\(399\) 0 0
\(400\) −4.48304 4.75175i −0.224152 0.237587i
\(401\) 2.27311 + 5.26965i 0.113514 + 0.263154i 0.965497 0.260415i \(-0.0838594\pi\)
−0.851983 + 0.523569i \(0.824600\pi\)
\(402\) 0 0
\(403\) 19.8842 + 13.0781i 0.990505 + 0.651465i
\(404\) 8.00667 0.398347
\(405\) 0 0
\(406\) 1.82891 0.0907674
\(407\) 10.7785 + 7.08910i 0.534268 + 0.351394i
\(408\) 0 0
\(409\) −11.7085 27.1434i −0.578948 1.34215i −0.916193 0.400737i \(-0.868754\pi\)
0.337245 0.941417i \(-0.390505\pi\)
\(410\) 7.16952 + 7.59925i 0.354078 + 0.375300i
\(411\) 0 0
\(412\) 12.5624 1.46833i 0.618903 0.0723394i
\(413\) 0.0627404 0.355818i 0.00308725 0.0175087i
\(414\) 0 0
\(415\) 2.00964 + 11.3972i 0.0986491 + 0.559467i
\(416\) 7.17503 + 23.9663i 0.351785 + 1.17504i
\(417\) 0 0
\(418\) 0.209464 + 3.59636i 0.0102452 + 0.175904i
\(419\) −7.98438 4.00990i −0.390062 0.195897i 0.242949 0.970039i \(-0.421885\pi\)
−0.633012 + 0.774142i \(0.718181\pi\)
\(420\) 0 0
\(421\) −1.73759 + 1.84173i −0.0846848 + 0.0897606i −0.768330 0.640054i \(-0.778912\pi\)
0.683645 + 0.729814i \(0.260394\pi\)
\(422\) −10.4679 3.81001i −0.509570 0.185468i
\(423\) 0 0
\(424\) −8.84319 + 3.21866i −0.429463 + 0.156312i
\(425\) 7.97367 18.4851i 0.386780 0.896657i
\(426\) 0 0
\(427\) 0.227626 0.760322i 0.0110156 0.0367946i
\(428\) −0.0645180 0.00754107i −0.00311860 0.000364511i
\(429\) 0 0
\(430\) −0.673263 + 11.5595i −0.0324676 + 0.557448i
\(431\) −14.8594 + 25.7372i −0.715750 + 1.23972i 0.246919 + 0.969036i \(0.420582\pi\)
−0.962669 + 0.270680i \(0.912751\pi\)
\(432\) 0 0
\(433\) 0.612994 + 1.06174i 0.0294586 + 0.0510238i 0.880379 0.474271i \(-0.157288\pi\)
−0.850920 + 0.525295i \(0.823955\pi\)
\(434\) −1.16195 + 0.583551i −0.0557752 + 0.0280114i
\(435\) 0 0
\(436\) −2.72698 + 3.66298i −0.130599 + 0.175425i
\(437\) −2.46193 + 0.583487i −0.117770 + 0.0279120i
\(438\) 0 0
\(439\) −10.3661 13.9241i −0.494748 0.664562i 0.482689 0.875792i \(-0.339660\pi\)
−0.977436 + 0.211231i \(0.932253\pi\)
\(440\) −3.61294 3.03162i −0.172240 0.144527i
\(441\) 0 0
\(442\) 21.5252 18.0618i 1.02385 0.859113i
\(443\) −11.6619 2.76392i −0.554073 0.131318i −0.0559651 0.998433i \(-0.517824\pi\)
−0.498108 + 0.867115i \(0.665972\pi\)
\(444\) 0 0
\(445\) −0.308234 + 0.202729i −0.0146117 + 0.00961027i
\(446\) 12.1456 7.98827i 0.575109 0.378255i
\(447\) 0 0
\(448\) −2.18254 0.517271i −0.103115 0.0244388i
\(449\) 15.0015 12.5878i 0.707965 0.594053i −0.216063 0.976380i \(-0.569322\pi\)
0.924027 + 0.382327i \(0.124877\pi\)
\(450\) 0 0
\(451\) −15.9095 13.3497i −0.749150 0.628611i
\(452\) 9.54203 + 12.8172i 0.448820 + 0.602869i
\(453\) 0 0
\(454\) 13.5924 3.22145i 0.637921 0.151190i
\(455\) 0.816411 1.09663i 0.0382739 0.0514108i
\(456\) 0 0
\(457\) 21.4625 10.7789i 1.00397 0.504215i 0.130689 0.991423i \(-0.458281\pi\)
0.873286 + 0.487208i \(0.161985\pi\)
\(458\) 0.919654 + 1.59289i 0.0429726 + 0.0744308i
\(459\) 0 0
\(460\) 0.499212 0.864661i 0.0232759 0.0403150i
\(461\) 0.823736 14.1430i 0.0383652 0.658705i −0.923232 0.384242i \(-0.874463\pi\)
0.961598 0.274463i \(-0.0885001\pi\)
\(462\) 0 0
\(463\) 10.9340 + 1.27800i 0.508147 + 0.0593938i 0.366304 0.930495i \(-0.380623\pi\)
0.141843 + 0.989889i \(0.454697\pi\)
\(464\) 2.62660 8.77345i 0.121937 0.407297i
\(465\) 0 0
\(466\) 10.2445 23.7495i 0.474569 1.10018i
\(467\) 36.6170 13.3275i 1.69443 0.616723i 0.699261 0.714867i \(-0.253513\pi\)
0.995172 + 0.0981436i \(0.0312904\pi\)
\(468\) 0 0
\(469\) −1.69059 0.615324i −0.0780642 0.0284130i
\(470\) 1.28045 1.35720i 0.0590628 0.0626029i
\(471\) 0 0
\(472\) −3.44115 1.72821i −0.158392 0.0795472i
\(473\) −1.33837 22.9789i −0.0615381 1.05657i
\(474\) 0 0
\(475\) 2.28688 + 7.63872i 0.104929 + 0.350488i
\(476\) −0.202307 1.14734i −0.00927272 0.0525882i
\(477\) 0 0
\(478\) −4.10044 + 23.2547i −0.187550 + 1.06365i
\(479\) −14.0251 + 1.63930i −0.640825 + 0.0749017i −0.430299 0.902686i \(-0.641592\pi\)
−0.210526 + 0.977588i \(0.567518\pi\)
\(480\) 0 0
\(481\) 27.3510 + 28.9904i 1.24710 + 1.32185i
\(482\) 7.63332 + 17.6960i 0.347688 + 0.806032i
\(483\) 0 0
\(484\) −5.56961 3.66319i −0.253164 0.166509i
\(485\) −8.61486 −0.391181
\(486\) 0 0
\(487\) −11.6224 −0.526663 −0.263332 0.964705i \(-0.584821\pi\)
−0.263332 + 0.964705i \(0.584821\pi\)
\(488\) −7.06715 4.64814i −0.319915 0.210411i
\(489\) 0 0
\(490\) −2.49438 5.78263i −0.112685 0.261233i
\(491\) 3.60508 + 3.82116i 0.162695 + 0.172447i 0.803593 0.595180i \(-0.202919\pi\)
−0.640898 + 0.767626i \(0.721438\pi\)
\(492\) 0 0
\(493\) 28.0313 3.27639i 1.26247 0.147561i
\(494\) −1.93263 + 10.9605i −0.0869530 + 0.493135i
\(495\) 0 0
\(496\) 1.13061 + 6.41203i 0.0507660 + 0.287909i
\(497\) 1.05997 + 3.54053i 0.0475460 + 0.158815i
\(498\) 0 0
\(499\) −0.320759 5.50722i −0.0143592 0.246537i −0.997848 0.0655687i \(-0.979114\pi\)
0.983489 0.180968i \(-0.0579232\pi\)
\(500\) −6.10350 3.06529i −0.272957 0.137084i
\(501\) 0 0
\(502\) −7.35016 + 7.79071i −0.328054 + 0.347717i
\(503\) −31.2754 11.3833i −1.39450 0.507557i −0.467959 0.883750i \(-0.655011\pi\)
−0.926541 + 0.376193i \(0.877233\pi\)
\(504\) 0 0
\(505\) −7.44341 + 2.70918i −0.331227 + 0.120557i
\(506\) 1.03586 2.40139i 0.0460495 0.106755i
\(507\) 0 0
\(508\) 2.75550 9.20402i 0.122256 0.408362i
\(509\) 21.9142 + 2.56140i 0.971328 + 0.113532i 0.586932 0.809636i \(-0.300336\pi\)
0.384396 + 0.923168i \(0.374410\pi\)
\(510\) 0 0
\(511\) −0.106951 + 1.83628i −0.00473124 + 0.0812323i
\(512\) −8.09134 + 14.0146i −0.357590 + 0.619364i
\(513\) 0 0
\(514\) −4.89144 8.47222i −0.215752 0.373694i
\(515\) −11.1818 + 5.61570i −0.492728 + 0.247457i
\(516\) 0 0
\(517\) −2.21496 + 2.97520i −0.0974137 + 0.130849i
\(518\) −2.11879 + 0.502162i −0.0930942 + 0.0220637i
\(519\) 0 0
\(520\) −8.70114 11.6877i −0.381570 0.512538i
\(521\) 21.4866 + 18.0294i 0.941345 + 0.789882i 0.977819 0.209453i \(-0.0671682\pi\)
−0.0364742 + 0.999335i \(0.511613\pi\)
\(522\) 0 0
\(523\) −6.29841 + 5.28500i −0.275410 + 0.231097i −0.770022 0.638017i \(-0.779755\pi\)
0.494612 + 0.869114i \(0.335310\pi\)
\(524\) −0.231712 0.0549167i −0.0101224 0.00239905i
\(525\) 0 0
\(526\) −21.1730 + 13.9257i −0.923186 + 0.607189i
\(527\) −16.7635 + 11.0255i −0.730229 + 0.480279i
\(528\) 0 0
\(529\) −20.5927 4.88057i −0.895337 0.212199i
\(530\) 2.14969 1.80381i 0.0933766 0.0783523i
\(531\) 0 0
\(532\) 0.353491 + 0.296614i 0.0153258 + 0.0128598i
\(533\) −38.3153 51.4664i −1.65962 2.22926i
\(534\) 0 0
\(535\) 0.0625308 0.0148201i 0.00270344 0.000640728i
\(536\) −11.4501 + 15.3802i −0.494569 + 0.664322i
\(537\) 0 0
\(538\) 6.38625 3.20729i 0.275331 0.138276i
\(539\) 6.25951 + 10.8418i 0.269616 + 0.466989i
\(540\) 0 0
\(541\) 0.833782 1.44415i 0.0358471 0.0620889i −0.847545 0.530723i \(-0.821920\pi\)
0.883392 + 0.468634i \(0.155254\pi\)
\(542\) −0.588390 + 10.1023i −0.0252735 + 0.433930i
\(543\) 0 0
\(544\) −20.9483 2.44850i −0.898150 0.104979i
\(545\) 1.29572 4.32801i 0.0555025 0.185391i
\(546\) 0 0
\(547\) 7.06785 16.3851i 0.302199 0.700577i −0.697675 0.716414i \(-0.745782\pi\)
0.999875 + 0.0158373i \(0.00504139\pi\)
\(548\) 8.54475 3.11003i 0.365013 0.132854i
\(549\) 0 0
\(550\) −7.74498 2.81894i −0.330247 0.120200i
\(551\) −7.67098 + 8.13076i −0.326795 + 0.346382i
\(552\) 0 0
\(553\) −1.82390 0.915996i −0.0775600 0.0389521i
\(554\) −0.0859560 1.47581i −0.00365192 0.0627010i
\(555\) 0 0
\(556\) 0.134119 + 0.447988i 0.00568790 + 0.0189989i
\(557\) 3.03540 + 17.2146i 0.128614 + 0.729407i 0.979095 + 0.203402i \(0.0651997\pi\)
−0.850481 + 0.526005i \(0.823689\pi\)
\(558\) 0 0
\(559\) 12.3485 70.0317i 0.522285 2.96203i
\(560\) 0.371490 0.0434210i 0.0156983 0.00183487i
\(561\) 0 0
\(562\) 11.7178 + 12.4201i 0.494285 + 0.523912i
\(563\) 13.6909 + 31.7390i 0.577002 + 1.33764i 0.917628 + 0.397441i \(0.130102\pi\)
−0.340626 + 0.940199i \(0.610639\pi\)
\(564\) 0 0
\(565\) −13.2076 8.68681i −0.555650 0.365457i
\(566\) 0.334965 0.0140796
\(567\) 0 0
\(568\) 39.3890 1.65273
\(569\) −21.3130 14.0178i −0.893489 0.587657i 0.0176099 0.999845i \(-0.494394\pi\)
−0.911099 + 0.412188i \(0.864765\pi\)
\(570\) 0 0
\(571\) 8.79169 + 20.3814i 0.367921 + 0.852936i 0.997131 + 0.0757007i \(0.0241194\pi\)
−0.629210 + 0.777235i \(0.716621\pi\)
\(572\) 5.99126 + 6.35036i 0.250507 + 0.265522i
\(573\) 0 0
\(574\) 3.48172 0.406955i 0.145324 0.0169860i
\(575\) 1.00519 5.70073i 0.0419194 0.237737i
\(576\) 0 0
\(577\) −3.76924 21.3764i −0.156915 0.889911i −0.957014 0.290042i \(-0.906331\pi\)
0.800098 0.599869i \(-0.204781\pi\)
\(578\) 1.59504 + 5.32779i 0.0663448 + 0.221607i
\(579\) 0 0
\(580\) −0.256483 4.40364i −0.0106499 0.182851i
\(581\) 3.47003 + 1.74272i 0.143961 + 0.0723000i
\(582\) 0 0
\(583\) −3.82815 + 4.05760i −0.158546 + 0.168049i
\(584\) 18.4216 + 6.70492i 0.762292 + 0.277452i
\(585\) 0 0
\(586\) 18.7006 6.80646i 0.772515 0.281172i
\(587\) −8.05782 + 18.6801i −0.332582 + 0.771012i 0.667079 + 0.744987i \(0.267544\pi\)
−0.999661 + 0.0260249i \(0.991715\pi\)
\(588\) 0 0
\(589\) 2.27925 7.61323i 0.0939149 0.313698i
\(590\) 1.14050 + 0.133306i 0.0469538 + 0.00548811i
\(591\) 0 0
\(592\) −0.633990 + 10.8852i −0.0260568 + 0.447378i
\(593\) 0.579087 1.00301i 0.0237803 0.0411886i −0.853890 0.520453i \(-0.825763\pi\)
0.877671 + 0.479264i \(0.159096\pi\)
\(594\) 0 0
\(595\) 0.576294 + 0.998171i 0.0236258 + 0.0409210i
\(596\) 15.1478 7.60752i 0.620479 0.311616i
\(597\) 0 0
\(598\) 4.82488 6.48094i 0.197304 0.265025i
\(599\) −44.1467 + 10.4629i −1.80378 + 0.427505i −0.988458 0.151498i \(-0.951590\pi\)
−0.815326 + 0.579002i \(0.803442\pi\)
\(600\) 0 0
\(601\) −19.5190 26.2185i −0.796195 1.06948i −0.995975 0.0896345i \(-0.971430\pi\)
0.199780 0.979841i \(-0.435977\pi\)
\(602\) 2.97615 + 2.49729i 0.121299 + 0.101782i
\(603\) 0 0
\(604\) −9.80464 + 8.22707i −0.398945 + 0.334755i
\(605\) 6.41729 + 1.52093i 0.260900 + 0.0618344i
\(606\) 0 0
\(607\) −0.512985 + 0.337395i −0.0208214 + 0.0136945i −0.559877 0.828576i \(-0.689152\pi\)
0.539056 + 0.842270i \(0.318781\pi\)
\(608\) 6.97941 4.59043i 0.283052 0.186167i
\(609\) 0 0
\(610\) 2.45435 + 0.581691i 0.0993736 + 0.0235520i
\(611\) −8.77827 + 7.36585i −0.355131 + 0.297990i
\(612\) 0 0
\(613\) −15.6352 13.1195i −0.631499 0.529891i 0.269895 0.962890i \(-0.413011\pi\)
−0.901394 + 0.432999i \(0.857455\pi\)
\(614\) 17.2401 + 23.1574i 0.695752 + 0.934557i
\(615\) 0 0
\(616\) −1.53981 + 0.364942i −0.0620407 + 0.0147039i
\(617\) 5.77352 7.75518i 0.232433 0.312212i −0.670570 0.741847i \(-0.733950\pi\)
0.903003 + 0.429635i \(0.141358\pi\)
\(618\) 0 0
\(619\) −24.0046 + 12.0556i −0.964828 + 0.484555i −0.860200 0.509957i \(-0.829661\pi\)
−0.104628 + 0.994511i \(0.533365\pi\)
\(620\) 1.56802 + 2.71589i 0.0629732 + 0.109073i
\(621\) 0 0
\(622\) −6.60160 + 11.4343i −0.264700 + 0.458474i
\(623\) −0.00719746 + 0.123576i −0.000288360 + 0.00495095i
\(624\) 0 0
\(625\) −14.5002 1.69483i −0.580008 0.0677932i
\(626\) −6.56393 + 21.9251i −0.262347 + 0.876302i
\(627\) 0 0
\(628\) −1.99623 + 4.62778i −0.0796581 + 0.184668i
\(629\) −31.5746 + 11.4922i −1.25896 + 0.458224i
\(630\) 0 0
\(631\) 29.6208 + 10.7811i 1.17918 + 0.429188i 0.855914 0.517119i \(-0.172996\pi\)
0.323270 + 0.946307i \(0.395218\pi\)
\(632\) −14.9275 + 15.8222i −0.593782 + 0.629372i
\(633\) 0 0
\(634\) 22.4941 + 11.2969i 0.893354 + 0.448659i
\(635\) 0.552665 + 9.48889i 0.0219318 + 0.376555i
\(636\) 0 0
\(637\) 11.0926 + 37.0519i 0.439505 + 1.46805i
\(638\) −2.00641 11.3789i −0.0794344 0.450495i
\(639\) 0 0
\(640\) −0.0888692 + 0.504002i −0.00351286 + 0.0199224i
\(641\) 11.2656 1.31676i 0.444965 0.0520089i 0.109339 0.994004i \(-0.465126\pi\)
0.335625 + 0.941996i \(0.391052\pi\)
\(642\) 0 0
\(643\) −9.07210 9.61586i −0.357769 0.379213i 0.523342 0.852123i \(-0.324685\pi\)
−0.881111 + 0.472910i \(0.843204\pi\)
\(644\) −0.132686 0.307601i −0.00522857 0.0121212i
\(645\) 0 0
\(646\) −7.83922 5.15594i −0.308430 0.202858i
\(647\) −36.5943 −1.43867 −0.719336 0.694663i \(-0.755554\pi\)
−0.719336 + 0.694663i \(0.755554\pi\)
\(648\) 0 0
\(649\) −2.28261 −0.0896005
\(650\) −21.2743 13.9923i −0.834445 0.548823i
\(651\) 0 0
\(652\) 2.35488 + 5.45923i 0.0922244 + 0.213800i
\(653\) −18.7327 19.8555i −0.733069 0.777008i 0.248394 0.968659i \(-0.420097\pi\)
−0.981463 + 0.191651i \(0.938616\pi\)
\(654\) 0 0
\(655\) 0.233993 0.0273499i 0.00914287 0.00106865i
\(656\) 3.04809 17.2866i 0.119008 0.674928i
\(657\) 0 0
\(658\) −0.108714 0.616545i −0.00423809 0.0240354i
\(659\) 4.23303 + 14.1393i 0.164895 + 0.550789i 1.00000 0.000697383i \(0.000221984\pi\)
−0.835104 + 0.550091i \(0.814593\pi\)
\(660\) 0 0
\(661\) 1.61762 + 27.7734i 0.0629181 + 1.08026i 0.871029 + 0.491232i \(0.163453\pi\)
−0.808111 + 0.589030i \(0.799510\pi\)
\(662\) 0.807887 + 0.405736i 0.0313994 + 0.0157694i
\(663\) 0 0
\(664\) 28.4000 30.1023i 1.10214 1.16820i
\(665\) −0.428987 0.156138i −0.0166354 0.00605479i
\(666\) 0 0
\(667\) 7.62568 2.77552i 0.295267 0.107469i
\(668\) 6.06466 14.0595i 0.234649 0.543977i
\(669\) 0 0
\(670\) 1.63984 5.47746i 0.0633527 0.211613i
\(671\) −4.98019 0.582101i −0.192258 0.0224718i
\(672\) 0 0
\(673\) −1.91225 + 32.8321i −0.0737118 + 1.26558i 0.735280 + 0.677763i \(0.237051\pi\)
−0.808992 + 0.587820i \(0.799986\pi\)
\(674\) 1.08967 1.88737i 0.0419727 0.0726989i
\(675\) 0 0
\(676\) 7.87718 + 13.6437i 0.302968 + 0.524757i
\(677\) −21.5460 + 10.8208i −0.828081 + 0.415878i −0.811762 0.583989i \(-0.801491\pi\)
−0.0163192 + 0.999867i \(0.505195\pi\)
\(678\) 0 0
\(679\) −1.72610 + 2.31855i −0.0662416 + 0.0889779i
\(680\) 11.9529 2.83290i 0.458374 0.108637i
\(681\) 0 0
\(682\) 4.90538 + 6.58907i 0.187837 + 0.252308i
\(683\) −10.1873 8.54816i −0.389806 0.327086i 0.426731 0.904378i \(-0.359665\pi\)
−0.816538 + 0.577292i \(0.804109\pi\)
\(684\) 0 0
\(685\) −6.89130 + 5.78249i −0.263303 + 0.220938i
\(686\) −4.13656 0.980382i −0.157934 0.0374311i
\(687\) 0 0
\(688\) 16.2539 10.6904i 0.619675 0.407567i
\(689\) −14.3990 + 9.47035i −0.548557 + 0.360792i
\(690\) 0 0
\(691\) −42.6555 10.1095i −1.62269 0.384585i −0.684038 0.729447i \(-0.739778\pi\)
−0.938654 + 0.344862i \(0.887926\pi\)
\(692\) −9.24612 + 7.75841i −0.351485 + 0.294931i
\(693\) 0 0
\(694\) 5.31231 + 4.45756i 0.201653 + 0.169207i
\(695\) −0.276267 0.371091i −0.0104794 0.0140763i
\(696\) 0 0
\(697\) 52.6345 12.4746i 1.99367 0.472510i
\(698\) −4.21593 + 5.66297i −0.159575 + 0.214347i
\(699\) 0 0
\(700\) −0.943452 + 0.473819i −0.0356591 + 0.0179087i
\(701\) −3.65194 6.32534i −0.137932 0.238905i 0.788782 0.614673i \(-0.210712\pi\)
−0.926714 + 0.375768i \(0.877379\pi\)
\(702\) 0 0
\(703\) 6.65434 11.5257i 0.250973 0.434699i
\(704\) −0.823941 + 14.1465i −0.0310535 + 0.533167i
\(705\) 0 0
\(706\) −0.320133 0.0374181i −0.0120484 0.00140825i
\(707\) −0.762251 + 2.54609i −0.0286674 + 0.0957558i
\(708\) 0 0
\(709\) −17.3188 + 40.1494i −0.650420 + 1.50784i 0.198931 + 0.980014i \(0.436253\pi\)
−0.849350 + 0.527829i \(0.823006\pi\)
\(710\) −11.0372 + 4.01722i −0.414219 + 0.150764i
\(711\) 0 0
\(712\) 1.23971 + 0.451219i 0.0464602 + 0.0169101i
\(713\) −3.95917 + 4.19647i −0.148272 + 0.157159i
\(714\) 0 0
\(715\) −7.71852 3.87638i −0.288656 0.144969i
\(716\) −0.526080 9.03245i −0.0196605 0.337558i
\(717\) 0 0
\(718\) 1.25556 + 4.19385i 0.0468569 + 0.156513i
\(719\) −1.93615 10.9804i −0.0722061 0.409501i −0.999391 0.0348968i \(-0.988890\pi\)
0.927185 0.374604i \(-0.122221\pi\)
\(720\) 0 0
\(721\) −0.729037 + 4.13457i −0.0271508 + 0.153980i
\(722\) −16.4321 + 1.92064i −0.611541 + 0.0714789i
\(723\) 0 0
\(724\) −7.34856 7.78902i −0.273107 0.289477i
\(725\) −10.1296 23.4831i −0.376204 0.872140i
\(726\) 0 0
\(727\) −24.3067 15.9867i −0.901484 0.592916i 0.0119379 0.999929i \(-0.496200\pi\)
−0.913422 + 0.407013i \(0.866570\pi\)
\(728\) −4.88893 −0.181196
\(729\) 0 0
\(730\) −5.84576 −0.216361
\(731\) 50.0886 + 32.9438i 1.85259 + 1.21847i
\(732\) 0 0
\(733\) 6.87604 + 15.9405i 0.253972 + 0.588774i 0.996732 0.0807844i \(-0.0257425\pi\)
−0.742759 + 0.669559i \(0.766483\pi\)
\(734\) −6.58210 6.97662i −0.242950 0.257512i
\(735\) 0 0
\(736\) −6.02353 + 0.704050i −0.222030 + 0.0259516i
\(737\) −1.97369 + 11.1933i −0.0727017 + 0.412312i
\(738\) 0 0
\(739\) 3.59215 + 20.3721i 0.132139 + 0.749400i 0.976809 + 0.214112i \(0.0686857\pi\)
−0.844670 + 0.535288i \(0.820203\pi\)
\(740\) 1.50623 + 5.03117i 0.0553703 + 0.184950i
\(741\) 0 0
\(742\) −0.0547471 0.939971i −0.00200983 0.0345074i
\(743\) −34.0508 17.1009i −1.24920 0.627373i −0.303632 0.952790i \(-0.598199\pi\)
−0.945571 + 0.325417i \(0.894495\pi\)
\(744\) 0 0
\(745\) −11.5081 + 12.1978i −0.421623 + 0.446894i
\(746\) 5.27104 + 1.91850i 0.192986 + 0.0702413i
\(747\) 0 0
\(748\) −6.91643 + 2.51737i −0.252890 + 0.0920443i
\(749\) 0.00854027 0.0197986i 0.000312055 0.000723424i
\(750\) 0 0
\(751\) −9.82318 + 32.8117i −0.358453 + 1.19732i 0.568672 + 0.822564i \(0.307457\pi\)
−0.927125 + 0.374752i \(0.877728\pi\)
\(752\) −3.11375 0.363945i −0.113547 0.0132717i
\(753\) 0 0
\(754\) 2.07558 35.6363i 0.0755881 1.29780i
\(755\) 6.33114 10.9659i 0.230414 0.399088i
\(756\) 0 0
\(757\) −14.5877 25.2666i −0.530198 0.918330i −0.999379 0.0352284i \(-0.988784\pi\)
0.469181 0.883102i \(-0.344549\pi\)
\(758\) −7.17966 + 3.60576i −0.260777 + 0.130967i
\(759\) 0 0
\(760\) −2.90546 + 3.90271i −0.105392 + 0.141566i
\(761\) 12.0070 2.84572i 0.435255 0.103157i −0.00714662 0.999974i \(-0.502275\pi\)
0.442401 + 0.896817i \(0.354127\pi\)
\(762\) 0 0
\(763\) −0.905200 1.21589i −0.0327704 0.0440183i
\(764\) 9.34155 + 7.83849i 0.337965 + 0.283587i
\(765\) 0 0
\(766\) 29.0983 24.4163i 1.05136 0.882198i
\(767\) −6.86191 1.62630i −0.247769 0.0587224i
\(768\) 0 0
\(769\) −2.31777 + 1.52442i −0.0835810 + 0.0549721i −0.590612 0.806956i \(-0.701113\pi\)
0.507031 + 0.861928i \(0.330743\pi\)
\(770\) 0.394251 0.259303i 0.0142078 0.00934464i
\(771\) 0 0
\(772\) −18.5150 4.38813i −0.666369 0.157932i
\(773\) −21.3606 + 17.9237i −0.768287 + 0.644669i −0.940270 0.340431i \(-0.889427\pi\)
0.171983 + 0.985100i \(0.444983\pi\)
\(774\) 0 0
\(775\) 13.9283 + 11.6872i 0.500320 + 0.419818i
\(776\) 18.3964 + 24.7107i 0.660392 + 0.887061i
\(777\) 0 0
\(778\) −13.1391 + 3.11402i −0.471059 + 0.111643i
\(779\) −12.7941 + 17.1855i −0.458398 + 0.615735i
\(780\) 0 0
\(781\) 20.8652 10.4789i 0.746616 0.374964i
\(782\) 3.40582 + 5.89906i 0.121792 + 0.210950i
\(783\) 0 0
\(784\) −5.29048 + 9.16338i −0.188946 + 0.327263i
\(785\) 0.289916 4.97767i 0.0103476 0.177661i
\(786\) 0 0
\(787\) 1.39131 + 0.162621i 0.0495950 + 0.00579682i 0.140854 0.990030i \(-0.455015\pi\)
−0.0912592 + 0.995827i \(0.529089\pi\)
\(788\) −0.415603 + 1.38821i −0.0148052 + 0.0494530i
\(789\) 0 0
\(790\) 2.56915 5.95597i 0.0914064 0.211904i
\(791\) −4.98424 + 1.81411i −0.177219 + 0.0645025i
\(792\) 0 0
\(793\) −14.5565 5.29815i −0.516918 0.188143i
\(794\) 7.94778 8.42415i 0.282056 0.298962i
\(795\) 0 0
\(796\) −8.23503 4.13579i −0.291883 0.146589i
\(797\) 0.651880 + 11.1924i 0.0230908 + 0.396453i 0.989975 + 0.141240i \(0.0451088\pi\)
−0.966885 + 0.255214i \(0.917854\pi\)
\(798\) 0 0
\(799\) −2.77073 9.25489i −0.0980214 0.327414i
\(800\) 3.31883 + 18.8220i 0.117338 + 0.665460i
\(801\) 0 0
\(802\) −1.06268 + 6.02674i −0.0375244 + 0.212812i
\(803\) 11.5421 1.34908i 0.407311 0.0476078i
\(804\) 0 0
\(805\) 0.227433 + 0.241065i 0.00801597 + 0.00849643i
\(806\) 10.0518 + 23.3028i 0.354061 + 0.820805i
\(807\) 0 0
\(808\) 23.6658 + 15.5652i 0.832560 + 0.547583i
\(809\) 2.44943 0.0861173 0.0430587 0.999073i \(-0.486290\pi\)
0.0430587 + 0.999073i \(0.486290\pi\)
\(810\) 0 0
\(811\) 11.9053 0.418050 0.209025 0.977910i \(-0.432971\pi\)
0.209025 + 0.977910i \(0.432971\pi\)
\(812\) −1.23656 0.813297i −0.0433947 0.0285411i
\(813\) 0 0
\(814\) 5.44870 + 12.6315i 0.190977 + 0.442734i
\(815\) −4.03644 4.27837i −0.141390 0.149865i
\(816\) 0 0
\(817\) −23.5850 + 2.75669i −0.825135 + 0.0964444i
\(818\) 5.47372 31.0430i 0.191384 1.08539i
\(819\) 0 0
\(820\) −1.46813 8.32619i −0.0512694 0.290763i
\(821\) −6.96784 23.2742i −0.243179 0.812275i −0.989228 0.146384i \(-0.953237\pi\)
0.746049 0.665891i \(-0.231949\pi\)
\(822\) 0 0
\(823\) −1.80431 30.9788i −0.0628944 1.07985i −0.871148 0.491020i \(-0.836624\pi\)
0.808254 0.588834i \(-0.200413\pi\)
\(824\) 39.9858 + 20.0816i 1.39297 + 0.699576i
\(825\) 0 0
\(826\) 0.264392 0.280239i 0.00919936 0.00975075i
\(827\) 9.52144 + 3.46552i 0.331093 + 0.120508i 0.502217 0.864741i \(-0.332518\pi\)
−0.171124 + 0.985249i \(0.554740\pi\)
\(828\) 0 0
\(829\) −16.7991 + 6.11438i −0.583458 + 0.212361i −0.616850 0.787081i \(-0.711591\pi\)
0.0333918 + 0.999442i \(0.489369\pi\)
\(830\) −4.88791 + 11.3315i −0.169662 + 0.393320i
\(831\) 0 0
\(832\) −12.5559 + 41.9397i −0.435298 + 1.45400i
\(833\) −32.3861 3.78539i −1.12211 0.131156i
\(834\) 0 0
\(835\) −0.880782 + 15.1224i −0.0304807 + 0.523334i
\(836\) 1.45764 2.52470i 0.0504135 0.0873187i
\(837\) 0 0
\(838\) −4.76371 8.25099i −0.164560 0.285026i
\(839\) 22.0336 11.0657i 0.760685 0.382030i −0.0257780 0.999668i \(-0.508206\pi\)
0.786463 + 0.617637i \(0.211910\pi\)
\(840\) 0 0
\(841\) 4.09225 5.49684i 0.141112 0.189546i
\(842\) −2.62722 + 0.622662i −0.0905399 + 0.0214583i
\(843\) 0 0
\(844\) 5.38327 + 7.23098i 0.185300 + 0.248901i
\(845\) −11.9396 10.0185i −0.410734 0.344647i
\(846\) 0 0
\(847\) 1.69512 1.42237i 0.0582450 0.0488734i
\(848\) −4.58775 1.08732i −0.157544 0.0373386i
\(849\) 0 0
\(850\) 17.9353 11.7963i 0.615177 0.404608i
\(851\) −8.07225 + 5.30920i −0.276713 + 0.181997i
\(852\) 0 0
\(853\) 2.02471 + 0.479866i 0.0693249 + 0.0164303i 0.265132 0.964212i \(-0.414584\pi\)
−0.195807 + 0.980642i \(0.562733\pi\)
\(854\) 0.648313 0.543999i 0.0221848 0.0186153i
\(855\) 0 0
\(856\) −0.176040 0.147715i −0.00601691 0.00504879i
\(857\) −7.38060 9.91387i −0.252117 0.338651i 0.657989 0.753027i \(-0.271407\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(858\) 0 0
\(859\) −38.1158 + 9.03362i −1.30050 + 0.308223i −0.821809 0.569763i \(-0.807035\pi\)
−0.478686 + 0.877986i \(0.658887\pi\)
\(860\) 5.59558 7.51617i 0.190808 0.256299i
\(861\) 0 0
\(862\) −28.3193 + 14.2225i −0.964560 + 0.484420i
\(863\) 12.2220 + 21.1691i 0.416040 + 0.720603i 0.995537 0.0943715i \(-0.0300842\pi\)
−0.579497 + 0.814975i \(0.696751\pi\)
\(864\) 0 0
\(865\) 5.97048 10.3412i 0.203003 0.351611i
\(866\) −0.0760135 + 1.30510i −0.00258304 + 0.0443491i
\(867\) 0 0
\(868\) 1.04511 + 0.122156i 0.0354734 + 0.00414624i
\(869\) −3.69812 + 12.3526i −0.125450 + 0.419033i
\(870\) 0 0
\(871\) −13.9082 + 32.2428i −0.471261 + 1.09251i
\(872\) −15.1813 + 5.52553i −0.514102 + 0.187118i
\(873\) 0 0
\(874\) −2.53525 0.922757i −0.0857563 0.0312127i
\(875\) 1.55582 1.64907i 0.0525962 0.0557488i
\(876\) 0 0
\(877\) −12.1192 6.08649i −0.409236 0.205526i 0.232258 0.972654i \(-0.425389\pi\)
−0.641494 + 0.767128i \(0.721685\pi\)
\(878\) −1.07629 18.4793i −0.0363232 0.623645i
\(879\) 0 0
\(880\) −0.677694 2.26366i −0.0228451 0.0763079i
\(881\) −2.84380 16.1280i −0.0958101 0.543366i −0.994496 0.104774i \(-0.966588\pi\)
0.898686 0.438593i \(-0.144523\pi\)
\(882\) 0 0
\(883\) −7.98860 + 45.3056i −0.268838 + 1.52465i 0.489042 + 0.872260i \(0.337347\pi\)
−0.757880 + 0.652394i \(0.773765\pi\)
\(884\) −22.5855 + 2.63986i −0.759631 + 0.0887882i
\(885\) 0 0
\(886\) −8.77015 9.29581i −0.294639 0.312299i
\(887\) −19.5768 45.3842i −0.657325 1.52385i −0.841098 0.540882i \(-0.818090\pi\)
0.183773 0.982969i \(-0.441169\pi\)
\(888\) 0 0
\(889\) 2.66452 + 1.75248i 0.0893651 + 0.0587763i
\(890\) −0.393400 −0.0131868
\(891\) 0 0
\(892\) −11.7641 −0.393892
\(893\) 3.19694 + 2.10266i 0.106981 + 0.0703628i
\(894\) 0 0
\(895\) 3.54534 + 8.21901i 0.118508 + 0.274731i
\(896\) 0.117838 + 0.124901i 0.00393669 + 0.00417265i
\(897\) 0 0
\(898\) 20.7409 2.42427i 0.692133 0.0808988i
\(899\) −4.42618 + 25.1021i −0.147621 + 0.837201i
\(900\) 0 0
\(901\) −2.52300 14.3086i −0.0840532 0.476690i
\(902\) −6.35156 21.2157i −0.211484 0.706406i
\(903\) 0 0
\(904\) 3.28694 + 56.4345i 0.109322 + 1.87698i
\(905\) 9.46713 + 4.75457i 0.314698 + 0.158047i
\(906\) 0 0
\(907\) 32.8053 34.7716i 1.08928 1.15457i 0.102134 0.994771i \(-0.467433\pi\)
0.987149 0.159802i \(-0.0510856\pi\)
\(908\) −10.6226 3.86630i −0.352523 0.128308i
\(909\) 0 0
\(910\) 1.36993 0.498614i 0.0454127 0.0165289i
\(911\) −13.1560 + 30.4989i −0.435876 + 1.01047i 0.548780 + 0.835967i \(0.315093\pi\)
−0.984656 + 0.174508i \(0.944167\pi\)
\(912\) 0 0
\(913\) 7.03582 23.5013i 0.232852 0.777778i
\(914\) 25.4372 + 2.97318i 0.841387 + 0.0983441i
\(915\) 0 0
\(916\) 0.0865461 1.48594i 0.00285956 0.0490968i
\(917\) 0.0395228 0.0684554i 0.00130516 0.00226060i
\(918\) 0 0
\(919\) 13.4983 + 23.3798i 0.445268 + 0.771228i 0.998071 0.0620848i \(-0.0197749\pi\)
−0.552802 + 0.833312i \(0.686442\pi\)
\(920\) 3.15648 1.58525i 0.104066 0.0522640i
\(921\) 0 0
\(922\) 9.02111 12.1175i 0.297094 0.399067i
\(923\) 70.1901 16.6354i 2.31034 0.547560i
\(924\) 0 0
\(925\) 18.1828 + 24.4238i 0.597848 + 0.803049i
\(926\) 8.99236 + 7.54549i 0.295507 + 0.247960i
\(927\) 0 0
\(928\) −20.5250 + 17.2225i −0.673766 + 0.565357i
\(929\) 0.850096 + 0.201476i 0.0278907 + 0.00661023i 0.244538 0.969640i \(-0.421364\pi\)
−0.216647 + 0.976250i \(0.569512\pi\)
\(930\) 0 0
\(931\) 10.7902 7.09682i 0.353634 0.232589i
\(932\) −17.4877 + 11.5018i −0.572828 + 0.376755i
\(933\) 0 0
\(934\) 40.4318 + 9.58252i 1.32297 + 0.313550i
\(935\) 5.57807 4.68056i 0.182422 0.153071i
\(936\) 0 0
\(937\) 12.6271 + 10.5954i 0.412511 + 0.346138i 0.825306 0.564686i \(-0.191003\pi\)
−0.412795 + 0.910824i \(0.635447\pi\)
\(938\) −1.14561 1.53882i −0.0374054 0.0502442i
\(939\) 0 0
\(940\) −1.46927 + 0.348222i −0.0479222 + 0.0113578i
\(941\) 18.1527 24.3833i 0.591760 0.794872i −0.400860 0.916140i \(-0.631288\pi\)
0.992620 + 0.121267i \(0.0386959\pi\)
\(942\) 0 0
\(943\) 13.8995 6.98060i 0.452631 0.227320i
\(944\) −0.964622 1.67077i −0.0313958 0.0543791i
\(945\) 0 0
\(946\) 12.2723 21.2563i 0.399008 0.691102i
\(947\) 0.743799 12.7705i 0.0241702 0.414987i −0.964422 0.264368i \(-0.914837\pi\)
0.988592 0.150618i \(-0.0481265\pi\)
\(948\) 0 0
\(949\) 35.6585 + 4.16789i 1.15753 + 0.135295i
\(950\) −2.43858 + 8.14543i −0.0791181 + 0.264273i
\(951\) 0 0
\(952\) 1.63249 3.78455i 0.0529095 0.122658i
\(953\) −28.8328 + 10.4943i −0.933986 + 0.339943i −0.763788 0.645467i \(-0.776663\pi\)
−0.170198 + 0.985410i \(0.554441\pi\)
\(954\) 0 0
\(955\) −11.3367 4.12620i −0.366845 0.133521i
\(956\) 13.1135 13.8995i 0.424121 0.449542i
\(957\) 0 0
\(958\) −13.4557 6.75771i −0.434734 0.218332i
\(959\) 0.175504 + 3.01328i 0.00566731 + 0.0973039i
\(960\) 0 0
\(961\) 3.69361 + 12.3375i 0.119149 + 0.397985i
\(962\) 7.38006 + 41.8544i 0.237943 + 1.34944i
\(963\) 0 0
\(964\) 2.70821 15.3590i 0.0872257 0.494681i
\(965\) 18.6973 2.18540i 0.601886 0.0703504i
\(966\) 0 0
\(967\) −11.6005 12.2958i −0.373047 0.395407i 0.513466 0.858110i \(-0.328361\pi\)
−0.886513 + 0.462703i \(0.846880\pi\)
\(968\) −9.34106 21.6550i −0.300233 0.696019i
\(969\) 0 0
\(970\) −7.67506 5.04797i −0.246431 0.162081i
\(971\) 53.7751 1.72572 0.862862 0.505439i \(-0.168670\pi\)
0.862862 + 0.505439i \(0.168670\pi\)
\(972\) 0 0
\(973\) −0.155227 −0.00497635
\(974\) −10.3545 6.81029i −0.331781 0.218216i
\(975\) 0 0
\(976\) −1.67853 3.89128i −0.0537286 0.124557i
\(977\) 10.1987 + 10.8100i 0.326285 + 0.345841i 0.869663 0.493647i \(-0.164336\pi\)
−0.543378 + 0.839488i \(0.682855\pi\)
\(978\) 0 0
\(979\) 0.776743 0.0907883i 0.0248248 0.00290161i
\(980\) −0.884978 + 5.01896i −0.0282696 + 0.160325i
\(981\) 0 0
\(982\) 0.972752 + 5.51675i 0.0310418 + 0.176047i
\(983\) −5.10312 17.0456i −0.162764 0.543671i 0.837231 0.546850i \(-0.184173\pi\)
−0.999995 + 0.00317929i \(0.998988\pi\)
\(984\) 0 0
\(985\) −0.0833566 1.43118i −0.00265596 0.0456011i
\(986\) 26.8932 + 13.5063i 0.856454 + 0.430127i
\(987\) 0 0
\(988\) 6.18068 6.55114i 0.196634 0.208420i
\(989\) 16.1990 + 5.89594i 0.515097 + 0.187480i
\(990\) 0 0
\(991\) 12.0174 4.37398i 0.381746 0.138944i −0.144017 0.989575i \(-0.546002\pi\)
0.525763 + 0.850631i \(0.323780\pi\)
\(992\) 7.54477 17.4907i 0.239547 0.555332i
\(993\) 0 0
\(994\) −1.13028 + 3.77539i −0.0358503 + 0.119748i
\(995\) 9.05510 + 1.05839i 0.287066 + 0.0335532i
\(996\) 0 0
\(997\) 3.57455 61.3726i 0.113207 1.94369i −0.171733 0.985144i \(-0.554937\pi\)
0.284940 0.958545i \(-0.408026\pi\)
\(998\) 2.94125 5.09439i 0.0931036 0.161260i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.d.703.6 144
3.2 odd 2 729.2.g.a.703.3 144
9.2 odd 6 243.2.g.a.235.3 144
9.4 even 3 729.2.g.c.460.3 144
9.5 odd 6 729.2.g.b.460.6 144
9.7 even 3 81.2.g.a.79.6 yes 144
81.13 even 27 81.2.g.a.40.6 144
81.14 odd 54 729.2.g.a.28.3 144
81.38 odd 54 6561.2.a.d.1.46 72
81.40 even 27 729.2.g.c.271.3 144
81.41 odd 54 729.2.g.b.271.6 144
81.43 even 27 6561.2.a.c.1.27 72
81.67 even 27 inner 729.2.g.d.28.6 144
81.68 odd 54 243.2.g.a.91.3 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.40.6 144 81.13 even 27
81.2.g.a.79.6 yes 144 9.7 even 3
243.2.g.a.91.3 144 81.68 odd 54
243.2.g.a.235.3 144 9.2 odd 6
729.2.g.a.28.3 144 81.14 odd 54
729.2.g.a.703.3 144 3.2 odd 2
729.2.g.b.271.6 144 81.41 odd 54
729.2.g.b.460.6 144 9.5 odd 6
729.2.g.c.271.3 144 81.40 even 27
729.2.g.c.460.3 144 9.4 even 3
729.2.g.d.28.6 144 81.67 even 27 inner
729.2.g.d.703.6 144 1.1 even 1 trivial
6561.2.a.c.1.27 72 81.43 even 27
6561.2.a.d.1.46 72 81.38 odd 54