Properties

Label 729.3.b.a.728.15
Level $729$
Weight $3$
Character 729.728
Analytic conductor $19.864$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,3,Mod(728,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.728");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 729.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8638112719\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 728.15
Character \(\chi\) \(=\) 729.728
Dual form 729.3.b.a.728.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.117696i q^{2} +3.98615 q^{4} -6.19791i q^{5} +7.97344 q^{7} -0.939939i q^{8} -0.729470 q^{10} -11.4435i q^{11} -8.25567 q^{13} -0.938443i q^{14} +15.8340 q^{16} -23.9171i q^{17} -12.2420 q^{19} -24.7058i q^{20} -1.34685 q^{22} +14.7525i q^{23} -13.4141 q^{25} +0.971660i q^{26} +31.7833 q^{28} +17.7931i q^{29} +13.0209 q^{31} -5.62335i q^{32} -2.81495 q^{34} -49.4187i q^{35} -17.0700 q^{37} +1.44084i q^{38} -5.82566 q^{40} +30.7358i q^{41} -39.8300 q^{43} -45.6153i q^{44} +1.73632 q^{46} +58.3790i q^{47} +14.5757 q^{49} +1.57879i q^{50} -32.9083 q^{52} -91.2612i q^{53} -70.9255 q^{55} -7.49454i q^{56} +2.09418 q^{58} +20.6622i q^{59} -34.9591 q^{61} -1.53250i q^{62} +62.6740 q^{64} +51.1679i q^{65} +51.5623 q^{67} -95.3370i q^{68} -5.81639 q^{70} -2.63480i q^{71} +69.0145 q^{73} +2.00907i q^{74} -48.7986 q^{76} -91.2437i q^{77} +151.435 q^{79} -98.1375i q^{80} +3.61748 q^{82} -54.0683i q^{83} -148.236 q^{85} +4.68784i q^{86} -10.7561 q^{88} -163.072i q^{89} -65.8261 q^{91} +58.8058i q^{92} +6.87098 q^{94} +75.8751i q^{95} +57.0121 q^{97} -1.71551i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 48 q^{4} + 6 q^{10} + 48 q^{16} + 6 q^{19} - 24 q^{22} - 30 q^{25} - 12 q^{28} + 6 q^{37} - 24 q^{40} + 6 q^{46} - 42 q^{49} + 96 q^{52} - 12 q^{55} + 48 q^{58} + 18 q^{61} + 102 q^{64} - 90 q^{67}+ \cdots - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.117696i − 0.0588481i −0.999567 0.0294240i \(-0.990633\pi\)
0.999567 0.0294240i \(-0.00936731\pi\)
\(3\) 0 0
\(4\) 3.98615 0.996537
\(5\) − 6.19791i − 1.23958i −0.784767 0.619791i \(-0.787217\pi\)
0.784767 0.619791i \(-0.212783\pi\)
\(6\) 0 0
\(7\) 7.97344 1.13906 0.569531 0.821970i \(-0.307125\pi\)
0.569531 + 0.821970i \(0.307125\pi\)
\(8\) − 0.939939i − 0.117492i
\(9\) 0 0
\(10\) −0.729470 −0.0729470
\(11\) − 11.4435i − 1.04031i −0.854071 0.520157i \(-0.825873\pi\)
0.854071 0.520157i \(-0.174127\pi\)
\(12\) 0 0
\(13\) −8.25567 −0.635051 −0.317526 0.948250i \(-0.602852\pi\)
−0.317526 + 0.948250i \(0.602852\pi\)
\(14\) − 0.938443i − 0.0670316i
\(15\) 0 0
\(16\) 15.8340 0.989623
\(17\) − 23.9171i − 1.40689i −0.710751 0.703443i \(-0.751645\pi\)
0.710751 0.703443i \(-0.248355\pi\)
\(18\) 0 0
\(19\) −12.2420 −0.644318 −0.322159 0.946686i \(-0.604409\pi\)
−0.322159 + 0.946686i \(0.604409\pi\)
\(20\) − 24.7058i − 1.23529i
\(21\) 0 0
\(22\) −1.34685 −0.0612205
\(23\) 14.7525i 0.641414i 0.947178 + 0.320707i \(0.103921\pi\)
−0.947178 + 0.320707i \(0.896079\pi\)
\(24\) 0 0
\(25\) −13.4141 −0.536565
\(26\) 0.971660i 0.0373715i
\(27\) 0 0
\(28\) 31.7833 1.13512
\(29\) 17.7931i 0.613557i 0.951781 + 0.306778i \(0.0992510\pi\)
−0.951781 + 0.306778i \(0.900749\pi\)
\(30\) 0 0
\(31\) 13.0209 0.420028 0.210014 0.977698i \(-0.432649\pi\)
0.210014 + 0.977698i \(0.432649\pi\)
\(32\) − 5.62335i − 0.175730i
\(33\) 0 0
\(34\) −2.81495 −0.0827926
\(35\) − 49.4187i − 1.41196i
\(36\) 0 0
\(37\) −17.0700 −0.461351 −0.230676 0.973031i \(-0.574094\pi\)
−0.230676 + 0.973031i \(0.574094\pi\)
\(38\) 1.44084i 0.0379168i
\(39\) 0 0
\(40\) −5.82566 −0.145641
\(41\) 30.7358i 0.749654i 0.927095 + 0.374827i \(0.122298\pi\)
−0.927095 + 0.374827i \(0.877702\pi\)
\(42\) 0 0
\(43\) −39.8300 −0.926280 −0.463140 0.886285i \(-0.653277\pi\)
−0.463140 + 0.886285i \(0.653277\pi\)
\(44\) − 45.6153i − 1.03671i
\(45\) 0 0
\(46\) 1.73632 0.0377460
\(47\) 58.3790i 1.24211i 0.783769 + 0.621053i \(0.213295\pi\)
−0.783769 + 0.621053i \(0.786705\pi\)
\(48\) 0 0
\(49\) 14.5757 0.297464
\(50\) 1.57879i 0.0315758i
\(51\) 0 0
\(52\) −32.9083 −0.632852
\(53\) − 91.2612i − 1.72191i −0.508681 0.860955i \(-0.669867\pi\)
0.508681 0.860955i \(-0.330133\pi\)
\(54\) 0 0
\(55\) −70.9255 −1.28956
\(56\) − 7.49454i − 0.133831i
\(57\) 0 0
\(58\) 2.09418 0.0361066
\(59\) 20.6622i 0.350207i 0.984550 + 0.175104i \(0.0560261\pi\)
−0.984550 + 0.175104i \(0.943974\pi\)
\(60\) 0 0
\(61\) −34.9591 −0.573101 −0.286550 0.958065i \(-0.592509\pi\)
−0.286550 + 0.958065i \(0.592509\pi\)
\(62\) − 1.53250i − 0.0247178i
\(63\) 0 0
\(64\) 62.6740 0.979281
\(65\) 51.1679i 0.787199i
\(66\) 0 0
\(67\) 51.5623 0.769587 0.384793 0.923003i \(-0.374273\pi\)
0.384793 + 0.923003i \(0.374273\pi\)
\(68\) − 95.3370i − 1.40201i
\(69\) 0 0
\(70\) −5.81639 −0.0830912
\(71\) − 2.63480i − 0.0371099i −0.999828 0.0185549i \(-0.994093\pi\)
0.999828 0.0185549i \(-0.00590656\pi\)
\(72\) 0 0
\(73\) 69.0145 0.945403 0.472702 0.881222i \(-0.343279\pi\)
0.472702 + 0.881222i \(0.343279\pi\)
\(74\) 2.00907i 0.0271496i
\(75\) 0 0
\(76\) −48.7986 −0.642086
\(77\) − 91.2437i − 1.18498i
\(78\) 0 0
\(79\) 151.435 1.91690 0.958450 0.285261i \(-0.0920802\pi\)
0.958450 + 0.285261i \(0.0920802\pi\)
\(80\) − 98.1375i − 1.22672i
\(81\) 0 0
\(82\) 3.61748 0.0441157
\(83\) − 54.0683i − 0.651425i −0.945469 0.325713i \(-0.894396\pi\)
0.945469 0.325713i \(-0.105604\pi\)
\(84\) 0 0
\(85\) −148.236 −1.74395
\(86\) 4.68784i 0.0545098i
\(87\) 0 0
\(88\) −10.7561 −0.122229
\(89\) − 163.072i − 1.83227i −0.400868 0.916136i \(-0.631292\pi\)
0.400868 0.916136i \(-0.368708\pi\)
\(90\) 0 0
\(91\) −65.8261 −0.723363
\(92\) 58.8058i 0.639193i
\(93\) 0 0
\(94\) 6.87098 0.0730955
\(95\) 75.8751i 0.798685i
\(96\) 0 0
\(97\) 57.0121 0.587754 0.293877 0.955843i \(-0.405054\pi\)
0.293877 + 0.955843i \(0.405054\pi\)
\(98\) − 1.71551i − 0.0175052i
\(99\) 0 0
\(100\) −53.4707 −0.534707
\(101\) − 27.7736i − 0.274986i −0.990503 0.137493i \(-0.956096\pi\)
0.990503 0.137493i \(-0.0439044\pi\)
\(102\) 0 0
\(103\) 82.0979 0.797067 0.398533 0.917154i \(-0.369519\pi\)
0.398533 + 0.917154i \(0.369519\pi\)
\(104\) 7.75982i 0.0746137i
\(105\) 0 0
\(106\) −10.7411 −0.101331
\(107\) 35.8639i 0.335177i 0.985857 + 0.167588i \(0.0535980\pi\)
−0.985857 + 0.167588i \(0.946402\pi\)
\(108\) 0 0
\(109\) 1.41546 0.0129859 0.00649295 0.999979i \(-0.497933\pi\)
0.00649295 + 0.999979i \(0.497933\pi\)
\(110\) 8.34766i 0.0758878i
\(111\) 0 0
\(112\) 126.251 1.12724
\(113\) 149.032i 1.31887i 0.751762 + 0.659435i \(0.229204\pi\)
−0.751762 + 0.659435i \(0.770796\pi\)
\(114\) 0 0
\(115\) 91.4349 0.795086
\(116\) 70.9261i 0.611432i
\(117\) 0 0
\(118\) 2.43187 0.0206090
\(119\) − 190.701i − 1.60253i
\(120\) 0 0
\(121\) −9.95262 −0.0822531
\(122\) 4.11455i 0.0337259i
\(123\) 0 0
\(124\) 51.9031 0.418573
\(125\) − 71.8083i − 0.574466i
\(126\) 0 0
\(127\) 17.1409 0.134968 0.0674838 0.997720i \(-0.478503\pi\)
0.0674838 + 0.997720i \(0.478503\pi\)
\(128\) − 29.8699i − 0.233359i
\(129\) 0 0
\(130\) 6.02226 0.0463251
\(131\) 145.928i 1.11396i 0.830527 + 0.556978i \(0.188039\pi\)
−0.830527 + 0.556978i \(0.811961\pi\)
\(132\) 0 0
\(133\) −97.6111 −0.733918
\(134\) − 6.06869i − 0.0452887i
\(135\) 0 0
\(136\) −22.4806 −0.165298
\(137\) − 87.0154i − 0.635149i −0.948233 0.317574i \(-0.897132\pi\)
0.948233 0.317574i \(-0.102868\pi\)
\(138\) 0 0
\(139\) 36.8609 0.265187 0.132593 0.991171i \(-0.457670\pi\)
0.132593 + 0.991171i \(0.457670\pi\)
\(140\) − 196.990i − 1.40707i
\(141\) 0 0
\(142\) −0.310106 −0.00218384
\(143\) 94.4733i 0.660653i
\(144\) 0 0
\(145\) 110.280 0.760554
\(146\) − 8.12273i − 0.0556352i
\(147\) 0 0
\(148\) −68.0436 −0.459754
\(149\) 64.5972i 0.433538i 0.976223 + 0.216769i \(0.0695519\pi\)
−0.976223 + 0.216769i \(0.930448\pi\)
\(150\) 0 0
\(151\) −154.456 −1.02289 −0.511445 0.859316i \(-0.670890\pi\)
−0.511445 + 0.859316i \(0.670890\pi\)
\(152\) 11.5068i 0.0757024i
\(153\) 0 0
\(154\) −10.7390 −0.0697339
\(155\) − 80.7021i − 0.520659i
\(156\) 0 0
\(157\) −192.554 −1.22646 −0.613229 0.789905i \(-0.710130\pi\)
−0.613229 + 0.789905i \(0.710130\pi\)
\(158\) − 17.8233i − 0.112806i
\(159\) 0 0
\(160\) −34.8530 −0.217831
\(161\) 117.628i 0.730611i
\(162\) 0 0
\(163\) 171.309 1.05098 0.525488 0.850801i \(-0.323883\pi\)
0.525488 + 0.850801i \(0.323883\pi\)
\(164\) 122.517i 0.747057i
\(165\) 0 0
\(166\) −6.36363 −0.0383351
\(167\) − 157.383i − 0.942416i −0.882022 0.471208i \(-0.843818\pi\)
0.882022 0.471208i \(-0.156182\pi\)
\(168\) 0 0
\(169\) −100.844 −0.596710
\(170\) 17.4468i 0.102628i
\(171\) 0 0
\(172\) −158.768 −0.923072
\(173\) 52.5050i 0.303497i 0.988419 + 0.151749i \(0.0484904\pi\)
−0.988419 + 0.151749i \(0.951510\pi\)
\(174\) 0 0
\(175\) −106.957 −0.611181
\(176\) − 181.195i − 1.02952i
\(177\) 0 0
\(178\) −19.1930 −0.107826
\(179\) 66.9393i 0.373963i 0.982363 + 0.186981i \(0.0598704\pi\)
−0.982363 + 0.186981i \(0.940130\pi\)
\(180\) 0 0
\(181\) −129.459 −0.715242 −0.357621 0.933867i \(-0.616412\pi\)
−0.357621 + 0.933867i \(0.616412\pi\)
\(182\) 7.74747i 0.0425685i
\(183\) 0 0
\(184\) 13.8665 0.0753613
\(185\) 105.798i 0.571883i
\(186\) 0 0
\(187\) −273.694 −1.46360
\(188\) 232.707i 1.23780i
\(189\) 0 0
\(190\) 8.93020 0.0470011
\(191\) 271.347i 1.42066i 0.703867 + 0.710332i \(0.251455\pi\)
−0.703867 + 0.710332i \(0.748545\pi\)
\(192\) 0 0
\(193\) 207.484 1.07505 0.537524 0.843249i \(-0.319360\pi\)
0.537524 + 0.843249i \(0.319360\pi\)
\(194\) − 6.71011i − 0.0345882i
\(195\) 0 0
\(196\) 58.1010 0.296434
\(197\) 178.829i 0.907763i 0.891062 + 0.453881i \(0.149961\pi\)
−0.891062 + 0.453881i \(0.850039\pi\)
\(198\) 0 0
\(199\) −25.6080 −0.128684 −0.0643418 0.997928i \(-0.520495\pi\)
−0.0643418 + 0.997928i \(0.520495\pi\)
\(200\) 12.6085i 0.0630423i
\(201\) 0 0
\(202\) −3.26884 −0.0161824
\(203\) 141.873i 0.698879i
\(204\) 0 0
\(205\) 190.498 0.929257
\(206\) − 9.66260i − 0.0469058i
\(207\) 0 0
\(208\) −130.720 −0.628461
\(209\) 140.091i 0.670293i
\(210\) 0 0
\(211\) 360.286 1.70752 0.853758 0.520671i \(-0.174318\pi\)
0.853758 + 0.520671i \(0.174318\pi\)
\(212\) − 363.781i − 1.71595i
\(213\) 0 0
\(214\) 4.22104 0.0197245
\(215\) 246.863i 1.14820i
\(216\) 0 0
\(217\) 103.821 0.478438
\(218\) − 0.166595i 0 0.000764195i
\(219\) 0 0
\(220\) −282.720 −1.28509
\(221\) 197.451i 0.893445i
\(222\) 0 0
\(223\) 8.98641 0.0402978 0.0201489 0.999797i \(-0.493586\pi\)
0.0201489 + 0.999797i \(0.493586\pi\)
\(224\) − 44.8374i − 0.200167i
\(225\) 0 0
\(226\) 17.5405 0.0776129
\(227\) 71.7800i 0.316212i 0.987422 + 0.158106i \(0.0505387\pi\)
−0.987422 + 0.158106i \(0.949461\pi\)
\(228\) 0 0
\(229\) 53.9366 0.235531 0.117765 0.993041i \(-0.462427\pi\)
0.117765 + 0.993041i \(0.462427\pi\)
\(230\) − 10.7615i − 0.0467893i
\(231\) 0 0
\(232\) 16.7245 0.0720882
\(233\) 362.666i 1.55651i 0.627950 + 0.778254i \(0.283894\pi\)
−0.627950 + 0.778254i \(0.716106\pi\)
\(234\) 0 0
\(235\) 361.828 1.53969
\(236\) 82.3627i 0.348995i
\(237\) 0 0
\(238\) −22.4448 −0.0943059
\(239\) 251.571i 1.05260i 0.850299 + 0.526299i \(0.176421\pi\)
−0.850299 + 0.526299i \(0.823579\pi\)
\(240\) 0 0
\(241\) 402.902 1.67179 0.835897 0.548886i \(-0.184948\pi\)
0.835897 + 0.548886i \(0.184948\pi\)
\(242\) 1.17139i 0.00484043i
\(243\) 0 0
\(244\) −139.352 −0.571116
\(245\) − 90.3391i − 0.368731i
\(246\) 0 0
\(247\) 101.066 0.409175
\(248\) − 12.2388i − 0.0493500i
\(249\) 0 0
\(250\) −8.45155 −0.0338062
\(251\) 380.219i 1.51482i 0.652941 + 0.757409i \(0.273535\pi\)
−0.652941 + 0.757409i \(0.726465\pi\)
\(252\) 0 0
\(253\) 168.820 0.667272
\(254\) − 2.01742i − 0.00794258i
\(255\) 0 0
\(256\) 247.180 0.965549
\(257\) − 21.6885i − 0.0843912i −0.999109 0.0421956i \(-0.986565\pi\)
0.999109 0.0421956i \(-0.0134353\pi\)
\(258\) 0 0
\(259\) −136.107 −0.525508
\(260\) 203.963i 0.784472i
\(261\) 0 0
\(262\) 17.1752 0.0655542
\(263\) − 67.8776i − 0.258090i −0.991639 0.129045i \(-0.958809\pi\)
0.991639 0.129045i \(-0.0411911\pi\)
\(264\) 0 0
\(265\) −565.629 −2.13445
\(266\) 11.4885i 0.0431897i
\(267\) 0 0
\(268\) 205.535 0.766922
\(269\) − 290.581i − 1.08023i −0.841592 0.540113i \(-0.818381\pi\)
0.841592 0.540113i \(-0.181619\pi\)
\(270\) 0 0
\(271\) −414.644 −1.53005 −0.765026 0.644000i \(-0.777274\pi\)
−0.765026 + 0.644000i \(0.777274\pi\)
\(272\) − 378.702i − 1.39229i
\(273\) 0 0
\(274\) −10.2414 −0.0373773
\(275\) 153.504i 0.558196i
\(276\) 0 0
\(277\) 175.130 0.632237 0.316118 0.948720i \(-0.397620\pi\)
0.316118 + 0.948720i \(0.397620\pi\)
\(278\) − 4.33839i − 0.0156057i
\(279\) 0 0
\(280\) −46.4505 −0.165895
\(281\) 375.263i 1.33545i 0.744406 + 0.667727i \(0.232733\pi\)
−0.744406 + 0.667727i \(0.767267\pi\)
\(282\) 0 0
\(283\) 14.7766 0.0522141 0.0261070 0.999659i \(-0.491689\pi\)
0.0261070 + 0.999659i \(0.491689\pi\)
\(284\) − 10.5027i − 0.0369814i
\(285\) 0 0
\(286\) 11.1191 0.0388781
\(287\) 245.070i 0.853902i
\(288\) 0 0
\(289\) −283.027 −0.979331
\(290\) − 12.9796i − 0.0447571i
\(291\) 0 0
\(292\) 275.102 0.942129
\(293\) 132.946i 0.453740i 0.973925 + 0.226870i \(0.0728493\pi\)
−0.973925 + 0.226870i \(0.927151\pi\)
\(294\) 0 0
\(295\) 128.063 0.434111
\(296\) 16.0448i 0.0542053i
\(297\) 0 0
\(298\) 7.60284 0.0255129
\(299\) − 121.792i − 0.407331i
\(300\) 0 0
\(301\) −317.582 −1.05509
\(302\) 18.1789i 0.0601951i
\(303\) 0 0
\(304\) −193.840 −0.637631
\(305\) 216.674i 0.710405i
\(306\) 0 0
\(307\) 70.5177 0.229699 0.114850 0.993383i \(-0.463361\pi\)
0.114850 + 0.993383i \(0.463361\pi\)
\(308\) − 363.711i − 1.18088i
\(309\) 0 0
\(310\) −9.49833 −0.0306398
\(311\) 60.9783i 0.196072i 0.995183 + 0.0980359i \(0.0312560\pi\)
−0.995183 + 0.0980359i \(0.968744\pi\)
\(312\) 0 0
\(313\) 211.333 0.675184 0.337592 0.941292i \(-0.390388\pi\)
0.337592 + 0.941292i \(0.390388\pi\)
\(314\) 22.6629i 0.0721747i
\(315\) 0 0
\(316\) 603.643 1.91026
\(317\) 133.790i 0.422050i 0.977481 + 0.211025i \(0.0676801\pi\)
−0.977481 + 0.211025i \(0.932320\pi\)
\(318\) 0 0
\(319\) 203.615 0.638291
\(320\) − 388.448i − 1.21390i
\(321\) 0 0
\(322\) 13.8444 0.0429950
\(323\) 292.794i 0.906482i
\(324\) 0 0
\(325\) 110.743 0.340746
\(326\) − 20.1624i − 0.0618479i
\(327\) 0 0
\(328\) 28.8898 0.0880785
\(329\) 465.481i 1.41484i
\(330\) 0 0
\(331\) −88.2013 −0.266469 −0.133235 0.991085i \(-0.542536\pi\)
−0.133235 + 0.991085i \(0.542536\pi\)
\(332\) − 215.524i − 0.649169i
\(333\) 0 0
\(334\) −18.5234 −0.0554593
\(335\) − 319.579i − 0.953967i
\(336\) 0 0
\(337\) 41.1842 0.122208 0.0611042 0.998131i \(-0.480538\pi\)
0.0611042 + 0.998131i \(0.480538\pi\)
\(338\) 11.8689i 0.0351152i
\(339\) 0 0
\(340\) −590.890 −1.73791
\(341\) − 149.004i − 0.436961i
\(342\) 0 0
\(343\) −274.480 −0.800233
\(344\) 37.4378i 0.108831i
\(345\) 0 0
\(346\) 6.17964 0.0178602
\(347\) − 342.939i − 0.988297i −0.869378 0.494148i \(-0.835480\pi\)
0.869378 0.494148i \(-0.164520\pi\)
\(348\) 0 0
\(349\) −589.249 −1.68839 −0.844196 0.536035i \(-0.819922\pi\)
−0.844196 + 0.536035i \(0.819922\pi\)
\(350\) 12.5884i 0.0359668i
\(351\) 0 0
\(352\) −64.3505 −0.182814
\(353\) − 126.001i − 0.356943i −0.983945 0.178472i \(-0.942885\pi\)
0.983945 0.178472i \(-0.0571153\pi\)
\(354\) 0 0
\(355\) −16.3303 −0.0460008
\(356\) − 650.030i − 1.82593i
\(357\) 0 0
\(358\) 7.87850 0.0220070
\(359\) − 344.484i − 0.959565i −0.877388 0.479782i \(-0.840716\pi\)
0.877388 0.479782i \(-0.159284\pi\)
\(360\) 0 0
\(361\) −211.133 −0.584855
\(362\) 15.2368i 0.0420906i
\(363\) 0 0
\(364\) −262.392 −0.720858
\(365\) − 427.746i − 1.17191i
\(366\) 0 0
\(367\) 337.725 0.920230 0.460115 0.887859i \(-0.347808\pi\)
0.460115 + 0.887859i \(0.347808\pi\)
\(368\) 233.591i 0.634758i
\(369\) 0 0
\(370\) 12.4521 0.0336542
\(371\) − 727.666i − 1.96136i
\(372\) 0 0
\(373\) 99.1007 0.265685 0.132843 0.991137i \(-0.457589\pi\)
0.132843 + 0.991137i \(0.457589\pi\)
\(374\) 32.2127i 0.0861303i
\(375\) 0 0
\(376\) 54.8726 0.145938
\(377\) − 146.894i − 0.389640i
\(378\) 0 0
\(379\) 599.859 1.58274 0.791370 0.611337i \(-0.209368\pi\)
0.791370 + 0.611337i \(0.209368\pi\)
\(380\) 302.449i 0.795919i
\(381\) 0 0
\(382\) 31.9365 0.0836033
\(383\) − 113.665i − 0.296776i −0.988929 0.148388i \(-0.952592\pi\)
0.988929 0.148388i \(-0.0474084\pi\)
\(384\) 0 0
\(385\) −565.520 −1.46888
\(386\) − 24.4201i − 0.0632644i
\(387\) 0 0
\(388\) 227.259 0.585718
\(389\) 362.878i 0.932850i 0.884561 + 0.466425i \(0.154458\pi\)
−0.884561 + 0.466425i \(0.845542\pi\)
\(390\) 0 0
\(391\) 352.837 0.902397
\(392\) − 13.7003i − 0.0349497i
\(393\) 0 0
\(394\) 21.0475 0.0534201
\(395\) − 938.581i − 2.37616i
\(396\) 0 0
\(397\) −478.416 −1.20508 −0.602539 0.798089i \(-0.705844\pi\)
−0.602539 + 0.798089i \(0.705844\pi\)
\(398\) 3.01397i 0.00757278i
\(399\) 0 0
\(400\) −212.399 −0.530997
\(401\) 638.015i 1.59106i 0.605914 + 0.795530i \(0.292807\pi\)
−0.605914 + 0.795530i \(0.707193\pi\)
\(402\) 0 0
\(403\) −107.496 −0.266739
\(404\) − 110.709i − 0.274033i
\(405\) 0 0
\(406\) 16.6978 0.0411277
\(407\) 195.340i 0.479950i
\(408\) 0 0
\(409\) 612.478 1.49750 0.748750 0.662852i \(-0.230654\pi\)
0.748750 + 0.662852i \(0.230654\pi\)
\(410\) − 22.4208i − 0.0546850i
\(411\) 0 0
\(412\) 327.254 0.794306
\(413\) 164.749i 0.398908i
\(414\) 0 0
\(415\) −335.111 −0.807495
\(416\) 46.4245i 0.111597i
\(417\) 0 0
\(418\) 16.4882 0.0394454
\(419\) 524.631i 1.25210i 0.779782 + 0.626051i \(0.215330\pi\)
−0.779782 + 0.626051i \(0.784670\pi\)
\(420\) 0 0
\(421\) −368.263 −0.874733 −0.437366 0.899283i \(-0.644089\pi\)
−0.437366 + 0.899283i \(0.644089\pi\)
\(422\) − 42.4042i − 0.100484i
\(423\) 0 0
\(424\) −85.7799 −0.202311
\(425\) 320.827i 0.754886i
\(426\) 0 0
\(427\) −278.745 −0.652797
\(428\) 142.959i 0.334016i
\(429\) 0 0
\(430\) 29.0548 0.0675693
\(431\) − 178.021i − 0.413043i −0.978442 0.206521i \(-0.933786\pi\)
0.978442 0.206521i \(-0.0662143\pi\)
\(432\) 0 0
\(433\) −710.746 −1.64144 −0.820722 0.571327i \(-0.806429\pi\)
−0.820722 + 0.571327i \(0.806429\pi\)
\(434\) − 12.2193i − 0.0281551i
\(435\) 0 0
\(436\) 5.64225 0.0129409
\(437\) − 180.601i − 0.413275i
\(438\) 0 0
\(439\) 636.795 1.45056 0.725279 0.688455i \(-0.241711\pi\)
0.725279 + 0.688455i \(0.241711\pi\)
\(440\) 66.6656i 0.151513i
\(441\) 0 0
\(442\) 23.2393 0.0525775
\(443\) − 322.865i − 0.728815i −0.931240 0.364407i \(-0.881272\pi\)
0.931240 0.364407i \(-0.118728\pi\)
\(444\) 0 0
\(445\) −1010.71 −2.27125
\(446\) − 1.05767i − 0.00237145i
\(447\) 0 0
\(448\) 499.727 1.11546
\(449\) − 25.8984i − 0.0576803i −0.999584 0.0288401i \(-0.990819\pi\)
0.999584 0.0288401i \(-0.00918138\pi\)
\(450\) 0 0
\(451\) 351.724 0.779875
\(452\) 594.065i 1.31430i
\(453\) 0 0
\(454\) 8.44823 0.0186084
\(455\) 407.984i 0.896669i
\(456\) 0 0
\(457\) −395.461 −0.865341 −0.432671 0.901552i \(-0.642429\pi\)
−0.432671 + 0.901552i \(0.642429\pi\)
\(458\) − 6.34813i − 0.0138605i
\(459\) 0 0
\(460\) 364.473 0.792332
\(461\) 896.893i 1.94554i 0.231776 + 0.972769i \(0.425546\pi\)
−0.231776 + 0.972769i \(0.574454\pi\)
\(462\) 0 0
\(463\) −297.598 −0.642760 −0.321380 0.946950i \(-0.604147\pi\)
−0.321380 + 0.946950i \(0.604147\pi\)
\(464\) 281.736i 0.607189i
\(465\) 0 0
\(466\) 42.6844 0.0915974
\(467\) − 790.347i − 1.69239i −0.532872 0.846196i \(-0.678887\pi\)
0.532872 0.846196i \(-0.321113\pi\)
\(468\) 0 0
\(469\) 411.129 0.876608
\(470\) − 42.5857i − 0.0906079i
\(471\) 0 0
\(472\) 19.4212 0.0411467
\(473\) 455.793i 0.963621i
\(474\) 0 0
\(475\) 164.216 0.345718
\(476\) − 760.164i − 1.59698i
\(477\) 0 0
\(478\) 29.6089 0.0619434
\(479\) − 1.08180i − 0.00225845i −0.999999 0.00112922i \(-0.999641\pi\)
0.999999 0.00112922i \(-0.000359443\pi\)
\(480\) 0 0
\(481\) 140.924 0.292982
\(482\) − 47.4201i − 0.0983819i
\(483\) 0 0
\(484\) −39.6726 −0.0819682
\(485\) − 353.356i − 0.728569i
\(486\) 0 0
\(487\) 647.606 1.32979 0.664893 0.746939i \(-0.268477\pi\)
0.664893 + 0.746939i \(0.268477\pi\)
\(488\) 32.8594i 0.0673349i
\(489\) 0 0
\(490\) −10.6326 −0.0216991
\(491\) − 312.314i − 0.636078i −0.948078 0.318039i \(-0.896976\pi\)
0.948078 0.318039i \(-0.103024\pi\)
\(492\) 0 0
\(493\) 425.560 0.863205
\(494\) − 11.8951i − 0.0240791i
\(495\) 0 0
\(496\) 206.172 0.415669
\(497\) − 21.0084i − 0.0422705i
\(498\) 0 0
\(499\) 45.8927 0.0919694 0.0459847 0.998942i \(-0.485357\pi\)
0.0459847 + 0.998942i \(0.485357\pi\)
\(500\) − 286.238i − 0.572477i
\(501\) 0 0
\(502\) 44.7503 0.0891441
\(503\) − 570.225i − 1.13365i −0.823839 0.566824i \(-0.808172\pi\)
0.823839 0.566824i \(-0.191828\pi\)
\(504\) 0 0
\(505\) −172.138 −0.340867
\(506\) − 19.8694i − 0.0392677i
\(507\) 0 0
\(508\) 68.3261 0.134500
\(509\) − 520.078i − 1.02176i −0.859651 0.510882i \(-0.829319\pi\)
0.859651 0.510882i \(-0.170681\pi\)
\(510\) 0 0
\(511\) 550.283 1.07687
\(512\) − 148.572i − 0.290179i
\(513\) 0 0
\(514\) −2.55266 −0.00496626
\(515\) − 508.835i − 0.988030i
\(516\) 0 0
\(517\) 668.057 1.29218
\(518\) 16.0192i 0.0309251i
\(519\) 0 0
\(520\) 48.0947 0.0924898
\(521\) − 422.296i − 0.810549i −0.914195 0.405275i \(-0.867176\pi\)
0.914195 0.405275i \(-0.132824\pi\)
\(522\) 0 0
\(523\) −1001.06 −1.91407 −0.957035 0.289972i \(-0.906354\pi\)
−0.957035 + 0.289972i \(0.906354\pi\)
\(524\) 581.692i 1.11010i
\(525\) 0 0
\(526\) −7.98893 −0.0151881
\(527\) − 311.421i − 0.590931i
\(528\) 0 0
\(529\) 311.363 0.588588
\(530\) 66.5723i 0.125608i
\(531\) 0 0
\(532\) −389.092 −0.731377
\(533\) − 253.745i − 0.476068i
\(534\) 0 0
\(535\) 222.281 0.415479
\(536\) − 48.4654i − 0.0904206i
\(537\) 0 0
\(538\) −34.2003 −0.0635692
\(539\) − 166.797i − 0.309456i
\(540\) 0 0
\(541\) −192.818 −0.356410 −0.178205 0.983993i \(-0.557029\pi\)
−0.178205 + 0.983993i \(0.557029\pi\)
\(542\) 48.8020i 0.0900406i
\(543\) 0 0
\(544\) −134.494 −0.247232
\(545\) − 8.77292i − 0.0160971i
\(546\) 0 0
\(547\) −755.590 −1.38134 −0.690668 0.723172i \(-0.742683\pi\)
−0.690668 + 0.723172i \(0.742683\pi\)
\(548\) − 346.856i − 0.632949i
\(549\) 0 0
\(550\) 18.0668 0.0328487
\(551\) − 217.824i − 0.395325i
\(552\) 0 0
\(553\) 1207.46 2.18347
\(554\) − 20.6121i − 0.0372059i
\(555\) 0 0
\(556\) 146.933 0.264268
\(557\) 855.844i 1.53652i 0.640135 + 0.768262i \(0.278878\pi\)
−0.640135 + 0.768262i \(0.721122\pi\)
\(558\) 0 0
\(559\) 328.823 0.588235
\(560\) − 782.494i − 1.39731i
\(561\) 0 0
\(562\) 44.1670 0.0785889
\(563\) − 155.756i − 0.276653i −0.990387 0.138327i \(-0.955828\pi\)
0.990387 0.138327i \(-0.0441723\pi\)
\(564\) 0 0
\(565\) 923.689 1.63485
\(566\) − 1.73915i − 0.00307270i
\(567\) 0 0
\(568\) −2.47655 −0.00436013
\(569\) − 636.016i − 1.11778i −0.829242 0.558889i \(-0.811228\pi\)
0.829242 0.558889i \(-0.188772\pi\)
\(570\) 0 0
\(571\) −1004.18 −1.75863 −0.879317 0.476236i \(-0.842001\pi\)
−0.879317 + 0.476236i \(0.842001\pi\)
\(572\) 376.585i 0.658365i
\(573\) 0 0
\(574\) 28.8438 0.0502505
\(575\) − 197.892i − 0.344160i
\(576\) 0 0
\(577\) 829.817 1.43816 0.719079 0.694929i \(-0.244564\pi\)
0.719079 + 0.694929i \(0.244564\pi\)
\(578\) 33.3111i 0.0576317i
\(579\) 0 0
\(580\) 439.594 0.757920
\(581\) − 431.110i − 0.742014i
\(582\) 0 0
\(583\) −1044.34 −1.79133
\(584\) − 64.8693i − 0.111078i
\(585\) 0 0
\(586\) 15.6472 0.0267017
\(587\) 293.552i 0.500089i 0.968234 + 0.250044i \(0.0804452\pi\)
−0.968234 + 0.250044i \(0.919555\pi\)
\(588\) 0 0
\(589\) −159.402 −0.270631
\(590\) − 15.0725i − 0.0255466i
\(591\) 0 0
\(592\) −270.286 −0.456564
\(593\) − 720.027i − 1.21421i −0.794621 0.607106i \(-0.792330\pi\)
0.794621 0.607106i \(-0.207670\pi\)
\(594\) 0 0
\(595\) −1181.95 −1.98647
\(596\) 257.494i 0.432037i
\(597\) 0 0
\(598\) −14.3344 −0.0239706
\(599\) 463.470i 0.773740i 0.922134 + 0.386870i \(0.126444\pi\)
−0.922134 + 0.386870i \(0.873556\pi\)
\(600\) 0 0
\(601\) −545.070 −0.906939 −0.453469 0.891272i \(-0.649814\pi\)
−0.453469 + 0.891272i \(0.649814\pi\)
\(602\) 37.3782i 0.0620900i
\(603\) 0 0
\(604\) −615.686 −1.01935
\(605\) 61.6855i 0.101959i
\(606\) 0 0
\(607\) −1019.29 −1.67922 −0.839609 0.543191i \(-0.817216\pi\)
−0.839609 + 0.543191i \(0.817216\pi\)
\(608\) 68.8413i 0.113226i
\(609\) 0 0
\(610\) 25.5016 0.0418060
\(611\) − 481.957i − 0.788801i
\(612\) 0 0
\(613\) 993.926 1.62141 0.810706 0.585453i \(-0.199083\pi\)
0.810706 + 0.585453i \(0.199083\pi\)
\(614\) − 8.29966i − 0.0135174i
\(615\) 0 0
\(616\) −85.7635 −0.139226
\(617\) − 944.535i − 1.53085i −0.643524 0.765426i \(-0.722528\pi\)
0.643524 0.765426i \(-0.277472\pi\)
\(618\) 0 0
\(619\) −469.213 −0.758018 −0.379009 0.925393i \(-0.623735\pi\)
−0.379009 + 0.925393i \(0.623735\pi\)
\(620\) − 321.691i − 0.518856i
\(621\) 0 0
\(622\) 7.17691 0.0115384
\(623\) − 1300.25i − 2.08707i
\(624\) 0 0
\(625\) −780.414 −1.24866
\(626\) − 24.8730i − 0.0397333i
\(627\) 0 0
\(628\) −767.549 −1.22221
\(629\) 408.265i 0.649069i
\(630\) 0 0
\(631\) 1020.56 1.61738 0.808689 0.588237i \(-0.200178\pi\)
0.808689 + 0.588237i \(0.200178\pi\)
\(632\) − 142.340i − 0.225221i
\(633\) 0 0
\(634\) 15.7465 0.0248368
\(635\) − 106.238i − 0.167304i
\(636\) 0 0
\(637\) −120.332 −0.188905
\(638\) − 23.9647i − 0.0375622i
\(639\) 0 0
\(640\) −185.131 −0.289267
\(641\) 1125.61i 1.75603i 0.478637 + 0.878013i \(0.341131\pi\)
−0.478637 + 0.878013i \(0.658869\pi\)
\(642\) 0 0
\(643\) −213.518 −0.332065 −0.166033 0.986120i \(-0.553096\pi\)
−0.166033 + 0.986120i \(0.553096\pi\)
\(644\) 468.884i 0.728081i
\(645\) 0 0
\(646\) 34.4607 0.0533447
\(647\) − 267.943i − 0.414132i −0.978327 0.207066i \(-0.933609\pi\)
0.978327 0.207066i \(-0.0663914\pi\)
\(648\) 0 0
\(649\) 236.447 0.364326
\(650\) − 13.0340i − 0.0200523i
\(651\) 0 0
\(652\) 682.864 1.04734
\(653\) − 53.1648i − 0.0814162i −0.999171 0.0407081i \(-0.987039\pi\)
0.999171 0.0407081i \(-0.0129614\pi\)
\(654\) 0 0
\(655\) 904.451 1.38084
\(656\) 486.669i 0.741874i
\(657\) 0 0
\(658\) 54.7853 0.0832604
\(659\) − 501.397i − 0.760845i −0.924813 0.380423i \(-0.875779\pi\)
0.924813 0.380423i \(-0.124221\pi\)
\(660\) 0 0
\(661\) 580.522 0.878249 0.439124 0.898426i \(-0.355289\pi\)
0.439124 + 0.898426i \(0.355289\pi\)
\(662\) 10.3810i 0.0156812i
\(663\) 0 0
\(664\) −50.8209 −0.0765375
\(665\) 604.985i 0.909752i
\(666\) 0 0
\(667\) −262.494 −0.393544
\(668\) − 627.354i − 0.939152i
\(669\) 0 0
\(670\) −37.6132 −0.0561391
\(671\) 400.053i 0.596204i
\(672\) 0 0
\(673\) −119.109 −0.176982 −0.0884912 0.996077i \(-0.528205\pi\)
−0.0884912 + 0.996077i \(0.528205\pi\)
\(674\) − 4.84723i − 0.00719173i
\(675\) 0 0
\(676\) −401.979 −0.594643
\(677\) 467.691i 0.690828i 0.938450 + 0.345414i \(0.112262\pi\)
−0.938450 + 0.345414i \(0.887738\pi\)
\(678\) 0 0
\(679\) 454.583 0.669489
\(680\) 139.333i 0.204901i
\(681\) 0 0
\(682\) −17.5371 −0.0257143
\(683\) − 313.488i − 0.458987i −0.973310 0.229494i \(-0.926293\pi\)
0.973310 0.229494i \(-0.0737070\pi\)
\(684\) 0 0
\(685\) −539.314 −0.787319
\(686\) 32.3052i 0.0470921i
\(687\) 0 0
\(688\) −630.667 −0.916667
\(689\) 753.422i 1.09350i
\(690\) 0 0
\(691\) −672.604 −0.973378 −0.486689 0.873575i \(-0.661795\pi\)
−0.486689 + 0.873575i \(0.661795\pi\)
\(692\) 209.293i 0.302446i
\(693\) 0 0
\(694\) −40.3626 −0.0581594
\(695\) − 228.461i − 0.328721i
\(696\) 0 0
\(697\) 735.110 1.05468
\(698\) 69.3523i 0.0993586i
\(699\) 0 0
\(700\) −426.345 −0.609065
\(701\) 906.580i 1.29327i 0.762801 + 0.646633i \(0.223824\pi\)
−0.762801 + 0.646633i \(0.776176\pi\)
\(702\) 0 0
\(703\) 208.972 0.297257
\(704\) − 717.207i − 1.01876i
\(705\) 0 0
\(706\) −14.8298 −0.0210054
\(707\) − 221.451i − 0.313226i
\(708\) 0 0
\(709\) −29.0415 −0.0409612 −0.0204806 0.999790i \(-0.506520\pi\)
−0.0204806 + 0.999790i \(0.506520\pi\)
\(710\) 1.92201i 0.00270706i
\(711\) 0 0
\(712\) −153.278 −0.215278
\(713\) 192.091i 0.269412i
\(714\) 0 0
\(715\) 585.538 0.818934
\(716\) 266.830i 0.372668i
\(717\) 0 0
\(718\) −40.5444 −0.0564685
\(719\) 966.847i 1.34471i 0.740229 + 0.672355i \(0.234717\pi\)
−0.740229 + 0.672355i \(0.765283\pi\)
\(720\) 0 0
\(721\) 654.602 0.907909
\(722\) 24.8495i 0.0344176i
\(723\) 0 0
\(724\) −516.042 −0.712765
\(725\) − 238.679i − 0.329213i
\(726\) 0 0
\(727\) 877.362 1.20682 0.603412 0.797429i \(-0.293807\pi\)
0.603412 + 0.797429i \(0.293807\pi\)
\(728\) 61.8725i 0.0849896i
\(729\) 0 0
\(730\) −50.3440 −0.0689644
\(731\) 952.618i 1.30317i
\(732\) 0 0
\(733\) 36.1953 0.0493796 0.0246898 0.999695i \(-0.492140\pi\)
0.0246898 + 0.999695i \(0.492140\pi\)
\(734\) − 39.7489i − 0.0541538i
\(735\) 0 0
\(736\) 82.9586 0.112716
\(737\) − 590.051i − 0.800612i
\(738\) 0 0
\(739\) −475.629 −0.643612 −0.321806 0.946806i \(-0.604290\pi\)
−0.321806 + 0.946806i \(0.604290\pi\)
\(740\) 421.728i 0.569903i
\(741\) 0 0
\(742\) −85.6434 −0.115422
\(743\) 50.8826i 0.0684827i 0.999414 + 0.0342413i \(0.0109015\pi\)
−0.999414 + 0.0342413i \(0.989099\pi\)
\(744\) 0 0
\(745\) 400.368 0.537407
\(746\) − 11.6638i − 0.0156351i
\(747\) 0 0
\(748\) −1090.98 −1.45854
\(749\) 285.959i 0.381787i
\(750\) 0 0
\(751\) 47.1961 0.0628444 0.0314222 0.999506i \(-0.489996\pi\)
0.0314222 + 0.999506i \(0.489996\pi\)
\(752\) 924.370i 1.22922i
\(753\) 0 0
\(754\) −17.2889 −0.0229296
\(755\) 957.307i 1.26796i
\(756\) 0 0
\(757\) 973.584 1.28611 0.643054 0.765821i \(-0.277667\pi\)
0.643054 + 0.765821i \(0.277667\pi\)
\(758\) − 70.6010i − 0.0931412i
\(759\) 0 0
\(760\) 71.3179 0.0938393
\(761\) 16.3062i 0.0214274i 0.999943 + 0.0107137i \(0.00341034\pi\)
−0.999943 + 0.0107137i \(0.996590\pi\)
\(762\) 0 0
\(763\) 11.2861 0.0147918
\(764\) 1081.63i 1.41574i
\(765\) 0 0
\(766\) −13.3779 −0.0174647
\(767\) − 170.581i − 0.222400i
\(768\) 0 0
\(769\) 142.031 0.184695 0.0923477 0.995727i \(-0.470563\pi\)
0.0923477 + 0.995727i \(0.470563\pi\)
\(770\) 66.5596i 0.0864410i
\(771\) 0 0
\(772\) 827.062 1.07132
\(773\) − 1144.42i − 1.48050i −0.672334 0.740248i \(-0.734708\pi\)
0.672334 0.740248i \(-0.265292\pi\)
\(774\) 0 0
\(775\) −174.663 −0.225372
\(776\) − 53.5879i − 0.0690566i
\(777\) 0 0
\(778\) 42.7094 0.0548964
\(779\) − 376.269i − 0.483015i
\(780\) 0 0
\(781\) −30.1512 −0.0386059
\(782\) − 41.5276i − 0.0531043i
\(783\) 0 0
\(784\) 230.792 0.294377
\(785\) 1193.43i 1.52030i
\(786\) 0 0
\(787\) −259.179 −0.329325 −0.164663 0.986350i \(-0.552654\pi\)
−0.164663 + 0.986350i \(0.552654\pi\)
\(788\) 712.840i 0.904619i
\(789\) 0 0
\(790\) −110.467 −0.139832
\(791\) 1188.30i 1.50228i
\(792\) 0 0
\(793\) 288.611 0.363948
\(794\) 56.3077i 0.0709165i
\(795\) 0 0
\(796\) −102.077 −0.128238
\(797\) − 1061.42i − 1.33177i −0.746055 0.665885i \(-0.768054\pi\)
0.746055 0.665885i \(-0.231946\pi\)
\(798\) 0 0
\(799\) 1396.25 1.74750
\(800\) 75.4323i 0.0942904i
\(801\) 0 0
\(802\) 75.0919 0.0936308
\(803\) − 789.764i − 0.983516i
\(804\) 0 0
\(805\) 729.050 0.905653
\(806\) 12.6518i 0.0156971i
\(807\) 0 0
\(808\) −26.1054 −0.0323087
\(809\) 1471.80i 1.81928i 0.415398 + 0.909640i \(0.363642\pi\)
−0.415398 + 0.909640i \(0.636358\pi\)
\(810\) 0 0
\(811\) 128.574 0.158537 0.0792685 0.996853i \(-0.474742\pi\)
0.0792685 + 0.996853i \(0.474742\pi\)
\(812\) 565.525i 0.696459i
\(813\) 0 0
\(814\) 22.9907 0.0282441
\(815\) − 1061.76i − 1.30277i
\(816\) 0 0
\(817\) 487.601 0.596818
\(818\) − 72.0863i − 0.0881250i
\(819\) 0 0
\(820\) 759.352 0.926039
\(821\) 1487.34i 1.81162i 0.423689 + 0.905808i \(0.360735\pi\)
−0.423689 + 0.905808i \(0.639265\pi\)
\(822\) 0 0
\(823\) −1199.72 −1.45774 −0.728869 0.684653i \(-0.759954\pi\)
−0.728869 + 0.684653i \(0.759954\pi\)
\(824\) − 77.1670i − 0.0936492i
\(825\) 0 0
\(826\) 19.3903 0.0234750
\(827\) 703.596i 0.850781i 0.905010 + 0.425391i \(0.139863\pi\)
−0.905010 + 0.425391i \(0.860137\pi\)
\(828\) 0 0
\(829\) −225.598 −0.272133 −0.136066 0.990700i \(-0.543446\pi\)
−0.136066 + 0.990700i \(0.543446\pi\)
\(830\) 39.4412i 0.0475195i
\(831\) 0 0
\(832\) −517.416 −0.621894
\(833\) − 348.609i − 0.418498i
\(834\) 0 0
\(835\) −975.449 −1.16820
\(836\) 558.424i 0.667971i
\(837\) 0 0
\(838\) 61.7470 0.0736838
\(839\) 714.317i 0.851391i 0.904867 + 0.425695i \(0.139970\pi\)
−0.904867 + 0.425695i \(0.860030\pi\)
\(840\) 0 0
\(841\) 524.404 0.623548
\(842\) 43.3431i 0.0514763i
\(843\) 0 0
\(844\) 1436.15 1.70160
\(845\) 625.022i 0.739671i
\(846\) 0 0
\(847\) −79.3566 −0.0936914
\(848\) − 1445.03i − 1.70404i
\(849\) 0 0
\(850\) 37.7600 0.0444236
\(851\) − 251.826i − 0.295917i
\(852\) 0 0
\(853\) 260.598 0.305507 0.152754 0.988264i \(-0.451186\pi\)
0.152754 + 0.988264i \(0.451186\pi\)
\(854\) 32.8071i 0.0384159i
\(855\) 0 0
\(856\) 33.7099 0.0393807
\(857\) 1035.16i 1.20789i 0.797026 + 0.603944i \(0.206405\pi\)
−0.797026 + 0.603944i \(0.793595\pi\)
\(858\) 0 0
\(859\) −558.645 −0.650344 −0.325172 0.945655i \(-0.605422\pi\)
−0.325172 + 0.945655i \(0.605422\pi\)
\(860\) 984.032i 1.14422i
\(861\) 0 0
\(862\) −20.9524 −0.0243068
\(863\) − 251.585i − 0.291523i −0.989320 0.145762i \(-0.953437\pi\)
0.989320 0.145762i \(-0.0465633\pi\)
\(864\) 0 0
\(865\) 325.422 0.376210
\(866\) 83.6520i 0.0965958i
\(867\) 0 0
\(868\) 413.846 0.476781
\(869\) − 1732.94i − 1.99418i
\(870\) 0 0
\(871\) −425.681 −0.488727
\(872\) − 1.33045i − 0.00152574i
\(873\) 0 0
\(874\) −21.2560 −0.0243204
\(875\) − 572.559i − 0.654353i
\(876\) 0 0
\(877\) −487.231 −0.555565 −0.277783 0.960644i \(-0.589599\pi\)
−0.277783 + 0.960644i \(0.589599\pi\)
\(878\) − 74.9483i − 0.0853625i
\(879\) 0 0
\(880\) −1123.03 −1.27617
\(881\) 61.9179i 0.0702813i 0.999382 + 0.0351407i \(0.0111879\pi\)
−0.999382 + 0.0351407i \(0.988812\pi\)
\(882\) 0 0
\(883\) −101.853 −0.115349 −0.0576744 0.998335i \(-0.518369\pi\)
−0.0576744 + 0.998335i \(0.518369\pi\)
\(884\) 787.071i 0.890351i
\(885\) 0 0
\(886\) −38.0000 −0.0428893
\(887\) − 1257.63i − 1.41785i −0.705284 0.708924i \(-0.749181\pi\)
0.705284 0.708924i \(-0.250819\pi\)
\(888\) 0 0
\(889\) 136.672 0.153737
\(890\) 118.956i 0.133659i
\(891\) 0 0
\(892\) 35.8212 0.0401582
\(893\) − 714.677i − 0.800311i
\(894\) 0 0
\(895\) 414.884 0.463557
\(896\) − 238.166i − 0.265810i
\(897\) 0 0
\(898\) −3.04815 −0.00339437
\(899\) 231.682i 0.257711i
\(900\) 0 0
\(901\) −2182.70 −2.42253
\(902\) − 41.3965i − 0.0458941i
\(903\) 0 0
\(904\) 140.081 0.154957
\(905\) 802.374i 0.886601i
\(906\) 0 0
\(907\) −834.289 −0.919833 −0.459917 0.887962i \(-0.652121\pi\)
−0.459917 + 0.887962i \(0.652121\pi\)
\(908\) 286.126i 0.315117i
\(909\) 0 0
\(910\) 48.0182 0.0527672
\(911\) − 715.751i − 0.785676i −0.919608 0.392838i \(-0.871493\pi\)
0.919608 0.392838i \(-0.128507\pi\)
\(912\) 0 0
\(913\) −618.728 −0.677687
\(914\) 46.5442i 0.0509237i
\(915\) 0 0
\(916\) 214.999 0.234715
\(917\) 1163.55i 1.26887i
\(918\) 0 0
\(919\) −714.401 −0.777367 −0.388684 0.921371i \(-0.627070\pi\)
−0.388684 + 0.921371i \(0.627070\pi\)
\(920\) − 85.9432i − 0.0934165i
\(921\) 0 0
\(922\) 105.561 0.114491
\(923\) 21.7520i 0.0235667i
\(924\) 0 0
\(925\) 228.979 0.247545
\(926\) 35.0261i 0.0378252i
\(927\) 0 0
\(928\) 100.057 0.107820
\(929\) − 323.383i − 0.348098i −0.984737 0.174049i \(-0.944315\pi\)
0.984737 0.174049i \(-0.0556852\pi\)
\(930\) 0 0
\(931\) −178.437 −0.191661
\(932\) 1445.64i 1.55112i
\(933\) 0 0
\(934\) −93.0207 −0.0995939
\(935\) 1696.33i 1.81426i
\(936\) 0 0
\(937\) −1060.12 −1.13140 −0.565701 0.824610i \(-0.691394\pi\)
−0.565701 + 0.824610i \(0.691394\pi\)
\(938\) − 48.3883i − 0.0515867i
\(939\) 0 0
\(940\) 1442.30 1.53436
\(941\) 1300.38i 1.38192i 0.722895 + 0.690958i \(0.242811\pi\)
−0.722895 + 0.690958i \(0.757189\pi\)
\(942\) 0 0
\(943\) −453.431 −0.480838
\(944\) 327.165i 0.346573i
\(945\) 0 0
\(946\) 53.6451 0.0567073
\(947\) − 1643.50i − 1.73549i −0.497014 0.867743i \(-0.665570\pi\)
0.497014 0.867743i \(-0.334430\pi\)
\(948\) 0 0
\(949\) −569.760 −0.600380
\(950\) − 19.3276i − 0.0203448i
\(951\) 0 0
\(952\) −179.248 −0.188285
\(953\) 466.801i 0.489823i 0.969545 + 0.244912i \(0.0787589\pi\)
−0.969545 + 0.244912i \(0.921241\pi\)
\(954\) 0 0
\(955\) 1681.78 1.76103
\(956\) 1002.80i 1.04895i
\(957\) 0 0
\(958\) −0.127323 −0.000132905 0
\(959\) − 693.812i − 0.723474i
\(960\) 0 0
\(961\) −791.457 −0.823577
\(962\) − 16.5862i − 0.0172414i
\(963\) 0 0
\(964\) 1606.03 1.66600
\(965\) − 1285.97i − 1.33261i
\(966\) 0 0
\(967\) −1146.23 −1.18534 −0.592671 0.805445i \(-0.701927\pi\)
−0.592671 + 0.805445i \(0.701927\pi\)
\(968\) 9.35485i 0.00966411i
\(969\) 0 0
\(970\) −41.5887 −0.0428749
\(971\) − 1439.65i − 1.48264i −0.671150 0.741322i \(-0.734199\pi\)
0.671150 0.741322i \(-0.265801\pi\)
\(972\) 0 0
\(973\) 293.908 0.302064
\(974\) − 76.2207i − 0.0782553i
\(975\) 0 0
\(976\) −553.542 −0.567153
\(977\) 1377.09i 1.40951i 0.709453 + 0.704753i \(0.248942\pi\)
−0.709453 + 0.704753i \(0.751058\pi\)
\(978\) 0 0
\(979\) −1866.11 −1.90614
\(980\) − 360.105i − 0.367454i
\(981\) 0 0
\(982\) −36.7582 −0.0374320
\(983\) − 1232.99i − 1.25431i −0.778893 0.627157i \(-0.784219\pi\)
0.778893 0.627157i \(-0.215781\pi\)
\(984\) 0 0
\(985\) 1108.37 1.12525
\(986\) − 50.0867i − 0.0507979i
\(987\) 0 0
\(988\) 402.865 0.407758
\(989\) − 587.593i − 0.594129i
\(990\) 0 0
\(991\) −51.5755 −0.0520439 −0.0260220 0.999661i \(-0.508284\pi\)
−0.0260220 + 0.999661i \(0.508284\pi\)
\(992\) − 73.2208i − 0.0738113i
\(993\) 0 0
\(994\) −2.47261 −0.00248754
\(995\) 158.716i 0.159514i
\(996\) 0 0
\(997\) −825.561 −0.828045 −0.414023 0.910267i \(-0.635877\pi\)
−0.414023 + 0.910267i \(0.635877\pi\)
\(998\) − 5.40139i − 0.00541222i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.3.b.a.728.15 30
3.2 odd 2 inner 729.3.b.a.728.16 30
27.2 odd 18 243.3.f.b.53.3 30
27.4 even 9 243.3.f.a.107.3 30
27.5 odd 18 27.3.f.a.2.3 30
27.7 even 9 243.3.f.d.134.3 30
27.11 odd 18 81.3.f.a.71.3 30
27.13 even 9 243.3.f.b.188.3 30
27.14 odd 18 243.3.f.c.188.3 30
27.16 even 9 27.3.f.a.14.3 yes 30
27.20 odd 18 243.3.f.a.134.3 30
27.22 even 9 81.3.f.a.8.3 30
27.23 odd 18 243.3.f.d.107.3 30
27.25 even 9 243.3.f.c.53.3 30
108.43 odd 18 432.3.bc.a.257.1 30
108.59 even 18 432.3.bc.a.353.1 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.2.3 30 27.5 odd 18
27.3.f.a.14.3 yes 30 27.16 even 9
81.3.f.a.8.3 30 27.22 even 9
81.3.f.a.71.3 30 27.11 odd 18
243.3.f.a.107.3 30 27.4 even 9
243.3.f.a.134.3 30 27.20 odd 18
243.3.f.b.53.3 30 27.2 odd 18
243.3.f.b.188.3 30 27.13 even 9
243.3.f.c.53.3 30 27.25 even 9
243.3.f.c.188.3 30 27.14 odd 18
243.3.f.d.107.3 30 27.23 odd 18
243.3.f.d.134.3 30 27.7 even 9
432.3.bc.a.257.1 30 108.43 odd 18
432.3.bc.a.353.1 30 108.59 even 18
729.3.b.a.728.15 30 1.1 even 1 trivial
729.3.b.a.728.16 30 3.2 odd 2 inner