Properties

Label 735.2.i.a.361.1
Level $735$
Weight $2$
Character 735.361
Analytic conductor $5.869$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(226,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 735.361
Dual form 735.2.i.a.226.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} +1.00000 q^{6} -3.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.500000 + 0.866025i) q^{10} +(0.500000 + 0.866025i) q^{12} -6.00000 q^{13} +1.00000 q^{15} +(0.500000 + 0.866025i) q^{16} +(-1.00000 + 1.73205i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(4.00000 + 6.92820i) q^{19} -1.00000 q^{20} +(-4.00000 - 6.92820i) q^{23} +(1.50000 - 2.59808i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(3.00000 + 5.19615i) q^{26} +1.00000 q^{27} -2.00000 q^{29} +(-0.500000 - 0.866025i) q^{30} +(-2.00000 + 3.46410i) q^{31} +(-2.50000 + 4.33013i) q^{32} +2.00000 q^{34} -1.00000 q^{36} +(1.00000 + 1.73205i) q^{37} +(4.00000 - 6.92820i) q^{38} +(3.00000 - 5.19615i) q^{39} +(1.50000 + 2.59808i) q^{40} -6.00000 q^{41} +4.00000 q^{43} +(-0.500000 + 0.866025i) q^{45} +(-4.00000 + 6.92820i) q^{46} +(-4.00000 - 6.92820i) q^{47} -1.00000 q^{48} +1.00000 q^{50} +(-1.00000 - 1.73205i) q^{51} +(-3.00000 + 5.19615i) q^{52} +(-5.00000 + 8.66025i) q^{53} +(-0.500000 - 0.866025i) q^{54} -8.00000 q^{57} +(1.00000 + 1.73205i) q^{58} +(-2.00000 + 3.46410i) q^{59} +(0.500000 - 0.866025i) q^{60} +(1.00000 + 1.73205i) q^{61} +4.00000 q^{62} +7.00000 q^{64} +(3.00000 + 5.19615i) q^{65} +(-2.00000 + 3.46410i) q^{67} +(1.00000 + 1.73205i) q^{68} +8.00000 q^{69} -12.0000 q^{71} +(1.50000 + 2.59808i) q^{72} +(1.00000 - 1.73205i) q^{73} +(1.00000 - 1.73205i) q^{74} +(-0.500000 - 0.866025i) q^{75} +8.00000 q^{76} -6.00000 q^{78} +(-4.00000 - 6.92820i) q^{79} +(0.500000 - 0.866025i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(3.00000 + 5.19615i) q^{82} -4.00000 q^{83} +2.00000 q^{85} +(-2.00000 - 3.46410i) q^{86} +(1.00000 - 1.73205i) q^{87} +(3.00000 + 5.19615i) q^{89} +1.00000 q^{90} -8.00000 q^{92} +(-2.00000 - 3.46410i) q^{93} +(-4.00000 + 6.92820i) q^{94} +(4.00000 - 6.92820i) q^{95} +(-2.50000 - 4.33013i) q^{96} -18.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{3} + q^{4} - q^{5} + 2 q^{6} - 6 q^{8} - q^{9} - q^{10} + q^{12} - 12 q^{13} + 2 q^{15} + q^{16} - 2 q^{17} - q^{18} + 8 q^{19} - 2 q^{20} - 8 q^{23} + 3 q^{24} - q^{25} + 6 q^{26}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i 0.633316 0.773893i \(-0.281693\pi\)
−0.986869 + 0.161521i \(0.948360\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 1.00000 0.408248
\(7\) 0 0
\(8\) −3.00000 −1.06066
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −0.500000 + 0.866025i −0.158114 + 0.273861i
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −1.00000 + 1.73205i −0.242536 + 0.420084i −0.961436 0.275029i \(-0.911312\pi\)
0.718900 + 0.695113i \(0.244646\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) 4.00000 + 6.92820i 0.917663 + 1.58944i 0.802955 + 0.596040i \(0.203260\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 6.92820i −0.834058 1.44463i −0.894795 0.446476i \(-0.852679\pi\)
0.0607377 0.998154i \(-0.480655\pi\)
\(24\) 1.50000 2.59808i 0.306186 0.530330i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 3.00000 + 5.19615i 0.588348 + 1.01905i
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) −0.500000 0.866025i −0.0912871 0.158114i
\(31\) −2.00000 + 3.46410i −0.359211 + 0.622171i −0.987829 0.155543i \(-0.950287\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) −2.50000 + 4.33013i −0.441942 + 0.765466i
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 1.00000 + 1.73205i 0.164399 + 0.284747i 0.936442 0.350823i \(-0.114098\pi\)
−0.772043 + 0.635571i \(0.780765\pi\)
\(38\) 4.00000 6.92820i 0.648886 1.12390i
\(39\) 3.00000 5.19615i 0.480384 0.832050i
\(40\) 1.50000 + 2.59808i 0.237171 + 0.410792i
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) −0.500000 + 0.866025i −0.0745356 + 0.129099i
\(46\) −4.00000 + 6.92820i −0.589768 + 1.02151i
\(47\) −4.00000 6.92820i −0.583460 1.01058i −0.995066 0.0992202i \(-0.968365\pi\)
0.411606 0.911362i \(-0.364968\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) −1.00000 1.73205i −0.140028 0.242536i
\(52\) −3.00000 + 5.19615i −0.416025 + 0.720577i
\(53\) −5.00000 + 8.66025i −0.686803 + 1.18958i 0.286064 + 0.958211i \(0.407653\pi\)
−0.972867 + 0.231367i \(0.925680\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) 0 0
\(56\) 0 0
\(57\) −8.00000 −1.05963
\(58\) 1.00000 + 1.73205i 0.131306 + 0.227429i
\(59\) −2.00000 + 3.46410i −0.260378 + 0.450988i −0.966342 0.257260i \(-0.917180\pi\)
0.705965 + 0.708247i \(0.250514\pi\)
\(60\) 0.500000 0.866025i 0.0645497 0.111803i
\(61\) 1.00000 + 1.73205i 0.128037 + 0.221766i 0.922916 0.385002i \(-0.125799\pi\)
−0.794879 + 0.606768i \(0.792466\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 3.00000 + 5.19615i 0.372104 + 0.644503i
\(66\) 0 0
\(67\) −2.00000 + 3.46410i −0.244339 + 0.423207i −0.961946 0.273241i \(-0.911904\pi\)
0.717607 + 0.696449i \(0.245238\pi\)
\(68\) 1.00000 + 1.73205i 0.121268 + 0.210042i
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 1.50000 + 2.59808i 0.176777 + 0.306186i
\(73\) 1.00000 1.73205i 0.117041 0.202721i −0.801553 0.597924i \(-0.795992\pi\)
0.918594 + 0.395203i \(0.129326\pi\)
\(74\) 1.00000 1.73205i 0.116248 0.201347i
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) 8.00000 0.917663
\(77\) 0 0
\(78\) −6.00000 −0.679366
\(79\) −4.00000 6.92820i −0.450035 0.779484i 0.548352 0.836247i \(-0.315255\pi\)
−0.998388 + 0.0567635i \(0.981922\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 3.00000 + 5.19615i 0.331295 + 0.573819i
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) −2.00000 3.46410i −0.215666 0.373544i
\(87\) 1.00000 1.73205i 0.107211 0.185695i
\(88\) 0 0
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 1.00000 0.105409
\(91\) 0 0
\(92\) −8.00000 −0.834058
\(93\) −2.00000 3.46410i −0.207390 0.359211i
\(94\) −4.00000 + 6.92820i −0.412568 + 0.714590i
\(95\) 4.00000 6.92820i 0.410391 0.710819i
\(96\) −2.50000 4.33013i −0.255155 0.441942i
\(97\) −18.0000 −1.82762 −0.913812 0.406138i \(-0.866875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) 5.00000 8.66025i 0.497519 0.861727i −0.502477 0.864590i \(-0.667578\pi\)
0.999996 + 0.00286291i \(0.000911295\pi\)
\(102\) −1.00000 + 1.73205i −0.0990148 + 0.171499i
\(103\) −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i \(-0.295621\pi\)
−0.992990 + 0.118199i \(0.962288\pi\)
\(104\) 18.0000 1.76505
\(105\) 0 0
\(106\) 10.0000 0.971286
\(107\) 6.00000 + 10.3923i 0.580042 + 1.00466i 0.995474 + 0.0950377i \(0.0302972\pi\)
−0.415432 + 0.909624i \(0.636370\pi\)
\(108\) 0.500000 0.866025i 0.0481125 0.0833333i
\(109\) 9.00000 15.5885i 0.862044 1.49310i −0.00790932 0.999969i \(-0.502518\pi\)
0.869953 0.493135i \(-0.164149\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 4.00000 + 6.92820i 0.374634 + 0.648886i
\(115\) −4.00000 + 6.92820i −0.373002 + 0.646058i
\(116\) −1.00000 + 1.73205i −0.0928477 + 0.160817i
\(117\) 3.00000 + 5.19615i 0.277350 + 0.480384i
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) −3.00000 −0.273861
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) 1.00000 1.73205i 0.0905357 0.156813i
\(123\) 3.00000 5.19615i 0.270501 0.468521i
\(124\) 2.00000 + 3.46410i 0.179605 + 0.311086i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1.50000 + 2.59808i 0.132583 + 0.229640i
\(129\) −2.00000 + 3.46410i −0.176090 + 0.304997i
\(130\) 3.00000 5.19615i 0.263117 0.455733i
\(131\) −10.0000 17.3205i −0.873704 1.51330i −0.858137 0.513421i \(-0.828378\pi\)
−0.0155672 0.999879i \(-0.504955\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) −0.500000 0.866025i −0.0430331 0.0745356i
\(136\) 3.00000 5.19615i 0.257248 0.445566i
\(137\) 5.00000 8.66025i 0.427179 0.739895i −0.569442 0.822031i \(-0.692841\pi\)
0.996621 + 0.0821359i \(0.0261741\pi\)
\(138\) −4.00000 6.92820i −0.340503 0.589768i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 6.00000 + 10.3923i 0.503509 + 0.872103i
\(143\) 0 0
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) 1.00000 + 1.73205i 0.0830455 + 0.143839i
\(146\) −2.00000 −0.165521
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) −7.00000 12.1244i −0.573462 0.993266i −0.996207 0.0870170i \(-0.972267\pi\)
0.422744 0.906249i \(-0.361067\pi\)
\(150\) −0.500000 + 0.866025i −0.0408248 + 0.0707107i
\(151\) −4.00000 + 6.92820i −0.325515 + 0.563809i −0.981617 0.190864i \(-0.938871\pi\)
0.656101 + 0.754673i \(0.272204\pi\)
\(152\) −12.0000 20.7846i −0.973329 1.68585i
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) −3.00000 5.19615i −0.240192 0.416025i
\(157\) 7.00000 12.1244i 0.558661 0.967629i −0.438948 0.898513i \(-0.644649\pi\)
0.997609 0.0691164i \(-0.0220180\pi\)
\(158\) −4.00000 + 6.92820i −0.318223 + 0.551178i
\(159\) −5.00000 8.66025i −0.396526 0.686803i
\(160\) 5.00000 0.395285
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) −6.00000 10.3923i −0.469956 0.813988i 0.529454 0.848339i \(-0.322397\pi\)
−0.999410 + 0.0343508i \(0.989064\pi\)
\(164\) −3.00000 + 5.19615i −0.234261 + 0.405751i
\(165\) 0 0
\(166\) 2.00000 + 3.46410i 0.155230 + 0.268866i
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) −1.00000 1.73205i −0.0766965 0.132842i
\(171\) 4.00000 6.92820i 0.305888 0.529813i
\(172\) 2.00000 3.46410i 0.152499 0.264135i
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) −2.00000 −0.151620
\(175\) 0 0
\(176\) 0 0
\(177\) −2.00000 3.46410i −0.150329 0.260378i
\(178\) 3.00000 5.19615i 0.224860 0.389468i
\(179\) 12.0000 20.7846i 0.896922 1.55351i 0.0655145 0.997852i \(-0.479131\pi\)
0.831408 0.555663i \(-0.187536\pi\)
\(180\) 0.500000 + 0.866025i 0.0372678 + 0.0645497i
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 12.0000 + 20.7846i 0.884652 + 1.53226i
\(185\) 1.00000 1.73205i 0.0735215 0.127343i
\(186\) −2.00000 + 3.46410i −0.146647 + 0.254000i
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) −8.00000 −0.580381
\(191\) −2.00000 3.46410i −0.144715 0.250654i 0.784552 0.620063i \(-0.212893\pi\)
−0.929267 + 0.369410i \(0.879560\pi\)
\(192\) −3.50000 + 6.06218i −0.252591 + 0.437500i
\(193\) −9.00000 + 15.5885i −0.647834 + 1.12208i 0.335805 + 0.941932i \(0.390992\pi\)
−0.983639 + 0.180150i \(0.942342\pi\)
\(194\) 9.00000 + 15.5885i 0.646162 + 1.11919i
\(195\) −6.00000 −0.429669
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 2.00000 3.46410i 0.141776 0.245564i −0.786389 0.617731i \(-0.788052\pi\)
0.928166 + 0.372168i \(0.121385\pi\)
\(200\) 1.50000 2.59808i 0.106066 0.183712i
\(201\) −2.00000 3.46410i −0.141069 0.244339i
\(202\) −10.0000 −0.703598
\(203\) 0 0
\(204\) −2.00000 −0.140028
\(205\) 3.00000 + 5.19615i 0.209529 + 0.362915i
\(206\) −4.00000 + 6.92820i −0.278693 + 0.482711i
\(207\) −4.00000 + 6.92820i −0.278019 + 0.481543i
\(208\) −3.00000 5.19615i −0.208013 0.360288i
\(209\) 0 0
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 5.00000 + 8.66025i 0.343401 + 0.594789i
\(213\) 6.00000 10.3923i 0.411113 0.712069i
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) −2.00000 3.46410i −0.136399 0.236250i
\(216\) −3.00000 −0.204124
\(217\) 0 0
\(218\) −18.0000 −1.21911
\(219\) 1.00000 + 1.73205i 0.0675737 + 0.117041i
\(220\) 0 0
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) 1.00000 + 1.73205i 0.0671156 + 0.116248i
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) −3.00000 5.19615i −0.199557 0.345643i
\(227\) 2.00000 3.46410i 0.132745 0.229920i −0.791989 0.610535i \(-0.790954\pi\)
0.924734 + 0.380615i \(0.124288\pi\)
\(228\) −4.00000 + 6.92820i −0.264906 + 0.458831i
\(229\) −11.0000 19.0526i −0.726900 1.25903i −0.958187 0.286143i \(-0.907627\pi\)
0.231287 0.972886i \(-0.425707\pi\)
\(230\) 8.00000 0.527504
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) 9.00000 + 15.5885i 0.589610 + 1.02123i 0.994283 + 0.106773i \(0.0340517\pi\)
−0.404674 + 0.914461i \(0.632615\pi\)
\(234\) 3.00000 5.19615i 0.196116 0.339683i
\(235\) −4.00000 + 6.92820i −0.260931 + 0.451946i
\(236\) 2.00000 + 3.46410i 0.130189 + 0.225494i
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) −4.00000 −0.258738 −0.129369 0.991596i \(-0.541295\pi\)
−0.129369 + 0.991596i \(0.541295\pi\)
\(240\) 0.500000 + 0.866025i 0.0322749 + 0.0559017i
\(241\) 3.00000 5.19615i 0.193247 0.334714i −0.753077 0.657932i \(-0.771431\pi\)
0.946324 + 0.323218i \(0.104765\pi\)
\(242\) 5.50000 9.52628i 0.353553 0.612372i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 2.00000 0.128037
\(245\) 0 0
\(246\) −6.00000 −0.382546
\(247\) −24.0000 41.5692i −1.52708 2.64499i
\(248\) 6.00000 10.3923i 0.381000 0.659912i
\(249\) 2.00000 3.46410i 0.126745 0.219529i
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −4.00000 6.92820i −0.250982 0.434714i
\(255\) −1.00000 + 1.73205i −0.0626224 + 0.108465i
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) 3.00000 + 5.19615i 0.187135 + 0.324127i 0.944294 0.329104i \(-0.106747\pi\)
−0.757159 + 0.653231i \(0.773413\pi\)
\(258\) 4.00000 0.249029
\(259\) 0 0
\(260\) 6.00000 0.372104
\(261\) 1.00000 + 1.73205i 0.0618984 + 0.107211i
\(262\) −10.0000 + 17.3205i −0.617802 + 1.07006i
\(263\) −8.00000 + 13.8564i −0.493301 + 0.854423i −0.999970 0.00771799i \(-0.997543\pi\)
0.506669 + 0.862141i \(0.330877\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 2.00000 + 3.46410i 0.122169 + 0.211604i
\(269\) −7.00000 + 12.1244i −0.426798 + 0.739235i −0.996586 0.0825561i \(-0.973692\pi\)
0.569789 + 0.821791i \(0.307025\pi\)
\(270\) −0.500000 + 0.866025i −0.0304290 + 0.0527046i
\(271\) −6.00000 10.3923i −0.364474 0.631288i 0.624218 0.781251i \(-0.285418\pi\)
−0.988692 + 0.149963i \(0.952085\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) −10.0000 −0.604122
\(275\) 0 0
\(276\) 4.00000 6.92820i 0.240772 0.417029i
\(277\) −7.00000 + 12.1244i −0.420589 + 0.728482i −0.995997 0.0893846i \(-0.971510\pi\)
0.575408 + 0.817867i \(0.304843\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) −4.00000 6.92820i −0.238197 0.412568i
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) −6.00000 + 10.3923i −0.356034 + 0.616670i
\(285\) 4.00000 + 6.92820i 0.236940 + 0.410391i
\(286\) 0 0
\(287\) 0 0
\(288\) 5.00000 0.294628
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 1.00000 1.73205i 0.0587220 0.101710i
\(291\) 9.00000 15.5885i 0.527589 0.913812i
\(292\) −1.00000 1.73205i −0.0585206 0.101361i
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) −3.00000 5.19615i −0.174371 0.302020i
\(297\) 0 0
\(298\) −7.00000 + 12.1244i −0.405499 + 0.702345i
\(299\) 24.0000 + 41.5692i 1.38796 + 2.40401i
\(300\) −1.00000 −0.0577350
\(301\) 0 0
\(302\) 8.00000 0.460348
\(303\) 5.00000 + 8.66025i 0.287242 + 0.497519i
\(304\) −4.00000 + 6.92820i −0.229416 + 0.397360i
\(305\) 1.00000 1.73205i 0.0572598 0.0991769i
\(306\) −1.00000 1.73205i −0.0571662 0.0990148i
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) −2.00000 3.46410i −0.113592 0.196748i
\(311\) −12.0000 + 20.7846i −0.680458 + 1.17859i 0.294384 + 0.955687i \(0.404886\pi\)
−0.974841 + 0.222900i \(0.928448\pi\)
\(312\) −9.00000 + 15.5885i −0.509525 + 0.882523i
\(313\) 5.00000 + 8.66025i 0.282617 + 0.489506i 0.972028 0.234863i \(-0.0754642\pi\)
−0.689412 + 0.724370i \(0.742131\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) −1.00000 1.73205i −0.0561656 0.0972817i 0.836576 0.547852i \(-0.184554\pi\)
−0.892741 + 0.450570i \(0.851221\pi\)
\(318\) −5.00000 + 8.66025i −0.280386 + 0.485643i
\(319\) 0 0
\(320\) −3.50000 6.06218i −0.195656 0.338886i
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) −16.0000 −0.890264
\(324\) 0.500000 + 0.866025i 0.0277778 + 0.0481125i
\(325\) 3.00000 5.19615i 0.166410 0.288231i
\(326\) −6.00000 + 10.3923i −0.332309 + 0.575577i
\(327\) 9.00000 + 15.5885i 0.497701 + 0.862044i
\(328\) 18.0000 0.993884
\(329\) 0 0
\(330\) 0 0
\(331\) 6.00000 + 10.3923i 0.329790 + 0.571213i 0.982470 0.186421i \(-0.0596888\pi\)
−0.652680 + 0.757634i \(0.726355\pi\)
\(332\) −2.00000 + 3.46410i −0.109764 + 0.190117i
\(333\) 1.00000 1.73205i 0.0547997 0.0949158i
\(334\) −4.00000 6.92820i −0.218870 0.379094i
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) −11.5000 19.9186i −0.625518 1.08343i
\(339\) −3.00000 + 5.19615i −0.162938 + 0.282216i
\(340\) 1.00000 1.73205i 0.0542326 0.0939336i
\(341\) 0 0
\(342\) −8.00000 −0.432590
\(343\) 0 0
\(344\) −12.0000 −0.646997
\(345\) −4.00000 6.92820i −0.215353 0.373002i
\(346\) −3.00000 + 5.19615i −0.161281 + 0.279347i
\(347\) 10.0000 17.3205i 0.536828 0.929814i −0.462244 0.886753i \(-0.652956\pi\)
0.999072 0.0430610i \(-0.0137110\pi\)
\(348\) −1.00000 1.73205i −0.0536056 0.0928477i
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) −6.00000 −0.320256
\(352\) 0 0
\(353\) −9.00000 + 15.5885i −0.479022 + 0.829690i −0.999711 0.0240566i \(-0.992342\pi\)
0.520689 + 0.853746i \(0.325675\pi\)
\(354\) −2.00000 + 3.46410i −0.106299 + 0.184115i
\(355\) 6.00000 + 10.3923i 0.318447 + 0.551566i
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) −24.0000 −1.26844
\(359\) 18.0000 + 31.1769i 0.950004 + 1.64545i 0.745409 + 0.666608i \(0.232254\pi\)
0.204595 + 0.978847i \(0.434412\pi\)
\(360\) 1.50000 2.59808i 0.0790569 0.136931i
\(361\) −22.5000 + 38.9711i −1.18421 + 2.05111i
\(362\) 1.00000 + 1.73205i 0.0525588 + 0.0910346i
\(363\) −11.0000 −0.577350
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 1.00000 + 1.73205i 0.0522708 + 0.0905357i
\(367\) 4.00000 6.92820i 0.208798 0.361649i −0.742538 0.669804i \(-0.766378\pi\)
0.951336 + 0.308155i \(0.0997115\pi\)
\(368\) 4.00000 6.92820i 0.208514 0.361158i
\(369\) 3.00000 + 5.19615i 0.156174 + 0.270501i
\(370\) −2.00000 −0.103975
\(371\) 0 0
\(372\) −4.00000 −0.207390
\(373\) 5.00000 + 8.66025i 0.258890 + 0.448411i 0.965945 0.258748i \(-0.0833099\pi\)
−0.707055 + 0.707159i \(0.749977\pi\)
\(374\) 0 0
\(375\) −0.500000 + 0.866025i −0.0258199 + 0.0447214i
\(376\) 12.0000 + 20.7846i 0.618853 + 1.07188i
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) −4.00000 6.92820i −0.205196 0.355409i
\(381\) −4.00000 + 6.92820i −0.204926 + 0.354943i
\(382\) −2.00000 + 3.46410i −0.102329 + 0.177239i
\(383\) 16.0000 + 27.7128i 0.817562 + 1.41606i 0.907474 + 0.420109i \(0.138008\pi\)
−0.0899119 + 0.995950i \(0.528659\pi\)
\(384\) −3.00000 −0.153093
\(385\) 0 0
\(386\) 18.0000 0.916176
\(387\) −2.00000 3.46410i −0.101666 0.176090i
\(388\) −9.00000 + 15.5885i −0.456906 + 0.791384i
\(389\) −15.0000 + 25.9808i −0.760530 + 1.31728i 0.182047 + 0.983290i \(0.441728\pi\)
−0.942578 + 0.333987i \(0.891606\pi\)
\(390\) 3.00000 + 5.19615i 0.151911 + 0.263117i
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) 20.0000 1.00887
\(394\) −9.00000 15.5885i −0.453413 0.785335i
\(395\) −4.00000 + 6.92820i −0.201262 + 0.348596i
\(396\) 0 0
\(397\) 11.0000 + 19.0526i 0.552074 + 0.956221i 0.998125 + 0.0612128i \(0.0194968\pi\)
−0.446051 + 0.895008i \(0.647170\pi\)
\(398\) −4.00000 −0.200502
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −9.00000 15.5885i −0.449439 0.778450i 0.548911 0.835881i \(-0.315043\pi\)
−0.998350 + 0.0574304i \(0.981709\pi\)
\(402\) −2.00000 + 3.46410i −0.0997509 + 0.172774i
\(403\) 12.0000 20.7846i 0.597763 1.03536i
\(404\) −5.00000 8.66025i −0.248759 0.430864i
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 0 0
\(408\) 3.00000 + 5.19615i 0.148522 + 0.257248i
\(409\) 11.0000 19.0526i 0.543915 0.942088i −0.454759 0.890614i \(-0.650275\pi\)
0.998674 0.0514740i \(-0.0163919\pi\)
\(410\) 3.00000 5.19615i 0.148159 0.256620i
\(411\) 5.00000 + 8.66025i 0.246632 + 0.427179i
\(412\) −8.00000 −0.394132
\(413\) 0 0
\(414\) 8.00000 0.393179
\(415\) 2.00000 + 3.46410i 0.0981761 + 0.170046i
\(416\) 15.0000 25.9808i 0.735436 1.27381i
\(417\) 0 0
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 10.0000 + 17.3205i 0.486792 + 0.843149i
\(423\) −4.00000 + 6.92820i −0.194487 + 0.336861i
\(424\) 15.0000 25.9808i 0.728464 1.26174i
\(425\) −1.00000 1.73205i −0.0485071 0.0840168i
\(426\) −12.0000 −0.581402
\(427\) 0 0
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) −2.00000 + 3.46410i −0.0964486 + 0.167054i
\(431\) −14.0000 + 24.2487i −0.674356 + 1.16802i 0.302300 + 0.953213i \(0.402245\pi\)
−0.976657 + 0.214807i \(0.931088\pi\)
\(432\) 0.500000 + 0.866025i 0.0240563 + 0.0416667i
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) −2.00000 −0.0958927
\(436\) −9.00000 15.5885i −0.431022 0.746552i
\(437\) 32.0000 55.4256i 1.53077 2.65137i
\(438\) 1.00000 1.73205i 0.0477818 0.0827606i
\(439\) −14.0000 24.2487i −0.668184 1.15733i −0.978412 0.206666i \(-0.933739\pi\)
0.310228 0.950662i \(-0.399595\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −12.0000 −0.570782
\(443\) −6.00000 10.3923i −0.285069 0.493753i 0.687557 0.726130i \(-0.258683\pi\)
−0.972626 + 0.232377i \(0.925350\pi\)
\(444\) −1.00000 + 1.73205i −0.0474579 + 0.0821995i
\(445\) 3.00000 5.19615i 0.142214 0.246321i
\(446\) 12.0000 + 20.7846i 0.568216 + 0.984180i
\(447\) 14.0000 0.662177
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) −0.500000 0.866025i −0.0235702 0.0408248i
\(451\) 0 0
\(452\) 3.00000 5.19615i 0.141108 0.244406i
\(453\) −4.00000 6.92820i −0.187936 0.325515i
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) 24.0000 1.12390
\(457\) −9.00000 15.5885i −0.421002 0.729197i 0.575036 0.818128i \(-0.304988\pi\)
−0.996038 + 0.0889312i \(0.971655\pi\)
\(458\) −11.0000 + 19.0526i −0.513996 + 0.890268i
\(459\) −1.00000 + 1.73205i −0.0466760 + 0.0808452i
\(460\) 4.00000 + 6.92820i 0.186501 + 0.323029i
\(461\) −2.00000 −0.0931493 −0.0465746 0.998915i \(-0.514831\pi\)
−0.0465746 + 0.998915i \(0.514831\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) −1.00000 1.73205i −0.0464238 0.0804084i
\(465\) −2.00000 + 3.46410i −0.0927478 + 0.160644i
\(466\) 9.00000 15.5885i 0.416917 0.722121i
\(467\) −14.0000 24.2487i −0.647843 1.12210i −0.983637 0.180161i \(-0.942338\pi\)
0.335794 0.941935i \(-0.390995\pi\)
\(468\) 6.00000 0.277350
\(469\) 0 0
\(470\) 8.00000 0.369012
\(471\) 7.00000 + 12.1244i 0.322543 + 0.558661i
\(472\) 6.00000 10.3923i 0.276172 0.478345i
\(473\) 0 0
\(474\) −4.00000 6.92820i −0.183726 0.318223i
\(475\) −8.00000 −0.367065
\(476\) 0 0
\(477\) 10.0000 0.457869
\(478\) 2.00000 + 3.46410i 0.0914779 + 0.158444i
\(479\) −16.0000 + 27.7128i −0.731059 + 1.26623i 0.225372 + 0.974273i \(0.427640\pi\)
−0.956431 + 0.291958i \(0.905693\pi\)
\(480\) −2.50000 + 4.33013i −0.114109 + 0.197642i
\(481\) −6.00000 10.3923i −0.273576 0.473848i
\(482\) −6.00000 −0.273293
\(483\) 0 0
\(484\) 11.0000 0.500000
\(485\) 9.00000 + 15.5885i 0.408669 + 0.707835i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) 8.00000 13.8564i 0.362515 0.627894i −0.625859 0.779936i \(-0.715252\pi\)
0.988374 + 0.152042i \(0.0485850\pi\)
\(488\) −3.00000 5.19615i −0.135804 0.235219i
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) −3.00000 5.19615i −0.135250 0.234261i
\(493\) 2.00000 3.46410i 0.0900755 0.156015i
\(494\) −24.0000 + 41.5692i −1.07981 + 1.87029i
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) −4.00000 −0.179244
\(499\) −10.0000 17.3205i −0.447661 0.775372i 0.550572 0.834788i \(-0.314410\pi\)
−0.998233 + 0.0594153i \(0.981076\pi\)
\(500\) 0.500000 0.866025i 0.0223607 0.0387298i
\(501\) −4.00000 + 6.92820i −0.178707 + 0.309529i
\(502\) 6.00000 + 10.3923i 0.267793 + 0.463831i
\(503\) −8.00000 −0.356702 −0.178351 0.983967i \(-0.557076\pi\)
−0.178351 + 0.983967i \(0.557076\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) 0 0
\(507\) −11.5000 + 19.9186i −0.510733 + 0.884615i
\(508\) 4.00000 6.92820i 0.177471 0.307389i
\(509\) 1.00000 + 1.73205i 0.0443242 + 0.0767718i 0.887336 0.461123i \(-0.152553\pi\)
−0.843012 + 0.537895i \(0.819220\pi\)
\(510\) 2.00000 0.0885615
\(511\) 0 0
\(512\) −11.0000 −0.486136
\(513\) 4.00000 + 6.92820i 0.176604 + 0.305888i
\(514\) 3.00000 5.19615i 0.132324 0.229192i
\(515\) −4.00000 + 6.92820i −0.176261 + 0.305293i
\(516\) 2.00000 + 3.46410i 0.0880451 + 0.152499i
\(517\) 0 0
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) −9.00000 15.5885i −0.394676 0.683599i
\(521\) −5.00000 + 8.66025i −0.219054 + 0.379413i −0.954519 0.298150i \(-0.903630\pi\)
0.735465 + 0.677563i \(0.236964\pi\)
\(522\) 1.00000 1.73205i 0.0437688 0.0758098i
\(523\) −10.0000 17.3205i −0.437269 0.757373i 0.560208 0.828352i \(-0.310721\pi\)
−0.997478 + 0.0709788i \(0.977388\pi\)
\(524\) −20.0000 −0.873704
\(525\) 0 0
\(526\) 16.0000 0.697633
\(527\) −4.00000 6.92820i −0.174243 0.301797i
\(528\) 0 0
\(529\) −20.5000 + 35.5070i −0.891304 + 1.54378i
\(530\) −5.00000 8.66025i −0.217186 0.376177i
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) 36.0000 1.55933
\(534\) 3.00000 + 5.19615i 0.129823 + 0.224860i
\(535\) 6.00000 10.3923i 0.259403 0.449299i
\(536\) 6.00000 10.3923i 0.259161 0.448879i
\(537\) 12.0000 + 20.7846i 0.517838 + 0.896922i
\(538\) 14.0000 0.603583
\(539\) 0 0
\(540\) −1.00000 −0.0430331
\(541\) 9.00000 + 15.5885i 0.386940 + 0.670200i 0.992036 0.125952i \(-0.0401986\pi\)
−0.605096 + 0.796152i \(0.706865\pi\)
\(542\) −6.00000 + 10.3923i −0.257722 + 0.446388i
\(543\) 1.00000 1.73205i 0.0429141 0.0743294i
\(544\) −5.00000 8.66025i −0.214373 0.371305i
\(545\) −18.0000 −0.771035
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) −5.00000 8.66025i −0.213589 0.369948i
\(549\) 1.00000 1.73205i 0.0426790 0.0739221i
\(550\) 0 0
\(551\) −8.00000 13.8564i −0.340811 0.590303i
\(552\) −24.0000 −1.02151
\(553\) 0 0
\(554\) 14.0000 0.594803
\(555\) 1.00000 + 1.73205i 0.0424476 + 0.0735215i
\(556\) 0 0
\(557\) −1.00000 + 1.73205i −0.0423714 + 0.0733893i −0.886433 0.462856i \(-0.846825\pi\)
0.844062 + 0.536246i \(0.180158\pi\)
\(558\) −2.00000 3.46410i −0.0846668 0.146647i
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) −9.00000 15.5885i −0.379642 0.657559i
\(563\) −2.00000 + 3.46410i −0.0842900 + 0.145994i −0.905088 0.425223i \(-0.860196\pi\)
0.820798 + 0.571218i \(0.193529\pi\)
\(564\) 4.00000 6.92820i 0.168430 0.291730i
\(565\) −3.00000 5.19615i −0.126211 0.218604i
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 36.0000 1.51053
\(569\) −21.0000 36.3731i −0.880366 1.52484i −0.850935 0.525271i \(-0.823964\pi\)
−0.0294311 0.999567i \(-0.509370\pi\)
\(570\) 4.00000 6.92820i 0.167542 0.290191i
\(571\) 18.0000 31.1769i 0.753277 1.30471i −0.192950 0.981209i \(-0.561806\pi\)
0.946227 0.323505i \(-0.104861\pi\)
\(572\) 0 0
\(573\) 4.00000 0.167102
\(574\) 0 0
\(575\) 8.00000 0.333623
\(576\) −3.50000 6.06218i −0.145833 0.252591i
\(577\) 1.00000 1.73205i 0.0416305 0.0721062i −0.844459 0.535620i \(-0.820078\pi\)
0.886090 + 0.463513i \(0.153411\pi\)
\(578\) 6.50000 11.2583i 0.270364 0.468285i
\(579\) −9.00000 15.5885i −0.374027 0.647834i
\(580\) 2.00000 0.0830455
\(581\) 0 0
\(582\) −18.0000 −0.746124
\(583\) 0 0
\(584\) −3.00000 + 5.19615i −0.124141 + 0.215018i
\(585\) 3.00000 5.19615i 0.124035 0.214834i
\(586\) −7.00000 12.1244i −0.289167 0.500853i
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) −32.0000 −1.31854
\(590\) −2.00000 3.46410i −0.0823387 0.142615i
\(591\) −9.00000 + 15.5885i −0.370211 + 0.641223i
\(592\) −1.00000 + 1.73205i −0.0410997 + 0.0711868i
\(593\) 15.0000 + 25.9808i 0.615976 + 1.06690i 0.990212 + 0.139569i \(0.0445716\pi\)
−0.374236 + 0.927333i \(0.622095\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −14.0000 −0.573462
\(597\) 2.00000 + 3.46410i 0.0818546 + 0.141776i
\(598\) 24.0000 41.5692i 0.981433 1.69989i
\(599\) 2.00000 3.46410i 0.0817178 0.141539i −0.822270 0.569097i \(-0.807293\pi\)
0.903988 + 0.427558i \(0.140626\pi\)
\(600\) 1.50000 + 2.59808i 0.0612372 + 0.106066i
\(601\) 18.0000 0.734235 0.367118 0.930175i \(-0.380345\pi\)
0.367118 + 0.930175i \(0.380345\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 4.00000 + 6.92820i 0.162758 + 0.281905i
\(605\) 5.50000 9.52628i 0.223607 0.387298i
\(606\) 5.00000 8.66025i 0.203111 0.351799i
\(607\) −4.00000 6.92820i −0.162355 0.281207i 0.773358 0.633970i \(-0.218576\pi\)
−0.935713 + 0.352763i \(0.885242\pi\)
\(608\) −40.0000 −1.62221
\(609\) 0 0
\(610\) −2.00000 −0.0809776
\(611\) 24.0000 + 41.5692i 0.970936 + 1.68171i
\(612\) 1.00000 1.73205i 0.0404226 0.0700140i
\(613\) 9.00000 15.5885i 0.363507 0.629612i −0.625029 0.780602i \(-0.714913\pi\)
0.988535 + 0.150990i \(0.0482461\pi\)
\(614\) −6.00000 10.3923i −0.242140 0.419399i
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) −4.00000 6.92820i −0.160904 0.278693i
\(619\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(620\) 2.00000 3.46410i 0.0803219 0.139122i
\(621\) −4.00000 6.92820i −0.160514 0.278019i
\(622\) 24.0000 0.962312
\(623\) 0 0
\(624\) 6.00000 0.240192
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 5.00000 8.66025i 0.199840 0.346133i
\(627\) 0 0
\(628\) −7.00000 12.1244i −0.279330 0.483814i
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 12.0000 + 20.7846i 0.477334 + 0.826767i
\(633\) 10.0000 17.3205i 0.397464 0.688428i
\(634\) −1.00000 + 1.73205i −0.0397151 + 0.0687885i
\(635\) −4.00000 6.92820i −0.158735 0.274937i
\(636\) −10.0000 −0.396526
\(637\) 0 0
\(638\) 0 0
\(639\) 6.00000 + 10.3923i 0.237356 + 0.411113i
\(640\) 1.50000 2.59808i 0.0592927 0.102698i
\(641\) 3.00000 5.19615i 0.118493 0.205236i −0.800678 0.599095i \(-0.795527\pi\)
0.919171 + 0.393860i \(0.128860\pi\)
\(642\) 6.00000 + 10.3923i 0.236801 + 0.410152i
\(643\) 28.0000 1.10421 0.552106 0.833774i \(-0.313824\pi\)
0.552106 + 0.833774i \(0.313824\pi\)
\(644\) 0 0
\(645\) 4.00000 0.157500
\(646\) 8.00000 + 13.8564i 0.314756 + 0.545173i
\(647\) −12.0000 + 20.7846i −0.471769 + 0.817127i −0.999478 0.0322975i \(-0.989718\pi\)
0.527710 + 0.849425i \(0.323051\pi\)
\(648\) 1.50000 2.59808i 0.0589256 0.102062i
\(649\) 0 0
\(650\) −6.00000 −0.235339
\(651\) 0 0
\(652\) −12.0000 −0.469956
\(653\) 11.0000 + 19.0526i 0.430463 + 0.745584i 0.996913 0.0785119i \(-0.0250169\pi\)
−0.566450 + 0.824096i \(0.691684\pi\)
\(654\) 9.00000 15.5885i 0.351928 0.609557i
\(655\) −10.0000 + 17.3205i −0.390732 + 0.676768i
\(656\) −3.00000 5.19615i −0.117130 0.202876i
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −19.0000 + 32.9090i −0.739014 + 1.28001i 0.213925 + 0.976850i \(0.431375\pi\)
−0.952940 + 0.303160i \(0.901958\pi\)
\(662\) 6.00000 10.3923i 0.233197 0.403908i
\(663\) 6.00000 + 10.3923i 0.233021 + 0.403604i
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) −2.00000 −0.0774984
\(667\) 8.00000 + 13.8564i 0.309761 + 0.536522i
\(668\) 4.00000 6.92820i 0.154765 0.268060i
\(669\) 12.0000 20.7846i 0.463947 0.803579i
\(670\) −2.00000 3.46410i −0.0772667 0.133830i
\(671\) 0 0
\(672\) 0 0
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 7.00000 + 12.1244i 0.269630 + 0.467013i
\(675\) −0.500000 + 0.866025i −0.0192450 + 0.0333333i
\(676\) 11.5000 19.9186i 0.442308 0.766099i
\(677\) −23.0000 39.8372i −0.883962 1.53107i −0.846899 0.531754i \(-0.821533\pi\)
−0.0370628 0.999313i \(-0.511800\pi\)
\(678\) 6.00000 0.230429
\(679\) 0 0
\(680\) −6.00000 −0.230089
\(681\) 2.00000 + 3.46410i 0.0766402 + 0.132745i
\(682\) 0 0
\(683\) −6.00000 + 10.3923i −0.229584 + 0.397650i −0.957685 0.287819i \(-0.907070\pi\)
0.728101 + 0.685470i \(0.240403\pi\)
\(684\) −4.00000 6.92820i −0.152944 0.264906i
\(685\) −10.0000 −0.382080
\(686\) 0 0
\(687\) 22.0000 0.839352
\(688\) 2.00000 + 3.46410i 0.0762493 + 0.132068i
\(689\) 30.0000 51.9615i 1.14291 1.97958i
\(690\) −4.00000 + 6.92820i −0.152277 + 0.263752i
\(691\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −20.0000 −0.759190
\(695\) 0 0
\(696\) −3.00000 + 5.19615i −0.113715 + 0.196960i
\(697\) 6.00000 10.3923i 0.227266 0.393637i
\(698\) −7.00000 12.1244i −0.264954 0.458914i
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) −2.00000 −0.0755390 −0.0377695 0.999286i \(-0.512025\pi\)
−0.0377695 + 0.999286i \(0.512025\pi\)
\(702\) 3.00000 + 5.19615i 0.113228 + 0.196116i
\(703\) −8.00000 + 13.8564i −0.301726 + 0.522604i
\(704\) 0 0
\(705\) −4.00000 6.92820i −0.150649 0.260931i
\(706\) 18.0000 0.677439
\(707\) 0 0
\(708\) −4.00000 −0.150329
\(709\) 13.0000 + 22.5167i 0.488225 + 0.845631i 0.999908 0.0135434i \(-0.00431112\pi\)
−0.511683 + 0.859174i \(0.670978\pi\)
\(710\) 6.00000 10.3923i 0.225176 0.390016i
\(711\) −4.00000 + 6.92820i −0.150012 + 0.259828i
\(712\) −9.00000 15.5885i −0.337289 0.584202i
\(713\) 32.0000 1.19841
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 20.7846i −0.448461 0.776757i
\(717\) 2.00000 3.46410i 0.0746914 0.129369i
\(718\) 18.0000 31.1769i 0.671754 1.16351i
\(719\) −4.00000 6.92820i −0.149175 0.258378i 0.781748 0.623595i \(-0.214328\pi\)
−0.930923 + 0.365216i \(0.880995\pi\)
\(720\) −1.00000 −0.0372678
\(721\) 0 0
\(722\) 45.0000 1.67473
\(723\) 3.00000 + 5.19615i 0.111571 + 0.193247i
\(724\) −1.00000 + 1.73205i −0.0371647 + 0.0643712i
\(725\) 1.00000 1.73205i 0.0371391 0.0643268i
\(726\) 5.50000 + 9.52628i 0.204124 + 0.353553i
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 1.00000 + 1.73205i 0.0370117 + 0.0641061i
\(731\) −4.00000 + 6.92820i −0.147945 + 0.256249i
\(732\) −1.00000 + 1.73205i −0.0369611 + 0.0640184i
\(733\) −13.0000 22.5167i −0.480166 0.831672i 0.519575 0.854425i \(-0.326090\pi\)
−0.999741 + 0.0227529i \(0.992757\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) 40.0000 1.47442
\(737\) 0 0
\(738\) 3.00000 5.19615i 0.110432 0.191273i
\(739\) −10.0000 + 17.3205i −0.367856 + 0.637145i −0.989230 0.146369i \(-0.953241\pi\)
0.621374 + 0.783514i \(0.286575\pi\)
\(740\) −1.00000 1.73205i −0.0367607 0.0636715i
\(741\) 48.0000 1.76332
\(742\) 0 0
\(743\) −48.0000 −1.76095 −0.880475 0.474093i \(-0.842776\pi\)
−0.880475 + 0.474093i \(0.842776\pi\)
\(744\) 6.00000 + 10.3923i 0.219971 + 0.381000i
\(745\) −7.00000 + 12.1244i −0.256460 + 0.444202i
\(746\) 5.00000 8.66025i 0.183063 0.317074i
\(747\) 2.00000 + 3.46410i 0.0731762 + 0.126745i
\(748\) 0 0
\(749\) 0 0
\(750\) 1.00000 0.0365148
\(751\) −4.00000 6.92820i −0.145962 0.252814i 0.783769 0.621052i \(-0.213294\pi\)
−0.929731 + 0.368238i \(0.879961\pi\)
\(752\) 4.00000 6.92820i 0.145865 0.252646i
\(753\) 6.00000 10.3923i 0.218652 0.378717i
\(754\) −6.00000 10.3923i −0.218507 0.378465i
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 2.00000 + 3.46410i 0.0726433 + 0.125822i
\(759\) 0 0
\(760\) −12.0000 + 20.7846i −0.435286 + 0.753937i
\(761\) 27.0000 + 46.7654i 0.978749 + 1.69524i 0.666962 + 0.745091i \(0.267594\pi\)
0.311787 + 0.950152i \(0.399073\pi\)
\(762\) 8.00000 0.289809
\(763\) 0 0
\(764\) −4.00000 −0.144715
\(765\) −1.00000 1.73205i −0.0361551 0.0626224i
\(766\) 16.0000 27.7128i 0.578103 1.00130i
\(767\) 12.0000 20.7846i 0.433295 0.750489i
\(768\) 8.50000 + 14.7224i 0.306717 + 0.531250i
\(769\) 26.0000 0.937584 0.468792 0.883309i \(-0.344689\pi\)
0.468792 + 0.883309i \(0.344689\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 9.00000 + 15.5885i 0.323917 + 0.561041i
\(773\) −15.0000 + 25.9808i −0.539513 + 0.934463i 0.459418 + 0.888220i \(0.348058\pi\)
−0.998930 + 0.0462427i \(0.985275\pi\)
\(774\) −2.00000 + 3.46410i −0.0718885 + 0.124515i
\(775\) −2.00000 3.46410i −0.0718421 0.124434i
\(776\) 54.0000 1.93849
\(777\) 0 0
\(778\) 30.0000 1.07555
\(779\) −24.0000 41.5692i −0.859889 1.48937i
\(780\) −3.00000 + 5.19615i −0.107417 + 0.186052i
\(781\) 0 0
\(782\) −8.00000 13.8564i −0.286079 0.495504i
\(783\) −2.00000 −0.0714742
\(784\) 0 0
\(785\) −14.0000 −0.499681
\(786\) −10.0000 17.3205i −0.356688 0.617802i
\(787\) −14.0000 + 24.2487i −0.499046 + 0.864373i −0.999999 0.00110111i \(-0.999650\pi\)
0.500953 + 0.865474i \(0.332983\pi\)
\(788\) 9.00000 15.5885i 0.320612 0.555316i
\(789\) −8.00000 13.8564i −0.284808 0.493301i
\(790\) 8.00000 0.284627
\(791\) 0 0
\(792\) 0 0
\(793\) −6.00000 10.3923i −0.213066 0.369042i
\(794\) 11.0000 19.0526i 0.390375 0.676150i
\(795\) −5.00000 + 8.66025i −0.177332 + 0.307148i
\(796\) −2.00000 3.46410i −0.0708881 0.122782i
\(797\) 54.0000 1.91278 0.956389 0.292096i \(-0.0943526\pi\)
0.956389 + 0.292096i \(0.0943526\pi\)
\(798\) 0 0
\(799\) 16.0000 0.566039
\(800\) −2.50000 4.33013i −0.0883883 0.153093i
\(801\) 3.00000 5.19615i 0.106000 0.183597i
\(802\) −9.00000 + 15.5885i −0.317801 + 0.550448i
\(803\) 0 0
\(804\) −4.00000 −0.141069
\(805\) 0 0
\(806\) −24.0000 −0.845364
\(807\) −7.00000 12.1244i −0.246412 0.426798i
\(808\) −15.0000 + 25.9808i −0.527698 + 0.914000i
\(809\) −9.00000 + 15.5885i −0.316423 + 0.548061i −0.979739 0.200279i \(-0.935815\pi\)
0.663316 + 0.748340i \(0.269149\pi\)
\(810\) −0.500000 0.866025i −0.0175682 0.0304290i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 12.0000 0.420858
\(814\) 0 0
\(815\) −6.00000 + 10.3923i −0.210171 + 0.364027i
\(816\) 1.00000 1.73205i 0.0350070 0.0606339i
\(817\) 16.0000 + 27.7128i 0.559769 + 0.969549i
\(818\) −22.0000 −0.769212
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) 21.0000 + 36.3731i 0.732905 + 1.26943i 0.955636 + 0.294549i \(0.0951694\pi\)
−0.222731 + 0.974880i \(0.571497\pi\)
\(822\) 5.00000 8.66025i 0.174395 0.302061i
\(823\) 8.00000 13.8564i 0.278862 0.483004i −0.692240 0.721668i \(-0.743376\pi\)
0.971102 + 0.238664i \(0.0767093\pi\)
\(824\) 12.0000 + 20.7846i 0.418040 + 0.724066i
\(825\) 0 0
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 4.00000 + 6.92820i 0.139010 + 0.240772i
\(829\) 21.0000 36.3731i 0.729360 1.26329i −0.227794 0.973709i \(-0.573151\pi\)
0.957154 0.289579i \(-0.0935154\pi\)
\(830\) 2.00000 3.46410i 0.0694210 0.120241i
\(831\) −7.00000 12.1244i −0.242827 0.420589i
\(832\) −42.0000 −1.45609
\(833\) 0 0
\(834\) 0 0
\(835\) −4.00000 6.92820i −0.138426 0.239760i
\(836\) 0 0
\(837\) −2.00000 + 3.46410i −0.0691301 + 0.119737i
\(838\) 6.00000 + 10.3923i 0.207267 + 0.358996i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 13.0000 + 22.5167i 0.448010 + 0.775975i
\(843\) −9.00000 + 15.5885i −0.309976 + 0.536895i
\(844\) −10.0000 + 17.3205i −0.344214 + 0.596196i
\(845\) −11.5000 19.9186i −0.395612 0.685220i
\(846\) 8.00000 0.275046
\(847\) 0 0
\(848\) −10.0000 −0.343401
\(849\) 2.00000 + 3.46410i 0.0686398 + 0.118888i
\(850\) −1.00000 + 1.73205i −0.0342997 + 0.0594089i
\(851\) 8.00000 13.8564i 0.274236 0.474991i
\(852\) −6.00000 10.3923i −0.205557 0.356034i
\(853\) −30.0000 −1.02718 −0.513590 0.858036i \(-0.671685\pi\)
−0.513590 + 0.858036i \(0.671685\pi\)
\(854\) 0 0
\(855\) −8.00000 −0.273594
\(856\) −18.0000 31.1769i −0.615227 1.06561i
\(857\) −9.00000 + 15.5885i −0.307434 + 0.532492i −0.977800 0.209539i \(-0.932804\pi\)
0.670366 + 0.742030i \(0.266137\pi\)
\(858\) 0 0
\(859\) 20.0000 + 34.6410i 0.682391 + 1.18194i 0.974249 + 0.225475i \(0.0723932\pi\)
−0.291858 + 0.956462i \(0.594273\pi\)
\(860\) −4.00000 −0.136399
\(861\) 0 0
\(862\) 28.0000 0.953684
\(863\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) −2.50000 + 4.33013i −0.0850517 + 0.147314i
\(865\) −3.00000 + 5.19615i −0.102003 + 0.176674i
\(866\) 1.00000 + 1.73205i 0.0339814 + 0.0588575i
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) 0 0
\(870\) 1.00000 + 1.73205i 0.0339032 + 0.0587220i
\(871\) 12.0000 20.7846i 0.406604 0.704260i
\(872\) −27.0000 + 46.7654i −0.914335 + 1.58368i
\(873\) 9.00000 + 15.5885i 0.304604 + 0.527589i
\(874\) −64.0000 −2.16483
\(875\) 0 0
\(876\) 2.00000 0.0675737
\(877\) 29.0000 + 50.2295i 0.979260 + 1.69613i 0.665092 + 0.746762i \(0.268392\pi\)
0.314169 + 0.949367i \(0.398274\pi\)
\(878\) −14.0000 + 24.2487i −0.472477 + 0.818354i
\(879\) −7.00000 + 12.1244i −0.236104 + 0.408944i
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) −6.00000 10.3923i −0.201802 0.349531i
\(885\) −2.00000 + 3.46410i −0.0672293 + 0.116445i
\(886\) −6.00000 + 10.3923i −0.201574 + 0.349136i
\(887\) −8.00000 13.8564i −0.268614 0.465253i 0.699890 0.714250i \(-0.253232\pi\)
−0.968504 + 0.248998i \(0.919899\pi\)
\(888\) 6.00000 0.201347
\(889\) 0 0
\(890\) −6.00000 −0.201120
\(891\) 0 0
\(892\) −12.0000 + 20.7846i −0.401790 + 0.695920i
\(893\) 32.0000 55.4256i 1.07084 1.85475i
\(894\) −7.00000 12.1244i −0.234115 0.405499i
\(895\) −24.0000 −0.802232
\(896\) 0 0
\(897\) −48.0000 −1.60267
\(898\) 15.0000 + 25.9808i 0.500556 + 0.866989i
\(899\) 4.00000 6.92820i 0.133407 0.231069i
\(900\) 0.500000 0.866025i 0.0166667 0.0288675i
\(901\) −10.0000 17.3205i −0.333148 0.577030i
\(902\) 0 0
\(903\) 0 0
\(904\) −18.0000 −0.598671
\(905\) 1.00000 + 1.73205i 0.0332411 + 0.0575753i
\(906\) −4.00000 + 6.92820i −0.132891 + 0.230174i
\(907\) −14.0000 + 24.2487i −0.464862 + 0.805165i −0.999195 0.0401089i \(-0.987230\pi\)
0.534333 + 0.845274i \(0.320563\pi\)
\(908\) −2.00000 3.46410i −0.0663723 0.114960i
\(909\) −10.0000 −0.331679
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) −4.00000 6.92820i −0.132453 0.229416i
\(913\) 0 0
\(914\) −9.00000 + 15.5885i −0.297694 + 0.515620i
\(915\) 1.00000 + 1.73205i 0.0330590 + 0.0572598i
\(916\) −22.0000 −0.726900
\(917\) 0 0
\(918\) 2.00000 0.0660098
\(919\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(920\) 12.0000 20.7846i 0.395628 0.685248i
\(921\) −6.00000 + 10.3923i −0.197707 + 0.342438i
\(922\) 1.00000 + 1.73205i 0.0329332 + 0.0570421i
\(923\) 72.0000 2.36991
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 12.0000 + 20.7846i 0.394344 + 0.683025i
\(927\) −4.00000 + 6.92820i −0.131377 + 0.227552i
\(928\) 5.00000 8.66025i 0.164133 0.284287i
\(929\) 7.00000 + 12.1244i 0.229663 + 0.397787i 0.957708 0.287742i \(-0.0929044\pi\)
−0.728046 + 0.685529i \(0.759571\pi\)
\(930\) 4.00000 0.131165
\(931\) 0 0
\(932\) 18.0000 0.589610
\(933\) −12.0000 20.7846i −0.392862 0.680458i
\(934\) −14.0000 + 24.2487i −0.458094 + 0.793442i
\(935\) 0 0
\(936\) −9.00000 15.5885i −0.294174 0.509525i
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) −10.0000 −0.326338
\(940\) 4.00000 + 6.92820i 0.130466 + 0.225973i
\(941\) 9.00000 15.5885i 0.293392 0.508169i −0.681218 0.732081i \(-0.738549\pi\)
0.974609 + 0.223912i \(0.0718827\pi\)
\(942\) 7.00000 12.1244i 0.228072 0.395033i
\(943\) 24.0000 + 41.5692i 0.781548 + 1.35368i
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 0 0
\(947\) −10.0000 17.3205i −0.324956 0.562841i 0.656547 0.754285i \(-0.272016\pi\)
−0.981504 + 0.191444i \(0.938683\pi\)
\(948\) 4.00000 6.92820i 0.129914 0.225018i
\(949\) −6.00000 + 10.3923i −0.194768 + 0.337348i
\(950\) 4.00000 + 6.92820i 0.129777 + 0.224781i
\(951\) 2.00000 0.0648544
\(952\) 0 0
\(953\) −2.00000 −0.0647864 −0.0323932 0.999475i \(-0.510313\pi\)
−0.0323932 + 0.999475i \(0.510313\pi\)
\(954\) −5.00000 8.66025i −0.161881 0.280386i
\(955\) −2.00000 + 3.46410i −0.0647185 + 0.112096i
\(956\) −2.00000 + 3.46410i −0.0646846 + 0.112037i
\(957\) 0 0
\(958\) 32.0000 1.03387
\(959\) 0 0
\(960\) 7.00000 0.225924
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) −6.00000 + 10.3923i −0.193448 + 0.335061i
\(963\) 6.00000 10.3923i 0.193347 0.334887i
\(964\) −3.00000 5.19615i −0.0966235 0.167357i
\(965\) 18.0000 0.579441
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) −16.5000 28.5788i −0.530330 0.918559i
\(969\) 8.00000 13.8564i 0.256997 0.445132i
\(970\) 9.00000 15.5885i 0.288973 0.500515i
\(971\) −10.0000 17.3205i −0.320915 0.555842i 0.659762 0.751475i \(-0.270657\pi\)
−0.980677 + 0.195633i \(0.937324\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) −16.0000 −0.512673
\(975\) 3.00000 + 5.19615i 0.0960769 + 0.166410i
\(976\) −1.00000 + 1.73205i −0.0320092 + 0.0554416i
\(977\) 5.00000 8.66025i 0.159964 0.277066i −0.774891 0.632094i \(-0.782195\pi\)
0.934856 + 0.355028i \(0.115529\pi\)
\(978\) −6.00000 10.3923i −0.191859 0.332309i
\(979\) 0 0
\(980\) 0 0
\(981\) −18.0000 −0.574696
\(982\) 0 0
\(983\) 8.00000 13.8564i 0.255160 0.441951i −0.709779 0.704425i \(-0.751205\pi\)
0.964939 + 0.262474i \(0.0845384\pi\)
\(984\) −9.00000 + 15.5885i −0.286910 + 0.496942i
\(985\) −9.00000 15.5885i −0.286764 0.496690i
\(986\) −4.00000 −0.127386
\(987\) 0 0
\(988\) −48.0000 −1.52708
\(989\) −16.0000 27.7128i −0.508770 0.881216i
\(990\) 0 0
\(991\) 12.0000 20.7846i 0.381193 0.660245i −0.610040 0.792370i \(-0.708847\pi\)
0.991233 + 0.132125i \(0.0421802\pi\)
\(992\) −10.0000 17.3205i −0.317500 0.549927i
\(993\) −12.0000 −0.380808
\(994\) 0 0
\(995\) −4.00000 −0.126809
\(996\) −2.00000 3.46410i −0.0633724 0.109764i
\(997\) −1.00000 + 1.73205i −0.0316703 + 0.0548546i −0.881426 0.472322i \(-0.843416\pi\)
0.849756 + 0.527176i \(0.176749\pi\)
\(998\) −10.0000 + 17.3205i −0.316544 + 0.548271i
\(999\) 1.00000 + 1.73205i 0.0316386 + 0.0547997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.i.a.361.1 2
7.2 even 3 inner 735.2.i.a.226.1 2
7.3 odd 6 735.2.a.f.1.1 1
7.4 even 3 105.2.a.a.1.1 1
7.5 odd 6 735.2.i.b.226.1 2
7.6 odd 2 735.2.i.b.361.1 2
21.11 odd 6 315.2.a.a.1.1 1
21.17 even 6 2205.2.a.b.1.1 1
28.11 odd 6 1680.2.a.f.1.1 1
35.4 even 6 525.2.a.a.1.1 1
35.18 odd 12 525.2.d.b.274.1 2
35.24 odd 6 3675.2.a.f.1.1 1
35.32 odd 12 525.2.d.b.274.2 2
56.11 odd 6 6720.2.a.bk.1.1 1
56.53 even 6 6720.2.a.p.1.1 1
84.11 even 6 5040.2.a.d.1.1 1
105.32 even 12 1575.2.d.b.1324.1 2
105.53 even 12 1575.2.d.b.1324.2 2
105.74 odd 6 1575.2.a.h.1.1 1
140.39 odd 6 8400.2.a.co.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.a.a.1.1 1 7.4 even 3
315.2.a.a.1.1 1 21.11 odd 6
525.2.a.a.1.1 1 35.4 even 6
525.2.d.b.274.1 2 35.18 odd 12
525.2.d.b.274.2 2 35.32 odd 12
735.2.a.f.1.1 1 7.3 odd 6
735.2.i.a.226.1 2 7.2 even 3 inner
735.2.i.a.361.1 2 1.1 even 1 trivial
735.2.i.b.226.1 2 7.5 odd 6
735.2.i.b.361.1 2 7.6 odd 2
1575.2.a.h.1.1 1 105.74 odd 6
1575.2.d.b.1324.1 2 105.32 even 12
1575.2.d.b.1324.2 2 105.53 even 12
1680.2.a.f.1.1 1 28.11 odd 6
2205.2.a.b.1.1 1 21.17 even 6
3675.2.a.f.1.1 1 35.24 odd 6
5040.2.a.d.1.1 1 84.11 even 6
6720.2.a.p.1.1 1 56.53 even 6
6720.2.a.bk.1.1 1 56.11 odd 6
8400.2.a.co.1.1 1 140.39 odd 6