Properties

Label 735.2.i.d
Level $735$
Weight $2$
Character orbit 735.i
Analytic conductor $5.869$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(226,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{3} + ( - \zeta_{6} + 1) q^{4} + \zeta_{6} q^{5} - q^{6} + 3 q^{8} - \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{10} + ( - 4 \zeta_{6} + 4) q^{11} + \zeta_{6} q^{12} + 2 q^{13} + \cdots - 4 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{3} + q^{4} + q^{5} - 2 q^{6} + 6 q^{8} - q^{9} - q^{10} + 4 q^{11} + q^{12} + 4 q^{13} - 2 q^{15} + q^{16} + 2 q^{17} + q^{18} + 4 q^{19} + 2 q^{20} + 8 q^{22} - 3 q^{24} - q^{25}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
226.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 0.866025i −0.500000 0.866025i 0.500000 + 0.866025i 0.500000 0.866025i −1.00000 0 3.00000 −0.500000 + 0.866025i −0.500000 0.866025i
361.1 0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 0.866025i 0.500000 + 0.866025i −1.00000 0 3.00000 −0.500000 0.866025i −0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.2.i.d 2
7.b odd 2 1 735.2.i.e 2
7.c even 3 1 735.2.a.c 1
7.c even 3 1 inner 735.2.i.d 2
7.d odd 6 1 15.2.a.a 1
7.d odd 6 1 735.2.i.e 2
21.g even 6 1 45.2.a.a 1
21.h odd 6 1 2205.2.a.i 1
28.f even 6 1 240.2.a.d 1
35.i odd 6 1 75.2.a.b 1
35.j even 6 1 3675.2.a.j 1
35.k even 12 2 75.2.b.b 2
56.j odd 6 1 960.2.a.l 1
56.m even 6 1 960.2.a.a 1
63.i even 6 1 405.2.e.c 2
63.k odd 6 1 405.2.e.f 2
63.s even 6 1 405.2.e.c 2
63.t odd 6 1 405.2.e.f 2
77.i even 6 1 1815.2.a.d 1
84.j odd 6 1 720.2.a.c 1
91.s odd 6 1 2535.2.a.j 1
105.p even 6 1 225.2.a.b 1
105.w odd 12 2 225.2.b.b 2
112.v even 12 2 3840.2.k.r 2
112.x odd 12 2 3840.2.k.m 2
119.h odd 6 1 4335.2.a.c 1
133.o even 6 1 5415.2.a.j 1
140.s even 6 1 1200.2.a.e 1
140.x odd 12 2 1200.2.f.h 2
161.g even 6 1 7935.2.a.d 1
168.ba even 6 1 2880.2.a.y 1
168.be odd 6 1 2880.2.a.bc 1
231.k odd 6 1 5445.2.a.c 1
273.ba even 6 1 7605.2.a.g 1
280.ba even 6 1 4800.2.a.bz 1
280.bk odd 6 1 4800.2.a.t 1
280.bp odd 12 2 4800.2.f.c 2
280.bv even 12 2 4800.2.f.bf 2
385.o even 6 1 9075.2.a.g 1
420.be odd 6 1 3600.2.a.u 1
420.br even 12 2 3600.2.f.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.2.a.a 1 7.d odd 6 1
45.2.a.a 1 21.g even 6 1
75.2.a.b 1 35.i odd 6 1
75.2.b.b 2 35.k even 12 2
225.2.a.b 1 105.p even 6 1
225.2.b.b 2 105.w odd 12 2
240.2.a.d 1 28.f even 6 1
405.2.e.c 2 63.i even 6 1
405.2.e.c 2 63.s even 6 1
405.2.e.f 2 63.k odd 6 1
405.2.e.f 2 63.t odd 6 1
720.2.a.c 1 84.j odd 6 1
735.2.a.c 1 7.c even 3 1
735.2.i.d 2 1.a even 1 1 trivial
735.2.i.d 2 7.c even 3 1 inner
735.2.i.e 2 7.b odd 2 1
735.2.i.e 2 7.d odd 6 1
960.2.a.a 1 56.m even 6 1
960.2.a.l 1 56.j odd 6 1
1200.2.a.e 1 140.s even 6 1
1200.2.f.h 2 140.x odd 12 2
1815.2.a.d 1 77.i even 6 1
2205.2.a.i 1 21.h odd 6 1
2535.2.a.j 1 91.s odd 6 1
2880.2.a.y 1 168.ba even 6 1
2880.2.a.bc 1 168.be odd 6 1
3600.2.a.u 1 420.be odd 6 1
3600.2.f.e 2 420.br even 12 2
3675.2.a.j 1 35.j even 6 1
3840.2.k.m 2 112.x odd 12 2
3840.2.k.r 2 112.v even 12 2
4335.2.a.c 1 119.h odd 6 1
4800.2.a.t 1 280.bk odd 6 1
4800.2.a.bz 1 280.ba even 6 1
4800.2.f.c 2 280.bp odd 12 2
4800.2.f.bf 2 280.bv even 12 2
5415.2.a.j 1 133.o even 6 1
5445.2.a.c 1 231.k odd 6 1
7605.2.a.g 1 273.ba even 6 1
7935.2.a.d 1 161.g even 6 1
9075.2.a.g 1 385.o even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(735, [\chi])\):

\( T_{2}^{2} - T_{2} + 1 \) Copy content Toggle raw display
\( T_{13} - 2 \) Copy content Toggle raw display
\( T_{17}^{2} - 2T_{17} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$13$ \( (T - 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$19$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T + 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$41$ \( (T + 10)^{2} \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$53$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$59$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$61$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$71$ \( (T + 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( (T + 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$97$ \( (T + 2)^{2} \) Copy content Toggle raw display
show more
show less