Properties

Label 735.2.i.d
Level 735735
Weight 22
Character orbit 735.i
Analytic conductor 5.8695.869
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(226,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 735=3572 735 = 3 \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 735.i (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.869004548565.86900454856
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ6q2+(ζ61)q3+(ζ6+1)q4+ζ6q5q6+3q8ζ6q9+(ζ61)q10+(4ζ6+4)q11+ζ6q12+2q13+4q99+O(q100) q + \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{3} + ( - \zeta_{6} + 1) q^{4} + \zeta_{6} q^{5} - q^{6} + 3 q^{8} - \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{10} + ( - 4 \zeta_{6} + 4) q^{11} + \zeta_{6} q^{12} + 2 q^{13} + \cdots - 4 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q3+q4+q52q6+6q8q9q10+4q11+q12+4q132q15+q16+2q17+q18+4q19+2q20+8q223q24q25+8q99+O(q100) 2 q + q^{2} - q^{3} + q^{4} + q^{5} - 2 q^{6} + 6 q^{8} - q^{9} - q^{10} + 4 q^{11} + q^{12} + 4 q^{13} - 2 q^{15} + q^{16} + 2 q^{17} + q^{18} + 4 q^{19} + 2 q^{20} + 8 q^{22} - 3 q^{24} - q^{25}+ \cdots - 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/735Z)×\left(\mathbb{Z}/735\mathbb{Z}\right)^\times.

nn 346346 442442 491491
χ(n)\chi(n) ζ6-\zeta_{6} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
226.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 0.866025i −0.500000 0.866025i 0.500000 + 0.866025i 0.500000 0.866025i −1.00000 0 3.00000 −0.500000 + 0.866025i −0.500000 0.866025i
361.1 0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 0.866025i 0.500000 + 0.866025i −1.00000 0 3.00000 −0.500000 0.866025i −0.500000 + 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.2.i.d 2
7.b odd 2 1 735.2.i.e 2
7.c even 3 1 735.2.a.c 1
7.c even 3 1 inner 735.2.i.d 2
7.d odd 6 1 15.2.a.a 1
7.d odd 6 1 735.2.i.e 2
21.g even 6 1 45.2.a.a 1
21.h odd 6 1 2205.2.a.i 1
28.f even 6 1 240.2.a.d 1
35.i odd 6 1 75.2.a.b 1
35.j even 6 1 3675.2.a.j 1
35.k even 12 2 75.2.b.b 2
56.j odd 6 1 960.2.a.l 1
56.m even 6 1 960.2.a.a 1
63.i even 6 1 405.2.e.c 2
63.k odd 6 1 405.2.e.f 2
63.s even 6 1 405.2.e.c 2
63.t odd 6 1 405.2.e.f 2
77.i even 6 1 1815.2.a.d 1
84.j odd 6 1 720.2.a.c 1
91.s odd 6 1 2535.2.a.j 1
105.p even 6 1 225.2.a.b 1
105.w odd 12 2 225.2.b.b 2
112.v even 12 2 3840.2.k.r 2
112.x odd 12 2 3840.2.k.m 2
119.h odd 6 1 4335.2.a.c 1
133.o even 6 1 5415.2.a.j 1
140.s even 6 1 1200.2.a.e 1
140.x odd 12 2 1200.2.f.h 2
161.g even 6 1 7935.2.a.d 1
168.ba even 6 1 2880.2.a.y 1
168.be odd 6 1 2880.2.a.bc 1
231.k odd 6 1 5445.2.a.c 1
273.ba even 6 1 7605.2.a.g 1
280.ba even 6 1 4800.2.a.bz 1
280.bk odd 6 1 4800.2.a.t 1
280.bp odd 12 2 4800.2.f.c 2
280.bv even 12 2 4800.2.f.bf 2
385.o even 6 1 9075.2.a.g 1
420.be odd 6 1 3600.2.a.u 1
420.br even 12 2 3600.2.f.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.2.a.a 1 7.d odd 6 1
45.2.a.a 1 21.g even 6 1
75.2.a.b 1 35.i odd 6 1
75.2.b.b 2 35.k even 12 2
225.2.a.b 1 105.p even 6 1
225.2.b.b 2 105.w odd 12 2
240.2.a.d 1 28.f even 6 1
405.2.e.c 2 63.i even 6 1
405.2.e.c 2 63.s even 6 1
405.2.e.f 2 63.k odd 6 1
405.2.e.f 2 63.t odd 6 1
720.2.a.c 1 84.j odd 6 1
735.2.a.c 1 7.c even 3 1
735.2.i.d 2 1.a even 1 1 trivial
735.2.i.d 2 7.c even 3 1 inner
735.2.i.e 2 7.b odd 2 1
735.2.i.e 2 7.d odd 6 1
960.2.a.a 1 56.m even 6 1
960.2.a.l 1 56.j odd 6 1
1200.2.a.e 1 140.s even 6 1
1200.2.f.h 2 140.x odd 12 2
1815.2.a.d 1 77.i even 6 1
2205.2.a.i 1 21.h odd 6 1
2535.2.a.j 1 91.s odd 6 1
2880.2.a.y 1 168.ba even 6 1
2880.2.a.bc 1 168.be odd 6 1
3600.2.a.u 1 420.be odd 6 1
3600.2.f.e 2 420.br even 12 2
3675.2.a.j 1 35.j even 6 1
3840.2.k.m 2 112.x odd 12 2
3840.2.k.r 2 112.v even 12 2
4335.2.a.c 1 119.h odd 6 1
4800.2.a.t 1 280.bk odd 6 1
4800.2.a.bz 1 280.ba even 6 1
4800.2.f.c 2 280.bp odd 12 2
4800.2.f.bf 2 280.bv even 12 2
5415.2.a.j 1 133.o even 6 1
5445.2.a.c 1 231.k odd 6 1
7605.2.a.g 1 273.ba even 6 1
7935.2.a.d 1 161.g even 6 1
9075.2.a.g 1 385.o even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(735,[χ])S_{2}^{\mathrm{new}}(735, [\chi]):

T22T2+1 T_{2}^{2} - T_{2} + 1 Copy content Toggle raw display
T132 T_{13} - 2 Copy content Toggle raw display
T1722T17+4 T_{17}^{2} - 2T_{17} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1313 (T2)2 (T - 2)^{2} Copy content Toggle raw display
1717 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1919 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
4141 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
4343 (T4)2 (T - 4)^{2} Copy content Toggle raw display
4747 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
5353 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
5959 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
6161 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
6767 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
7171 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
7373 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
8989 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
9797 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
show more
show less