Properties

Label 735.2.j.h.197.8
Level $735$
Weight $2$
Character 735.197
Analytic conductor $5.869$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(197,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.197");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 197.8
Character \(\chi\) \(=\) 735.197
Dual form 735.2.j.h.638.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.347054 - 0.347054i) q^{2} +(-0.176396 + 1.72305i) q^{3} +1.75911i q^{4} +(-1.16790 + 1.90683i) q^{5} +(0.536770 + 0.659208i) q^{6} +(1.30461 + 1.30461i) q^{8} +(-2.93777 - 0.607876i) q^{9} +(0.256447 + 1.06710i) q^{10} +2.67137i q^{11} +(-3.03102 - 0.310299i) q^{12} +(-2.14945 + 2.14945i) q^{13} +(-3.07954 - 2.34871i) q^{15} -2.61267 q^{16} +(3.26719 - 3.26719i) q^{17} +(-1.23053 + 0.808598i) q^{18} -5.24329i q^{19} +(-3.35432 - 2.05447i) q^{20} +(0.927108 + 0.927108i) q^{22} +(2.54815 + 2.54815i) q^{23} +(-2.47803 + 2.01778i) q^{24} +(-2.27200 - 4.45399i) q^{25} +1.49195i q^{26} +(1.56561 - 4.95468i) q^{27} +2.86924 q^{29} +(-1.88389 + 0.253638i) q^{30} +5.28599 q^{31} +(-3.51596 + 3.51596i) q^{32} +(-4.60289 - 0.471218i) q^{33} -2.26778i q^{34} +(1.06932 - 5.16785i) q^{36} +(-2.14286 - 2.14286i) q^{37} +(-1.81970 - 1.81970i) q^{38} +(-3.32444 - 4.08274i) q^{39} +(-4.01133 + 0.964012i) q^{40} +11.5768i q^{41} +(0.759108 - 0.759108i) q^{43} -4.69922 q^{44} +(4.59015 - 4.89189i) q^{45} +1.76869 q^{46} +(-7.66034 + 7.66034i) q^{47} +(0.460865 - 4.50176i) q^{48} +(-2.33428 - 0.757266i) q^{50} +(5.05320 + 6.20584i) q^{51} +(-3.78111 - 3.78111i) q^{52} +(-4.43577 - 4.43577i) q^{53} +(-1.17619 - 2.26289i) q^{54} +(-5.09384 - 3.11990i) q^{55} +(9.03442 + 0.924894i) q^{57} +(0.995779 - 0.995779i) q^{58} +0.159437 q^{59} +(4.13163 - 5.41724i) q^{60} -4.72534 q^{61} +(1.83452 - 1.83452i) q^{62} -2.78490i q^{64} +(-1.58828 - 6.60897i) q^{65} +(-1.76099 + 1.43391i) q^{66} +(-5.41156 - 5.41156i) q^{67} +(5.74734 + 5.74734i) q^{68} +(-4.84006 + 3.94109i) q^{69} +13.5880i q^{71} +(-3.03961 - 4.62569i) q^{72} +(-4.16486 + 4.16486i) q^{73} -1.48737 q^{74} +(8.07519 - 3.12910i) q^{75} +9.22351 q^{76} +(-2.57069 - 0.263173i) q^{78} +3.89710i q^{79} +(3.05135 - 4.98193i) q^{80} +(8.26097 + 3.57160i) q^{81} +(4.01778 + 4.01778i) q^{82} +(4.03778 + 4.03778i) q^{83} +(2.41421 + 10.0457i) q^{85} -0.526902i q^{86} +(-0.506122 + 4.94383i) q^{87} +(-3.48510 + 3.48510i) q^{88} +3.95125 q^{89} +(-0.104719 - 3.29077i) q^{90} +(-4.48247 + 4.48247i) q^{92} +(-0.932426 + 9.10800i) q^{93} +5.31710i q^{94} +(9.99806 + 6.12366i) q^{95} +(-5.43796 - 6.67836i) q^{96} +(1.86878 + 1.86878i) q^{97} +(1.62386 - 7.84786i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{3} + 16 q^{10} - 16 q^{12} + 8 q^{13} - 16 q^{15} - 16 q^{16} - 20 q^{18} + 8 q^{22} - 16 q^{25} + 16 q^{27} + 20 q^{30} - 28 q^{33} + 16 q^{36} - 16 q^{37} - 64 q^{40} - 40 q^{43} - 20 q^{45}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.347054 0.347054i 0.245404 0.245404i −0.573677 0.819081i \(-0.694484\pi\)
0.819081 + 0.573677i \(0.194484\pi\)
\(3\) −0.176396 + 1.72305i −0.101842 + 0.994801i
\(4\) 1.75911i 0.879554i
\(5\) −1.16790 + 1.90683i −0.522302 + 0.852760i
\(6\) 0.536770 + 0.659208i 0.219135 + 0.269120i
\(7\) 0 0
\(8\) 1.30461 + 1.30461i 0.461250 + 0.461250i
\(9\) −2.93777 0.607876i −0.979256 0.202625i
\(10\) 0.256447 + 1.06710i 0.0810957 + 0.337446i
\(11\) 2.67137i 0.805448i 0.915322 + 0.402724i \(0.131936\pi\)
−0.915322 + 0.402724i \(0.868064\pi\)
\(12\) −3.03102 0.310299i −0.874981 0.0895757i
\(13\) −2.14945 + 2.14945i −0.596149 + 0.596149i −0.939285 0.343137i \(-0.888511\pi\)
0.343137 + 0.939285i \(0.388511\pi\)
\(14\) 0 0
\(15\) −3.07954 2.34871i −0.795134 0.606434i
\(16\) −2.61267 −0.653169
\(17\) 3.26719 3.26719i 0.792410 0.792410i −0.189475 0.981886i \(-0.560679\pi\)
0.981886 + 0.189475i \(0.0606787\pi\)
\(18\) −1.23053 + 0.808598i −0.290038 + 0.190588i
\(19\) 5.24329i 1.20289i −0.798913 0.601446i \(-0.794591\pi\)
0.798913 0.601446i \(-0.205409\pi\)
\(20\) −3.35432 2.05447i −0.750049 0.459393i
\(21\) 0 0
\(22\) 0.927108 + 0.927108i 0.197660 + 0.197660i
\(23\) 2.54815 + 2.54815i 0.531326 + 0.531326i 0.920967 0.389641i \(-0.127401\pi\)
−0.389641 + 0.920967i \(0.627401\pi\)
\(24\) −2.47803 + 2.01778i −0.505826 + 0.411877i
\(25\) −2.27200 4.45399i −0.454400 0.890798i
\(26\) 1.49195i 0.292595i
\(27\) 1.56561 4.95468i 0.301301 0.953529i
\(28\) 0 0
\(29\) 2.86924 0.532804 0.266402 0.963862i \(-0.414165\pi\)
0.266402 + 0.963862i \(0.414165\pi\)
\(30\) −1.88389 + 0.253638i −0.343950 + 0.0463078i
\(31\) 5.28599 0.949391 0.474696 0.880150i \(-0.342558\pi\)
0.474696 + 0.880150i \(0.342558\pi\)
\(32\) −3.51596 + 3.51596i −0.621540 + 0.621540i
\(33\) −4.60289 0.471218i −0.801260 0.0820286i
\(34\) 2.26778i 0.388921i
\(35\) 0 0
\(36\) 1.06932 5.16785i 0.178220 0.861309i
\(37\) −2.14286 2.14286i −0.352284 0.352284i 0.508675 0.860959i \(-0.330136\pi\)
−0.860959 + 0.508675i \(0.830136\pi\)
\(38\) −1.81970 1.81970i −0.295195 0.295195i
\(39\) −3.32444 4.08274i −0.532336 0.653762i
\(40\) −4.01133 + 0.964012i −0.634248 + 0.152424i
\(41\) 11.5768i 1.80800i 0.427537 + 0.903998i \(0.359381\pi\)
−0.427537 + 0.903998i \(0.640619\pi\)
\(42\) 0 0
\(43\) 0.759108 0.759108i 0.115763 0.115763i −0.646852 0.762615i \(-0.723915\pi\)
0.762615 + 0.646852i \(0.223915\pi\)
\(44\) −4.69922 −0.708434
\(45\) 4.59015 4.89189i 0.684259 0.729239i
\(46\) 1.76869 0.260779
\(47\) −7.66034 + 7.66034i −1.11738 + 1.11738i −0.125250 + 0.992125i \(0.539973\pi\)
−0.992125 + 0.125250i \(0.960027\pi\)
\(48\) 0.460865 4.50176i 0.0665201 0.649773i
\(49\) 0 0
\(50\) −2.33428 0.757266i −0.330117 0.107094i
\(51\) 5.05320 + 6.20584i 0.707589 + 0.868991i
\(52\) −3.78111 3.78111i −0.524345 0.524345i
\(53\) −4.43577 4.43577i −0.609300 0.609300i 0.333463 0.942763i \(-0.391783\pi\)
−0.942763 + 0.333463i \(0.891783\pi\)
\(54\) −1.17619 2.26289i −0.160059 0.307940i
\(55\) −5.09384 3.11990i −0.686854 0.420687i
\(56\) 0 0
\(57\) 9.03442 + 0.924894i 1.19664 + 0.122505i
\(58\) 0.995779 0.995779i 0.130752 0.130752i
\(59\) 0.159437 0.0207569 0.0103785 0.999946i \(-0.496696\pi\)
0.0103785 + 0.999946i \(0.496696\pi\)
\(60\) 4.13163 5.41724i 0.533391 0.699363i
\(61\) −4.72534 −0.605018 −0.302509 0.953147i \(-0.597824\pi\)
−0.302509 + 0.953147i \(0.597824\pi\)
\(62\) 1.83452 1.83452i 0.232984 0.232984i
\(63\) 0 0
\(64\) 2.78490i 0.348112i
\(65\) −1.58828 6.60897i −0.197002 0.819742i
\(66\) −1.76099 + 1.43391i −0.216762 + 0.176502i
\(67\) −5.41156 5.41156i −0.661127 0.661127i 0.294519 0.955646i \(-0.404841\pi\)
−0.955646 + 0.294519i \(0.904841\pi\)
\(68\) 5.74734 + 5.74734i 0.696967 + 0.696967i
\(69\) −4.84006 + 3.94109i −0.582675 + 0.474452i
\(70\) 0 0
\(71\) 13.5880i 1.61260i 0.591508 + 0.806299i \(0.298533\pi\)
−0.591508 + 0.806299i \(0.701467\pi\)
\(72\) −3.03961 4.62569i −0.358221 0.545143i
\(73\) −4.16486 + 4.16486i −0.487460 + 0.487460i −0.907504 0.420044i \(-0.862015\pi\)
0.420044 + 0.907504i \(0.362015\pi\)
\(74\) −1.48737 −0.172904
\(75\) 8.07519 3.12910i 0.932443 0.361317i
\(76\) 9.22351 1.05801
\(77\) 0 0
\(78\) −2.57069 0.263173i −0.291073 0.0297985i
\(79\) 3.89710i 0.438458i 0.975673 + 0.219229i \(0.0703542\pi\)
−0.975673 + 0.219229i \(0.929646\pi\)
\(80\) 3.05135 4.98193i 0.341152 0.556996i
\(81\) 8.26097 + 3.57160i 0.917886 + 0.396844i
\(82\) 4.01778 + 4.01778i 0.443689 + 0.443689i
\(83\) 4.03778 + 4.03778i 0.443204 + 0.443204i 0.893087 0.449883i \(-0.148534\pi\)
−0.449883 + 0.893087i \(0.648534\pi\)
\(84\) 0 0
\(85\) 2.41421 + 10.0457i 0.261858 + 1.08961i
\(86\) 0.526902i 0.0568173i
\(87\) −0.506122 + 4.94383i −0.0542619 + 0.530034i
\(88\) −3.48510 + 3.48510i −0.371513 + 0.371513i
\(89\) 3.95125 0.418832 0.209416 0.977827i \(-0.432844\pi\)
0.209416 + 0.977827i \(0.432844\pi\)
\(90\) −0.104719 3.29077i −0.0110384 0.346878i
\(91\) 0 0
\(92\) −4.48247 + 4.48247i −0.467330 + 0.467330i
\(93\) −0.932426 + 9.10800i −0.0966881 + 0.944455i
\(94\) 5.31710i 0.548417i
\(95\) 9.99806 + 6.12366i 1.02578 + 0.628274i
\(96\) −5.43796 6.67836i −0.555009 0.681607i
\(97\) 1.86878 + 1.86878i 0.189746 + 0.189746i 0.795586 0.605840i \(-0.207163\pi\)
−0.605840 + 0.795586i \(0.707163\pi\)
\(98\) 0 0
\(99\) 1.62386 7.84786i 0.163204 0.788740i
\(100\) 7.83504 3.99670i 0.783504 0.399670i
\(101\) 3.76115i 0.374249i 0.982336 + 0.187124i \(0.0599167\pi\)
−0.982336 + 0.187124i \(0.940083\pi\)
\(102\) 3.90749 + 0.400027i 0.386899 + 0.0396086i
\(103\) 8.85701 8.85701i 0.872707 0.872707i −0.120060 0.992767i \(-0.538309\pi\)
0.992767 + 0.120060i \(0.0383086\pi\)
\(104\) −5.60838 −0.549947
\(105\) 0 0
\(106\) −3.07890 −0.299049
\(107\) 0.710397 0.710397i 0.0686766 0.0686766i −0.671934 0.740611i \(-0.734536\pi\)
0.740611 + 0.671934i \(0.234536\pi\)
\(108\) 8.71582 + 2.75407i 0.838680 + 0.265011i
\(109\) 19.0144i 1.82125i 0.413237 + 0.910623i \(0.364398\pi\)
−0.413237 + 0.910623i \(0.635602\pi\)
\(110\) −2.85061 + 0.685064i −0.271795 + 0.0653183i
\(111\) 4.07024 3.31425i 0.386330 0.314575i
\(112\) 0 0
\(113\) 5.69132 + 5.69132i 0.535394 + 0.535394i 0.922173 0.386779i \(-0.126412\pi\)
−0.386779 + 0.922173i \(0.626412\pi\)
\(114\) 3.45642 2.81444i 0.323723 0.263597i
\(115\) −7.83488 + 1.88289i −0.730607 + 0.175581i
\(116\) 5.04730i 0.468630i
\(117\) 7.62117 5.00798i 0.704577 0.462988i
\(118\) 0.0553332 0.0553332i 0.00509383 0.00509383i
\(119\) 0 0
\(120\) −0.953453 7.08176i −0.0870380 0.646473i
\(121\) 3.86380 0.351254
\(122\) −1.63995 + 1.63995i −0.148474 + 0.148474i
\(123\) −19.9474 2.04210i −1.79859 0.184130i
\(124\) 9.29862i 0.835041i
\(125\) 11.1465 + 0.869508i 0.996971 + 0.0777712i
\(126\) 0 0
\(127\) −12.1366 12.1366i −1.07695 1.07695i −0.996781 0.0801668i \(-0.974455\pi\)
−0.0801668 0.996781i \(-0.525545\pi\)
\(128\) −7.99843 7.99843i −0.706968 0.706968i
\(129\) 1.17407 + 1.44188i 0.103371 + 0.126950i
\(130\) −2.84489 1.74245i −0.249513 0.152823i
\(131\) 9.94280i 0.868706i −0.900743 0.434353i \(-0.856977\pi\)
0.900743 0.434353i \(-0.143023\pi\)
\(132\) 0.828923 8.09697i 0.0721485 0.704751i
\(133\) 0 0
\(134\) −3.75620 −0.324486
\(135\) 7.61926 + 8.77194i 0.655761 + 0.754968i
\(136\) 8.52483 0.730998
\(137\) 13.6645 13.6645i 1.16744 1.16744i 0.184630 0.982808i \(-0.440891\pi\)
0.982808 0.184630i \(-0.0591086\pi\)
\(138\) −0.311989 + 3.04753i −0.0265583 + 0.259423i
\(139\) 16.7933i 1.42439i 0.701982 + 0.712195i \(0.252299\pi\)
−0.701982 + 0.712195i \(0.747701\pi\)
\(140\) 0 0
\(141\) −11.8479 14.5504i −0.997770 1.22536i
\(142\) 4.71576 + 4.71576i 0.395738 + 0.395738i
\(143\) −5.74196 5.74196i −0.480167 0.480167i
\(144\) 7.67544 + 1.58818i 0.639620 + 0.132349i
\(145\) −3.35099 + 5.47115i −0.278285 + 0.454354i
\(146\) 2.89086i 0.239249i
\(147\) 0 0
\(148\) 3.76952 3.76952i 0.309853 0.309853i
\(149\) 9.31256 0.762915 0.381458 0.924386i \(-0.375422\pi\)
0.381458 + 0.924386i \(0.375422\pi\)
\(150\) 1.71656 3.88849i 0.140157 0.317494i
\(151\) 20.3868 1.65905 0.829527 0.558466i \(-0.188610\pi\)
0.829527 + 0.558466i \(0.188610\pi\)
\(152\) 6.84046 6.84046i 0.554834 0.554834i
\(153\) −11.5843 + 7.61221i −0.936535 + 0.615410i
\(154\) 0 0
\(155\) −6.17353 + 10.0795i −0.495869 + 0.809603i
\(156\) 7.18199 5.84804i 0.575019 0.468218i
\(157\) −6.32887 6.32887i −0.505098 0.505098i 0.407919 0.913018i \(-0.366254\pi\)
−0.913018 + 0.407919i \(0.866254\pi\)
\(158\) 1.35250 + 1.35250i 0.107599 + 0.107599i
\(159\) 8.42549 6.86058i 0.668185 0.544080i
\(160\) −2.59804 10.8106i −0.205393 0.854657i
\(161\) 0 0
\(162\) 4.10654 1.62746i 0.322640 0.127866i
\(163\) −6.45638 + 6.45638i −0.505703 + 0.505703i −0.913205 0.407502i \(-0.866400\pi\)
0.407502 + 0.913205i \(0.366400\pi\)
\(164\) −20.3649 −1.59023
\(165\) 6.27426 8.22658i 0.488451 0.640439i
\(166\) 2.80266 0.217528
\(167\) −1.58004 + 1.58004i −0.122268 + 0.122268i −0.765593 0.643325i \(-0.777554\pi\)
0.643325 + 0.765593i \(0.277554\pi\)
\(168\) 0 0
\(169\) 3.75977i 0.289213i
\(170\) 4.32427 + 2.64855i 0.331657 + 0.203134i
\(171\) −3.18727 + 15.4036i −0.243737 + 1.17794i
\(172\) 1.33535 + 1.33535i 0.101820 + 0.101820i
\(173\) 1.69970 + 1.69970i 0.129226 + 0.129226i 0.768761 0.639536i \(-0.220873\pi\)
−0.639536 + 0.768761i \(0.720873\pi\)
\(174\) 1.54012 + 1.89142i 0.116756 + 0.143388i
\(175\) 0 0
\(176\) 6.97941i 0.526093i
\(177\) −0.0281240 + 0.274717i −0.00211393 + 0.0206490i
\(178\) 1.37130 1.37130i 0.102783 0.102783i
\(179\) −8.44380 −0.631119 −0.315560 0.948906i \(-0.602192\pi\)
−0.315560 + 0.948906i \(0.602192\pi\)
\(180\) 8.60535 + 8.07456i 0.641405 + 0.601842i
\(181\) −5.51483 −0.409914 −0.204957 0.978771i \(-0.565705\pi\)
−0.204957 + 0.978771i \(0.565705\pi\)
\(182\) 0 0
\(183\) 0.833531 8.14198i 0.0616164 0.601872i
\(184\) 6.64869i 0.490148i
\(185\) 6.58872 1.58342i 0.484413 0.116415i
\(186\) 2.83736 + 3.48456i 0.208045 + 0.255501i
\(187\) 8.72787 + 8.72787i 0.638245 + 0.638245i
\(188\) −13.4754 13.4754i −0.982792 0.982792i
\(189\) 0 0
\(190\) 5.59510 1.34463i 0.405911 0.0975494i
\(191\) 0.559524i 0.0404858i 0.999795 + 0.0202429i \(0.00644395\pi\)
−0.999795 + 0.0202429i \(0.993556\pi\)
\(192\) 4.79850 + 0.491244i 0.346302 + 0.0354525i
\(193\) 7.05199 7.05199i 0.507613 0.507613i −0.406180 0.913793i \(-0.633139\pi\)
0.913793 + 0.406180i \(0.133139\pi\)
\(194\) 1.29713 0.0931287
\(195\) 11.6677 1.57089i 0.835543 0.112493i
\(196\) 0 0
\(197\) −10.1505 + 10.1505i −0.723190 + 0.723190i −0.969254 0.246064i \(-0.920863\pi\)
0.246064 + 0.969254i \(0.420863\pi\)
\(198\) −2.16006 3.28719i −0.153509 0.233611i
\(199\) 11.6748i 0.827604i −0.910367 0.413802i \(-0.864201\pi\)
0.910367 0.413802i \(-0.135799\pi\)
\(200\) 2.84664 8.77481i 0.201288 0.620472i
\(201\) 10.2789 8.36978i 0.725020 0.590359i
\(202\) 1.30532 + 1.30532i 0.0918421 + 0.0918421i
\(203\) 0 0
\(204\) −10.9167 + 8.88912i −0.764324 + 0.622363i
\(205\) −22.0750 13.5206i −1.54179 0.944320i
\(206\) 6.14771i 0.428332i
\(207\) −5.93692 9.03483i −0.412644 0.627964i
\(208\) 5.61580 5.61580i 0.389386 0.389386i
\(209\) 14.0067 0.968867
\(210\) 0 0
\(211\) −0.777102 −0.0534979 −0.0267490 0.999642i \(-0.508515\pi\)
−0.0267490 + 0.999642i \(0.508515\pi\)
\(212\) 7.80300 7.80300i 0.535912 0.535912i
\(213\) −23.4127 2.39687i −1.60421 0.164231i
\(214\) 0.493091i 0.0337070i
\(215\) 0.560925 + 2.33405i 0.0382547 + 0.159181i
\(216\) 8.50645 4.42142i 0.578790 0.300840i
\(217\) 0 0
\(218\) 6.59901 + 6.59901i 0.446941 + 0.446941i
\(219\) −6.44157 7.91090i −0.435281 0.534569i
\(220\) 5.48824 8.96062i 0.370017 0.604125i
\(221\) 14.0453i 0.944789i
\(222\) 0.262367 2.56281i 0.0176089 0.172005i
\(223\) 3.33811 3.33811i 0.223536 0.223536i −0.586450 0.809986i \(-0.699475\pi\)
0.809986 + 0.586450i \(0.199475\pi\)
\(224\) 0 0
\(225\) 3.96714 + 14.4659i 0.264476 + 0.964392i
\(226\) 3.95038 0.262776
\(227\) −0.242326 + 0.242326i −0.0160838 + 0.0160838i −0.715103 0.699019i \(-0.753620\pi\)
0.699019 + 0.715103i \(0.253620\pi\)
\(228\) −1.62699 + 15.8925i −0.107750 + 1.05251i
\(229\) 13.4793i 0.890735i 0.895348 + 0.445368i \(0.146927\pi\)
−0.895348 + 0.445368i \(0.853073\pi\)
\(230\) −2.06566 + 3.37259i −0.136205 + 0.222382i
\(231\) 0 0
\(232\) 3.74324 + 3.74324i 0.245756 + 0.245756i
\(233\) 1.19260 + 1.19260i 0.0781301 + 0.0781301i 0.745092 0.666962i \(-0.232406\pi\)
−0.666962 + 0.745092i \(0.732406\pi\)
\(234\) 0.906918 4.38299i 0.0592871 0.286525i
\(235\) −5.66043 23.5535i −0.369246 1.53646i
\(236\) 0.280467i 0.0182568i
\(237\) −6.71488 0.687432i −0.436178 0.0446535i
\(238\) 0 0
\(239\) 5.15325 0.333336 0.166668 0.986013i \(-0.446699\pi\)
0.166668 + 0.986013i \(0.446699\pi\)
\(240\) 8.04584 + 6.13641i 0.519357 + 0.396104i
\(241\) 14.9174 0.960914 0.480457 0.877018i \(-0.340471\pi\)
0.480457 + 0.877018i \(0.340471\pi\)
\(242\) 1.34094 1.34094i 0.0861992 0.0861992i
\(243\) −7.61123 + 13.6040i −0.488261 + 0.872698i
\(244\) 8.31238i 0.532146i
\(245\) 0 0
\(246\) −7.63153 + 6.21409i −0.486569 + 0.396196i
\(247\) 11.2702 + 11.2702i 0.717103 + 0.717103i
\(248\) 6.89616 + 6.89616i 0.437907 + 0.437907i
\(249\) −7.66953 + 6.24504i −0.486037 + 0.395763i
\(250\) 4.17019 3.56666i 0.263746 0.225575i
\(251\) 4.30303i 0.271605i −0.990736 0.135802i \(-0.956639\pi\)
0.990736 0.135802i \(-0.0433613\pi\)
\(252\) 0 0
\(253\) −6.80704 + 6.80704i −0.427955 + 0.427955i
\(254\) −8.42409 −0.528575
\(255\) −17.7351 + 2.38777i −1.11062 + 0.149528i
\(256\) 0.0180230 0.00112644
\(257\) 5.82885 5.82885i 0.363594 0.363594i −0.501540 0.865134i \(-0.667233\pi\)
0.865134 + 0.501540i \(0.167233\pi\)
\(258\) 0.907876 + 0.0929433i 0.0565219 + 0.00578640i
\(259\) 0 0
\(260\) 11.6259 2.79396i 0.721007 0.173274i
\(261\) −8.42916 1.74414i −0.521752 0.107960i
\(262\) −3.45068 3.45068i −0.213184 0.213184i
\(263\) −0.0624909 0.0624909i −0.00385335 0.00385335i 0.705177 0.709031i \(-0.250867\pi\)
−0.709031 + 0.705177i \(0.750867\pi\)
\(264\) −5.39022 6.61974i −0.331745 0.407417i
\(265\) 13.6388 3.27771i 0.837826 0.201348i
\(266\) 0 0
\(267\) −0.696985 + 6.80819i −0.0426548 + 0.416654i
\(268\) 9.51951 9.51951i 0.581497 0.581497i
\(269\) 29.6699 1.80901 0.904504 0.426465i \(-0.140241\pi\)
0.904504 + 0.426465i \(0.140241\pi\)
\(270\) 5.68862 + 0.400043i 0.346199 + 0.0243459i
\(271\) −22.6377 −1.37514 −0.687571 0.726117i \(-0.741323\pi\)
−0.687571 + 0.726117i \(0.741323\pi\)
\(272\) −8.53611 + 8.53611i −0.517578 + 0.517578i
\(273\) 0 0
\(274\) 9.48463i 0.572988i
\(275\) 11.8982 6.06935i 0.717491 0.365996i
\(276\) −6.93281 8.51419i −0.417306 0.512494i
\(277\) 4.21136 + 4.21136i 0.253036 + 0.253036i 0.822214 0.569178i \(-0.192738\pi\)
−0.569178 + 0.822214i \(0.692738\pi\)
\(278\) 5.82817 + 5.82817i 0.349551 + 0.349551i
\(279\) −15.5290 3.21323i −0.929698 0.192371i
\(280\) 0 0
\(281\) 22.0093i 1.31297i −0.754341 0.656483i \(-0.772043\pi\)
0.754341 0.656483i \(-0.227957\pi\)
\(282\) −9.16160 0.937914i −0.545565 0.0558520i
\(283\) −9.59899 + 9.59899i −0.570601 + 0.570601i −0.932296 0.361695i \(-0.882198\pi\)
0.361695 + 0.932296i \(0.382198\pi\)
\(284\) −23.9027 −1.41837
\(285\) −12.3150 + 16.1469i −0.729475 + 0.956461i
\(286\) −3.98553 −0.235670
\(287\) 0 0
\(288\) 12.4664 8.19181i 0.734587 0.482707i
\(289\) 4.34908i 0.255828i
\(290\) 0.735807 + 3.06176i 0.0432081 + 0.179792i
\(291\) −3.54963 + 2.89034i −0.208083 + 0.169435i
\(292\) −7.32643 7.32643i −0.428747 0.428747i
\(293\) −3.56359 3.56359i −0.208187 0.208187i 0.595309 0.803497i \(-0.297030\pi\)
−0.803497 + 0.595309i \(0.797030\pi\)
\(294\) 0 0
\(295\) −0.186207 + 0.304019i −0.0108414 + 0.0177007i
\(296\) 5.59120i 0.324982i
\(297\) 13.2358 + 4.18231i 0.768018 + 0.242683i
\(298\) 3.23196 3.23196i 0.187222 0.187222i
\(299\) −10.9542 −0.633499
\(300\) 5.50442 + 14.2051i 0.317798 + 0.820134i
\(301\) 0 0
\(302\) 7.07531 7.07531i 0.407139 0.407139i
\(303\) −6.48063 0.663452i −0.372303 0.0381143i
\(304\) 13.6990i 0.785692i
\(305\) 5.51874 9.01042i 0.316002 0.515935i
\(306\) −1.37853 + 6.66222i −0.0788053 + 0.380854i
\(307\) −10.4746 10.4746i −0.597814 0.597814i 0.341916 0.939730i \(-0.388924\pi\)
−0.939730 + 0.341916i \(0.888924\pi\)
\(308\) 0 0
\(309\) 13.6987 + 16.8234i 0.779291 + 0.957048i
\(310\) 1.35558 + 5.64066i 0.0769915 + 0.320368i
\(311\) 20.4344i 1.15873i 0.815068 + 0.579365i \(0.196699\pi\)
−0.815068 + 0.579365i \(0.803301\pi\)
\(312\) 0.989296 9.66350i 0.0560078 0.547088i
\(313\) 16.4829 16.4829i 0.931670 0.931670i −0.0661408 0.997810i \(-0.521069\pi\)
0.997810 + 0.0661408i \(0.0210686\pi\)
\(314\) −4.39291 −0.247906
\(315\) 0 0
\(316\) −6.85542 −0.385647
\(317\) −22.9540 + 22.9540i −1.28922 + 1.28922i −0.353965 + 0.935259i \(0.615167\pi\)
−0.935259 + 0.353965i \(0.884833\pi\)
\(318\) 0.543105 5.30509i 0.0304558 0.297494i
\(319\) 7.66479i 0.429146i
\(320\) 5.31032 + 3.25249i 0.296856 + 0.181820i
\(321\) 1.09873 + 1.34936i 0.0613254 + 0.0753137i
\(322\) 0 0
\(323\) −17.1308 17.1308i −0.953185 0.953185i
\(324\) −6.28283 + 14.5319i −0.349046 + 0.807330i
\(325\) 14.4571 + 4.69006i 0.801938 + 0.260158i
\(326\) 4.48142i 0.248203i
\(327\) −32.7626 3.35406i −1.81178 0.185480i
\(328\) −15.1033 + 15.1033i −0.833938 + 0.833938i
\(329\) 0 0
\(330\) −0.677561 5.03257i −0.0372985 0.277034i
\(331\) −2.21461 −0.121726 −0.0608631 0.998146i \(-0.519385\pi\)
−0.0608631 + 0.998146i \(0.519385\pi\)
\(332\) −7.10290 + 7.10290i −0.389822 + 0.389822i
\(333\) 4.99263 + 7.59782i 0.273595 + 0.416358i
\(334\) 1.09672i 0.0600099i
\(335\) 16.6391 3.99874i 0.909091 0.218475i
\(336\) 0 0
\(337\) 10.8541 + 10.8541i 0.591263 + 0.591263i 0.937972 0.346710i \(-0.112701\pi\)
−0.346710 + 0.937972i \(0.612701\pi\)
\(338\) 1.30484 + 1.30484i 0.0709741 + 0.0709741i
\(339\) −10.8103 + 8.80247i −0.587136 + 0.478085i
\(340\) −17.6715 + 4.24686i −0.958374 + 0.230318i
\(341\) 14.1208i 0.764685i
\(342\) 4.23971 + 6.45202i 0.229257 + 0.348885i
\(343\) 0 0
\(344\) 1.98068 0.106791
\(345\) −1.86227 13.8320i −0.100261 0.744689i
\(346\) 1.17977 0.0634251
\(347\) −5.06341 + 5.06341i −0.271818 + 0.271818i −0.829832 0.558014i \(-0.811564\pi\)
0.558014 + 0.829832i \(0.311564\pi\)
\(348\) −8.69672 0.890323i −0.466193 0.0477263i
\(349\) 7.42733i 0.397576i 0.980043 + 0.198788i \(0.0637005\pi\)
−0.980043 + 0.198788i \(0.936300\pi\)
\(350\) 0 0
\(351\) 7.28463 + 14.0150i 0.388825 + 0.748066i
\(352\) −9.39243 9.39243i −0.500618 0.500618i
\(353\) −9.09032 9.09032i −0.483829 0.483829i 0.422523 0.906352i \(-0.361144\pi\)
−0.906352 + 0.422523i \(0.861144\pi\)
\(354\) 0.0855810 + 0.105102i 0.00454858 + 0.00558611i
\(355\) −25.9100 15.8695i −1.37516 0.842264i
\(356\) 6.95068i 0.368385i
\(357\) 0 0
\(358\) −2.93045 + 2.93045i −0.154879 + 0.154879i
\(359\) 25.2640 1.33338 0.666692 0.745333i \(-0.267710\pi\)
0.666692 + 0.745333i \(0.267710\pi\)
\(360\) 12.3704 0.393650i 0.651976 0.0207472i
\(361\) −8.49208 −0.446951
\(362\) −1.91394 + 1.91394i −0.100594 + 0.100594i
\(363\) −0.681558 + 6.65750i −0.0357725 + 0.349428i
\(364\) 0 0
\(365\) −3.07752 12.8058i −0.161085 0.670288i
\(366\) −2.53642 3.11498i −0.132581 0.162823i
\(367\) −1.61189 1.61189i −0.0841399 0.0841399i 0.663784 0.747924i \(-0.268949\pi\)
−0.747924 + 0.663784i \(0.768949\pi\)
\(368\) −6.65749 6.65749i −0.347045 0.347045i
\(369\) 7.03727 34.0100i 0.366346 1.77049i
\(370\) 1.73711 2.83617i 0.0903081 0.147445i
\(371\) 0 0
\(372\) −16.0219 1.64024i −0.830699 0.0850424i
\(373\) 13.0455 13.0455i 0.675469 0.675469i −0.283502 0.958972i \(-0.591496\pi\)
0.958972 + 0.283502i \(0.0914964\pi\)
\(374\) 6.05808 0.313256
\(375\) −3.46439 + 19.0525i −0.178901 + 0.983867i
\(376\) −19.9875 −1.03078
\(377\) −6.16727 + 6.16727i −0.317630 + 0.317630i
\(378\) 0 0
\(379\) 19.0635i 0.979228i −0.871939 0.489614i \(-0.837138\pi\)
0.871939 0.489614i \(-0.162862\pi\)
\(380\) −10.7722 + 17.5877i −0.552601 + 0.902228i
\(381\) 23.0527 18.7710i 1.18103 0.961670i
\(382\) 0.194185 + 0.194185i 0.00993537 + 0.00993537i
\(383\) −17.7244 17.7244i −0.905673 0.905673i 0.0902463 0.995919i \(-0.471235\pi\)
−0.995919 + 0.0902463i \(0.971235\pi\)
\(384\) 15.1925 12.3708i 0.775291 0.631293i
\(385\) 0 0
\(386\) 4.89484i 0.249141i
\(387\) −2.69153 + 1.76864i −0.136818 + 0.0899050i
\(388\) −3.28738 + 3.28738i −0.166892 + 0.166892i
\(389\) 18.3513 0.930446 0.465223 0.885193i \(-0.345974\pi\)
0.465223 + 0.885193i \(0.345974\pi\)
\(390\) 3.50414 4.59451i 0.177439 0.232652i
\(391\) 16.6506 0.842056
\(392\) 0 0
\(393\) 17.1319 + 1.75387i 0.864189 + 0.0884710i
\(394\) 7.04550i 0.354947i
\(395\) −7.43110 4.55144i −0.373899 0.229008i
\(396\) 13.8052 + 2.85655i 0.693739 + 0.143547i
\(397\) 10.9124 + 10.9124i 0.547679 + 0.547679i 0.925769 0.378090i \(-0.123419\pi\)
−0.378090 + 0.925769i \(0.623419\pi\)
\(398\) −4.05178 4.05178i −0.203097 0.203097i
\(399\) 0 0
\(400\) 5.93600 + 11.6368i 0.296800 + 0.581841i
\(401\) 34.4243i 1.71907i 0.511079 + 0.859534i \(0.329246\pi\)
−0.511079 + 0.859534i \(0.670754\pi\)
\(402\) 0.662578 6.47210i 0.0330464 0.322799i
\(403\) −11.3619 + 11.3619i −0.565979 + 0.565979i
\(404\) −6.61627 −0.329172
\(405\) −16.4585 + 11.5810i −0.817827 + 0.575464i
\(406\) 0 0
\(407\) 5.72437 5.72437i 0.283746 0.283746i
\(408\) −1.50375 + 14.6887i −0.0744465 + 0.727198i
\(409\) 7.59254i 0.375427i 0.982224 + 0.187714i \(0.0601077\pi\)
−0.982224 + 0.187714i \(0.939892\pi\)
\(410\) −12.3536 + 2.96884i −0.610101 + 0.146621i
\(411\) 21.1342 + 25.9549i 1.04247 + 1.28026i
\(412\) 15.5804 + 15.5804i 0.767593 + 0.767593i
\(413\) 0 0
\(414\) −5.19600 1.07514i −0.255369 0.0528404i
\(415\) −12.4151 + 2.98363i −0.609434 + 0.146460i
\(416\) 15.1147i 0.741061i
\(417\) −28.9356 2.96227i −1.41698 0.145063i
\(418\) 4.86109 4.86109i 0.237764 0.237764i
\(419\) −6.20644 −0.303204 −0.151602 0.988442i \(-0.548443\pi\)
−0.151602 + 0.988442i \(0.548443\pi\)
\(420\) 0 0
\(421\) 25.1339 1.22495 0.612474 0.790490i \(-0.290174\pi\)
0.612474 + 0.790490i \(0.290174\pi\)
\(422\) −0.269696 + 0.269696i −0.0131286 + 0.0131286i
\(423\) 27.1608 17.8478i 1.32061 0.867788i
\(424\) 11.5739i 0.562079i
\(425\) −21.9751 7.12897i −1.06595 0.345806i
\(426\) −8.95731 + 7.29363i −0.433983 + 0.353377i
\(427\) 0 0
\(428\) 1.24966 + 1.24966i 0.0604048 + 0.0604048i
\(429\) 10.9065 8.88079i 0.526571 0.428769i
\(430\) 1.00471 + 0.615371i 0.0484515 + 0.0296758i
\(431\) 8.43225i 0.406167i −0.979161 0.203084i \(-0.934904\pi\)
0.979161 0.203084i \(-0.0650963\pi\)
\(432\) −4.09043 + 12.9450i −0.196801 + 0.622815i
\(433\) 18.8277 18.8277i 0.904802 0.904802i −0.0910444 0.995847i \(-0.529021\pi\)
0.995847 + 0.0910444i \(0.0290205\pi\)
\(434\) 0 0
\(435\) −8.83593 6.73900i −0.423651 0.323110i
\(436\) −33.4483 −1.60188
\(437\) 13.3607 13.3607i 0.639128 0.639128i
\(438\) −4.98108 0.509935i −0.238005 0.0243657i
\(439\) 4.88270i 0.233039i 0.993188 + 0.116519i \(0.0371737\pi\)
−0.993188 + 0.116519i \(0.962826\pi\)
\(440\) −2.57523 10.7157i −0.122769 0.510853i
\(441\) 0 0
\(442\) 4.87447 + 4.87447i 0.231855 + 0.231855i
\(443\) −23.8960 23.8960i −1.13534 1.13534i −0.989276 0.146059i \(-0.953341\pi\)
−0.146059 0.989276i \(-0.546659\pi\)
\(444\) 5.83013 + 7.15998i 0.276686 + 0.339798i
\(445\) −4.61468 + 7.53437i −0.218757 + 0.357163i
\(446\) 2.31700i 0.109713i
\(447\) −1.64270 + 16.0460i −0.0776970 + 0.758948i
\(448\) 0 0
\(449\) 23.6736 1.11723 0.558613 0.829428i \(-0.311334\pi\)
0.558613 + 0.829428i \(0.311334\pi\)
\(450\) 6.39725 + 3.64363i 0.301569 + 0.171762i
\(451\) −30.9259 −1.45625
\(452\) −10.0116 + 10.0116i −0.470908 + 0.470908i
\(453\) −3.59615 + 35.1274i −0.168962 + 1.65043i
\(454\) 0.168200i 0.00789404i
\(455\) 0 0
\(456\) 10.5798 + 12.9930i 0.495444 + 0.608455i
\(457\) 10.2580 + 10.2580i 0.479849 + 0.479849i 0.905083 0.425234i \(-0.139808\pi\)
−0.425234 + 0.905083i \(0.639808\pi\)
\(458\) 4.67803 + 4.67803i 0.218590 + 0.218590i
\(459\) −11.0728 21.3030i −0.516832 0.994341i
\(460\) −3.31221 13.7824i −0.154433 0.642608i
\(461\) 23.3153i 1.08590i −0.839764 0.542951i \(-0.817307\pi\)
0.839764 0.542951i \(-0.182693\pi\)
\(462\) 0 0
\(463\) −17.0563 + 17.0563i −0.792672 + 0.792672i −0.981928 0.189256i \(-0.939392\pi\)
0.189256 + 0.981928i \(0.439392\pi\)
\(464\) −7.49639 −0.348011
\(465\) −16.2784 12.4152i −0.754893 0.575743i
\(466\) 0.827796 0.0383469
\(467\) −8.00621 + 8.00621i −0.370483 + 0.370483i −0.867653 0.497170i \(-0.834373\pi\)
0.497170 + 0.867653i \(0.334373\pi\)
\(468\) 8.80957 + 13.4065i 0.407223 + 0.619714i
\(469\) 0 0
\(470\) −10.1388 6.20986i −0.467668 0.286439i
\(471\) 12.0213 9.78854i 0.553913 0.451032i
\(472\) 0.208003 + 0.208003i 0.00957413 + 0.00957413i
\(473\) 2.02786 + 2.02786i 0.0932409 + 0.0932409i
\(474\) −2.56900 + 2.09185i −0.117998 + 0.0960817i
\(475\) −23.3535 + 11.9128i −1.07153 + 0.546595i
\(476\) 0 0
\(477\) 10.3349 + 15.7277i 0.473201 + 0.720121i
\(478\) 1.78845 1.78845i 0.0818019 0.0818019i
\(479\) −20.1199 −0.919304 −0.459652 0.888099i \(-0.652026\pi\)
−0.459652 + 0.888099i \(0.652026\pi\)
\(480\) 19.0855 2.56958i 0.871131 0.117285i
\(481\) 9.21192 0.420027
\(482\) 5.17713 5.17713i 0.235812 0.235812i
\(483\) 0 0
\(484\) 6.79683i 0.308947i
\(485\) −5.74600 + 1.38089i −0.260912 + 0.0627030i
\(486\) 2.07982 + 7.36283i 0.0943425 + 0.333985i
\(487\) 7.77959 + 7.77959i 0.352527 + 0.352527i 0.861049 0.508522i \(-0.169808\pi\)
−0.508522 + 0.861049i \(0.669808\pi\)
\(488\) −6.16474 6.16474i −0.279064 0.279064i
\(489\) −9.98576 12.2635i −0.451572 0.554576i
\(490\) 0 0
\(491\) 2.29546i 0.103593i −0.998658 0.0517963i \(-0.983505\pi\)
0.998658 0.0517963i \(-0.0164947\pi\)
\(492\) 3.59228 35.0896i 0.161952 1.58196i
\(493\) 9.37435 9.37435i 0.422199 0.422199i
\(494\) 7.82270 0.351960
\(495\) 13.0680 + 12.2620i 0.587364 + 0.551135i
\(496\) −13.8106 −0.620113
\(497\) 0 0
\(498\) −0.494377 + 4.82910i −0.0221536 + 0.216397i
\(499\) 12.3264i 0.551806i −0.961185 0.275903i \(-0.911023\pi\)
0.961185 0.275903i \(-0.0889769\pi\)
\(500\) −1.52956 + 19.6079i −0.0684039 + 0.876890i
\(501\) −2.44378 3.00120i −0.109180 0.134084i
\(502\) −1.49338 1.49338i −0.0666529 0.0666529i
\(503\) 4.62523 + 4.62523i 0.206229 + 0.206229i 0.802662 0.596434i \(-0.203416\pi\)
−0.596434 + 0.802662i \(0.703416\pi\)
\(504\) 0 0
\(505\) −7.17188 4.39266i −0.319144 0.195471i
\(506\) 4.72482i 0.210044i
\(507\) −6.47826 0.663208i −0.287709 0.0294541i
\(508\) 21.3496 21.3496i 0.947234 0.947234i
\(509\) 13.6161 0.603525 0.301762 0.953383i \(-0.402425\pi\)
0.301762 + 0.953383i \(0.402425\pi\)
\(510\) −5.32635 + 6.98372i −0.235855 + 0.309244i
\(511\) 0 0
\(512\) 16.0031 16.0031i 0.707245 0.707245i
\(513\) −25.9788 8.20894i −1.14699 0.362433i
\(514\) 4.04585i 0.178455i
\(515\) 6.54468 + 27.2329i 0.288393 + 1.20003i
\(516\) −2.53642 + 2.06532i −0.111660 + 0.0909207i
\(517\) −20.4636 20.4636i −0.899987 0.899987i
\(518\) 0 0
\(519\) −3.22848 + 2.62884i −0.141715 + 0.115393i
\(520\) 6.55005 10.6942i 0.287239 0.468973i
\(521\) 18.3870i 0.805550i 0.915299 + 0.402775i \(0.131954\pi\)
−0.915299 + 0.402775i \(0.868046\pi\)
\(522\) −3.53068 + 2.32006i −0.154534 + 0.101546i
\(523\) 8.91043 8.91043i 0.389626 0.389626i −0.484928 0.874554i \(-0.661154\pi\)
0.874554 + 0.484928i \(0.161154\pi\)
\(524\) 17.4905 0.764074
\(525\) 0 0
\(526\) −0.0433754 −0.00189126
\(527\) 17.2703 17.2703i 0.752308 0.752308i
\(528\) 12.0258 + 1.23114i 0.523358 + 0.0535785i
\(529\) 10.0139i 0.435385i
\(530\) 3.59586 5.87094i 0.156194 0.255017i
\(531\) −0.468389 0.0969179i −0.0203264 0.00420588i
\(532\) 0 0
\(533\) −24.8837 24.8837i −1.07783 1.07783i
\(534\) 2.12091 + 2.60470i 0.0917810 + 0.112716i
\(535\) 0.524931 + 2.18428i 0.0226947 + 0.0944347i
\(536\) 14.1200i 0.609889i
\(537\) 1.48945 14.5491i 0.0642746 0.627838i
\(538\) 10.2971 10.2971i 0.443938 0.443938i
\(539\) 0 0
\(540\) −15.4308 + 13.4031i −0.664035 + 0.576777i
\(541\) 27.8258 1.19632 0.598162 0.801375i \(-0.295898\pi\)
0.598162 + 0.801375i \(0.295898\pi\)
\(542\) −7.85649 + 7.85649i −0.337465 + 0.337465i
\(543\) 0.972793 9.50229i 0.0417465 0.407783i
\(544\) 22.9746i 0.985030i
\(545\) −36.2572 22.2070i −1.55309 0.951242i
\(546\) 0 0
\(547\) −13.2773 13.2773i −0.567695 0.567695i 0.363787 0.931482i \(-0.381483\pi\)
−0.931482 + 0.363787i \(0.881483\pi\)
\(548\) 24.0373 + 24.0373i 1.02682 + 1.02682i
\(549\) 13.8820 + 2.87242i 0.592468 + 0.122592i
\(550\) 2.02294 6.23572i 0.0862583 0.265892i
\(551\) 15.0442i 0.640906i
\(552\) −11.4560 1.17280i −0.487600 0.0499178i
\(553\) 0 0
\(554\) 2.92314 0.124192
\(555\) 1.56607 + 11.6320i 0.0664761 + 0.493750i
\(556\) −29.5412 −1.25283
\(557\) 10.4002 10.4002i 0.440672 0.440672i −0.451566 0.892238i \(-0.649134\pi\)
0.892238 + 0.451566i \(0.149134\pi\)
\(558\) −6.50456 + 4.27424i −0.275360 + 0.180943i
\(559\) 3.26332i 0.138024i
\(560\) 0 0
\(561\) −16.5781 + 13.4990i −0.699927 + 0.569926i
\(562\) −7.63842 7.63842i −0.322207 0.322207i
\(563\) 10.1623 + 10.1623i 0.428291 + 0.428291i 0.888046 0.459755i \(-0.152063\pi\)
−0.459755 + 0.888046i \(0.652063\pi\)
\(564\) 25.5957 20.8417i 1.07777 0.877592i
\(565\) −17.4993 + 4.20546i −0.736200 + 0.176925i
\(566\) 6.66273i 0.280055i
\(567\) 0 0
\(568\) −17.7271 + 17.7271i −0.743811 + 0.743811i
\(569\) −39.8275 −1.66965 −0.834827 0.550512i \(-0.814433\pi\)
−0.834827 + 0.550512i \(0.814433\pi\)
\(570\) 1.32990 + 9.87780i 0.0557033 + 0.413735i
\(571\) −43.8314 −1.83429 −0.917143 0.398558i \(-0.869511\pi\)
−0.917143 + 0.398558i \(0.869511\pi\)
\(572\) 10.1007 10.1007i 0.422332 0.422332i
\(573\) −0.964086 0.0986978i −0.0402753 0.00412316i
\(574\) 0 0
\(575\) 5.56003 17.1388i 0.231869 0.714739i
\(576\) −1.69287 + 8.18138i −0.0705363 + 0.340891i
\(577\) 27.8182 + 27.8182i 1.15809 + 1.15809i 0.984886 + 0.173202i \(0.0554114\pi\)
0.173202 + 0.984886i \(0.444589\pi\)
\(578\) −1.50936 1.50936i −0.0627812 0.0627812i
\(579\) 10.9070 + 13.3948i 0.453278 + 0.556670i
\(580\) −9.62434 5.89476i −0.399629 0.244767i
\(581\) 0 0
\(582\) −0.228809 + 2.23502i −0.00948443 + 0.0926445i
\(583\) 11.8496 11.8496i 0.490759 0.490759i
\(584\) −10.8670 −0.449681
\(585\) 0.648568 + 20.3811i 0.0268150 + 0.842655i
\(586\) −2.47352 −0.102180
\(587\) 27.2778 27.2778i 1.12588 1.12588i 0.135034 0.990841i \(-0.456886\pi\)
0.990841 0.135034i \(-0.0431144\pi\)
\(588\) 0 0
\(589\) 27.7160i 1.14202i
\(590\) 0.0408871 + 0.170135i 0.00168330 + 0.00700434i
\(591\) −15.6992 19.2802i −0.645779 0.793081i
\(592\) 5.59860 + 5.59860i 0.230101 + 0.230101i
\(593\) −1.21000 1.21000i −0.0496886 0.0496886i 0.681826 0.731515i \(-0.261186\pi\)
−0.731515 + 0.681826i \(0.761186\pi\)
\(594\) 6.04501 3.14204i 0.248030 0.128919i
\(595\) 0 0
\(596\) 16.3818i 0.671025i
\(597\) 20.1162 + 2.05939i 0.823301 + 0.0842850i
\(598\) −3.80170 + 3.80170i −0.155463 + 0.155463i
\(599\) 15.6005 0.637421 0.318710 0.947852i \(-0.396750\pi\)
0.318710 + 0.947852i \(0.396750\pi\)
\(600\) 14.6172 + 6.45274i 0.596747 + 0.263432i
\(601\) −14.2954 −0.583122 −0.291561 0.956552i \(-0.594175\pi\)
−0.291561 + 0.956552i \(0.594175\pi\)
\(602\) 0 0
\(603\) 12.6083 + 19.1875i 0.513452 + 0.781374i
\(604\) 35.8626i 1.45923i
\(605\) −4.51254 + 7.36760i −0.183461 + 0.299536i
\(606\) −2.47938 + 2.01887i −0.100718 + 0.0820111i
\(607\) 26.8784 + 26.8784i 1.09096 + 1.09096i 0.995426 + 0.0955365i \(0.0304567\pi\)
0.0955365 + 0.995426i \(0.469543\pi\)
\(608\) 18.4352 + 18.4352i 0.747646 + 0.747646i
\(609\) 0 0
\(610\) −1.21180 5.04240i −0.0490643 0.204161i
\(611\) 32.9310i 1.33224i
\(612\) −13.3907 20.3780i −0.541287 0.823733i
\(613\) 2.77744 2.77744i 0.112180 0.112180i −0.648789 0.760969i \(-0.724724\pi\)
0.760969 + 0.648789i \(0.224724\pi\)
\(614\) −7.27046 −0.293412
\(615\) 27.1906 35.6513i 1.09643 1.43760i
\(616\) 0 0
\(617\) 3.21465 3.21465i 0.129417 0.129417i −0.639431 0.768848i \(-0.720830\pi\)
0.768848 + 0.639431i \(0.220830\pi\)
\(618\) 10.5928 + 1.08443i 0.426104 + 0.0436222i
\(619\) 48.7011i 1.95746i −0.205146 0.978731i \(-0.565767\pi\)
0.205146 0.978731i \(-0.434233\pi\)
\(620\) −17.7309 10.8599i −0.712090 0.436144i
\(621\) 16.6147 8.63587i 0.666724 0.346545i
\(622\) 7.09184 + 7.09184i 0.284357 + 0.284357i
\(623\) 0 0
\(624\) 8.68567 + 10.6669i 0.347705 + 0.427017i
\(625\) −14.6760 + 20.2389i −0.587041 + 0.809557i
\(626\) 11.4409i 0.457271i
\(627\) −2.47073 + 24.1343i −0.0986716 + 0.963830i
\(628\) 11.1332 11.1332i 0.444261 0.444261i
\(629\) −14.0023 −0.558307
\(630\) 0 0
\(631\) 15.0588 0.599480 0.299740 0.954021i \(-0.403100\pi\)
0.299740 + 0.954021i \(0.403100\pi\)
\(632\) −5.08420 + 5.08420i −0.202239 + 0.202239i
\(633\) 0.137078 1.33898i 0.00544834 0.0532197i
\(634\) 15.9325i 0.632761i
\(635\) 37.3168 8.96805i 1.48087 0.355886i
\(636\) 12.0685 + 14.8213i 0.478547 + 0.587704i
\(637\) 0 0
\(638\) 2.66009 + 2.66009i 0.105314 + 0.105314i
\(639\) 8.25981 39.9184i 0.326753 1.57915i
\(640\) 24.5930 5.91025i 0.972126 0.233623i
\(641\) 45.9720i 1.81578i −0.419204 0.907892i \(-0.637691\pi\)
0.419204 0.907892i \(-0.362309\pi\)
\(642\) 0.849619 + 0.0869793i 0.0335318 + 0.00343280i
\(643\) 5.91991 5.91991i 0.233458 0.233458i −0.580676 0.814135i \(-0.697212\pi\)
0.814135 + 0.580676i \(0.197212\pi\)
\(644\) 0 0
\(645\) −4.12062 + 0.554781i −0.162249 + 0.0218445i
\(646\) −11.8906 −0.467831
\(647\) −11.1176 + 11.1176i −0.437079 + 0.437079i −0.891028 0.453949i \(-0.850015\pi\)
0.453949 + 0.891028i \(0.350015\pi\)
\(648\) 6.11781 + 15.4369i 0.240330 + 0.606419i
\(649\) 0.425915i 0.0167186i
\(650\) 6.64511 3.38970i 0.260642 0.132955i
\(651\) 0 0
\(652\) −11.3575 11.3575i −0.444793 0.444793i
\(653\) 30.6500 + 30.6500i 1.19943 + 1.19943i 0.974339 + 0.225088i \(0.0722669\pi\)
0.225088 + 0.974339i \(0.427733\pi\)
\(654\) −12.5344 + 10.2063i −0.490135 + 0.399100i
\(655\) 18.9592 + 11.6122i 0.740798 + 0.453727i
\(656\) 30.2465i 1.18093i
\(657\) 14.7671 9.70367i 0.576120 0.378576i
\(658\) 0 0
\(659\) −50.9397 −1.98433 −0.992165 0.124933i \(-0.960129\pi\)
−0.992165 + 0.124933i \(0.960129\pi\)
\(660\) 14.4714 + 11.0371i 0.563300 + 0.429619i
\(661\) 20.5394 0.798889 0.399445 0.916757i \(-0.369203\pi\)
0.399445 + 0.916757i \(0.369203\pi\)
\(662\) −0.768589 + 0.768589i −0.0298721 + 0.0298721i
\(663\) −24.2007 2.47753i −0.939877 0.0962194i
\(664\) 10.5355i 0.408856i
\(665\) 0 0
\(666\) 4.36956 + 0.904139i 0.169317 + 0.0350347i
\(667\) 7.31125 + 7.31125i 0.283093 + 0.283093i
\(668\) −2.77947 2.77947i −0.107541 0.107541i
\(669\) 5.16288 + 6.34054i 0.199609 + 0.245139i
\(670\) 4.38688 7.16244i 0.169480 0.276709i
\(671\) 12.6231i 0.487310i
\(672\) 0 0
\(673\) 25.4635 25.4635i 0.981544 0.981544i −0.0182887 0.999833i \(-0.505822\pi\)
0.999833 + 0.0182887i \(0.00582181\pi\)
\(674\) 7.53394 0.290196
\(675\) −25.6252 + 4.28384i −0.986313 + 0.164885i
\(676\) −6.61384 −0.254379
\(677\) 8.67613 8.67613i 0.333451 0.333451i −0.520445 0.853895i \(-0.674234\pi\)
0.853895 + 0.520445i \(0.174234\pi\)
\(678\) −0.696831 + 6.80669i −0.0267616 + 0.261409i
\(679\) 0 0
\(680\) −9.95618 + 16.2554i −0.381802 + 0.623366i
\(681\) −0.374794 0.460284i −0.0143621 0.0176381i
\(682\) 4.90068 + 4.90068i 0.187657 + 0.187657i
\(683\) 24.0010 + 24.0010i 0.918373 + 0.918373i 0.996911 0.0785378i \(-0.0250251\pi\)
−0.0785378 + 0.996911i \(0.525025\pi\)
\(684\) −27.0965 5.60675i −1.03606 0.214379i
\(685\) 10.0971 + 42.0147i 0.385789 + 1.60530i
\(686\) 0 0
\(687\) −23.2254 2.37769i −0.886104 0.0907145i
\(688\) −1.98330 + 1.98330i −0.0756127 + 0.0756127i
\(689\) 19.0689 0.726467
\(690\) −5.44675 4.15413i −0.207354 0.158145i
\(691\) 32.5680 1.23894 0.619472 0.785019i \(-0.287347\pi\)
0.619472 + 0.785019i \(0.287347\pi\)
\(692\) −2.98996 + 2.98996i −0.113661 + 0.113661i
\(693\) 0 0
\(694\) 3.51455i 0.133410i
\(695\) −32.0220 19.6130i −1.21466 0.743962i
\(696\) −7.11007 + 5.78948i −0.269506 + 0.219450i
\(697\) 37.8237 + 37.8237i 1.43267 + 1.43267i
\(698\) 2.57768 + 2.57768i 0.0975667 + 0.0975667i
\(699\) −2.26528 + 1.84454i −0.0856808 + 0.0697670i
\(700\) 0 0
\(701\) 2.43359i 0.0919155i 0.998943 + 0.0459577i \(0.0146340\pi\)
−0.998943 + 0.0459577i \(0.985366\pi\)
\(702\) 7.39211 + 2.33580i 0.278997 + 0.0881592i
\(703\) −11.2356 + 11.2356i −0.423760 + 0.423760i
\(704\) 7.43948 0.280386
\(705\) 41.5822 5.59843i 1.56608 0.210849i
\(706\) −6.30965 −0.237467
\(707\) 0 0
\(708\) −0.483257 0.0494732i −0.0181619 0.00185932i
\(709\) 12.3477i 0.463728i 0.972748 + 0.231864i \(0.0744825\pi\)
−0.972748 + 0.231864i \(0.925518\pi\)
\(710\) −14.4997 + 3.48460i −0.544164 + 0.130775i
\(711\) 2.36895 11.4488i 0.0888427 0.429363i
\(712\) 5.15485 + 5.15485i 0.193186 + 0.193186i
\(713\) 13.4695 + 13.4695i 0.504436 + 0.504436i
\(714\) 0 0
\(715\) 17.6550 4.24288i 0.660259 0.158675i
\(716\) 14.8536i 0.555103i
\(717\) −0.909011 + 8.87927i −0.0339476 + 0.331603i
\(718\) 8.76797 8.76797i 0.327218 0.327218i
\(719\) 24.2165 0.903125 0.451562 0.892240i \(-0.350867\pi\)
0.451562 + 0.892240i \(0.350867\pi\)
\(720\) −11.9926 + 12.7809i −0.446936 + 0.476316i
\(721\) 0 0
\(722\) −2.94721 + 2.94721i −0.109684 + 0.109684i
\(723\) −2.63137 + 25.7033i −0.0978616 + 0.955917i
\(724\) 9.70117i 0.360541i
\(725\) −6.51891 12.7795i −0.242106 0.474621i
\(726\) 2.07397 + 2.54704i 0.0769723 + 0.0945297i
\(727\) 25.8923 + 25.8923i 0.960293 + 0.960293i 0.999241 0.0389483i \(-0.0124008\pi\)
−0.0389483 + 0.999241i \(0.512401\pi\)
\(728\) 0 0
\(729\) −22.0977 15.5142i −0.818435 0.574599i
\(730\) −5.51237 3.37624i −0.204022 0.124960i
\(731\) 4.96030i 0.183463i
\(732\) 14.3226 + 1.46627i 0.529379 + 0.0541949i
\(733\) −13.4535 + 13.4535i −0.496918 + 0.496918i −0.910477 0.413559i \(-0.864285\pi\)
0.413559 + 0.910477i \(0.364285\pi\)
\(734\) −1.11882 −0.0412965
\(735\) 0 0
\(736\) −17.9184 −0.660481
\(737\) 14.4563 14.4563i 0.532503 0.532503i
\(738\) −9.36099 14.2456i −0.344583 0.524388i
\(739\) 1.96813i 0.0723987i 0.999345 + 0.0361994i \(0.0115251\pi\)
−0.999345 + 0.0361994i \(0.988475\pi\)
\(740\) 2.78540 + 11.5903i 0.102393 + 0.426067i
\(741\) −21.4070 + 17.4310i −0.786406 + 0.640343i
\(742\) 0 0
\(743\) 4.54680 + 4.54680i 0.166806 + 0.166806i 0.785574 0.618768i \(-0.212368\pi\)
−0.618768 + 0.785574i \(0.712368\pi\)
\(744\) −13.0989 + 10.6659i −0.480227 + 0.391032i
\(745\) −10.8762 + 17.7575i −0.398472 + 0.650584i
\(746\) 9.05496i 0.331526i
\(747\) −9.40761 14.3166i −0.344206 0.523815i
\(748\) −15.3533 + 15.3533i −0.561371 + 0.561371i
\(749\) 0 0
\(750\) 5.40991 + 7.81457i 0.197542 + 0.285348i
\(751\) −0.491718 −0.0179430 −0.00897152 0.999960i \(-0.502856\pi\)
−0.00897152 + 0.999960i \(0.502856\pi\)
\(752\) 20.0140 20.0140i 0.729835 0.729835i
\(753\) 7.41432 + 0.759037i 0.270193 + 0.0276609i
\(754\) 4.28075i 0.155896i
\(755\) −23.8098 + 38.8742i −0.866528 + 1.41478i
\(756\) 0 0
\(757\) 3.50957 + 3.50957i 0.127558 + 0.127558i 0.768003 0.640446i \(-0.221250\pi\)
−0.640446 + 0.768003i \(0.721250\pi\)
\(758\) −6.61607 6.61607i −0.240306 0.240306i
\(759\) −10.5281 12.9296i −0.382146 0.469314i
\(760\) 5.05459 + 21.0326i 0.183349 + 0.762932i
\(761\) 26.9220i 0.975922i 0.872865 + 0.487961i \(0.162259\pi\)
−0.872865 + 0.487961i \(0.837741\pi\)
\(762\) 1.48598 14.5151i 0.0538312 0.525826i
\(763\) 0 0
\(764\) −0.984264 −0.0356094
\(765\) −0.985834 30.9796i −0.0356429 1.12007i
\(766\) −12.3026 −0.444512
\(767\) −0.342701 + 0.342701i −0.0123742 + 0.0123742i
\(768\) −0.00317918 + 0.0310544i −0.000114719 + 0.00112058i
\(769\) 31.3935i 1.13208i −0.824378 0.566040i \(-0.808475\pi\)
0.824378 0.566040i \(-0.191525\pi\)
\(770\) 0 0
\(771\) 9.01519 + 11.0716i 0.324674 + 0.398733i
\(772\) 12.4052 + 12.4052i 0.446473 + 0.446473i
\(773\) 13.3925 + 13.3925i 0.481693 + 0.481693i 0.905672 0.423979i \(-0.139367\pi\)
−0.423979 + 0.905672i \(0.639367\pi\)
\(774\) −0.320291 + 1.54792i −0.0115126 + 0.0556387i
\(775\) −12.0098 23.5437i −0.431404 0.845716i
\(776\) 4.87606i 0.175040i
\(777\) 0 0
\(778\) 6.36887 6.36887i 0.228335 0.228335i
\(779\) 60.7006 2.17482
\(780\) 2.76336 + 20.5248i 0.0989440 + 0.734905i
\(781\) −36.2985 −1.29886
\(782\) 5.77865 5.77865i 0.206644 0.206644i
\(783\) 4.49210 14.2162i 0.160535 0.508044i
\(784\) 0 0
\(785\) 19.4596 4.67657i 0.694542 0.166914i
\(786\) 6.55437 5.33700i 0.233787 0.190364i
\(787\) −22.4712 22.4712i −0.801011 0.801011i 0.182243 0.983254i \(-0.441664\pi\)
−0.983254 + 0.182243i \(0.941664\pi\)
\(788\) −17.8557 17.8557i −0.636085 0.636085i
\(789\) 0.118698 0.0966515i 0.00422575 0.00344088i
\(790\) −4.15858 + 0.999399i −0.147956 + 0.0355570i
\(791\) 0 0
\(792\) 12.3569 8.11990i 0.439084 0.288528i
\(793\) 10.1569 10.1569i 0.360681 0.360681i
\(794\) 7.57440 0.268805
\(795\) 3.24181 + 24.0785i 0.114975 + 0.853975i
\(796\) 20.5372 0.727922
\(797\) 7.83907 7.83907i 0.277674 0.277674i −0.554506 0.832180i \(-0.687093\pi\)
0.832180 + 0.554506i \(0.187093\pi\)
\(798\) 0 0
\(799\) 50.0556i 1.77084i
\(800\) 23.6483 + 7.67178i 0.836094 + 0.271238i
\(801\) −11.6079 2.40187i −0.410144 0.0848660i
\(802\) 11.9471 + 11.9471i 0.421866 + 0.421866i
\(803\) −11.1259 11.1259i −0.392623 0.392623i
\(804\) 14.7233 + 18.0817i 0.519252 + 0.637694i
\(805\) 0 0
\(806\) 7.88640i 0.277787i
\(807\) −5.23366 + 51.1227i −0.184233 + 1.79960i
\(808\) −4.90684 + 4.90684i −0.172622 + 0.172622i
\(809\) 6.27026 0.220451 0.110225 0.993907i \(-0.464843\pi\)
0.110225 + 0.993907i \(0.464843\pi\)
\(810\) −1.69274 + 9.73119i −0.0594769 + 0.341919i
\(811\) 8.90138 0.312570 0.156285 0.987712i \(-0.450048\pi\)
0.156285 + 0.987712i \(0.450048\pi\)
\(812\) 0 0
\(813\) 3.99320 39.0058i 0.140048 1.36799i
\(814\) 3.97332i 0.139265i
\(815\) −4.77079 19.8517i −0.167114 0.695373i
\(816\) −13.2024 16.2138i −0.462175 0.567598i
\(817\) −3.98022 3.98022i −0.139250 0.139250i
\(818\) 2.63502 + 2.63502i 0.0921313 + 0.0921313i
\(819\) 0 0
\(820\) 23.7842 38.8324i 0.830581 1.35608i
\(821\) 16.8442i 0.587867i 0.955826 + 0.293934i \(0.0949645\pi\)
−0.955826 + 0.293934i \(0.905036\pi\)
\(822\) 16.3425 + 1.67305i 0.570008 + 0.0583543i
\(823\) 32.4880 32.4880i 1.13246 1.13246i 0.142695 0.989767i \(-0.454423\pi\)
0.989767 0.142695i \(-0.0455767\pi\)
\(824\) 23.1099 0.805072
\(825\) 8.35897 + 21.5718i 0.291022 + 0.751034i
\(826\) 0 0
\(827\) 4.87454 4.87454i 0.169504 0.169504i −0.617257 0.786762i \(-0.711756\pi\)
0.786762 + 0.617257i \(0.211756\pi\)
\(828\) 15.8932 10.4437i 0.552329 0.362943i
\(829\) 9.82522i 0.341244i −0.985337 0.170622i \(-0.945422\pi\)
0.985337 0.170622i \(-0.0545777\pi\)
\(830\) −3.27323 + 5.34419i −0.113616 + 0.185499i
\(831\) −7.99924 + 6.51350i −0.277490 + 0.225951i
\(832\) 5.98598 + 5.98598i 0.207527 + 0.207527i
\(833\) 0 0
\(834\) −11.0703 + 9.01414i −0.383332 + 0.312134i
\(835\) −1.16754 4.85822i −0.0404043 0.168126i
\(836\) 24.6394i 0.852171i
\(837\) 8.27579 26.1904i 0.286053 0.905272i
\(838\) −2.15397 + 2.15397i −0.0744075 + 0.0744075i
\(839\) 13.0314 0.449893 0.224947 0.974371i \(-0.427779\pi\)
0.224947 + 0.974371i \(0.427779\pi\)
\(840\) 0 0
\(841\) −20.7675 −0.716120
\(842\) 8.72279 8.72279i 0.300607 0.300607i
\(843\) 37.9231 + 3.88235i 1.30614 + 0.133715i
\(844\) 1.36701i 0.0470543i
\(845\) −7.16925 4.39105i −0.246630 0.151057i
\(846\) 3.23214 15.6204i 0.111123 0.537041i
\(847\) 0 0
\(848\) 11.5892 + 11.5892i 0.397976 + 0.397976i
\(849\) −14.8463 18.2327i −0.509523 0.625745i
\(850\) −10.1007 + 5.15240i −0.346450 + 0.176726i
\(851\) 10.9207i 0.374355i
\(852\) 4.21634 41.1855i 0.144450 1.41099i
\(853\) 36.7177 36.7177i 1.25719 1.25719i 0.304761 0.952429i \(-0.401424\pi\)
0.952429 0.304761i \(-0.0985765\pi\)
\(854\) 0 0
\(855\) −25.6496 24.0675i −0.877197 0.823090i
\(856\) 1.85358 0.0633542
\(857\) −25.5867 + 25.5867i −0.874024 + 0.874024i −0.992908 0.118884i \(-0.962068\pi\)
0.118884 + 0.992908i \(0.462068\pi\)
\(858\) 0.703032 6.86725i 0.0240011 0.234444i
\(859\) 15.7133i 0.536132i 0.963401 + 0.268066i \(0.0863845\pi\)
−0.963401 + 0.268066i \(0.913615\pi\)
\(860\) −4.10585 + 0.986727i −0.140008 + 0.0336471i
\(861\) 0 0
\(862\) −2.92644 2.92644i −0.0996751 0.0996751i
\(863\) −11.1088 11.1088i −0.378147 0.378147i 0.492286 0.870433i \(-0.336161\pi\)
−0.870433 + 0.492286i \(0.836161\pi\)
\(864\) 11.9159 + 22.9251i 0.405386 + 0.779927i
\(865\) −5.22613 + 1.25595i −0.177694 + 0.0427037i
\(866\) 13.0685i 0.444084i
\(867\) 7.49366 + 0.767159i 0.254498 + 0.0260541i
\(868\) 0 0
\(869\) −10.4106 −0.353155
\(870\) −5.40534 + 0.727748i −0.183258 + 0.0246730i
\(871\) 23.2637 0.788260
\(872\) −24.8064 + 24.8064i −0.840050 + 0.840050i
\(873\) −4.35405 6.62602i −0.147362 0.224257i
\(874\) 9.27375i 0.313689i
\(875\) 0 0
\(876\) 13.9161 11.3314i 0.470182 0.382853i
\(877\) −20.7301 20.7301i −0.700006 0.700006i 0.264405 0.964412i \(-0.414824\pi\)
−0.964412 + 0.264405i \(0.914824\pi\)
\(878\) 1.69456 + 1.69456i 0.0571886 + 0.0571886i
\(879\) 6.76884 5.51163i 0.228307 0.185903i
\(880\) 13.3086 + 8.15128i 0.448631 + 0.274780i
\(881\) 26.4774i 0.892045i −0.895022 0.446023i \(-0.852840\pi\)
0.895022 0.446023i \(-0.147160\pi\)
\(882\) 0 0
\(883\) −26.9720 + 26.9720i −0.907681 + 0.907681i −0.996085 0.0884037i \(-0.971823\pi\)
0.0884037 + 0.996085i \(0.471823\pi\)
\(884\) −24.7072 −0.830993
\(885\) −0.490993 0.374471i −0.0165045 0.0125877i
\(886\) −16.5864 −0.557231
\(887\) −1.34997 + 1.34997i −0.0453275 + 0.0453275i −0.729407 0.684080i \(-0.760204\pi\)
0.684080 + 0.729407i \(0.260204\pi\)
\(888\) 9.63389 + 0.986265i 0.323292 + 0.0330969i
\(889\) 0 0
\(890\) 1.01329 + 4.21637i 0.0339655 + 0.141333i
\(891\) −9.54105 + 22.0681i −0.319637 + 0.739309i
\(892\) 5.87209 + 5.87209i 0.196612 + 0.196612i
\(893\) 40.1654 + 40.1654i 1.34408 + 1.34408i
\(894\) 4.99871 + 6.13892i 0.167182 + 0.205316i
\(895\) 9.86155 16.1009i 0.329635 0.538194i
\(896\) 0 0
\(897\) 1.93228 18.8746i 0.0645169 0.630205i
\(898\) 8.21601 8.21601i 0.274172 0.274172i
\(899\) 15.1668 0.505840
\(900\) −25.4470 + 6.97863i −0.848235 + 0.232621i
\(901\) −28.9850 −0.965631
\(902\) −10.7330 + 10.7330i −0.357368 + 0.357368i
\(903\) 0 0
\(904\) 14.8499i 0.493901i
\(905\) 6.44079 10.5158i 0.214099 0.349558i
\(906\) 10.9430 + 13.4391i 0.363558 + 0.446486i
\(907\) −28.6846 28.6846i −0.952456 0.952456i 0.0464640 0.998920i \(-0.485205\pi\)
−0.998920 + 0.0464640i \(0.985205\pi\)
\(908\) −0.426278 0.426278i −0.0141465 0.0141465i
\(909\) 2.28631 11.0494i 0.0758322 0.366485i
\(910\) 0 0
\(911\) 34.0874i 1.12937i 0.825307 + 0.564684i \(0.191002\pi\)
−0.825307 + 0.564684i \(0.808998\pi\)
\(912\) −23.6040 2.41645i −0.781607 0.0800166i
\(913\) −10.7864 + 10.7864i −0.356978 + 0.356978i
\(914\) 7.12016 0.235514
\(915\) 14.5519 + 11.0984i 0.481070 + 0.366903i
\(916\) −23.7115 −0.783450
\(917\) 0 0
\(918\) −11.2361 3.55046i −0.370848 0.117183i
\(919\) 2.19661i 0.0724593i 0.999343 + 0.0362297i \(0.0115348\pi\)
−0.999343 + 0.0362297i \(0.988465\pi\)
\(920\) −12.6779 7.76503i −0.417979 0.256006i
\(921\) 19.8958 16.2005i 0.655589 0.533823i
\(922\) −8.09166 8.09166i −0.266485 0.266485i
\(923\) −29.2066 29.2066i −0.961348 0.961348i
\(924\) 0 0
\(925\) −4.67569 + 14.4129i −0.153736 + 0.473892i
\(926\) 11.8389i 0.389049i
\(927\) −31.4038 + 20.6359i −1.03144 + 0.677771i
\(928\) −10.0881 + 10.0881i −0.331159 + 0.331159i
\(929\) −51.2981 −1.68304 −0.841518 0.540230i \(-0.818337\pi\)
−0.841518 + 0.540230i \(0.818337\pi\)
\(930\) −9.95824 + 1.34073i −0.326543 + 0.0439642i
\(931\) 0 0
\(932\) −2.09792 + 2.09792i −0.0687197 + 0.0687197i
\(933\) −35.2094 3.60455i −1.15271 0.118008i
\(934\) 5.55717i 0.181836i
\(935\) −26.8359 + 6.44925i −0.877627 + 0.210913i
\(936\) 16.4761 + 3.40920i 0.538539 + 0.111433i
\(937\) −16.4279 16.4279i −0.536675 0.536675i 0.385876 0.922551i \(-0.373899\pi\)
−0.922551 + 0.385876i \(0.873899\pi\)
\(938\) 0 0
\(939\) 25.4933 + 31.3083i 0.831942 + 1.02171i
\(940\) 41.4332 9.95730i 1.35140 0.324771i
\(941\) 57.2870i 1.86750i −0.357922 0.933752i \(-0.616515\pi\)
0.357922 0.933752i \(-0.383485\pi\)
\(942\) 0.774891 7.56918i 0.0252473 0.246617i
\(943\) −29.4995 + 29.4995i −0.960635 + 0.960635i
\(944\) −0.416557 −0.0135578
\(945\) 0 0
\(946\) 1.40755 0.0457634
\(947\) −35.8300 + 35.8300i −1.16432 + 1.16432i −0.180799 + 0.983520i \(0.557868\pi\)
−0.983520 + 0.180799i \(0.942132\pi\)
\(948\) 1.20927 11.8122i 0.0392752 0.383642i
\(949\) 17.9043i 0.581197i
\(950\) −3.97056 + 12.2393i −0.128822 + 0.397095i
\(951\) −35.5017 43.5997i −1.15122 1.41382i
\(952\) 0 0
\(953\) 35.4764 + 35.4764i 1.14919 + 1.14919i 0.986712 + 0.162481i \(0.0519496\pi\)
0.162481 + 0.986712i \(0.448050\pi\)
\(954\) 9.04510 + 1.87159i 0.292846 + 0.0605950i
\(955\) −1.06692 0.653471i −0.0345247 0.0211458i
\(956\) 9.06511i 0.293187i
\(957\) −13.2068 1.35204i −0.426914 0.0437051i
\(958\) −6.98270 + 6.98270i −0.225601 + 0.225601i
\(959\) 0 0
\(960\) −6.54091 + 8.57620i −0.211107 + 0.276796i
\(961\) −3.05833 −0.0986558
\(962\) 3.19703 3.19703i 0.103076 0.103076i
\(963\) −2.51881 + 1.65515i −0.0811677 + 0.0533364i
\(964\) 26.2413i 0.845175i
\(965\) 5.21090 + 21.6830i 0.167745 + 0.698000i
\(966\) 0 0
\(967\) −21.0372 21.0372i −0.676511 0.676511i 0.282698 0.959209i \(-0.408771\pi\)
−0.959209 + 0.282698i \(0.908771\pi\)
\(968\) 5.04075 + 5.04075i 0.162016 + 0.162016i
\(969\) 32.5390 26.4954i 1.04530 0.851154i
\(970\) −1.51493 + 2.47341i −0.0486413 + 0.0794164i
\(971\) 23.4561i 0.752742i 0.926469 + 0.376371i \(0.122828\pi\)
−0.926469 + 0.376371i \(0.877172\pi\)
\(972\) −23.9309 13.3890i −0.767585 0.429451i
\(973\) 0 0
\(974\) 5.39987 0.173023
\(975\) −10.6314 + 24.0830i −0.340476 + 0.771273i
\(976\) 12.3458 0.395179
\(977\) −9.03422 + 9.03422i −0.289030 + 0.289030i −0.836697 0.547666i \(-0.815516\pi\)
0.547666 + 0.836697i \(0.315516\pi\)
\(978\) −7.72169 0.790504i −0.246913 0.0252775i
\(979\) 10.5552i 0.337347i
\(980\) 0 0
\(981\) 11.5584 55.8598i 0.369031 1.78347i
\(982\) −0.796647 0.796647i −0.0254220 0.0254220i
\(983\) −3.13374 3.13374i −0.0999509 0.0999509i 0.655363 0.755314i \(-0.272516\pi\)
−0.755314 + 0.655363i \(0.772516\pi\)
\(984\) −23.3594 28.6877i −0.744672 0.914532i
\(985\) −7.50044 31.2099i −0.238984 0.994432i
\(986\) 6.50680i 0.207219i
\(987\) 0 0
\(988\) −19.8254 + 19.8254i −0.630731 + 0.630731i
\(989\) 3.86864 0.123016
\(990\) 8.79086 0.279743i 0.279392 0.00889082i
\(991\) −29.2283 −0.928467 −0.464233 0.885713i \(-0.653670\pi\)
−0.464233 + 0.885713i \(0.653670\pi\)
\(992\) −18.5853 + 18.5853i −0.590085 + 0.590085i
\(993\) 0.390649 3.81588i 0.0123969 0.121093i
\(994\) 0 0
\(995\) 22.2618 + 13.6350i 0.705748 + 0.432260i
\(996\) −10.9857 13.4915i −0.348095 0.427496i
\(997\) 4.57510 + 4.57510i 0.144895 + 0.144895i 0.775833 0.630938i \(-0.217330\pi\)
−0.630938 + 0.775833i \(0.717330\pi\)
\(998\) −4.27793 4.27793i −0.135415 0.135415i
\(999\) −13.9721 + 7.26231i −0.442057 + 0.229769i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.j.h.197.8 24
3.2 odd 2 inner 735.2.j.h.197.5 24
5.3 odd 4 inner 735.2.j.h.638.5 24
7.2 even 3 735.2.y.g.557.5 48
7.3 odd 6 735.2.y.j.422.8 48
7.4 even 3 735.2.y.g.422.8 48
7.5 odd 6 735.2.y.j.557.5 48
7.6 odd 2 105.2.j.a.92.8 yes 24
15.8 even 4 inner 735.2.j.h.638.8 24
21.2 odd 6 735.2.y.g.557.8 48
21.5 even 6 735.2.y.j.557.8 48
21.11 odd 6 735.2.y.g.422.5 48
21.17 even 6 735.2.y.j.422.5 48
21.20 even 2 105.2.j.a.92.5 yes 24
35.3 even 12 735.2.y.j.128.8 48
35.13 even 4 105.2.j.a.8.5 24
35.18 odd 12 735.2.y.g.128.8 48
35.23 odd 12 735.2.y.g.263.5 48
35.27 even 4 525.2.j.b.218.8 24
35.33 even 12 735.2.y.j.263.5 48
35.34 odd 2 525.2.j.b.407.5 24
105.23 even 12 735.2.y.g.263.8 48
105.38 odd 12 735.2.y.j.128.5 48
105.53 even 12 735.2.y.g.128.5 48
105.62 odd 4 525.2.j.b.218.5 24
105.68 odd 12 735.2.y.j.263.8 48
105.83 odd 4 105.2.j.a.8.8 yes 24
105.104 even 2 525.2.j.b.407.8 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.j.a.8.5 24 35.13 even 4
105.2.j.a.8.8 yes 24 105.83 odd 4
105.2.j.a.92.5 yes 24 21.20 even 2
105.2.j.a.92.8 yes 24 7.6 odd 2
525.2.j.b.218.5 24 105.62 odd 4
525.2.j.b.218.8 24 35.27 even 4
525.2.j.b.407.5 24 35.34 odd 2
525.2.j.b.407.8 24 105.104 even 2
735.2.j.h.197.5 24 3.2 odd 2 inner
735.2.j.h.197.8 24 1.1 even 1 trivial
735.2.j.h.638.5 24 5.3 odd 4 inner
735.2.j.h.638.8 24 15.8 even 4 inner
735.2.y.g.128.5 48 105.53 even 12
735.2.y.g.128.8 48 35.18 odd 12
735.2.y.g.263.5 48 35.23 odd 12
735.2.y.g.263.8 48 105.23 even 12
735.2.y.g.422.5 48 21.11 odd 6
735.2.y.g.422.8 48 7.4 even 3
735.2.y.g.557.5 48 7.2 even 3
735.2.y.g.557.8 48 21.2 odd 6
735.2.y.j.128.5 48 105.38 odd 12
735.2.y.j.128.8 48 35.3 even 12
735.2.y.j.263.5 48 35.33 even 12
735.2.y.j.263.8 48 105.68 odd 12
735.2.y.j.422.5 48 21.17 even 6
735.2.y.j.422.8 48 7.3 odd 6
735.2.y.j.557.5 48 7.5 odd 6
735.2.y.j.557.8 48 21.5 even 6