Properties

Label 735.2.p.g.509.24
Level $735$
Weight $2$
Character 735.509
Analytic conductor $5.869$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 509.24
Character \(\chi\) \(=\) 735.509
Dual form 735.2.p.g.374.24

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.451669 - 0.782314i) q^{2} +(1.02385 + 1.39704i) q^{3} +(0.591990 + 1.02536i) q^{4} +(0.0199888 - 2.23598i) q^{5} +(1.55537 - 0.169975i) q^{6} +2.87621 q^{8} +(-0.903447 + 2.86073i) q^{9} +(-1.74021 - 1.02556i) q^{10} +(-3.51985 + 2.03219i) q^{11} +(-0.826354 + 1.87685i) q^{12} +2.88298 q^{13} +(3.14422 - 2.26139i) q^{15} +(0.115117 - 0.199389i) q^{16} +(5.77521 - 3.33432i) q^{17} +(1.82993 + 1.99888i) q^{18} +(4.94242 + 2.85351i) q^{19} +(2.30451 - 1.30318i) q^{20} +3.67151i q^{22} +(0.815927 - 1.41323i) q^{23} +(2.94482 + 4.01819i) q^{24} +(-4.99920 - 0.0893892i) q^{25} +(1.30215 - 2.25540i) q^{26} +(-4.92156 + 1.66682i) q^{27} +5.89707i q^{29} +(-0.348970 - 3.48117i) q^{30} +(1.62006 - 0.935342i) q^{31} +(2.77222 + 4.80163i) q^{32} +(-6.44286 - 2.83671i) q^{33} -6.02404i q^{34} +(-3.46810 + 0.767168i) q^{36} +(-1.38541 - 0.799864i) q^{37} +(4.46468 - 2.57768i) q^{38} +(2.95175 + 4.02764i) q^{39} +(0.0574921 - 6.43115i) q^{40} -9.12244 q^{41} -7.53359i q^{43} +(-4.16743 - 2.40607i) q^{44} +(6.37848 + 2.07727i) q^{45} +(-0.737059 - 1.27662i) q^{46} +(-5.98810 - 3.45723i) q^{47} +(0.396417 - 0.0433215i) q^{48} +(-2.32792 + 3.87057i) q^{50} +(10.5712 + 4.65435i) q^{51} +(1.70670 + 2.95608i) q^{52} +(0.759325 + 1.31519i) q^{53} +(-0.918941 + 4.60305i) q^{54} +(4.47357 + 7.91093i) q^{55} +(1.07385 + 9.82633i) q^{57} +(4.61336 + 2.66353i) q^{58} +(-0.495925 - 0.858968i) q^{59} +(4.18008 + 1.88523i) q^{60} +(-5.33892 - 3.08243i) q^{61} -1.68986i q^{62} +5.46898 q^{64} +(0.0576274 - 6.44628i) q^{65} +(-5.12924 + 3.75908i) q^{66} +(8.73843 - 5.04513i) q^{67} +(6.83773 + 3.94776i) q^{68} +(2.80973 - 0.307054i) q^{69} +4.81213i q^{71} +(-2.59850 + 8.22807i) q^{72} +(0.280309 + 0.485510i) q^{73} +(-1.25149 + 0.722548i) q^{74} +(-4.99357 - 7.07561i) q^{75} +6.75699i q^{76} +(4.48410 - 0.490034i) q^{78} +(-1.89924 + 3.28958i) q^{79} +(-0.443528 - 0.261385i) q^{80} +(-7.36757 - 5.16904i) q^{81} +(-4.12033 + 7.13661i) q^{82} -4.00431i q^{83} +(-7.34003 - 12.9799i) q^{85} +(-5.89364 - 3.40269i) q^{86} +(-8.23845 + 6.03774i) q^{87} +(-10.1238 + 5.84500i) q^{88} +(5.20547 - 9.01615i) q^{89} +(4.50604 - 4.05173i) q^{90} +1.93208 q^{92} +(2.96541 + 1.30564i) q^{93} +(-5.40928 + 3.12305i) q^{94} +(6.47917 - 10.9941i) q^{95} +(-3.86972 + 8.78907i) q^{96} -14.5370 q^{97} +(-2.63354 - 11.9053i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 16 q^{4} - 40 q^{9} + 32 q^{15} + 16 q^{16} - 64 q^{25} - 56 q^{30} - 32 q^{36} + 56 q^{39} + 32 q^{46} + 40 q^{51} - 8 q^{60} - 352 q^{64} - 48 q^{79} + 40 q^{81} - 128 q^{85} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.451669 0.782314i 0.319378 0.553180i −0.660980 0.750403i \(-0.729859\pi\)
0.980358 + 0.197224i \(0.0631926\pi\)
\(3\) 1.02385 + 1.39704i 0.591122 + 0.806582i
\(4\) 0.591990 + 1.02536i 0.295995 + 0.512678i
\(5\) 0.0199888 2.23598i 0.00893927 0.999960i
\(6\) 1.55537 0.169975i 0.634976 0.0693919i
\(7\) 0 0
\(8\) 2.87621 1.01689
\(9\) −0.903447 + 2.86073i −0.301149 + 0.953577i
\(10\) −1.74021 1.02556i −0.550303 0.324311i
\(11\) −3.51985 + 2.03219i −1.06127 + 0.612727i −0.925785 0.378051i \(-0.876594\pi\)
−0.135490 + 0.990779i \(0.543261\pi\)
\(12\) −0.826354 + 1.87685i −0.238548 + 0.541800i
\(13\) 2.88298 0.799595 0.399798 0.916603i \(-0.369080\pi\)
0.399798 + 0.916603i \(0.369080\pi\)
\(14\) 0 0
\(15\) 3.14422 2.26139i 0.811834 0.583888i
\(16\) 0.115117 0.199389i 0.0287793 0.0498472i
\(17\) 5.77521 3.33432i 1.40069 0.808691i 0.406230 0.913771i \(-0.366843\pi\)
0.994464 + 0.105080i \(0.0335097\pi\)
\(18\) 1.82993 + 1.99888i 0.431319 + 0.471141i
\(19\) 4.94242 + 2.85351i 1.13387 + 0.654639i 0.944905 0.327345i \(-0.106154\pi\)
0.188964 + 0.981984i \(0.439487\pi\)
\(20\) 2.30451 1.30318i 0.515304 0.291400i
\(21\) 0 0
\(22\) 3.67151i 0.782768i
\(23\) 0.815927 1.41323i 0.170133 0.294678i −0.768333 0.640050i \(-0.778914\pi\)
0.938466 + 0.345371i \(0.112247\pi\)
\(24\) 2.94482 + 4.01819i 0.601109 + 0.820209i
\(25\) −4.99920 0.0893892i −0.999840 0.0178778i
\(26\) 1.30215 2.25540i 0.255373 0.442320i
\(27\) −4.92156 + 1.66682i −0.947154 + 0.320779i
\(28\) 0 0
\(29\) 5.89707i 1.09506i 0.836786 + 0.547530i \(0.184432\pi\)
−0.836786 + 0.547530i \(0.815568\pi\)
\(30\) −0.348970 3.48117i −0.0637129 0.635571i
\(31\) 1.62006 0.935342i 0.290971 0.167992i −0.347409 0.937714i \(-0.612938\pi\)
0.638380 + 0.769722i \(0.279605\pi\)
\(32\) 2.77222 + 4.80163i 0.490064 + 0.848816i
\(33\) −6.44286 2.83671i −1.12156 0.493808i
\(34\) 6.02404i 1.03311i
\(35\) 0 0
\(36\) −3.46810 + 0.767168i −0.578017 + 0.127861i
\(37\) −1.38541 0.799864i −0.227759 0.131497i 0.381779 0.924254i \(-0.375312\pi\)
−0.609538 + 0.792757i \(0.708645\pi\)
\(38\) 4.46468 2.57768i 0.724266 0.418155i
\(39\) 2.95175 + 4.02764i 0.472658 + 0.644939i
\(40\) 0.0574921 6.43115i 0.00909030 1.01685i
\(41\) −9.12244 −1.42469 −0.712343 0.701832i \(-0.752366\pi\)
−0.712343 + 0.701832i \(0.752366\pi\)
\(42\) 0 0
\(43\) 7.53359i 1.14886i −0.818553 0.574431i \(-0.805223\pi\)
0.818553 0.574431i \(-0.194777\pi\)
\(44\) −4.16743 2.40607i −0.628264 0.362728i
\(45\) 6.37848 + 2.07727i 0.950847 + 0.309661i
\(46\) −0.737059 1.27662i −0.108673 0.188228i
\(47\) −5.98810 3.45723i −0.873454 0.504289i −0.00495956 0.999988i \(-0.501579\pi\)
−0.868495 + 0.495699i \(0.834912\pi\)
\(48\) 0.396417 0.0433215i 0.0572179 0.00625292i
\(49\) 0 0
\(50\) −2.32792 + 3.87057i −0.329217 + 0.547381i
\(51\) 10.5712 + 4.65435i 1.48026 + 0.651739i
\(52\) 1.70670 + 2.95608i 0.236676 + 0.409935i
\(53\) 0.759325 + 1.31519i 0.104301 + 0.180655i 0.913453 0.406945i \(-0.133406\pi\)
−0.809151 + 0.587600i \(0.800073\pi\)
\(54\) −0.918941 + 4.60305i −0.125052 + 0.626396i
\(55\) 4.47357 + 7.91093i 0.603216 + 1.06671i
\(56\) 0 0
\(57\) 1.07385 + 9.82633i 0.142235 + 1.30153i
\(58\) 4.61336 + 2.66353i 0.605764 + 0.349738i
\(59\) −0.495925 0.858968i −0.0645640 0.111828i 0.831937 0.554871i \(-0.187232\pi\)
−0.896500 + 0.443043i \(0.853899\pi\)
\(60\) 4.18008 + 1.88523i 0.539645 + 0.243382i
\(61\) −5.33892 3.08243i −0.683578 0.394664i 0.117624 0.993058i \(-0.462472\pi\)
−0.801202 + 0.598394i \(0.795806\pi\)
\(62\) 1.68986i 0.214612i
\(63\) 0 0
\(64\) 5.46898 0.683622
\(65\) 0.0576274 6.44628i 0.00714780 0.799563i
\(66\) −5.12924 + 3.75908i −0.631366 + 0.462711i
\(67\) 8.73843 5.04513i 1.06757 0.616361i 0.140053 0.990144i \(-0.455273\pi\)
0.927516 + 0.373783i \(0.121939\pi\)
\(68\) 6.83773 + 3.94776i 0.829196 + 0.478737i
\(69\) 2.80973 0.307054i 0.338251 0.0369650i
\(70\) 0 0
\(71\) 4.81213i 0.571095i 0.958365 + 0.285548i \(0.0921755\pi\)
−0.958365 + 0.285548i \(0.907825\pi\)
\(72\) −2.59850 + 8.22807i −0.306237 + 0.969687i
\(73\) 0.280309 + 0.485510i 0.0328077 + 0.0568246i 0.881963 0.471319i \(-0.156222\pi\)
−0.849155 + 0.528143i \(0.822888\pi\)
\(74\) −1.25149 + 0.722548i −0.145483 + 0.0839946i
\(75\) −4.99357 7.07561i −0.576608 0.817021i
\(76\) 6.75699i 0.775079i
\(77\) 0 0
\(78\) 4.48410 0.490034i 0.507724 0.0554854i
\(79\) −1.89924 + 3.28958i −0.213681 + 0.370106i −0.952864 0.303399i \(-0.901879\pi\)
0.739183 + 0.673505i \(0.235212\pi\)
\(80\) −0.443528 0.261385i −0.0495879 0.0292237i
\(81\) −7.36757 5.16904i −0.818619 0.574338i
\(82\) −4.12033 + 7.13661i −0.455014 + 0.788107i
\(83\) 4.00431i 0.439530i −0.975553 0.219765i \(-0.929471\pi\)
0.975553 0.219765i \(-0.0705291\pi\)
\(84\) 0 0
\(85\) −7.34003 12.9799i −0.796138 1.40787i
\(86\) −5.89364 3.40269i −0.635527 0.366922i
\(87\) −8.23845 + 6.03774i −0.883255 + 0.647314i
\(88\) −10.1238 + 5.84500i −1.07920 + 0.623079i
\(89\) 5.20547 9.01615i 0.551779 0.955710i −0.446367 0.894850i \(-0.647282\pi\)
0.998146 0.0608597i \(-0.0193842\pi\)
\(90\) 4.50604 4.05173i 0.474978 0.427090i
\(91\) 0 0
\(92\) 1.93208 0.201433
\(93\) 2.96541 + 1.30564i 0.307499 + 0.135388i
\(94\) −5.40928 + 3.12305i −0.557925 + 0.322118i
\(95\) 6.47917 10.9941i 0.664749 1.12797i
\(96\) −3.86972 + 8.78907i −0.394952 + 0.897031i
\(97\) −14.5370 −1.47601 −0.738006 0.674795i \(-0.764232\pi\)
−0.738006 + 0.674795i \(0.764232\pi\)
\(98\) 0 0
\(99\) −2.63354 11.9053i −0.264681 1.19653i
\(100\) −2.86782 5.17888i −0.286782 0.517888i
\(101\) −6.89867 11.9488i −0.686443 1.18895i −0.972981 0.230886i \(-0.925838\pi\)
0.286538 0.958069i \(-0.407496\pi\)
\(102\) 8.41583 6.16773i 0.833291 0.610697i
\(103\) 4.15679 7.19978i 0.409581 0.709415i −0.585262 0.810844i \(-0.699008\pi\)
0.994843 + 0.101429i \(0.0323416\pi\)
\(104\) 8.29206 0.813104
\(105\) 0 0
\(106\) 1.37186 0.133246
\(107\) 5.36854 9.29858i 0.518996 0.898927i −0.480760 0.876852i \(-0.659639\pi\)
0.999756 0.0220754i \(-0.00702739\pi\)
\(108\) −4.62259 4.05961i −0.444809 0.390636i
\(109\) −0.268338 0.464774i −0.0257021 0.0445173i 0.852888 0.522093i \(-0.174849\pi\)
−0.878590 + 0.477576i \(0.841515\pi\)
\(110\) 8.20941 + 0.0733891i 0.782736 + 0.00699737i
\(111\) −0.301010 2.75441i −0.0285706 0.261437i
\(112\) 0 0
\(113\) −12.1028 −1.13854 −0.569270 0.822151i \(-0.692774\pi\)
−0.569270 + 0.822151i \(0.692774\pi\)
\(114\) 8.17230 + 3.59817i 0.765406 + 0.336999i
\(115\) −3.14364 1.85264i −0.293146 0.172760i
\(116\) −6.04660 + 3.49101i −0.561413 + 0.324132i
\(117\) −2.60462 + 8.24743i −0.240797 + 0.762476i
\(118\) −0.895977 −0.0824813
\(119\) 0 0
\(120\) 9.04344 6.50424i 0.825549 0.593753i
\(121\) 2.75956 4.77971i 0.250870 0.434519i
\(122\) −4.82285 + 2.78447i −0.436640 + 0.252094i
\(123\) −9.34004 12.7444i −0.842163 1.14913i
\(124\) 1.91812 + 1.10743i 0.172252 + 0.0994497i
\(125\) −0.299800 + 11.1763i −0.0268150 + 0.999640i
\(126\) 0 0
\(127\) 22.2883i 1.97777i 0.148697 + 0.988883i \(0.452492\pi\)
−0.148697 + 0.988883i \(0.547508\pi\)
\(128\) −3.07427 + 5.32480i −0.271730 + 0.470650i
\(129\) 10.5247 7.71330i 0.926651 0.679118i
\(130\) −5.01699 2.95667i −0.440019 0.259317i
\(131\) 0.0570895 0.0988819i 0.00498793 0.00863935i −0.863521 0.504313i \(-0.831746\pi\)
0.868509 + 0.495674i \(0.165079\pi\)
\(132\) −0.905465 8.28553i −0.0788106 0.721163i
\(133\) 0 0
\(134\) 9.11493i 0.787410i
\(135\) 3.62859 + 11.0378i 0.312300 + 0.949984i
\(136\) 16.6107 9.59021i 1.42436 0.822353i
\(137\) −6.27188 10.8632i −0.535842 0.928106i −0.999122 0.0418942i \(-0.986661\pi\)
0.463280 0.886212i \(-0.346673\pi\)
\(138\) 1.02885 2.33678i 0.0875819 0.198920i
\(139\) 2.37640i 0.201564i 0.994909 + 0.100782i \(0.0321344\pi\)
−0.994909 + 0.100782i \(0.967866\pi\)
\(140\) 0 0
\(141\) −1.30104 11.9053i −0.109568 1.00261i
\(142\) 3.76460 + 2.17349i 0.315918 + 0.182395i
\(143\) −10.1477 + 5.85876i −0.848590 + 0.489934i
\(144\) 0.466395 + 0.509456i 0.0388663 + 0.0424547i
\(145\) 13.1857 + 0.117876i 1.09502 + 0.00978903i
\(146\) 0.506428 0.0419123
\(147\) 0 0
\(148\) 1.89405i 0.155690i
\(149\) −14.2621 8.23423i −1.16840 0.674575i −0.215096 0.976593i \(-0.569006\pi\)
−0.953302 + 0.302018i \(0.902340\pi\)
\(150\) −7.79079 + 0.710705i −0.636116 + 0.0580288i
\(151\) 6.57364 + 11.3859i 0.534955 + 0.926569i 0.999166 + 0.0408444i \(0.0130048\pi\)
−0.464211 + 0.885725i \(0.653662\pi\)
\(152\) 14.2154 + 8.20729i 1.15302 + 0.665699i
\(153\) 4.32099 + 19.5337i 0.349332 + 1.57921i
\(154\) 0 0
\(155\) −2.05902 3.64111i −0.165385 0.292461i
\(156\) −2.38236 + 5.41092i −0.190742 + 0.433220i
\(157\) 1.59406 + 2.76100i 0.127220 + 0.220352i 0.922599 0.385761i \(-0.126061\pi\)
−0.795378 + 0.606113i \(0.792728\pi\)
\(158\) 1.71565 + 2.97160i 0.136490 + 0.236408i
\(159\) −1.05994 + 2.40737i −0.0840584 + 0.190917i
\(160\) 10.7918 6.10265i 0.853163 0.482457i
\(161\) 0 0
\(162\) −7.37152 + 3.42906i −0.579161 + 0.269412i
\(163\) −16.6965 9.63970i −1.30777 0.755040i −0.326044 0.945354i \(-0.605716\pi\)
−0.981723 + 0.190314i \(0.939049\pi\)
\(164\) −5.40039 9.35375i −0.421700 0.730405i
\(165\) −6.47162 + 14.3494i −0.503815 + 1.11710i
\(166\) −3.13263 1.80863i −0.243139 0.140377i
\(167\) 0.883913i 0.0683993i 0.999415 + 0.0341996i \(0.0108882\pi\)
−0.999415 + 0.0341996i \(0.989112\pi\)
\(168\) 0 0
\(169\) −4.68842 −0.360648
\(170\) −13.4696 0.120413i −1.03307 0.00923529i
\(171\) −12.6283 + 11.5609i −0.965712 + 0.884087i
\(172\) 7.72462 4.45981i 0.588996 0.340057i
\(173\) 10.8393 + 6.25807i 0.824097 + 0.475793i 0.851827 0.523823i \(-0.175495\pi\)
−0.0277303 + 0.999615i \(0.508828\pi\)
\(174\) 1.00235 + 9.17212i 0.0759882 + 0.695337i
\(175\) 0 0
\(176\) 0.935758i 0.0705354i
\(177\) 0.692258 1.57228i 0.0520333 0.118180i
\(178\) −4.70231 8.14463i −0.352453 0.610466i
\(179\) 10.5358 6.08284i 0.787481 0.454653i −0.0515938 0.998668i \(-0.516430\pi\)
0.839075 + 0.544016i \(0.183097\pi\)
\(180\) 1.64605 + 7.76993i 0.122689 + 0.579137i
\(181\) 16.1773i 1.20245i −0.799081 0.601224i \(-0.794680\pi\)
0.799081 0.601224i \(-0.205320\pi\)
\(182\) 0 0
\(183\) −1.16000 10.6146i −0.0857493 0.784657i
\(184\) 2.34678 4.06474i 0.173007 0.299657i
\(185\) −1.81617 + 3.08175i −0.133528 + 0.226575i
\(186\) 2.36080 1.73017i 0.173103 0.126862i
\(187\) −13.5519 + 23.4726i −0.991014 + 1.71649i
\(188\) 8.18658i 0.597068i
\(189\) 0 0
\(190\) −5.67440 10.0344i −0.411664 0.727975i
\(191\) 7.16890 + 4.13896i 0.518723 + 0.299485i 0.736412 0.676533i \(-0.236518\pi\)
−0.217689 + 0.976018i \(0.569852\pi\)
\(192\) 5.59943 + 7.64039i 0.404104 + 0.551397i
\(193\) 13.7918 7.96267i 0.992752 0.573166i 0.0866562 0.996238i \(-0.472382\pi\)
0.906096 + 0.423073i \(0.139048\pi\)
\(194\) −6.56593 + 11.3725i −0.471406 + 0.816499i
\(195\) 9.06473 6.51954i 0.649138 0.466874i
\(196\) 0 0
\(197\) −23.8738 −1.70094 −0.850468 0.526027i \(-0.823681\pi\)
−0.850468 + 0.526027i \(0.823681\pi\)
\(198\) −10.5032 3.31701i −0.746429 0.235730i
\(199\) −10.5891 + 6.11364i −0.750643 + 0.433384i −0.825926 0.563778i \(-0.809347\pi\)
0.0752829 + 0.997162i \(0.476014\pi\)
\(200\) −14.3788 0.257102i −1.01673 0.0181799i
\(201\) 15.9951 + 7.04246i 1.12821 + 0.496737i
\(202\) −12.4637 −0.876941
\(203\) 0 0
\(204\) 1.48565 + 13.5945i 0.104016 + 0.951807i
\(205\) −0.182347 + 20.3976i −0.0127357 + 1.42463i
\(206\) −3.75499 6.50384i −0.261623 0.453144i
\(207\) 3.30572 + 3.61093i 0.229763 + 0.250977i
\(208\) 0.331880 0.574834i 0.0230118 0.0398576i
\(209\) −23.1954 −1.60446
\(210\) 0 0
\(211\) 18.8640 1.29865 0.649327 0.760510i \(-0.275051\pi\)
0.649327 + 0.760510i \(0.275051\pi\)
\(212\) −0.899025 + 1.55716i −0.0617453 + 0.106946i
\(213\) −6.72275 + 4.92692i −0.460635 + 0.337587i
\(214\) −4.84961 8.39976i −0.331512 0.574196i
\(215\) −16.8450 0.150588i −1.14882 0.0102700i
\(216\) −14.1554 + 4.79412i −0.963156 + 0.326199i
\(217\) 0 0
\(218\) −0.484799 −0.0328348
\(219\) −0.391282 + 0.888695i −0.0264404 + 0.0600524i
\(220\) −5.46322 + 9.27019i −0.368330 + 0.624996i
\(221\) 16.6498 9.61278i 1.11999 0.646625i
\(222\) −2.29077 1.00860i −0.153747 0.0676928i
\(223\) 19.2779 1.29095 0.645473 0.763783i \(-0.276660\pi\)
0.645473 + 0.763783i \(0.276660\pi\)
\(224\) 0 0
\(225\) 4.77223 14.2206i 0.318149 0.948041i
\(226\) −5.46649 + 9.46823i −0.363625 + 0.629817i
\(227\) −9.96079 + 5.75087i −0.661121 + 0.381698i −0.792704 0.609607i \(-0.791327\pi\)
0.131583 + 0.991305i \(0.457994\pi\)
\(228\) −9.43979 + 6.91816i −0.625165 + 0.458167i
\(229\) −15.0457 8.68661i −0.994245 0.574028i −0.0877044 0.996147i \(-0.527953\pi\)
−0.906540 + 0.422119i \(0.861286\pi\)
\(230\) −2.86923 + 1.62253i −0.189192 + 0.106986i
\(231\) 0 0
\(232\) 16.9612i 1.11356i
\(233\) −0.231425 + 0.400840i −0.0151611 + 0.0262599i −0.873506 0.486813i \(-0.838159\pi\)
0.858345 + 0.513072i \(0.171493\pi\)
\(234\) 5.27566 + 5.76274i 0.344881 + 0.376722i
\(235\) −7.84999 + 13.3202i −0.512077 + 0.868911i
\(236\) 0.587165 1.01700i 0.0382212 0.0662011i
\(237\) −6.54021 + 0.714732i −0.424833 + 0.0464268i
\(238\) 0 0
\(239\) 17.3055i 1.11940i 0.828696 + 0.559699i \(0.189083\pi\)
−0.828696 + 0.559699i \(0.810917\pi\)
\(240\) −0.0889421 0.887246i −0.00574119 0.0572715i
\(241\) 3.70606 2.13970i 0.238729 0.137830i −0.375864 0.926675i \(-0.622654\pi\)
0.614592 + 0.788845i \(0.289321\pi\)
\(242\) −2.49282 4.31769i −0.160245 0.277552i
\(243\) −0.321951 15.5851i −0.0206532 0.999787i
\(244\) 7.29906i 0.467274i
\(245\) 0 0
\(246\) −14.1888 + 1.55058i −0.904642 + 0.0988617i
\(247\) 14.2489 + 8.22661i 0.906636 + 0.523446i
\(248\) 4.65963 2.69024i 0.295887 0.170830i
\(249\) 5.59419 4.09983i 0.354517 0.259816i
\(250\) 8.60798 + 5.28254i 0.544417 + 0.334097i
\(251\) 17.4145 1.09919 0.549597 0.835430i \(-0.314781\pi\)
0.549597 + 0.835430i \(0.314781\pi\)
\(252\) 0 0
\(253\) 6.63247i 0.416980i
\(254\) 17.4364 + 10.0669i 1.09406 + 0.631656i
\(255\) 10.6183 23.5438i 0.664946 1.47437i
\(256\) 8.24609 + 14.2826i 0.515381 + 0.892665i
\(257\) −13.3507 7.70805i −0.832796 0.480815i 0.0220130 0.999758i \(-0.492992\pi\)
−0.854809 + 0.518943i \(0.826326\pi\)
\(258\) −1.28052 11.7175i −0.0797217 0.729500i
\(259\) 0 0
\(260\) 6.64385 3.75704i 0.412034 0.233002i
\(261\) −16.8699 5.32769i −1.04422 0.329776i
\(262\) −0.0515711 0.0893238i −0.00318607 0.00551844i
\(263\) 3.10585 + 5.37949i 0.191515 + 0.331714i 0.945752 0.324888i \(-0.105327\pi\)
−0.754238 + 0.656602i \(0.771993\pi\)
\(264\) −18.5310 8.15899i −1.14051 0.502151i
\(265\) 2.95591 1.67155i 0.181580 0.102682i
\(266\) 0 0
\(267\) 17.9256 1.95895i 1.09703 0.119886i
\(268\) 10.3461 + 5.97333i 0.631990 + 0.364879i
\(269\) 2.99535 + 5.18810i 0.182630 + 0.316324i 0.942775 0.333429i \(-0.108206\pi\)
−0.760146 + 0.649753i \(0.774872\pi\)
\(270\) 10.2740 + 2.14674i 0.625253 + 0.130647i
\(271\) −5.40846 3.12257i −0.328540 0.189683i 0.326652 0.945145i \(-0.394079\pi\)
−0.655193 + 0.755462i \(0.727413\pi\)
\(272\) 1.53535i 0.0930942i
\(273\) 0 0
\(274\) −11.3313 −0.684546
\(275\) 17.7781 9.84467i 1.07206 0.593656i
\(276\) 1.97817 + 2.69920i 0.119072 + 0.162473i
\(277\) 7.53810 4.35212i 0.452920 0.261494i −0.256142 0.966639i \(-0.582452\pi\)
0.709063 + 0.705145i \(0.249118\pi\)
\(278\) 1.85909 + 1.07335i 0.111501 + 0.0643751i
\(279\) 1.21212 + 5.47959i 0.0725679 + 0.328054i
\(280\) 0 0
\(281\) 4.36274i 0.260259i 0.991497 + 0.130130i \(0.0415393\pi\)
−0.991497 + 0.130130i \(0.958461\pi\)
\(282\) −9.90134 4.35944i −0.589616 0.259601i
\(283\) 3.76038 + 6.51316i 0.223531 + 0.387167i 0.955878 0.293765i \(-0.0949082\pi\)
−0.732347 + 0.680932i \(0.761575\pi\)
\(284\) −4.93415 + 2.84873i −0.292788 + 0.169041i
\(285\) 21.9929 2.20468i 1.30275 0.130594i
\(286\) 10.5849i 0.625897i
\(287\) 0 0
\(288\) −16.2407 + 3.59256i −0.956994 + 0.211694i
\(289\) 13.7354 23.7904i 0.807963 1.39943i
\(290\) 6.04781 10.2621i 0.355139 0.602614i
\(291\) −14.8838 20.3088i −0.872503 1.19052i
\(292\) −0.331880 + 0.574834i −0.0194218 + 0.0336396i
\(293\) 0.105885i 0.00618587i −0.999995 0.00309293i \(-0.999015\pi\)
0.999995 0.00309293i \(-0.000984513\pi\)
\(294\) 0 0
\(295\) −1.93055 + 1.09171i −0.112401 + 0.0635617i
\(296\) −3.98472 2.30058i −0.231607 0.133718i
\(297\) 13.9359 15.8685i 0.808641 0.920782i
\(298\) −12.8835 + 7.43830i −0.746322 + 0.430889i
\(299\) 2.35230 4.07431i 0.136037 0.235623i
\(300\) 4.29888 9.30888i 0.248196 0.537448i
\(301\) 0 0
\(302\) 11.8764 0.683412
\(303\) 9.62980 21.8716i 0.553218 1.25649i
\(304\) 1.13791 0.656975i 0.0652638 0.0376801i
\(305\) −6.99896 + 11.8761i −0.400759 + 0.680023i
\(306\) 17.2332 + 5.44240i 0.985154 + 0.311121i
\(307\) −9.31270 −0.531504 −0.265752 0.964041i \(-0.585620\pi\)
−0.265752 + 0.964041i \(0.585620\pi\)
\(308\) 0 0
\(309\) 14.3143 1.56431i 0.814314 0.0889904i
\(310\) −3.77849 0.0337783i −0.214604 0.00191848i
\(311\) 12.6572 + 21.9228i 0.717722 + 1.24313i 0.961900 + 0.273400i \(0.0881483\pi\)
−0.244179 + 0.969730i \(0.578518\pi\)
\(312\) 8.48986 + 11.5844i 0.480644 + 0.655835i
\(313\) 3.82491 6.62494i 0.216197 0.374464i −0.737445 0.675407i \(-0.763968\pi\)
0.953642 + 0.300943i \(0.0973014\pi\)
\(314\) 2.87996 0.162526
\(315\) 0 0
\(316\) −4.49732 −0.252994
\(317\) −12.3732 + 21.4311i −0.694950 + 1.20369i 0.275247 + 0.961374i \(0.411240\pi\)
−0.970197 + 0.242316i \(0.922093\pi\)
\(318\) 1.40458 + 1.91654i 0.0787649 + 0.107474i
\(319\) −11.9840 20.7568i −0.670973 1.16216i
\(320\) 0.109318 12.2285i 0.00611109 0.683595i
\(321\) 18.4871 2.02032i 1.03185 0.112763i
\(322\) 0 0
\(323\) 38.0580 2.11760
\(324\) 0.938583 10.6144i 0.0521435 0.589689i
\(325\) −14.4126 0.257707i −0.799467 0.0142950i
\(326\) −15.0826 + 8.70792i −0.835346 + 0.482287i
\(327\) 0.374570 0.850740i 0.0207138 0.0470460i
\(328\) −26.2381 −1.44875
\(329\) 0 0
\(330\) 8.30270 + 11.5440i 0.457049 + 0.635477i
\(331\) 8.17810 14.1649i 0.449509 0.778573i −0.548845 0.835924i \(-0.684932\pi\)
0.998354 + 0.0573514i \(0.0182655\pi\)
\(332\) 4.10585 2.37051i 0.225338 0.130099i
\(333\) 3.53984 3.24064i 0.193982 0.177586i
\(334\) 0.691498 + 0.399237i 0.0378371 + 0.0218453i
\(335\) −11.1061 19.6398i −0.606793 1.07304i
\(336\) 0 0
\(337\) 3.59256i 0.195699i 0.995201 + 0.0978497i \(0.0311964\pi\)
−0.995201 + 0.0978497i \(0.968804\pi\)
\(338\) −2.11762 + 3.66782i −0.115183 + 0.199503i
\(339\) −12.3915 16.9082i −0.673017 0.918326i
\(340\) 8.96380 15.2101i 0.486130 0.824884i
\(341\) −3.80158 + 6.58453i −0.205867 + 0.356572i
\(342\) 3.34046 + 15.1010i 0.180631 + 0.816571i
\(343\) 0 0
\(344\) 21.6682i 1.16827i
\(345\) −0.630404 6.28863i −0.0339398 0.338568i
\(346\) 9.79156 5.65316i 0.526398 0.303916i
\(347\) 9.46440 + 16.3928i 0.508075 + 0.880012i 0.999956 + 0.00934990i \(0.00297621\pi\)
−0.491881 + 0.870662i \(0.663690\pi\)
\(348\) −11.0679 4.87307i −0.593302 0.261224i
\(349\) 24.1751i 1.29406i 0.762463 + 0.647032i \(0.223990\pi\)
−0.762463 + 0.647032i \(0.776010\pi\)
\(350\) 0 0
\(351\) −14.1888 + 4.80540i −0.757340 + 0.256493i
\(352\) −19.5156 11.2673i −1.04019 0.600551i
\(353\) 27.8032 16.0522i 1.47982 0.854373i 0.480078 0.877226i \(-0.340608\pi\)
0.999739 + 0.0228526i \(0.00727484\pi\)
\(354\) −0.917349 1.25172i −0.0487566 0.0665280i
\(355\) 10.7598 + 0.0961889i 0.571072 + 0.00510518i
\(356\) 12.3263 0.653295
\(357\) 0 0
\(358\) 10.9897i 0.580825i
\(359\) 14.7805 + 8.53352i 0.780085 + 0.450382i 0.836460 0.548027i \(-0.184621\pi\)
−0.0563756 + 0.998410i \(0.517954\pi\)
\(360\) 18.3458 + 5.97467i 0.966911 + 0.314893i
\(361\) 6.78500 + 11.7520i 0.357105 + 0.618524i
\(362\) −12.6557 7.30678i −0.665169 0.384036i
\(363\) 9.50284 1.03850i 0.498770 0.0545069i
\(364\) 0 0
\(365\) 1.09119 0.617061i 0.0571157 0.0322984i
\(366\) −8.82792 3.88683i −0.461443 0.203168i
\(367\) 7.83753 + 13.5750i 0.409116 + 0.708609i 0.994791 0.101937i \(-0.0325040\pi\)
−0.585675 + 0.810546i \(0.699171\pi\)
\(368\) −0.187854 0.325373i −0.00979259 0.0169613i
\(369\) 8.24164 26.0968i 0.429043 1.35855i
\(370\) 1.59059 + 2.81275i 0.0826907 + 0.146228i
\(371\) 0 0
\(372\) 0.416753 + 3.81353i 0.0216076 + 0.197722i
\(373\) 0.908235 + 0.524370i 0.0470266 + 0.0271508i 0.523329 0.852131i \(-0.324690\pi\)
−0.476302 + 0.879282i \(0.658023\pi\)
\(374\) 12.2420 + 21.2037i 0.633017 + 1.09642i
\(375\) −15.9207 + 11.0241i −0.822143 + 0.569281i
\(376\) −17.2230 9.94373i −0.888211 0.512809i
\(377\) 17.0012i 0.875604i
\(378\) 0 0
\(379\) −19.7185 −1.01287 −0.506436 0.862278i \(-0.669037\pi\)
−0.506436 + 0.862278i \(0.669037\pi\)
\(380\) 15.1085 + 0.135064i 0.775048 + 0.00692865i
\(381\) −31.1376 + 22.8199i −1.59523 + 1.16910i
\(382\) 6.47594 3.73889i 0.331338 0.191298i
\(383\) −2.38931 1.37947i −0.122088 0.0704876i 0.437712 0.899115i \(-0.355789\pi\)
−0.559800 + 0.828628i \(0.689122\pi\)
\(384\) −10.5866 + 1.15693i −0.540244 + 0.0590392i
\(385\) 0 0
\(386\) 14.3860i 0.732227i
\(387\) 21.5516 + 6.80620i 1.09553 + 0.345979i
\(388\) −8.60577 14.9056i −0.436892 0.756719i
\(389\) −27.6283 + 15.9512i −1.40081 + 0.808758i −0.994476 0.104966i \(-0.966527\pi\)
−0.406335 + 0.913724i \(0.633193\pi\)
\(390\) −1.00607 10.0361i −0.0509445 0.508200i
\(391\) 10.8822i 0.550339i
\(392\) 0 0
\(393\) 0.196593 0.0214842i 0.00991682 0.00108374i
\(394\) −10.7831 + 18.6768i −0.543242 + 0.940923i
\(395\) 7.31746 + 4.31241i 0.368181 + 0.216981i
\(396\) 10.6482 9.74814i 0.535090 0.489863i
\(397\) 9.41023 16.2990i 0.472286 0.818023i −0.527211 0.849734i \(-0.676762\pi\)
0.999497 + 0.0317111i \(0.0100957\pi\)
\(398\) 11.0454i 0.553654i
\(399\) 0 0
\(400\) −0.593317 + 0.986494i −0.0296658 + 0.0493247i
\(401\) 2.84850 + 1.64458i 0.142247 + 0.0821266i 0.569435 0.822037i \(-0.307162\pi\)
−0.427187 + 0.904163i \(0.640495\pi\)
\(402\) 12.7339 9.33235i 0.635111 0.465455i
\(403\) 4.67060 2.69657i 0.232659 0.134326i
\(404\) 8.16788 14.1472i 0.406367 0.703849i
\(405\) −11.7051 + 16.3704i −0.581633 + 0.813452i
\(406\) 0 0
\(407\) 6.50190 0.322287
\(408\) 30.4049 + 13.3869i 1.50527 + 0.662750i
\(409\) 3.59326 2.07457i 0.177675 0.102581i −0.408525 0.912747i \(-0.633957\pi\)
0.586200 + 0.810166i \(0.300623\pi\)
\(410\) 15.8750 + 9.35561i 0.784008 + 0.462041i
\(411\) 8.75486 19.8844i 0.431845 0.980825i
\(412\) 9.84311 0.484935
\(413\) 0 0
\(414\) 4.31797 0.955165i 0.212217 0.0469438i
\(415\) −8.95356 0.0800415i −0.439513 0.00392908i
\(416\) 7.99226 + 13.8430i 0.391853 + 0.678709i
\(417\) −3.31993 + 2.43309i −0.162578 + 0.119149i
\(418\) −10.4767 + 18.1461i −0.512430 + 0.887555i
\(419\) 22.6231 1.10521 0.552606 0.833443i \(-0.313633\pi\)
0.552606 + 0.833443i \(0.313633\pi\)
\(420\) 0 0
\(421\) 31.9233 1.55584 0.777922 0.628360i \(-0.216274\pi\)
0.777922 + 0.628360i \(0.216274\pi\)
\(422\) 8.52030 14.7576i 0.414762 0.718389i
\(423\) 15.3001 14.0069i 0.743918 0.681040i
\(424\) 2.18398 + 3.78276i 0.106063 + 0.183707i
\(425\) −29.1695 + 16.1527i −1.41493 + 0.783521i
\(426\) 0.817941 + 7.48464i 0.0396294 + 0.362632i
\(427\) 0 0
\(428\) 12.7125 0.614481
\(429\) −18.5746 8.17819i −0.896792 0.394847i
\(430\) −7.72615 + 13.1100i −0.372588 + 0.632222i
\(431\) 21.6894 12.5224i 1.04474 0.603182i 0.123569 0.992336i \(-0.460566\pi\)
0.921173 + 0.389154i \(0.127233\pi\)
\(432\) −0.234211 + 1.17318i −0.0112685 + 0.0564447i
\(433\) 5.10220 0.245196 0.122598 0.992456i \(-0.460877\pi\)
0.122598 + 0.992456i \(0.460877\pi\)
\(434\) 0 0
\(435\) 13.3356 + 18.5417i 0.639392 + 0.889006i
\(436\) 0.317706 0.550283i 0.0152154 0.0263538i
\(437\) 8.06531 4.65651i 0.385816 0.222751i
\(438\) 0.518509 + 0.707501i 0.0247753 + 0.0338057i
\(439\) 9.77568 + 5.64399i 0.466568 + 0.269373i 0.714802 0.699327i \(-0.246517\pi\)
−0.248234 + 0.968700i \(0.579850\pi\)
\(440\) 12.8669 + 22.7535i 0.613407 + 1.08473i
\(441\) 0 0
\(442\) 17.3672i 0.826073i
\(443\) −10.9591 + 18.9817i −0.520681 + 0.901847i 0.479029 + 0.877799i \(0.340989\pi\)
−0.999711 + 0.0240479i \(0.992345\pi\)
\(444\) 2.64606 1.93923i 0.125576 0.0920316i
\(445\) −20.0559 11.8196i −0.950739 0.560301i
\(446\) 8.70725 15.0814i 0.412300 0.714125i
\(447\) −3.09875 28.3554i −0.146566 1.34116i
\(448\) 0 0
\(449\) 0.449397i 0.0212083i 0.999944 + 0.0106042i \(0.00337548\pi\)
−0.999944 + 0.0106042i \(0.996625\pi\)
\(450\) −8.96952 10.1564i −0.422827 0.478777i
\(451\) 32.1096 18.5385i 1.51198 0.872944i
\(452\) −7.16476 12.4097i −0.337002 0.583705i
\(453\) −9.17609 + 20.8411i −0.431130 + 0.979201i
\(454\) 10.3900i 0.487625i
\(455\) 0 0
\(456\) 3.08861 + 28.2626i 0.144638 + 1.32352i
\(457\) −8.04787 4.64644i −0.376463 0.217351i 0.299815 0.953997i \(-0.403075\pi\)
−0.676278 + 0.736646i \(0.736408\pi\)
\(458\) −13.5913 + 7.84695i −0.635081 + 0.366664i
\(459\) −22.8653 + 26.0363i −1.06726 + 1.21527i
\(460\) 0.0386201 4.32009i 0.00180067 0.201425i
\(461\) −20.8668 −0.971863 −0.485931 0.873997i \(-0.661519\pi\)
−0.485931 + 0.873997i \(0.661519\pi\)
\(462\) 0 0
\(463\) 2.45294i 0.113998i −0.998374 0.0569989i \(-0.981847\pi\)
0.998374 0.0569989i \(-0.0181532\pi\)
\(464\) 1.17581 + 0.678854i 0.0545856 + 0.0315150i
\(465\) 2.97865 6.60450i 0.138132 0.306277i
\(466\) 0.209055 + 0.362094i 0.00968429 + 0.0167737i
\(467\) 6.91084 + 3.98997i 0.319795 + 0.184634i 0.651301 0.758819i \(-0.274223\pi\)
−0.331506 + 0.943453i \(0.607557\pi\)
\(468\) −9.99847 + 2.21173i −0.462179 + 0.102237i
\(469\) 0 0
\(470\) 6.87495 + 12.1575i 0.317118 + 0.560782i
\(471\) −2.22514 + 5.05384i −0.102529 + 0.232868i
\(472\) −1.42639 2.47057i −0.0656547 0.113717i
\(473\) 15.3097 + 26.5171i 0.703939 + 1.21926i
\(474\) −2.39487 + 5.43932i −0.110000 + 0.249836i
\(475\) −24.4531 14.7071i −1.12198 0.674806i
\(476\) 0 0
\(477\) −4.44841 + 0.984021i −0.203679 + 0.0450552i
\(478\) 13.5383 + 7.81635i 0.619228 + 0.357511i
\(479\) −6.94646 12.0316i −0.317392 0.549739i 0.662551 0.749017i \(-0.269474\pi\)
−0.979943 + 0.199278i \(0.936140\pi\)
\(480\) 19.5748 + 8.82830i 0.893465 + 0.402955i
\(481\) −3.99410 2.30599i −0.182115 0.105144i
\(482\) 3.86574i 0.176080i
\(483\) 0 0
\(484\) 6.53454 0.297024
\(485\) −0.290578 + 32.5045i −0.0131945 + 1.47595i
\(486\) −12.3379 6.78746i −0.559658 0.307885i
\(487\) −22.9590 + 13.2554i −1.04037 + 0.600659i −0.919939 0.392062i \(-0.871762\pi\)
−0.120433 + 0.992721i \(0.538428\pi\)
\(488\) −15.3559 8.86571i −0.695127 0.401332i
\(489\) −3.62767 33.1953i −0.164049 1.50114i
\(490\) 0 0
\(491\) 2.54611i 0.114905i −0.998348 0.0574523i \(-0.981702\pi\)
0.998348 0.0574523i \(-0.0182977\pi\)
\(492\) 7.53836 17.1214i 0.339856 0.771894i
\(493\) 19.6627 + 34.0568i 0.885565 + 1.53384i
\(494\) 12.8716 7.43141i 0.579120 0.334355i
\(495\) −26.6727 + 5.65057i −1.19885 + 0.253974i
\(496\) 0.430695i 0.0193388i
\(497\) 0 0
\(498\) −0.680632 6.22818i −0.0304999 0.279091i
\(499\) −14.8248 + 25.6773i −0.663649 + 1.14947i 0.316001 + 0.948759i \(0.397660\pi\)
−0.979650 + 0.200714i \(0.935674\pi\)
\(500\) −11.6372 + 6.30886i −0.520431 + 0.282141i
\(501\) −1.23486 + 0.904998i −0.0551696 + 0.0404323i
\(502\) 7.86560 13.6236i 0.351059 0.608052i
\(503\) 31.2378i 1.39283i −0.717642 0.696413i \(-0.754778\pi\)
0.717642 0.696413i \(-0.245222\pi\)
\(504\) 0 0
\(505\) −26.8553 + 15.1864i −1.19504 + 0.675787i
\(506\) 5.18867 + 2.99568i 0.230665 + 0.133174i
\(507\) −4.80026 6.54992i −0.213187 0.290892i
\(508\) −22.8534 + 13.1944i −1.01396 + 0.585408i
\(509\) −19.0072 + 32.9214i −0.842478 + 1.45921i 0.0453160 + 0.998973i \(0.485571\pi\)
−0.887794 + 0.460242i \(0.847763\pi\)
\(510\) −13.6227 18.9409i −0.603223 0.838717i
\(511\) 0 0
\(512\) 2.60093 0.114946
\(513\) −29.0807 5.80558i −1.28394 0.256323i
\(514\) −12.0602 + 6.96298i −0.531954 + 0.307124i
\(515\) −16.0155 9.43841i −0.705725 0.415906i
\(516\) 14.1394 + 6.22541i 0.622453 + 0.274059i
\(517\) 28.1030 1.23597
\(518\) 0 0
\(519\) 2.35507 + 21.5503i 0.103376 + 0.945953i
\(520\) 0.165749 18.5409i 0.00726856 0.813071i
\(521\) 19.5707 + 33.8974i 0.857407 + 1.48507i 0.874394 + 0.485217i \(0.161259\pi\)
−0.0169866 + 0.999856i \(0.505407\pi\)
\(522\) −11.7876 + 10.7912i −0.515928 + 0.472320i
\(523\) 3.98588 6.90375i 0.174290 0.301880i −0.765625 0.643287i \(-0.777570\pi\)
0.939915 + 0.341407i \(0.110904\pi\)
\(524\) 0.135186 0.00590561
\(525\) 0 0
\(526\) 5.61127 0.244663
\(527\) 6.23745 10.8036i 0.271708 0.470612i
\(528\) −1.30729 + 0.958079i −0.0568926 + 0.0416950i
\(529\) 10.1685 + 17.6124i 0.442110 + 0.765757i
\(530\) 0.0274218 3.06744i 0.00119113 0.133241i
\(531\) 2.90532 0.642677i 0.126080 0.0278898i
\(532\) 0 0
\(533\) −26.2998 −1.13917
\(534\) 6.56391 14.9082i 0.284048 0.645142i
\(535\) −20.6841 12.1898i −0.894252 0.527011i
\(536\) 25.1336 14.5109i 1.08560 0.626774i
\(537\) 19.2851 + 8.49098i 0.832212 + 0.366413i
\(538\) 5.41163 0.233312
\(539\) 0 0
\(540\) −9.16960 + 10.2549i −0.394597 + 0.441299i
\(541\) 4.04174 7.00049i 0.173768 0.300975i −0.765966 0.642881i \(-0.777739\pi\)
0.939734 + 0.341906i \(0.111072\pi\)
\(542\) −4.88567 + 2.82074i −0.209857 + 0.121161i
\(543\) 22.6003 16.5632i 0.969872 0.710793i
\(544\) 32.0203 + 18.4869i 1.37286 + 0.792621i
\(545\) −1.04459 + 0.590707i −0.0447453 + 0.0253031i
\(546\) 0 0
\(547\) 37.0430i 1.58384i −0.610623 0.791922i \(-0.709081\pi\)
0.610623 0.791922i \(-0.290919\pi\)
\(548\) 7.42577 12.8618i 0.317213 0.549429i
\(549\) 13.6414 12.4884i 0.582202 0.532992i
\(550\) 0.328193 18.3546i 0.0139942 0.782642i
\(551\) −16.8273 + 29.1458i −0.716869 + 1.24165i
\(552\) 8.08137 0.883153i 0.343966 0.0375895i
\(553\) 0 0
\(554\) 7.86288i 0.334062i
\(555\) −6.16483 + 0.617993i −0.261682 + 0.0262324i
\(556\) −2.43666 + 1.40680i −0.103337 + 0.0596618i
\(557\) 4.44428 + 7.69772i 0.188310 + 0.326163i 0.944687 0.327973i \(-0.106366\pi\)
−0.756377 + 0.654136i \(0.773032\pi\)
\(558\) 4.83424 + 1.52670i 0.204650 + 0.0646303i
\(559\) 21.7192i 0.918624i
\(560\) 0 0
\(561\) −46.6674 + 5.09993i −1.97030 + 0.215319i
\(562\) 3.41303 + 1.97051i 0.143970 + 0.0831211i
\(563\) −34.1282 + 19.7039i −1.43833 + 0.830421i −0.997734 0.0672831i \(-0.978567\pi\)
−0.440598 + 0.897704i \(0.645234\pi\)
\(564\) 11.4370 8.38186i 0.481584 0.352940i
\(565\) −0.241922 + 27.0617i −0.0101777 + 1.13849i
\(566\) 6.79378 0.285564
\(567\) 0 0
\(568\) 13.8407i 0.580744i
\(569\) 15.1146 + 8.72640i 0.633636 + 0.365830i 0.782159 0.623079i \(-0.214119\pi\)
−0.148523 + 0.988909i \(0.547452\pi\)
\(570\) 8.20878 18.2012i 0.343828 0.762363i
\(571\) 9.69444 + 16.7913i 0.405700 + 0.702692i 0.994403 0.105657i \(-0.0336946\pi\)
−0.588703 + 0.808349i \(0.700361\pi\)
\(572\) −12.0146 6.93665i −0.502357 0.290036i
\(573\) 1.55760 + 14.2529i 0.0650696 + 0.595425i
\(574\) 0 0
\(575\) −4.20531 + 6.99207i −0.175374 + 0.291590i
\(576\) −4.94093 + 15.6453i −0.205872 + 0.651887i
\(577\) −20.8653 36.1397i −0.868633 1.50452i −0.863394 0.504531i \(-0.831665\pi\)
−0.00523985 0.999986i \(-0.501668\pi\)
\(578\) −12.4077 21.4907i −0.516092 0.893897i
\(579\) 25.2449 + 11.1150i 1.04914 + 0.461925i
\(580\) 7.68495 + 13.5899i 0.319100 + 0.564288i
\(581\) 0 0
\(582\) −22.6104 + 2.47093i −0.937232 + 0.102423i
\(583\) −5.34542 3.08618i −0.221385 0.127817i
\(584\) 0.806229 + 1.39643i 0.0333620 + 0.0577847i
\(585\) 18.3890 + 5.98873i 0.760293 + 0.247604i
\(586\) −0.0828353 0.0478250i −0.00342190 0.00197563i
\(587\) 19.5477i 0.806820i −0.915019 0.403410i \(-0.867825\pi\)
0.915019 0.403410i \(-0.132175\pi\)
\(588\) 0 0
\(589\) 10.6760 0.439897
\(590\) −0.0179095 + 2.00338i −0.000737323 + 0.0824780i
\(591\) −24.4433 33.3526i −1.00546 1.37194i
\(592\) −0.318968 + 0.184156i −0.0131095 + 0.00756877i
\(593\) −2.27890 1.31572i −0.0935832 0.0540303i 0.452478 0.891776i \(-0.350540\pi\)
−0.546061 + 0.837745i \(0.683873\pi\)
\(594\) −6.11973 18.0695i −0.251096 0.741401i
\(595\) 0 0
\(596\) 19.4983i 0.798683i
\(597\) −19.3827 8.53398i −0.793282 0.349272i
\(598\) −2.12493 3.68048i −0.0868947 0.150506i
\(599\) 27.0326 15.6073i 1.10452 0.637697i 0.167118 0.985937i \(-0.446554\pi\)
0.937405 + 0.348240i \(0.113221\pi\)
\(600\) −14.3626 20.3510i −0.586349 0.830824i
\(601\) 15.6798i 0.639593i 0.947486 + 0.319797i \(0.103615\pi\)
−0.947486 + 0.319797i \(0.896385\pi\)
\(602\) 0 0
\(603\) 6.53806 + 29.5563i 0.266251 + 1.20363i
\(604\) −7.78305 + 13.4806i −0.316688 + 0.548519i
\(605\) −10.6322 6.26587i −0.432259 0.254744i
\(606\) −12.7610 17.4123i −0.518379 0.707325i
\(607\) 2.40692 4.16891i 0.0976940 0.169211i −0.813036 0.582214i \(-0.802187\pi\)
0.910730 + 0.413003i \(0.135520\pi\)
\(608\) 31.6422i 1.28326i
\(609\) 0 0
\(610\) 6.12962 + 10.8394i 0.248181 + 0.438876i
\(611\) −17.2636 9.96713i −0.698410 0.403227i
\(612\) −17.4710 + 15.9943i −0.706224 + 0.646532i
\(613\) 34.7031 20.0359i 1.40165 0.809240i 0.407084 0.913391i \(-0.366546\pi\)
0.994562 + 0.104150i \(0.0332123\pi\)
\(614\) −4.20626 + 7.28546i −0.169751 + 0.294017i
\(615\) −28.6830 + 20.6294i −1.15661 + 0.831857i
\(616\) 0 0
\(617\) 18.4205 0.741583 0.370791 0.928716i \(-0.379087\pi\)
0.370791 + 0.928716i \(0.379087\pi\)
\(618\) 5.24156 11.9049i 0.210847 0.478883i
\(619\) −9.54440 + 5.51046i −0.383622 + 0.221484i −0.679393 0.733775i \(-0.737757\pi\)
0.295771 + 0.955259i \(0.404423\pi\)
\(620\) 2.51452 4.26673i 0.100986 0.171356i
\(621\) −1.66004 + 8.31528i −0.0666151 + 0.333681i
\(622\) 22.8674 0.916899
\(623\) 0 0
\(624\) 1.14286 0.124895i 0.0457512 0.00499981i
\(625\) 24.9840 + 0.893749i 0.999361 + 0.0357500i
\(626\) −3.45519 5.98457i −0.138097 0.239191i
\(627\) −23.7487 32.4050i −0.948433 1.29413i
\(628\) −1.88734 + 3.26897i −0.0753131 + 0.130446i
\(629\) −10.6680 −0.425362
\(630\) 0 0
\(631\) 16.0604 0.639355 0.319678 0.947526i \(-0.396425\pi\)
0.319678 + 0.947526i \(0.396425\pi\)
\(632\) −5.46261 + 9.46152i −0.217291 + 0.376359i
\(633\) 19.3140 + 26.3538i 0.767663 + 1.04747i
\(634\) 11.1772 + 19.3595i 0.443904 + 0.768865i
\(635\) 49.8361 + 0.445517i 1.97769 + 0.0176798i
\(636\) −3.09588 + 0.338326i −0.122760 + 0.0134155i
\(637\) 0 0
\(638\) −21.6511 −0.857177
\(639\) −13.7662 4.34751i −0.544583 0.171985i
\(640\) 11.8447 + 6.98045i 0.468202 + 0.275926i
\(641\) −34.4615 + 19.8964i −1.36115 + 0.785859i −0.989777 0.142625i \(-0.954446\pi\)
−0.371372 + 0.928484i \(0.621112\pi\)
\(642\) 6.76953 15.3752i 0.267172 0.606812i
\(643\) 22.4164 0.884016 0.442008 0.897011i \(-0.354266\pi\)
0.442008 + 0.897011i \(0.354266\pi\)
\(644\) 0 0
\(645\) −17.0364 23.6873i −0.670807 0.932685i
\(646\) 17.1896 29.7733i 0.676317 1.17142i
\(647\) −22.1456 + 12.7858i −0.870633 + 0.502660i −0.867558 0.497335i \(-0.834312\pi\)
−0.00307433 + 0.999995i \(0.500979\pi\)
\(648\) −21.1907 14.8672i −0.832449 0.584041i
\(649\) 3.49116 + 2.01563i 0.137040 + 0.0791202i
\(650\) −6.71134 + 11.1588i −0.263240 + 0.437684i
\(651\) 0 0
\(652\) 22.8264i 0.893952i
\(653\) −8.49921 + 14.7211i −0.332600 + 0.576080i −0.983021 0.183494i \(-0.941259\pi\)
0.650421 + 0.759574i \(0.274592\pi\)
\(654\) −0.496364 0.677285i −0.0194094 0.0264839i
\(655\) −0.219957 0.129627i −0.00859442 0.00506496i
\(656\) −1.05015 + 1.81891i −0.0410014 + 0.0710166i
\(657\) −1.64216 + 0.363257i −0.0640667 + 0.0141720i
\(658\) 0 0
\(659\) 2.82840i 0.110179i 0.998481 + 0.0550894i \(0.0175444\pi\)
−0.998481 + 0.0550894i \(0.982456\pi\)
\(660\) −18.5444 + 1.85898i −0.721839 + 0.0723608i
\(661\) 12.6301 7.29200i 0.491254 0.283626i −0.233840 0.972275i \(-0.575129\pi\)
0.725095 + 0.688649i \(0.241796\pi\)
\(662\) −7.38760 12.7957i −0.287127 0.497319i
\(663\) 30.4764 + 13.4184i 1.18361 + 0.521128i
\(664\) 11.5172i 0.446956i
\(665\) 0 0
\(666\) −0.936361 4.23296i −0.0362833 0.164024i
\(667\) 8.33391 + 4.81158i 0.322690 + 0.186305i
\(668\) −0.906326 + 0.523268i −0.0350668 + 0.0202458i
\(669\) 19.7378 + 26.9321i 0.763107 + 1.04125i
\(670\) −20.3808 0.182197i −0.787378 0.00703887i
\(671\) 25.0563 0.967286
\(672\) 0 0
\(673\) 13.2666i 0.511390i −0.966757 0.255695i \(-0.917696\pi\)
0.966757 0.255695i \(-0.0823043\pi\)
\(674\) 2.81051 + 1.62265i 0.108257 + 0.0625022i
\(675\) 24.7528 7.89282i 0.952737 0.303795i
\(676\) −2.77550 4.80730i −0.106750 0.184896i
\(677\) 23.6762 + 13.6695i 0.909950 + 0.525360i 0.880415 0.474204i \(-0.157264\pi\)
0.0295351 + 0.999564i \(0.490597\pi\)
\(678\) −18.8244 + 2.05718i −0.722946 + 0.0790055i
\(679\) 0 0
\(680\) −21.1115 37.3329i −0.809588 1.43165i
\(681\) −18.2326 8.02759i −0.698674 0.307618i
\(682\) 3.43411 + 5.94806i 0.131499 + 0.227763i
\(683\) 2.53669 + 4.39367i 0.0970637 + 0.168119i 0.910468 0.413579i \(-0.135722\pi\)
−0.813404 + 0.581699i \(0.802388\pi\)
\(684\) −19.3299 6.10458i −0.739098 0.233414i
\(685\) −24.4153 + 13.8066i −0.932859 + 0.527524i
\(686\) 0 0
\(687\) −3.26900 29.9132i −0.124720 1.14126i
\(688\) −1.50211 0.867245i −0.0572675 0.0330634i
\(689\) 2.18912 + 3.79167i 0.0833988 + 0.144451i
\(690\) −5.20442 2.34721i −0.198129 0.0893566i
\(691\) −29.6673 17.1284i −1.12860 0.651596i −0.185016 0.982736i \(-0.559234\pi\)
−0.943582 + 0.331140i \(0.892567\pi\)
\(692\) 14.8189i 0.563329i
\(693\) 0 0
\(694\) 17.0991 0.649073
\(695\) 5.31358 + 0.0475014i 0.201556 + 0.00180183i
\(696\) −23.6955 + 17.3658i −0.898177 + 0.658250i
\(697\) −52.6840 + 30.4171i −1.99555 + 1.15213i
\(698\) 18.9125 + 10.9192i 0.715850 + 0.413296i
\(699\) −0.796935 + 0.0870911i −0.0301428 + 0.00329409i
\(700\) 0 0
\(701\) 17.6912i 0.668188i −0.942540 0.334094i \(-0.891570\pi\)
0.942540 0.334094i \(-0.108430\pi\)
\(702\) −2.64929 + 13.2705i −0.0999910 + 0.500863i
\(703\) −4.56484 7.90653i −0.172166 0.298200i
\(704\) −19.2500 + 11.1140i −0.725511 + 0.418874i
\(705\) −26.6460 + 2.67113i −1.00355 + 0.100601i
\(706\) 29.0012i 1.09147i
\(707\) 0 0
\(708\) 2.02196 0.220965i 0.0759900 0.00830439i
\(709\) −7.80875 + 13.5251i −0.293264 + 0.507948i −0.974579 0.224042i \(-0.928075\pi\)
0.681316 + 0.731990i \(0.261408\pi\)
\(710\) 4.93513 8.37412i 0.185212 0.314275i
\(711\) −7.69473 8.40517i −0.288575 0.315218i
\(712\) 14.9720 25.9323i 0.561101 0.971856i
\(713\) 3.05268i 0.114324i
\(714\) 0 0
\(715\) 12.8972 + 22.8071i 0.482328 + 0.852936i
\(716\) 12.4741 + 7.20195i 0.466181 + 0.269150i
\(717\) −24.1764 + 17.7183i −0.902886 + 0.661701i
\(718\) 13.3518 7.70866i 0.498284 0.287685i
\(719\) −8.07179 + 13.9808i −0.301027 + 0.521394i −0.976369 0.216111i \(-0.930663\pi\)
0.675342 + 0.737505i \(0.263996\pi\)
\(720\) 1.14846 1.03267i 0.0428004 0.0384852i
\(721\) 0 0
\(722\) 12.2583 0.456207
\(723\) 6.78371 + 2.98679i 0.252289 + 0.111080i
\(724\) 16.5875 9.57678i 0.616468 0.355918i
\(725\) 0.527135 29.4807i 0.0195773 1.09488i
\(726\) 3.47971 7.90326i 0.129144 0.293318i
\(727\) 16.8426 0.624657 0.312329 0.949974i \(-0.398891\pi\)
0.312329 + 0.949974i \(0.398891\pi\)
\(728\) 0 0
\(729\) 21.4434 16.4067i 0.794201 0.607655i
\(730\) 0.0101229 1.13236i 0.000374666 0.0419106i
\(731\) −25.1194 43.5081i −0.929075 1.60920i
\(732\) 10.1971 7.47316i 0.376895 0.276216i
\(733\) −11.0872 + 19.2035i −0.409514 + 0.709299i −0.994835 0.101503i \(-0.967635\pi\)
0.585321 + 0.810801i \(0.300968\pi\)
\(734\) 14.1599 0.522651
\(735\) 0 0
\(736\) 9.04773 0.333504
\(737\) −20.5053 + 35.5162i −0.755323 + 1.30826i
\(738\) −16.6934 18.2347i −0.614494 0.671229i
\(739\) −21.2262 36.7649i −0.780820 1.35242i −0.931465 0.363831i \(-0.881468\pi\)
0.150645 0.988588i \(-0.451865\pi\)
\(740\) −4.23505 0.0378598i −0.155683 0.00139175i
\(741\) 3.09588 + 28.3291i 0.113730 + 1.04070i
\(742\) 0 0
\(743\) −24.5486 −0.900600 −0.450300 0.892877i \(-0.648683\pi\)
−0.450300 + 0.892877i \(0.648683\pi\)
\(744\) 8.52916 + 3.75529i 0.312694 + 0.137675i
\(745\) −18.6967 + 31.7252i −0.684992 + 1.16232i
\(746\) 0.820444 0.473684i 0.0300386 0.0173428i
\(747\) 11.4553 + 3.61768i 0.419126 + 0.132364i
\(748\) −32.0904 −1.17334
\(749\) 0 0
\(750\) 1.43339 + 17.4343i 0.0523401 + 0.636609i
\(751\) −12.6883 + 21.9768i −0.463003 + 0.801944i −0.999109 0.0422062i \(-0.986561\pi\)
0.536106 + 0.844151i \(0.319895\pi\)
\(752\) −1.37867 + 0.795973i −0.0502748 + 0.0290261i
\(753\) 17.8299 + 24.3288i 0.649758 + 0.886590i
\(754\) 13.3002 + 7.67890i 0.484366 + 0.279649i
\(755\) 25.5900 14.4709i 0.931314 0.526651i
\(756\) 0 0
\(757\) 18.9214i 0.687709i −0.939023 0.343854i \(-0.888267\pi\)
0.939023 0.343854i \(-0.111733\pi\)
\(758\) −8.90625 + 15.4261i −0.323489 + 0.560300i
\(759\) −9.26583 + 6.79068i −0.336328 + 0.246486i
\(760\) 18.6355 31.6214i 0.675980 1.14703i
\(761\) 5.12909 8.88384i 0.185929 0.322039i −0.757960 0.652301i \(-0.773804\pi\)
0.943889 + 0.330262i \(0.107137\pi\)
\(762\) 3.78845 + 34.6665i 0.137241 + 1.25583i
\(763\) 0 0
\(764\) 9.80090i 0.354584i
\(765\) 43.7633 9.27119i 1.58227 0.335201i
\(766\) −2.15836 + 1.24613i −0.0779846 + 0.0450244i
\(767\) −1.42974 2.47639i −0.0516250 0.0894172i
\(768\) −11.5107 + 26.1435i −0.415355 + 0.943371i
\(769\) 17.8947i 0.645298i 0.946519 + 0.322649i \(0.104573\pi\)
−0.946519 + 0.322649i \(0.895427\pi\)
\(770\) 0 0
\(771\) −2.90074 26.5434i −0.104468 0.955939i
\(772\) 16.3291 + 9.42764i 0.587699 + 0.339308i
\(773\) −8.93898 + 5.16092i −0.321513 + 0.185626i −0.652067 0.758162i \(-0.726098\pi\)
0.330554 + 0.943787i \(0.392764\pi\)
\(774\) 15.0588 13.7860i 0.541277 0.495526i
\(775\) −8.18261 + 4.53114i −0.293928 + 0.162764i
\(776\) −41.8116 −1.50095
\(777\) 0 0
\(778\) 28.8187i 1.03320i
\(779\) −45.0869 26.0309i −1.61541 0.932655i
\(780\) 12.0511 + 5.43507i 0.431498 + 0.194607i
\(781\) −9.77915 16.9380i −0.349926 0.606089i
\(782\) −8.51334 4.91518i −0.304436 0.175766i
\(783\) −9.82935 29.0228i −0.351272 1.03719i
\(784\) 0 0
\(785\) 6.20540 3.50911i 0.221480 0.125245i
\(786\) 0.0719877 0.163501i 0.00256772 0.00583191i
\(787\) −6.26338 10.8485i −0.223265 0.386707i 0.732532 0.680732i \(-0.238338\pi\)
−0.955798 + 0.294025i \(0.905005\pi\)
\(788\) −14.1330 24.4791i −0.503468 0.872033i
\(789\) −4.33543 + 9.84681i −0.154345 + 0.350556i
\(790\) 6.67873 3.77677i 0.237619 0.134371i
\(791\) 0 0
\(792\) −7.57462 34.2422i −0.269152 1.21674i
\(793\) −15.3920 8.88657i −0.546586 0.315571i
\(794\) −8.50062 14.7235i −0.301676 0.522518i
\(795\) 5.36164 + 2.41811i 0.190158 + 0.0857617i
\(796\) −12.5373 7.23842i −0.444373 0.256559i
\(797\) 23.4184i 0.829521i 0.909931 + 0.414761i \(0.136135\pi\)
−0.909931 + 0.414761i \(0.863865\pi\)
\(798\) 0 0
\(799\) −46.1100 −1.63126
\(800\) −13.4297 24.2521i −0.474811 0.857442i
\(801\) 21.0899 + 23.0371i 0.745175 + 0.813975i
\(802\) 2.57316 1.48562i 0.0908615 0.0524589i
\(803\) −1.97329 1.13928i −0.0696360 0.0402044i
\(804\) 2.24792 + 20.5698i 0.0792780 + 0.725440i
\(805\) 0 0
\(806\) 4.87184i 0.171603i
\(807\) −4.18118 + 9.49648i −0.147185 + 0.334292i
\(808\) −19.8420 34.3674i −0.698040 1.20904i
\(809\) 9.50469 5.48754i 0.334167 0.192932i −0.323522 0.946220i \(-0.604867\pi\)
0.657690 + 0.753289i \(0.271534\pi\)
\(810\) 7.51995 + 16.5511i 0.264224 + 0.581546i
\(811\) 35.5390i 1.24794i 0.781448 + 0.623971i \(0.214482\pi\)
−0.781448 + 0.623971i \(0.785518\pi\)
\(812\) 0 0
\(813\) −1.17511 10.7529i −0.0412127 0.377121i
\(814\) 2.93671 5.08653i 0.102932 0.178283i
\(815\) −21.8879 + 37.1402i −0.766700 + 1.30097i
\(816\) 2.14495 1.57197i 0.0750881 0.0550300i
\(817\) 21.4972 37.2342i 0.752090 1.30266i
\(818\) 3.74808i 0.131048i
\(819\) 0 0
\(820\) −21.0227 + 11.8882i −0.734146 + 0.415154i
\(821\) 39.5091 + 22.8106i 1.37888 + 0.796094i 0.992024 0.126048i \(-0.0402293\pi\)
0.386851 + 0.922142i \(0.373563\pi\)
\(822\) −11.6015 15.8302i −0.404650 0.552143i
\(823\) 12.0190 6.93918i 0.418956 0.241885i −0.275674 0.961251i \(-0.588901\pi\)
0.694631 + 0.719366i \(0.255568\pi\)
\(824\) 11.9558 20.7081i 0.416501 0.721400i
\(825\) 31.9556 + 14.7572i 1.11255 + 0.513781i
\(826\) 0 0
\(827\) −12.3739 −0.430283 −0.215141 0.976583i \(-0.569021\pi\)
−0.215141 + 0.976583i \(0.569021\pi\)
\(828\) −1.74553 + 5.52717i −0.0606615 + 0.192082i
\(829\) 9.24010 5.33478i 0.320922 0.185284i −0.330881 0.943672i \(-0.607346\pi\)
0.651803 + 0.758388i \(0.274013\pi\)
\(830\) −4.10666 + 6.96834i −0.142544 + 0.241875i
\(831\) 13.7980 + 6.07509i 0.478647 + 0.210743i
\(832\) 15.7670 0.546621
\(833\) 0 0
\(834\) 0.403928 + 3.69618i 0.0139869 + 0.127988i
\(835\) 1.97641 + 0.0176684i 0.0683965 + 0.000611440i
\(836\) −13.7315 23.7836i −0.474912 0.822572i
\(837\) −6.41417 + 7.30368i −0.221706 + 0.252452i
\(838\) 10.2182 17.6984i 0.352981 0.611381i
\(839\) −17.5497 −0.605883 −0.302941 0.953009i \(-0.597969\pi\)
−0.302941 + 0.953009i \(0.597969\pi\)
\(840\) 0 0
\(841\) −5.77548 −0.199154
\(842\) 14.4188 24.9740i 0.496903 0.860662i
\(843\) −6.09492 + 4.46680i −0.209920 + 0.153845i
\(844\) 11.1673 + 19.3424i 0.384395 + 0.665791i
\(845\) −0.0937160 + 10.4832i −0.00322393 + 0.360633i
\(846\) −4.04721 18.2960i −0.139146 0.629030i
\(847\) 0 0
\(848\) 0.349645 0.0120069
\(849\) −5.24908 + 11.9219i −0.180148 + 0.409159i
\(850\) −0.538484 + 30.1154i −0.0184698 + 1.03295i
\(851\) −2.26078 + 1.30526i −0.0774986 + 0.0447438i
\(852\) −9.03165 3.97653i −0.309419 0.136234i
\(853\) −29.6157 −1.01402 −0.507011 0.861940i \(-0.669250\pi\)
−0.507011 + 0.861940i \(0.669250\pi\)
\(854\) 0 0
\(855\) 25.5976 + 28.4678i 0.875419 + 0.973577i
\(856\) 15.4410 26.7447i 0.527764 0.914114i
\(857\) 38.6264 22.3010i 1.31945 0.761787i 0.335812 0.941929i \(-0.390989\pi\)
0.983641 + 0.180142i \(0.0576558\pi\)
\(858\) −14.7875 + 10.8374i −0.504837 + 0.369982i
\(859\) −5.57093 3.21638i −0.190078 0.109741i 0.401941 0.915665i \(-0.368336\pi\)
−0.592019 + 0.805924i \(0.701669\pi\)
\(860\) −9.81763 17.3612i −0.334778 0.592013i
\(861\) 0 0
\(862\) 22.6239i 0.770573i
\(863\) 26.6755 46.2033i 0.908045 1.57278i 0.0912683 0.995826i \(-0.470908\pi\)
0.816777 0.576954i \(-0.195759\pi\)
\(864\) −21.6471 19.0107i −0.736449 0.646757i
\(865\) 14.2096 24.1114i 0.483140 0.819811i
\(866\) 2.30451 3.99152i 0.0783104 0.135638i
\(867\) 47.2991 5.16897i 1.60636 0.175547i
\(868\) 0 0
\(869\) 15.4384i 0.523713i
\(870\) 20.5287 2.05790i 0.695988 0.0697694i
\(871\) 25.1927 14.5450i 0.853623 0.492839i
\(872\) −0.771796 1.33679i −0.0261363 0.0452694i
\(873\) 13.1334 41.5865i 0.444499 1.40749i
\(874\) 8.41281i 0.284567i
\(875\) 0 0
\(876\) −1.14286 + 0.124895i −0.0386138 + 0.00421982i
\(877\) −30.7320 17.7431i −1.03774 0.599142i −0.118551 0.992948i \(-0.537825\pi\)
−0.919194 + 0.393806i \(0.871158\pi\)
\(878\) 8.83075 5.09844i 0.298023 0.172064i
\(879\) 0.147926 0.108411i 0.00498941 0.00365660i
\(880\) 2.09233 + 0.0187047i 0.0705326 + 0.000630535i
\(881\) −25.0114 −0.842655 −0.421327 0.906909i \(-0.638436\pi\)
−0.421327 + 0.906909i \(0.638436\pi\)
\(882\) 0 0
\(883\) 30.1344i 1.01410i 0.861916 + 0.507051i \(0.169264\pi\)
−0.861916 + 0.507051i \(0.830736\pi\)
\(884\) 19.7130 + 11.3813i 0.663021 + 0.382796i
\(885\) −3.50176 1.57930i −0.117710 0.0530877i
\(886\) 9.89976 + 17.1469i 0.332589 + 0.576061i
\(887\) 7.84535 + 4.52951i 0.263421 + 0.152086i 0.625894 0.779908i \(-0.284734\pi\)
−0.362473 + 0.931994i \(0.618068\pi\)
\(888\) −0.865767 7.92227i −0.0290532 0.265854i
\(889\) 0 0
\(890\) −18.3052 + 10.3515i −0.613592 + 0.346982i
\(891\) 36.4372 + 3.22197i 1.22069 + 0.107940i
\(892\) 11.4123 + 19.7668i 0.382113 + 0.661840i
\(893\) −19.7305 34.1742i −0.660255 1.14359i
\(894\) −23.5824 10.3831i −0.788715 0.347262i
\(895\) −13.3905 23.6794i −0.447595 0.791514i
\(896\) 0 0
\(897\) 8.10039 0.885232i 0.270464 0.0295570i
\(898\) 0.351569 + 0.202979i 0.0117320 + 0.00677349i
\(899\) 5.51578 + 9.55361i 0.183962 + 0.318631i
\(900\) 17.4063 3.52522i 0.580210 0.117507i
\(901\) 8.77052 + 5.06366i 0.292188 + 0.168695i
\(902\) 33.4931i 1.11520i
\(903\) 0 0
\(904\) −34.8104 −1.15778
\(905\) −36.1720 0.323365i −1.20240 0.0107490i
\(906\) 12.1597 + 16.5919i 0.403980 + 0.551228i
\(907\) −8.21292 + 4.74173i −0.272705 + 0.157447i −0.630116 0.776501i \(-0.716993\pi\)
0.357411 + 0.933947i \(0.383660\pi\)
\(908\) −11.7934 6.80891i −0.391377 0.225962i
\(909\) 40.4150 8.94009i 1.34048 0.296524i
\(910\) 0 0
\(911\) 56.8415i 1.88324i 0.336672 + 0.941622i \(0.390699\pi\)
−0.336672 + 0.941622i \(0.609301\pi\)
\(912\) 2.08288 + 0.917066i 0.0689710 + 0.0303671i
\(913\) 8.13751 + 14.0946i 0.269312 + 0.466463i
\(914\) −7.26995 + 4.19731i −0.240469 + 0.138835i
\(915\) −23.7573 + 2.38155i −0.785392 + 0.0787317i
\(916\) 20.5695i 0.679637i
\(917\) 0 0
\(918\) 10.0410 + 29.6476i 0.331402 + 0.978518i
\(919\) 28.6839 49.6820i 0.946195 1.63886i 0.192853 0.981228i \(-0.438226\pi\)
0.753341 0.657630i \(-0.228441\pi\)
\(920\) −9.04177 5.32860i −0.298098 0.175679i
\(921\) −9.53485 13.0102i −0.314184 0.428702i
\(922\) −9.42488 + 16.3244i −0.310392 + 0.537615i
\(923\) 13.8733i 0.456645i
\(924\) 0 0
\(925\) 6.85442 + 4.12252i 0.225372 + 0.135548i
\(926\) −1.91897 1.10792i −0.0630613 0.0364084i
\(927\) 16.8412 + 18.3961i 0.553137 + 0.604207i
\(928\) −28.3156 + 16.3480i −0.929504 + 0.536649i
\(929\) 5.14668 8.91430i 0.168857 0.292469i −0.769161 0.639055i \(-0.779326\pi\)
0.938018 + 0.346586i \(0.112659\pi\)
\(930\) −3.82143 5.31329i −0.125310 0.174230i
\(931\) 0 0
\(932\) −0.548005 −0.0179505
\(933\) −17.6680 + 40.1284i −0.578425 + 1.31374i
\(934\) 6.24283 3.60430i 0.204271 0.117936i
\(935\) 52.2134 + 30.7710i 1.70756 + 1.00632i
\(936\) −7.49144 + 23.7214i −0.244865 + 0.775357i
\(937\) −29.0347 −0.948522 −0.474261 0.880384i \(-0.657285\pi\)
−0.474261 + 0.880384i \(0.657285\pi\)
\(938\) 0 0
\(939\) 13.1715 1.43941i 0.429835 0.0469735i
\(940\) −18.3050 0.163640i −0.597044 0.00533735i
\(941\) −7.48583 12.9658i −0.244031 0.422674i 0.717828 0.696221i \(-0.245137\pi\)
−0.961859 + 0.273546i \(0.911803\pi\)
\(942\) 2.94866 + 4.02342i 0.0960725 + 0.131090i
\(943\) −7.44325 + 12.8921i −0.242386 + 0.419824i
\(944\) −0.228358 −0.00743242
\(945\) 0 0
\(946\) 27.6596 0.899292
\(947\) 7.25429 12.5648i 0.235733 0.408301i −0.723753 0.690059i \(-0.757584\pi\)
0.959485 + 0.281758i \(0.0909177\pi\)
\(948\) −4.60459 6.28294i −0.149550 0.204060i
\(949\) 0.808126 + 1.39972i 0.0262329 + 0.0454367i
\(950\) −22.5502 + 12.4873i −0.731626 + 0.405140i
\(951\) −42.6085 + 4.65637i −1.38167 + 0.150993i
\(952\) 0 0
\(953\) 34.9591 1.13244 0.566218 0.824256i \(-0.308406\pi\)
0.566218 + 0.824256i \(0.308406\pi\)
\(954\) −1.23940 + 3.92451i −0.0401270 + 0.127061i
\(955\) 9.39793 15.9468i 0.304110 0.516025i
\(956\) −17.7443 + 10.2447i −0.573891 + 0.331336i
\(957\) 16.7283 37.9940i 0.540749 1.22817i
\(958\) −12.5500 −0.405473
\(959\) 0 0
\(960\) 17.1957 12.3675i 0.554988 0.399159i
\(961\) −13.7503 + 23.8162i −0.443557 + 0.768264i
\(962\) −3.60802 + 2.08309i −0.116327 + 0.0671616i
\(963\) 21.7505 + 23.7587i 0.700901 + 0.765614i
\(964\) 4.38790 + 2.53336i 0.141325 + 0.0815939i
\(965\) −17.5287 30.9972i −0.564268 0.997836i
\(966\) 0 0
\(967\) 46.6810i 1.50116i −0.660779 0.750581i \(-0.729774\pi\)
0.660779 0.750581i \(-0.270226\pi\)
\(968\) 7.93709 13.7474i 0.255108 0.441860i
\(969\) 38.9658 + 53.1686i 1.25176 + 1.70802i
\(970\) 25.2975 + 14.9086i 0.812253 + 0.478686i
\(971\) 0.656690 1.13742i 0.0210742 0.0365016i −0.855296 0.518140i \(-0.826625\pi\)
0.876370 + 0.481638i \(0.159958\pi\)
\(972\) 15.7897 9.55635i 0.506456 0.306520i
\(973\) 0 0
\(974\) 23.9482i 0.767350i
\(975\) −14.3964 20.3988i −0.461053 0.653286i
\(976\) −1.22920 + 0.709680i −0.0393458 + 0.0227163i
\(977\) 26.5376 + 45.9645i 0.849013 + 1.47053i 0.882090 + 0.471081i \(0.156136\pi\)
−0.0330769 + 0.999453i \(0.510531\pi\)
\(978\) −27.6076 12.1553i −0.882795 0.388684i
\(979\) 42.3140i 1.35236i
\(980\) 0 0
\(981\) 1.57202 0.347743i 0.0501908 0.0111026i
\(982\) −1.99186 1.15000i −0.0635629 0.0366980i
\(983\) 18.2849 10.5568i 0.583198 0.336709i −0.179206 0.983812i \(-0.557353\pi\)
0.762403 + 0.647102i \(0.224019\pi\)
\(984\) −26.8639 36.6557i −0.856391 1.16854i
\(985\) −0.477209 + 53.3812i −0.0152051 + 1.70087i
\(986\) 35.5242 1.13132
\(987\) 0 0
\(988\) 19.4803i 0.619750i
\(989\) −10.6467 6.14686i −0.338545 0.195459i
\(990\) −7.62671 + 23.4186i −0.242393 + 0.744292i
\(991\) 26.8174 + 46.4491i 0.851883 + 1.47551i 0.879507 + 0.475887i \(0.157873\pi\)
−0.0276234 + 0.999618i \(0.508794\pi\)
\(992\) 8.98233 + 5.18595i 0.285189 + 0.164654i
\(993\) 28.1621 3.07763i 0.893698 0.0976657i
\(994\) 0 0
\(995\) 13.4583 + 23.7993i 0.426657 + 0.754488i
\(996\) 7.51549 + 3.30898i 0.238137 + 0.104849i
\(997\) −19.4435 33.6771i −0.615781 1.06656i −0.990247 0.139323i \(-0.955507\pi\)
0.374466 0.927241i \(-0.377826\pi\)
\(998\) 13.3918 + 23.1953i 0.423910 + 0.734234i
\(999\) 8.15158 + 1.62736i 0.257905 + 0.0514874i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.g.509.24 64
3.2 odd 2 inner 735.2.p.g.509.11 64
5.4 even 2 inner 735.2.p.g.509.9 64
7.2 even 3 735.2.g.c.734.10 yes 32
7.3 odd 6 inner 735.2.p.g.374.22 64
7.4 even 3 inner 735.2.p.g.374.23 64
7.5 odd 6 735.2.g.c.734.11 yes 32
7.6 odd 2 inner 735.2.p.g.509.21 64
15.14 odd 2 inner 735.2.p.g.509.22 64
21.2 odd 6 735.2.g.c.734.21 yes 32
21.5 even 6 735.2.g.c.734.24 yes 32
21.11 odd 6 inner 735.2.p.g.374.12 64
21.17 even 6 inner 735.2.p.g.374.9 64
21.20 even 2 inner 735.2.p.g.509.10 64
35.4 even 6 inner 735.2.p.g.374.10 64
35.9 even 6 735.2.g.c.734.23 yes 32
35.19 odd 6 735.2.g.c.734.22 yes 32
35.24 odd 6 inner 735.2.p.g.374.11 64
35.34 odd 2 inner 735.2.p.g.509.12 64
105.44 odd 6 735.2.g.c.734.12 yes 32
105.59 even 6 inner 735.2.p.g.374.24 64
105.74 odd 6 inner 735.2.p.g.374.21 64
105.89 even 6 735.2.g.c.734.9 32
105.104 even 2 inner 735.2.p.g.509.23 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.9 32 105.89 even 6
735.2.g.c.734.10 yes 32 7.2 even 3
735.2.g.c.734.11 yes 32 7.5 odd 6
735.2.g.c.734.12 yes 32 105.44 odd 6
735.2.g.c.734.21 yes 32 21.2 odd 6
735.2.g.c.734.22 yes 32 35.19 odd 6
735.2.g.c.734.23 yes 32 35.9 even 6
735.2.g.c.734.24 yes 32 21.5 even 6
735.2.p.g.374.9 64 21.17 even 6 inner
735.2.p.g.374.10 64 35.4 even 6 inner
735.2.p.g.374.11 64 35.24 odd 6 inner
735.2.p.g.374.12 64 21.11 odd 6 inner
735.2.p.g.374.21 64 105.74 odd 6 inner
735.2.p.g.374.22 64 7.3 odd 6 inner
735.2.p.g.374.23 64 7.4 even 3 inner
735.2.p.g.374.24 64 105.59 even 6 inner
735.2.p.g.509.9 64 5.4 even 2 inner
735.2.p.g.509.10 64 21.20 even 2 inner
735.2.p.g.509.11 64 3.2 odd 2 inner
735.2.p.g.509.12 64 35.34 odd 2 inner
735.2.p.g.509.21 64 7.6 odd 2 inner
735.2.p.g.509.22 64 15.14 odd 2 inner
735.2.p.g.509.23 64 105.104 even 2 inner
735.2.p.g.509.24 64 1.1 even 1 trivial