Properties

Label 735.2.g.c.734.22
Level $735$
Weight $2$
Character 735.734
Analytic conductor $5.869$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(734,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.734");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 734.22
Character \(\chi\) \(=\) 735.734
Dual form 735.2.g.c.734.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.903339 q^{2} +(-1.72180 + 0.188163i) q^{3} -1.18398 q^{4} +(1.94641 + 1.10068i) q^{5} +(-1.55537 + 0.169975i) q^{6} -2.87621 q^{8} +(2.92919 - 0.647957i) q^{9} +(1.75827 + 0.994285i) q^{10} -4.06437i q^{11} +(2.03858 - 0.222781i) q^{12} +2.88298 q^{13} +(-3.55843 - 1.52891i) q^{15} -0.230234 q^{16} +6.66864i q^{17} +(2.64605 - 0.585325i) q^{18} +5.70701i q^{19} +(-2.30451 - 1.30318i) q^{20} -3.67151i q^{22} +1.63185 q^{23} +(4.95226 - 0.541196i) q^{24} +(2.57701 + 4.28474i) q^{25} +2.60431 q^{26} +(-4.92156 + 1.66682i) q^{27} +5.89707i q^{29} +(-3.21447 - 1.38112i) q^{30} -1.87068i q^{31} +5.54444 q^{32} +(0.764764 + 6.99804i) q^{33} +6.02404i q^{34} +(-3.46810 + 0.767168i) q^{36} -1.59973i q^{37} +5.15537i q^{38} +(-4.96392 + 0.542470i) q^{39} +(-5.59828 - 3.16578i) q^{40} +9.12244 q^{41} +7.53359i q^{43} +4.81213i q^{44} +(6.41459 + 1.96291i) q^{45} +1.47412 q^{46} +6.91446i q^{47} +(0.396417 - 0.0433215i) q^{48} +(2.32792 + 3.87057i) q^{50} +(-1.25479 - 11.4821i) q^{51} -3.41339 q^{52} +1.51865 q^{53} +(-4.44583 + 1.50570i) q^{54} +(4.47357 - 7.91093i) q^{55} +(-1.07385 - 9.82633i) q^{57} +5.32705i q^{58} -0.991850 q^{59} +(4.21311 + 1.81019i) q^{60} -6.16485i q^{61} -1.68986i q^{62} +5.46898 q^{64} +(5.61146 + 3.17324i) q^{65} +(0.690841 + 6.32160i) q^{66} -10.0903i q^{67} -7.89553i q^{68} +(-2.80973 + 0.307054i) q^{69} +4.81213i q^{71} +(-8.42497 + 1.86366i) q^{72} -0.560619 q^{73} -1.44510i q^{74} +(-5.24333 - 6.89257i) q^{75} -6.75699i q^{76} +(-4.48410 + 0.490034i) q^{78} +3.79848 q^{79} +(-0.448130 - 0.253414i) q^{80} +(8.16030 - 3.79598i) q^{81} +8.24065 q^{82} -4.00431i q^{83} +(-7.34003 + 12.9799i) q^{85} +6.80539i q^{86} +(-1.10961 - 10.1536i) q^{87} +11.6900i q^{88} +10.4109 q^{89} +(5.79455 + 1.77317i) q^{90} -1.93208 q^{92} +(0.351993 + 3.22094i) q^{93} +6.24610i q^{94} +(-6.28159 + 11.1082i) q^{95} +(-9.54642 + 1.04326i) q^{96} -14.5370 q^{97} +(-2.63354 - 11.9053i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} + 40 q^{9} + 16 q^{15} - 16 q^{16} + 64 q^{25} + 56 q^{30} - 16 q^{36} - 56 q^{39} - 32 q^{46} - 40 q^{51} + 8 q^{60} - 176 q^{64} + 48 q^{79} - 40 q^{81} - 64 q^{85} + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.903339 0.638757 0.319378 0.947627i \(-0.396526\pi\)
0.319378 + 0.947627i \(0.396526\pi\)
\(3\) −1.72180 + 0.188163i −0.994082 + 0.108636i
\(4\) −1.18398 −0.591990
\(5\) 1.94641 + 1.10068i 0.870460 + 0.492238i
\(6\) −1.55537 + 0.169975i −0.634976 + 0.0693919i
\(7\) 0 0
\(8\) −2.87621 −1.01689
\(9\) 2.92919 0.647957i 0.976396 0.215986i
\(10\) 1.75827 + 0.994285i 0.556013 + 0.314421i
\(11\) 4.06437i 1.22545i −0.790294 0.612727i \(-0.790072\pi\)
0.790294 0.612727i \(-0.209928\pi\)
\(12\) 2.03858 0.222781i 0.588486 0.0643113i
\(13\) 2.88298 0.799595 0.399798 0.916603i \(-0.369080\pi\)
0.399798 + 0.916603i \(0.369080\pi\)
\(14\) 0 0
\(15\) −3.55843 1.52891i −0.918783 0.394762i
\(16\) −0.230234 −0.0575586
\(17\) 6.66864i 1.61738i 0.588233 + 0.808691i \(0.299824\pi\)
−0.588233 + 0.808691i \(0.700176\pi\)
\(18\) 2.64605 0.585325i 0.623680 0.137962i
\(19\) 5.70701i 1.30928i 0.755941 + 0.654639i \(0.227179\pi\)
−0.755941 + 0.654639i \(0.772821\pi\)
\(20\) −2.30451 1.30318i −0.515304 0.291400i
\(21\) 0 0
\(22\) 3.67151i 0.782768i
\(23\) 1.63185 0.340265 0.170133 0.985421i \(-0.445580\pi\)
0.170133 + 0.985421i \(0.445580\pi\)
\(24\) 4.95226 0.541196i 1.01088 0.110471i
\(25\) 2.57701 + 4.28474i 0.515403 + 0.856948i
\(26\) 2.60431 0.510747
\(27\) −4.92156 + 1.66682i −0.947154 + 0.320779i
\(28\) 0 0
\(29\) 5.89707i 1.09506i 0.836786 + 0.547530i \(0.184432\pi\)
−0.836786 + 0.547530i \(0.815568\pi\)
\(30\) −3.21447 1.38112i −0.586879 0.252157i
\(31\) 1.87068i 0.335985i −0.985788 0.167992i \(-0.946272\pi\)
0.985788 0.167992i \(-0.0537284\pi\)
\(32\) 5.54444 0.980128
\(33\) 0.764764 + 6.99804i 0.133128 + 1.21820i
\(34\) 6.02404i 1.03311i
\(35\) 0 0
\(36\) −3.46810 + 0.767168i −0.578017 + 0.127861i
\(37\) 1.59973i 0.262994i −0.991317 0.131497i \(-0.958022\pi\)
0.991317 0.131497i \(-0.0419783\pi\)
\(38\) 5.15537i 0.836311i
\(39\) −4.96392 + 0.542470i −0.794863 + 0.0868647i
\(40\) −5.59828 3.16578i −0.885166 0.500554i
\(41\) 9.12244 1.42469 0.712343 0.701832i \(-0.247634\pi\)
0.712343 + 0.701832i \(0.247634\pi\)
\(42\) 0 0
\(43\) 7.53359i 1.14886i 0.818553 + 0.574431i \(0.194777\pi\)
−0.818553 + 0.574431i \(0.805223\pi\)
\(44\) 4.81213i 0.725456i
\(45\) 6.41459 + 1.96291i 0.956231 + 0.292613i
\(46\) 1.47412 0.217347
\(47\) 6.91446i 1.00858i 0.863535 + 0.504289i \(0.168245\pi\)
−0.863535 + 0.504289i \(0.831755\pi\)
\(48\) 0.396417 0.0433215i 0.0572179 0.00625292i
\(49\) 0 0
\(50\) 2.32792 + 3.87057i 0.329217 + 0.547381i
\(51\) −1.25479 11.4821i −0.175706 1.60781i
\(52\) −3.41339 −0.473352
\(53\) 1.51865 0.208603 0.104301 0.994546i \(-0.466739\pi\)
0.104301 + 0.994546i \(0.466739\pi\)
\(54\) −4.44583 + 1.50570i −0.605001 + 0.204900i
\(55\) 4.47357 7.91093i 0.603216 1.06671i
\(56\) 0 0
\(57\) −1.07385 9.82633i −0.142235 1.30153i
\(58\) 5.32705i 0.699477i
\(59\) −0.991850 −0.129128 −0.0645640 0.997914i \(-0.520566\pi\)
−0.0645640 + 0.997914i \(0.520566\pi\)
\(60\) 4.21311 + 1.81019i 0.543910 + 0.233695i
\(61\) 6.16485i 0.789328i −0.918825 0.394664i \(-0.870861\pi\)
0.918825 0.394664i \(-0.129139\pi\)
\(62\) 1.68986i 0.214612i
\(63\) 0 0
\(64\) 5.46898 0.683622
\(65\) 5.61146 + 3.17324i 0.696016 + 0.393591i
\(66\) 0.690841 + 6.32160i 0.0850366 + 0.778135i
\(67\) 10.0903i 1.23272i −0.787464 0.616361i \(-0.788606\pi\)
0.787464 0.616361i \(-0.211394\pi\)
\(68\) 7.89553i 0.957474i
\(69\) −2.80973 + 0.307054i −0.338251 + 0.0369650i
\(70\) 0 0
\(71\) 4.81213i 0.571095i 0.958365 + 0.285548i \(0.0921755\pi\)
−0.958365 + 0.285548i \(0.907825\pi\)
\(72\) −8.42497 + 1.86366i −0.992892 + 0.219635i
\(73\) −0.560619 −0.0656154 −0.0328077 0.999462i \(-0.510445\pi\)
−0.0328077 + 0.999462i \(0.510445\pi\)
\(74\) 1.44510i 0.167989i
\(75\) −5.24333 6.89257i −0.605448 0.795885i
\(76\) 6.75699i 0.775079i
\(77\) 0 0
\(78\) −4.48410 + 0.490034i −0.507724 + 0.0554854i
\(79\) 3.79848 0.427362 0.213681 0.976904i \(-0.431455\pi\)
0.213681 + 0.976904i \(0.431455\pi\)
\(80\) −0.448130 0.253414i −0.0501024 0.0283325i
\(81\) 8.16030 3.79598i 0.906700 0.421776i
\(82\) 8.24065 0.910028
\(83\) 4.00431i 0.439530i −0.975553 0.219765i \(-0.929471\pi\)
0.975553 0.219765i \(-0.0705291\pi\)
\(84\) 0 0
\(85\) −7.34003 + 12.9799i −0.796138 + 1.40787i
\(86\) 6.80539i 0.733844i
\(87\) −1.10961 10.1536i −0.118963 1.08858i
\(88\) 11.6900i 1.24616i
\(89\) 10.4109 1.10356 0.551779 0.833990i \(-0.313949\pi\)
0.551779 + 0.833990i \(0.313949\pi\)
\(90\) 5.79455 + 1.77317i 0.610799 + 0.186908i
\(91\) 0 0
\(92\) −1.93208 −0.201433
\(93\) 0.351993 + 3.22094i 0.0365000 + 0.333996i
\(94\) 6.24610i 0.644236i
\(95\) −6.28159 + 11.1082i −0.644477 + 1.13968i
\(96\) −9.54642 + 1.04326i −0.974328 + 0.106477i
\(97\) −14.5370 −1.47601 −0.738006 0.674795i \(-0.764232\pi\)
−0.738006 + 0.674795i \(0.764232\pi\)
\(98\) 0 0
\(99\) −2.63354 11.9053i −0.264681 1.19653i
\(100\) −3.05113 5.07304i −0.305113 0.507304i
\(101\) −13.7973 −1.37289 −0.686443 0.727183i \(-0.740829\pi\)
−0.686443 + 0.727183i \(0.740829\pi\)
\(102\) −1.13350 10.3722i −0.112233 1.02700i
\(103\) −8.31359 −0.819162 −0.409581 0.912274i \(-0.634325\pi\)
−0.409581 + 0.912274i \(0.634325\pi\)
\(104\) −8.29206 −0.813104
\(105\) 0 0
\(106\) 1.37186 0.133246
\(107\) 10.7371 1.03799 0.518996 0.854777i \(-0.326306\pi\)
0.518996 + 0.854777i \(0.326306\pi\)
\(108\) 5.82702 1.97348i 0.560705 0.189898i
\(109\) 0.536675 0.0514042 0.0257021 0.999670i \(-0.491818\pi\)
0.0257021 + 0.999670i \(0.491818\pi\)
\(110\) 4.04115 7.14625i 0.385308 0.681368i
\(111\) 0.301010 + 2.75441i 0.0285706 + 0.261437i
\(112\) 0 0
\(113\) 12.1028 1.13854 0.569270 0.822151i \(-0.307226\pi\)
0.569270 + 0.822151i \(0.307226\pi\)
\(114\) −0.970048 8.87651i −0.0908533 0.831361i
\(115\) 3.17626 + 1.79615i 0.296187 + 0.167492i
\(116\) 6.98201i 0.648264i
\(117\) 8.44480 1.86805i 0.780722 0.172701i
\(118\) −0.895977 −0.0824813
\(119\) 0 0
\(120\) 10.2348 + 4.39746i 0.934306 + 0.401431i
\(121\) −5.51913 −0.501739
\(122\) 5.56895i 0.504189i
\(123\) −15.7070 + 1.71650i −1.41625 + 0.154772i
\(124\) 2.21485i 0.198899i
\(125\) 0.299800 + 11.1763i 0.0268150 + 0.999640i
\(126\) 0 0
\(127\) 22.2883i 1.97777i −0.148697 0.988883i \(-0.547508\pi\)
0.148697 0.988883i \(-0.452492\pi\)
\(128\) −6.14855 −0.543460
\(129\) −1.41754 12.9713i −0.124808 1.14206i
\(130\) 5.06905 + 2.86651i 0.444585 + 0.251409i
\(131\) 0.114179 0.00997586 0.00498793 0.999988i \(-0.498412\pi\)
0.00498793 + 0.999988i \(0.498412\pi\)
\(132\) −0.905465 8.28553i −0.0788106 0.721163i
\(133\) 0 0
\(134\) 9.11493i 0.787410i
\(135\) −11.4140 2.17274i −0.982360 0.187000i
\(136\) 19.1804i 1.64471i
\(137\) −12.5438 −1.07168 −0.535842 0.844318i \(-0.680006\pi\)
−0.535842 + 0.844318i \(0.680006\pi\)
\(138\) −2.53813 + 0.277374i −0.216060 + 0.0236117i
\(139\) 2.37640i 0.201564i −0.994909 0.100782i \(-0.967866\pi\)
0.994909 0.100782i \(-0.0321344\pi\)
\(140\) 0 0
\(141\) −1.30104 11.9053i −0.109568 1.00261i
\(142\) 4.34699i 0.364791i
\(143\) 11.7175i 0.979868i
\(144\) −0.674400 + 0.149182i −0.0562000 + 0.0124318i
\(145\) −6.49078 + 11.4781i −0.539030 + 0.953206i
\(146\) −0.506428 −0.0419123
\(147\) 0 0
\(148\) 1.89405i 0.155690i
\(149\) 16.4685i 1.34915i 0.738207 + 0.674575i \(0.235673\pi\)
−0.738207 + 0.674575i \(0.764327\pi\)
\(150\) −4.73650 6.22632i −0.386734 0.508377i
\(151\) −13.1473 −1.06991 −0.534955 0.844881i \(-0.679671\pi\)
−0.534955 + 0.844881i \(0.679671\pi\)
\(152\) 16.4146i 1.33140i
\(153\) 4.32099 + 19.5337i 0.349332 + 1.57921i
\(154\) 0 0
\(155\) 2.05902 3.64111i 0.165385 0.292461i
\(156\) 5.87717 0.642273i 0.470551 0.0514230i
\(157\) −3.18813 −0.254440 −0.127220 0.991874i \(-0.540605\pi\)
−0.127220 + 0.991874i \(0.540605\pi\)
\(158\) 3.43131 0.272980
\(159\) −2.61481 + 0.285753i −0.207368 + 0.0226617i
\(160\) 10.7918 + 6.10265i 0.853163 + 0.482457i
\(161\) 0 0
\(162\) 7.37152 3.42906i 0.579161 0.269412i
\(163\) 19.2794i 1.51008i −0.655679 0.755040i \(-0.727617\pi\)
0.655679 0.755040i \(-0.272383\pi\)
\(164\) −10.8008 −0.843399
\(165\) −6.21405 + 14.4628i −0.483763 + 1.12593i
\(166\) 3.61725i 0.280753i
\(167\) 0.883913i 0.0683993i 0.999415 + 0.0341996i \(0.0108882\pi\)
−0.999415 + 0.0341996i \(0.989112\pi\)
\(168\) 0 0
\(169\) −4.68842 −0.360648
\(170\) −6.63053 + 11.7252i −0.508538 + 0.899285i
\(171\) 3.69790 + 16.7169i 0.282786 + 1.27838i
\(172\) 8.91962i 0.680114i
\(173\) 12.5161i 0.951585i −0.879558 0.475793i \(-0.842161\pi\)
0.879558 0.475793i \(-0.157839\pi\)
\(174\) −1.00235 9.17212i −0.0759882 0.695337i
\(175\) 0 0
\(176\) 0.935758i 0.0705354i
\(177\) 1.70777 0.186629i 0.128364 0.0140279i
\(178\) 9.40461 0.704906
\(179\) 12.1657i 0.909305i 0.890669 + 0.454653i \(0.150237\pi\)
−0.890669 + 0.454653i \(0.849763\pi\)
\(180\) −7.59475 2.32404i −0.566079 0.173224i
\(181\) 16.1773i 1.20245i 0.799081 + 0.601224i \(0.205320\pi\)
−0.799081 + 0.601224i \(0.794680\pi\)
\(182\) 0 0
\(183\) 1.16000 + 10.6146i 0.0857493 + 0.784657i
\(184\) −4.69356 −0.346014
\(185\) 1.76079 3.11373i 0.129456 0.228926i
\(186\) 0.317969 + 2.90960i 0.0233146 + 0.213342i
\(187\) 27.1038 1.98203
\(188\) 8.18658i 0.597068i
\(189\) 0 0
\(190\) −5.67440 + 10.0344i −0.411664 + 0.727975i
\(191\) 8.27793i 0.598970i −0.954101 0.299485i \(-0.903185\pi\)
0.954101 0.299485i \(-0.0968148\pi\)
\(192\) −9.41649 + 1.02906i −0.679576 + 0.0742659i
\(193\) 15.9253i 1.14633i −0.819440 0.573166i \(-0.805715\pi\)
0.819440 0.573166i \(-0.194285\pi\)
\(194\) −13.1319 −0.942812
\(195\) −10.2589 4.40781i −0.734655 0.315650i
\(196\) 0 0
\(197\) 23.8738 1.70094 0.850468 0.526027i \(-0.176319\pi\)
0.850468 + 0.526027i \(0.176319\pi\)
\(198\) −2.37898 10.7545i −0.169067 0.764292i
\(199\) 12.2273i 0.866768i 0.901209 + 0.433384i \(0.142681\pi\)
−0.901209 + 0.433384i \(0.857319\pi\)
\(200\) −7.41204 12.3238i −0.524110 0.871426i
\(201\) 1.89861 + 17.3734i 0.133918 + 1.22543i
\(202\) −12.4637 −0.876941
\(203\) 0 0
\(204\) 1.48565 + 13.5945i 0.104016 + 0.951807i
\(205\) 17.7560 + 10.0409i 1.24013 + 0.701285i
\(206\) −7.50998 −0.523245
\(207\) 4.78001 1.05737i 0.332234 0.0734925i
\(208\) −0.663761 −0.0460235
\(209\) 23.1954 1.60446
\(210\) 0 0
\(211\) 18.8640 1.29865 0.649327 0.760510i \(-0.275051\pi\)
0.649327 + 0.760510i \(0.275051\pi\)
\(212\) −1.79805 −0.123491
\(213\) −0.905465 8.28553i −0.0620414 0.567715i
\(214\) 9.69921 0.663025
\(215\) −8.29206 + 14.6635i −0.565514 + 1.00004i
\(216\) 14.1554 4.79412i 0.963156 0.326199i
\(217\) 0 0
\(218\) 0.484799 0.0328348
\(219\) 0.965273 0.105488i 0.0652271 0.00712819i
\(220\) −5.29661 + 9.36638i −0.357098 + 0.631481i
\(221\) 19.2256i 1.29325i
\(222\) 0.271914 + 2.48817i 0.0182496 + 0.166995i
\(223\) 19.2779 1.29095 0.645473 0.763783i \(-0.276660\pi\)
0.645473 + 0.763783i \(0.276660\pi\)
\(224\) 0 0
\(225\) 10.3249 + 10.8810i 0.688326 + 0.725401i
\(226\) 10.9330 0.727250
\(227\) 11.5017i 0.763397i −0.924287 0.381698i \(-0.875339\pi\)
0.924287 0.381698i \(-0.124661\pi\)
\(228\) 1.27141 + 11.6342i 0.0842014 + 0.770492i
\(229\) 17.3732i 1.14806i −0.818836 0.574028i \(-0.805380\pi\)
0.818836 0.574028i \(-0.194620\pi\)
\(230\) 2.86923 + 1.62253i 0.189192 + 0.106986i
\(231\) 0 0
\(232\) 16.9612i 1.11356i
\(233\) −0.462850 −0.0303223 −0.0151611 0.999885i \(-0.504826\pi\)
−0.0151611 + 0.999885i \(0.504826\pi\)
\(234\) 7.62851 1.68748i 0.498691 0.110314i
\(235\) −7.61060 + 13.4584i −0.496461 + 0.877927i
\(236\) 1.17433 0.0764424
\(237\) −6.54021 + 0.714732i −0.424833 + 0.0464268i
\(238\) 0 0
\(239\) 17.3055i 1.11940i 0.828696 + 0.559699i \(0.189083\pi\)
−0.828696 + 0.559699i \(0.810917\pi\)
\(240\) 0.819273 + 0.352007i 0.0528838 + 0.0227219i
\(241\) 4.27939i 0.275660i −0.990456 0.137830i \(-0.955987\pi\)
0.990456 0.137830i \(-0.0440128\pi\)
\(242\) −4.98564 −0.320489
\(243\) −13.3361 + 8.07138i −0.855514 + 0.517780i
\(244\) 7.29906i 0.467274i
\(245\) 0 0
\(246\) −14.1888 + 1.55058i −0.904642 + 0.0988617i
\(247\) 16.4532i 1.04689i
\(248\) 5.38048i 0.341661i
\(249\) 0.753463 + 6.89462i 0.0477488 + 0.436929i
\(250\) 0.270821 + 10.0960i 0.0171282 + 0.638527i
\(251\) −17.4145 −1.09919 −0.549597 0.835430i \(-0.685219\pi\)
−0.549597 + 0.835430i \(0.685219\pi\)
\(252\) 0 0
\(253\) 6.63247i 0.416980i
\(254\) 20.1339i 1.26331i
\(255\) 10.1957 23.7299i 0.638481 1.48602i
\(256\) −16.4922 −1.03076
\(257\) 15.4161i 0.961630i 0.876822 + 0.480815i \(0.159659\pi\)
−0.876822 + 0.480815i \(0.840341\pi\)
\(258\) −1.28052 11.7175i −0.0797217 0.729500i
\(259\) 0 0
\(260\) −6.64385 3.75704i −0.412034 0.233002i
\(261\) 3.82105 + 17.2736i 0.236517 + 1.06921i
\(262\) 0.103142 0.00637215
\(263\) 6.21170 0.383030 0.191515 0.981490i \(-0.438660\pi\)
0.191515 + 0.981490i \(0.438660\pi\)
\(264\) −2.19962 20.1278i −0.135377 1.23878i
\(265\) 2.95591 + 1.67155i 0.181580 + 0.102682i
\(266\) 0 0
\(267\) −17.9256 + 1.95895i −1.09703 + 0.119886i
\(268\) 11.9467i 0.729759i
\(269\) 5.99070 0.365259 0.182630 0.983182i \(-0.441539\pi\)
0.182630 + 0.983182i \(0.441539\pi\)
\(270\) −10.3107 1.96272i −0.627489 0.119447i
\(271\) 6.24515i 0.379366i −0.981845 0.189683i \(-0.939254\pi\)
0.981845 0.189683i \(-0.0607460\pi\)
\(272\) 1.53535i 0.0930942i
\(273\) 0 0
\(274\) −11.3313 −0.684546
\(275\) 17.4148 10.4739i 1.05015 0.631603i
\(276\) 3.32666 0.363546i 0.200241 0.0218829i
\(277\) 8.70424i 0.522987i −0.965205 0.261494i \(-0.915785\pi\)
0.965205 0.261494i \(-0.0842150\pi\)
\(278\) 2.14669i 0.128750i
\(279\) −1.21212 5.47959i −0.0725679 0.328054i
\(280\) 0 0
\(281\) 4.36274i 0.260259i 0.991497 + 0.130130i \(0.0415393\pi\)
−0.991497 + 0.130130i \(0.958461\pi\)
\(282\) −1.17528 10.7545i −0.0699871 0.640423i
\(283\) −7.52075 −0.447062 −0.223531 0.974697i \(-0.571758\pi\)
−0.223531 + 0.974697i \(0.571758\pi\)
\(284\) 5.69747i 0.338082i
\(285\) 8.72549 20.3080i 0.516853 1.20294i
\(286\) 10.5849i 0.625897i
\(287\) 0 0
\(288\) 16.2407 3.59256i 0.956994 0.211694i
\(289\) −27.4707 −1.61593
\(290\) −5.86337 + 10.3686i −0.344309 + 0.608867i
\(291\) 25.0298 2.73533i 1.46728 0.160348i
\(292\) 0.663761 0.0388437
\(293\) 0.105885i 0.00618587i −0.999995 0.00309293i \(-0.999015\pi\)
0.999995 0.00309293i \(-0.000984513\pi\)
\(294\) 0 0
\(295\) −1.93055 1.09171i −0.112401 0.0635617i
\(296\) 4.60116i 0.267437i
\(297\) 6.77457 + 20.0030i 0.393100 + 1.16069i
\(298\) 14.8766i 0.861778i
\(299\) 4.70461 0.272074
\(300\) 6.20800 + 8.16066i 0.358419 + 0.471156i
\(301\) 0 0
\(302\) −11.8764 −0.683412
\(303\) 23.7563 2.59615i 1.36476 0.149145i
\(304\) 1.31395i 0.0753602i
\(305\) 6.78552 11.9993i 0.388538 0.687079i
\(306\) 3.90332 + 17.6455i 0.223138 + 1.00873i
\(307\) −9.31270 −0.531504 −0.265752 0.964041i \(-0.585620\pi\)
−0.265752 + 0.964041i \(0.585620\pi\)
\(308\) 0 0
\(309\) 14.3143 1.56431i 0.814314 0.0889904i
\(310\) 1.85999 3.28916i 0.105641 0.186812i
\(311\) 25.3143 1.43544 0.717722 0.696330i \(-0.245185\pi\)
0.717722 + 0.696330i \(0.245185\pi\)
\(312\) 14.2773 1.56026i 0.808291 0.0883322i
\(313\) −7.64982 −0.432394 −0.216197 0.976350i \(-0.569365\pi\)
−0.216197 + 0.976350i \(0.569365\pi\)
\(314\) −2.87996 −0.162526
\(315\) 0 0
\(316\) −4.49732 −0.252994
\(317\) −24.7465 −1.38990 −0.694950 0.719058i \(-0.744574\pi\)
−0.694950 + 0.719058i \(0.744574\pi\)
\(318\) −2.36206 + 0.258132i −0.132458 + 0.0144753i
\(319\) 23.9679 1.34195
\(320\) 10.6449 + 6.01959i 0.595066 + 0.336505i
\(321\) −18.4871 + 2.02032i −1.03185 + 0.112763i
\(322\) 0 0
\(323\) −38.0580 −2.11760
\(324\) −9.66163 + 4.49436i −0.536757 + 0.249687i
\(325\) 7.42948 + 12.3528i 0.412114 + 0.685211i
\(326\) 17.4158i 0.964574i
\(327\) −0.924047 + 0.100982i −0.0510999 + 0.00558434i
\(328\) −26.2381 −1.44875
\(329\) 0 0
\(330\) −5.61339 + 13.0648i −0.309007 + 0.719194i
\(331\) −16.3562 −0.899019 −0.449509 0.893276i \(-0.648401\pi\)
−0.449509 + 0.893276i \(0.648401\pi\)
\(332\) 4.74102i 0.260197i
\(333\) −1.03656 4.68591i −0.0568029 0.256786i
\(334\) 0.798473i 0.0436905i
\(335\) 11.1061 19.6398i 0.606793 1.07304i
\(336\) 0 0
\(337\) 3.59256i 0.195699i −0.995201 0.0978497i \(-0.968804\pi\)
0.995201 0.0978497i \(-0.0311964\pi\)
\(338\) −4.23523 −0.230366
\(339\) −20.8387 + 2.27731i −1.13180 + 0.123686i
\(340\) 8.69044 15.3679i 0.471305 0.833443i
\(341\) −7.60315 −0.411734
\(342\) 3.34046 + 15.1010i 0.180631 + 0.816571i
\(343\) 0 0
\(344\) 21.6682i 1.16827i
\(345\) −5.80685 2.49495i −0.312630 0.134324i
\(346\) 11.3063i 0.607832i
\(347\) 18.9288 1.01615 0.508075 0.861313i \(-0.330357\pi\)
0.508075 + 0.861313i \(0.330357\pi\)
\(348\) 1.31376 + 12.0216i 0.0704247 + 0.644427i
\(349\) 24.1751i 1.29406i −0.762463 0.647032i \(-0.776010\pi\)
0.762463 0.647032i \(-0.223990\pi\)
\(350\) 0 0
\(351\) −14.1888 + 4.80540i −0.757340 + 0.256493i
\(352\) 22.5347i 1.20110i
\(353\) 32.1044i 1.70875i 0.519660 + 0.854373i \(0.326058\pi\)
−0.519660 + 0.854373i \(0.673942\pi\)
\(354\) 1.54269 0.168590i 0.0819932 0.00896043i
\(355\) −5.29661 + 9.36638i −0.281115 + 0.497116i
\(356\) −12.3263 −0.653295
\(357\) 0 0
\(358\) 10.9897i 0.580825i
\(359\) 17.0670i 0.900764i −0.892836 0.450382i \(-0.851288\pi\)
0.892836 0.450382i \(-0.148712\pi\)
\(360\) −18.4497 5.64573i −0.972386 0.297556i
\(361\) −13.5700 −0.714210
\(362\) 14.6136i 0.768071i
\(363\) 9.50284 1.03850i 0.498770 0.0545069i
\(364\) 0 0
\(365\) −1.09119 0.617061i −0.0571157 0.0322984i
\(366\) 1.04787 + 9.58861i 0.0547730 + 0.501205i
\(367\) −15.6751 −0.818231 −0.409116 0.912483i \(-0.634163\pi\)
−0.409116 + 0.912483i \(0.634163\pi\)
\(368\) −0.375709 −0.0195852
\(369\) 26.7214 5.91095i 1.39106 0.307712i
\(370\) 1.59059 2.81275i 0.0826907 0.146228i
\(371\) 0 0
\(372\) −0.416753 3.81353i −0.0216076 0.197722i
\(373\) 1.04874i 0.0543017i 0.999631 + 0.0271508i \(0.00864345\pi\)
−0.999631 + 0.0271508i \(0.991357\pi\)
\(374\) 24.4839 1.26603
\(375\) −2.61916 19.1870i −0.135253 0.990811i
\(376\) 19.8875i 1.02562i
\(377\) 17.0012i 0.875604i
\(378\) 0 0
\(379\) −19.7185 −1.01287 −0.506436 0.862278i \(-0.669037\pi\)
−0.506436 + 0.862278i \(0.669037\pi\)
\(380\) 7.43727 13.1519i 0.381524 0.674676i
\(381\) 4.19383 + 38.3760i 0.214856 + 1.96606i
\(382\) 7.47777i 0.382596i
\(383\) 2.75894i 0.140975i 0.997513 + 0.0704876i \(0.0224555\pi\)
−0.997513 + 0.0704876i \(0.977544\pi\)
\(384\) 10.5866 1.15693i 0.540244 0.0590392i
\(385\) 0 0
\(386\) 14.3860i 0.732227i
\(387\) 4.88145 + 22.0673i 0.248138 + 1.12174i
\(388\) 17.2115 0.873783
\(389\) 31.9024i 1.61752i −0.588141 0.808758i \(-0.700140\pi\)
0.588141 0.808758i \(-0.299860\pi\)
\(390\) −9.26726 3.98174i −0.469266 0.201623i
\(391\) 10.8822i 0.550339i
\(392\) 0 0
\(393\) −0.196593 + 0.0214842i −0.00991682 + 0.00108374i
\(394\) 21.5661 1.08648
\(395\) 7.39339 + 4.18090i 0.372002 + 0.210364i
\(396\) 3.11806 + 14.0957i 0.156688 + 0.708333i
\(397\) −18.8205 −0.944572 −0.472286 0.881445i \(-0.656571\pi\)
−0.472286 + 0.881445i \(0.656571\pi\)
\(398\) 11.0454i 0.553654i
\(399\) 0 0
\(400\) −0.593317 0.986494i −0.0296658 0.0493247i
\(401\) 3.28917i 0.164253i −0.996622 0.0821266i \(-0.973829\pi\)
0.996622 0.0821266i \(-0.0261712\pi\)
\(402\) 1.71509 + 15.6941i 0.0855410 + 0.782750i
\(403\) 5.39314i 0.268652i
\(404\) 16.3358 0.812735
\(405\) 20.0614 + 1.59334i 0.996861 + 0.0791737i
\(406\) 0 0
\(407\) −6.50190 −0.322287
\(408\) 3.60904 + 33.0248i 0.178674 + 1.63497i
\(409\) 4.14914i 0.205162i −0.994725 0.102581i \(-0.967290\pi\)
0.994725 0.102581i \(-0.0327100\pi\)
\(410\) 16.0397 + 9.07031i 0.792143 + 0.447951i
\(411\) 21.5978 2.36027i 1.06534 0.116423i
\(412\) 9.84311 0.484935
\(413\) 0 0
\(414\) 4.31797 0.955165i 0.212217 0.0469438i
\(415\) 4.40746 7.79403i 0.216354 0.382594i
\(416\) 15.9845 0.783706
\(417\) 0.447150 + 4.09169i 0.0218970 + 0.200371i
\(418\) 20.9533 1.02486
\(419\) −22.6231 −1.10521 −0.552606 0.833443i \(-0.686367\pi\)
−0.552606 + 0.833443i \(0.686367\pi\)
\(420\) 0 0
\(421\) 31.9233 1.55584 0.777922 0.628360i \(-0.216274\pi\)
0.777922 + 0.628360i \(0.216274\pi\)
\(422\) 17.0406 0.829524
\(423\) 4.48028 + 20.2538i 0.217839 + 0.984772i
\(424\) −4.36796 −0.212127
\(425\) −28.5734 + 17.1852i −1.38601 + 0.833603i
\(426\) −0.817941 7.48464i −0.0396294 0.362632i
\(427\) 0 0
\(428\) −12.7125 −0.614481
\(429\) 2.20480 + 20.1752i 0.106449 + 0.974068i
\(430\) −7.49054 + 13.2461i −0.361226 + 0.638782i
\(431\) 25.0448i 1.20636i 0.797604 + 0.603182i \(0.206101\pi\)
−0.797604 + 0.603182i \(0.793899\pi\)
\(432\) 1.13311 0.383758i 0.0545168 0.0184636i
\(433\) 5.10220 0.245196 0.122598 0.992456i \(-0.460877\pi\)
0.122598 + 0.992456i \(0.460877\pi\)
\(434\) 0 0
\(435\) 9.01607 20.9843i 0.432288 1.00612i
\(436\) −0.635412 −0.0304307
\(437\) 9.31302i 0.445502i
\(438\) 0.871968 0.0952910i 0.0416643 0.00455318i
\(439\) 11.2880i 0.538746i 0.963036 + 0.269373i \(0.0868165\pi\)
−0.963036 + 0.269373i \(0.913184\pi\)
\(440\) −12.8669 + 22.7535i −0.613407 + 1.08473i
\(441\) 0 0
\(442\) 17.3672i 0.826073i
\(443\) −21.9182 −1.04136 −0.520681 0.853751i \(-0.674322\pi\)
−0.520681 + 0.853751i \(0.674322\pi\)
\(444\) −0.356389 3.26117i −0.0169135 0.154768i
\(445\) 20.2640 + 11.4591i 0.960604 + 0.543214i
\(446\) 17.4145 0.824601
\(447\) −3.09875 28.3554i −0.146566 1.34116i
\(448\) 0 0
\(449\) 0.449397i 0.0212083i 0.999944 + 0.0106042i \(0.00337548\pi\)
−0.999944 + 0.0106042i \(0.996625\pi\)
\(450\) 9.32687 + 9.82925i 0.439673 + 0.463355i
\(451\) 37.0770i 1.74589i
\(452\) −14.3295 −0.674004
\(453\) 22.6370 2.47383i 1.06358 0.116231i
\(454\) 10.3900i 0.487625i
\(455\) 0 0
\(456\) 3.08861 + 28.2626i 0.144638 + 1.32352i
\(457\) 9.29288i 0.434702i −0.976093 0.217351i \(-0.930258\pi\)
0.976093 0.217351i \(-0.0697417\pi\)
\(458\) 15.6939i 0.733328i
\(459\) −11.1154 32.8201i −0.518823 1.53191i
\(460\) −3.76062 2.12660i −0.175340 0.0991533i
\(461\) 20.8668 0.971863 0.485931 0.873997i \(-0.338481\pi\)
0.485931 + 0.873997i \(0.338481\pi\)
\(462\) 0 0
\(463\) 2.45294i 0.113998i 0.998374 + 0.0569989i \(0.0181532\pi\)
−0.998374 + 0.0569989i \(0.981847\pi\)
\(464\) 1.35771i 0.0630300i
\(465\) −2.86010 + 6.65670i −0.132634 + 0.308697i
\(466\) −0.418110 −0.0193686
\(467\) 7.97995i 0.369268i −0.982807 0.184634i \(-0.940890\pi\)
0.982807 0.184634i \(-0.0591100\pi\)
\(468\) −9.99847 + 2.21173i −0.462179 + 0.102237i
\(469\) 0 0
\(470\) −6.87495 + 12.1575i −0.317118 + 0.560782i
\(471\) 5.48932 0.599887i 0.252935 0.0276414i
\(472\) 2.85277 0.131309
\(473\) 30.6193 1.40788
\(474\) −5.90803 + 0.645645i −0.271365 + 0.0296555i
\(475\) −24.4531 + 14.7071i −1.12198 + 0.674806i
\(476\) 0 0
\(477\) 4.44841 0.984021i 0.203679 0.0450552i
\(478\) 15.6327i 0.715023i
\(479\) −13.8929 −0.634784 −0.317392 0.948294i \(-0.602807\pi\)
−0.317392 + 0.948294i \(0.602807\pi\)
\(480\) −19.7295 8.47693i −0.900526 0.386917i
\(481\) 4.61199i 0.210289i
\(482\) 3.86574i 0.176080i
\(483\) 0 0
\(484\) 6.53454 0.297024
\(485\) −28.2950 16.0006i −1.28481 0.726549i
\(486\) −12.0471 + 7.29119i −0.546465 + 0.330735i
\(487\) 26.5108i 1.20132i 0.799505 + 0.600659i \(0.205095\pi\)
−0.799505 + 0.600659i \(0.794905\pi\)
\(488\) 17.7314i 0.802663i
\(489\) 3.62767 + 33.1953i 0.164049 + 1.50114i
\(490\) 0 0
\(491\) 2.54611i 0.114905i −0.998348 0.0574523i \(-0.981702\pi\)
0.998348 0.0574523i \(-0.0182977\pi\)
\(492\) 18.5968 2.03231i 0.838408 0.0916234i
\(493\) −39.3255 −1.77113
\(494\) 14.8628i 0.668710i
\(495\) 7.97798 26.0713i 0.358584 1.17182i
\(496\) 0.430695i 0.0193388i
\(497\) 0 0
\(498\) 0.680632 + 6.22818i 0.0304999 + 0.279091i
\(499\) 29.6496 1.32730 0.663649 0.748044i \(-0.269007\pi\)
0.663649 + 0.748044i \(0.269007\pi\)
\(500\) −0.354958 13.2325i −0.0158742 0.591777i
\(501\) −0.166320 1.52192i −0.00743061 0.0679945i
\(502\) −15.7312 −0.702118
\(503\) 31.2378i 1.39283i −0.717642 0.696413i \(-0.754778\pi\)
0.717642 0.696413i \(-0.245222\pi\)
\(504\) 0 0
\(505\) −26.8553 15.1864i −1.19504 0.675787i
\(506\) 5.99136i 0.266349i
\(507\) 8.07252 0.882186i 0.358513 0.0391793i
\(508\) 26.3889i 1.17082i
\(509\) −38.0143 −1.68496 −0.842478 0.538731i \(-0.818904\pi\)
−0.842478 + 0.538731i \(0.818904\pi\)
\(510\) 9.21019 21.4361i 0.407834 0.949208i
\(511\) 0 0
\(512\) −2.60093 −0.114946
\(513\) −9.51255 28.0874i −0.419989 1.24009i
\(514\) 13.9260i 0.614248i
\(515\) −16.1816 9.15058i −0.713048 0.403223i
\(516\) 1.67834 + 15.3578i 0.0738848 + 0.676089i
\(517\) 28.1030 1.23597
\(518\) 0 0
\(519\) 2.35507 + 21.5503i 0.103376 + 0.945953i
\(520\) −16.1397 9.12690i −0.707775 0.400241i
\(521\) 39.1414 1.71481 0.857407 0.514639i \(-0.172074\pi\)
0.857407 + 0.514639i \(0.172074\pi\)
\(522\) 3.45170 + 15.6040i 0.151077 + 0.682966i
\(523\) −7.97176 −0.348581 −0.174290 0.984694i \(-0.555763\pi\)
−0.174290 + 0.984694i \(0.555763\pi\)
\(524\) −0.135186 −0.00590561
\(525\) 0 0
\(526\) 5.61127 0.244663
\(527\) 12.4749 0.543416
\(528\) −0.176075 1.61119i −0.00766267 0.0701179i
\(529\) −20.3371 −0.884220
\(530\) 2.67019 + 1.50997i 0.115986 + 0.0655890i
\(531\) −2.90532 + 0.642677i −0.126080 + 0.0278898i
\(532\) 0 0
\(533\) 26.2998 1.13917
\(534\) −16.1929 + 1.76960i −0.700734 + 0.0765780i
\(535\) 20.8987 + 11.8181i 0.903531 + 0.510940i
\(536\) 29.0217i 1.25355i
\(537\) −2.28913 20.9469i −0.0987831 0.903923i
\(538\) 5.41163 0.233312
\(539\) 0 0
\(540\) 13.5139 + 2.57248i 0.581547 + 0.110702i
\(541\) −8.08347 −0.347536 −0.173768 0.984787i \(-0.555594\pi\)
−0.173768 + 0.984787i \(0.555594\pi\)
\(542\) 5.64148i 0.242323i
\(543\) −3.04396 27.8540i −0.130629 1.19533i
\(544\) 36.9739i 1.58524i
\(545\) 1.04459 + 0.590707i 0.0447453 + 0.0253031i
\(546\) 0 0
\(547\) 37.0430i 1.58384i 0.610623 + 0.791922i \(0.290919\pi\)
−0.610623 + 0.791922i \(0.709081\pi\)
\(548\) 14.8515 0.634426
\(549\) −3.99456 18.0580i −0.170484 0.770697i
\(550\) 15.7314 9.46152i 0.670791 0.403441i
\(551\) −33.6547 −1.43374
\(552\) 8.08137 0.883153i 0.343966 0.0375895i
\(553\) 0 0
\(554\) 7.86288i 0.334062i
\(555\) −2.44584 + 5.69253i −0.103820 + 0.241634i
\(556\) 2.81361i 0.119324i
\(557\) 8.88856 0.376620 0.188310 0.982110i \(-0.439699\pi\)
0.188310 + 0.982110i \(0.439699\pi\)
\(558\) −1.09496 4.94992i −0.0463533 0.209547i
\(559\) 21.7192i 0.918624i
\(560\) 0 0
\(561\) −46.6674 + 5.09993i −1.97030 + 0.215319i
\(562\) 3.94103i 0.166242i
\(563\) 39.4078i 1.66084i −0.557136 0.830421i \(-0.688100\pi\)
0.557136 0.830421i \(-0.311900\pi\)
\(564\) 1.54041 + 14.0957i 0.0648630 + 0.593534i
\(565\) 23.5571 + 13.3213i 0.991054 + 0.560433i
\(566\) −6.79378 −0.285564
\(567\) 0 0
\(568\) 13.8407i 0.580744i
\(569\) 17.4528i 0.731659i −0.930682 0.365830i \(-0.880785\pi\)
0.930682 0.365830i \(-0.119215\pi\)
\(570\) 7.88207 18.3450i 0.330144 0.768388i
\(571\) −19.3889 −0.811399 −0.405700 0.914006i \(-0.632972\pi\)
−0.405700 + 0.914006i \(0.632972\pi\)
\(572\) 13.8733i 0.580071i
\(573\) 1.55760 + 14.2529i 0.0650696 + 0.595425i
\(574\) 0 0
\(575\) 4.20531 + 6.99207i 0.175374 + 0.291590i
\(576\) 16.0197 3.54367i 0.667486 0.147653i
\(577\) 41.7306 1.73727 0.868633 0.495455i \(-0.164999\pi\)
0.868633 + 0.495455i \(0.164999\pi\)
\(578\) −24.8154 −1.03218
\(579\) 2.99656 + 27.4203i 0.124533 + 1.13955i
\(580\) 7.68495 13.5899i 0.319100 0.564288i
\(581\) 0 0
\(582\) 22.6104 2.47093i 0.937232 0.102423i
\(583\) 6.17236i 0.255633i
\(584\) 1.61246 0.0667240
\(585\) 18.4931 + 5.65902i 0.764598 + 0.233972i
\(586\) 0.0956500i 0.00395126i
\(587\) 19.5477i 0.806820i −0.915019 0.403410i \(-0.867825\pi\)
0.915019 0.403410i \(-0.132175\pi\)
\(588\) 0 0
\(589\) 10.6760 0.439897
\(590\) −1.74394 0.986182i −0.0717967 0.0406005i
\(591\) −41.1059 + 4.49216i −1.69087 + 0.184783i
\(592\) 0.368312i 0.0151375i
\(593\) 2.63145i 0.108061i 0.998539 + 0.0540303i \(0.0172067\pi\)
−0.998539 + 0.0540303i \(0.982793\pi\)
\(594\) 6.11973 + 18.0695i 0.251096 + 0.741401i
\(595\) 0 0
\(596\) 19.4983i 0.798683i
\(597\) −2.30072 21.0529i −0.0941621 0.861639i
\(598\) 4.24985 0.173789
\(599\) 31.2146i 1.27539i 0.770287 + 0.637697i \(0.220113\pi\)
−0.770287 + 0.637697i \(0.779887\pi\)
\(600\) 15.0809 + 19.8245i 0.615676 + 0.809331i
\(601\) 15.6798i 0.639593i −0.947486 0.319797i \(-0.896385\pi\)
0.947486 0.319797i \(-0.103615\pi\)
\(602\) 0 0
\(603\) −6.53806 29.5563i −0.266251 1.20363i
\(604\) 15.5661 0.633376
\(605\) −10.7425 6.07479i −0.436744 0.246975i
\(606\) 21.4599 2.34520i 0.871751 0.0952672i
\(607\) −4.81384 −0.195388 −0.0976940 0.995217i \(-0.531147\pi\)
−0.0976940 + 0.995217i \(0.531147\pi\)
\(608\) 31.6422i 1.28326i
\(609\) 0 0
\(610\) 6.12962 10.8394i 0.248181 0.438876i
\(611\) 19.9343i 0.806454i
\(612\) −5.11597 23.1275i −0.206801 0.934874i
\(613\) 40.0717i 1.61848i −0.587478 0.809240i \(-0.699879\pi\)
0.587478 0.809240i \(-0.300121\pi\)
\(614\) −8.41253 −0.339502
\(615\) −32.4616 13.9474i −1.30898 0.562412i
\(616\) 0 0
\(617\) −18.4205 −0.741583 −0.370791 0.928716i \(-0.620913\pi\)
−0.370791 + 0.928716i \(0.620913\pi\)
\(618\) 12.9307 1.41310i 0.520149 0.0568432i
\(619\) 11.0209i 0.442968i 0.975164 + 0.221484i \(0.0710901\pi\)
−0.975164 + 0.221484i \(0.928910\pi\)
\(620\) −2.43784 + 4.31100i −0.0979059 + 0.173134i
\(621\) −8.03126 + 2.72000i −0.322284 + 0.109150i
\(622\) 22.8674 0.916899
\(623\) 0 0
\(624\) 1.14286 0.124895i 0.0457512 0.00499981i
\(625\) −11.7180 + 22.0837i −0.468720 + 0.883347i
\(626\) −6.91038 −0.276194
\(627\) −39.9379 + 4.36452i −1.59497 + 0.174302i
\(628\) 3.77468 0.150626
\(629\) 10.6680 0.425362
\(630\) 0 0
\(631\) 16.0604 0.639355 0.319678 0.947526i \(-0.396425\pi\)
0.319678 + 0.947526i \(0.396425\pi\)
\(632\) −10.9252 −0.434582
\(633\) −32.4801 + 3.54951i −1.29097 + 0.141080i
\(634\) −22.3545 −0.887809
\(635\) 24.5322 43.3821i 0.973532 1.72157i
\(636\) 3.09588 0.338326i 0.122760 0.0134155i
\(637\) 0 0
\(638\) 21.6511 0.857177
\(639\) 3.11806 + 14.0957i 0.123348 + 0.557615i
\(640\) −11.9676 6.76757i −0.473060 0.267512i
\(641\) 39.7927i 1.57172i −0.618405 0.785859i \(-0.712221\pi\)
0.618405 0.785859i \(-0.287779\pi\)
\(642\) −16.7001 + 1.82503i −0.659100 + 0.0720282i
\(643\) 22.4164 0.884016 0.442008 0.897011i \(-0.354266\pi\)
0.442008 + 0.897011i \(0.354266\pi\)
\(644\) 0 0
\(645\) 11.5182 26.8078i 0.453527 1.05556i
\(646\) −34.3793 −1.35263
\(647\) 25.5715i 1.00532i −0.864484 0.502660i \(-0.832355\pi\)
0.864484 0.502660i \(-0.167645\pi\)
\(648\) −23.4708 + 10.9180i −0.922018 + 0.428901i
\(649\) 4.03125i 0.158240i
\(650\) 6.71134 + 11.1588i 0.263240 + 0.437684i
\(651\) 0 0
\(652\) 22.8264i 0.893952i
\(653\) −16.9984 −0.665199 −0.332600 0.943068i \(-0.607926\pi\)
−0.332600 + 0.943068i \(0.607926\pi\)
\(654\) −0.834728 + 0.0912212i −0.0326404 + 0.00356703i
\(655\) 0.222239 + 0.125674i 0.00868359 + 0.00491050i
\(656\) −2.10030 −0.0820029
\(657\) −1.64216 + 0.363257i −0.0640667 + 0.0141720i
\(658\) 0 0
\(659\) 2.82840i 0.110179i 0.998481 + 0.0550894i \(0.0175444\pi\)
−0.998481 + 0.0550894i \(0.982456\pi\)
\(660\) 7.35730 17.1237i 0.286383 0.666537i
\(661\) 14.5840i 0.567252i −0.958935 0.283626i \(-0.908463\pi\)
0.958935 0.283626i \(-0.0915374\pi\)
\(662\) −14.7752 −0.574254
\(663\) −3.61754 33.1026i −0.140493 1.28560i
\(664\) 11.5172i 0.446956i
\(665\) 0 0
\(666\) −0.936361 4.23296i −0.0362833 0.164024i
\(667\) 9.62317i 0.372611i
\(668\) 1.04654i 0.0404917i
\(669\) −33.1927 + 3.62739i −1.28331 + 0.140243i
\(670\) 10.0326 17.7414i 0.387593 0.685409i
\(671\) −25.0563 −0.967286
\(672\) 0 0
\(673\) 13.2666i 0.511390i 0.966757 + 0.255695i \(0.0823043\pi\)
−0.966757 + 0.255695i \(0.917696\pi\)
\(674\) 3.24530i 0.125004i
\(675\) −19.8248 16.7922i −0.763057 0.646331i
\(676\) 5.55099 0.213500
\(677\) 27.3389i 1.05072i −0.850880 0.525360i \(-0.823931\pi\)
0.850880 0.525360i \(-0.176069\pi\)
\(678\) −18.8244 + 2.05718i −0.722946 + 0.0790055i
\(679\) 0 0
\(680\) 21.1115 37.3329i 0.809588 1.43165i
\(681\) 2.16420 + 19.8037i 0.0829323 + 0.758879i
\(682\) −6.86822 −0.262998
\(683\) 5.07338 0.194127 0.0970637 0.995278i \(-0.469055\pi\)
0.0970637 + 0.995278i \(0.469055\pi\)
\(684\) −4.37824 19.7925i −0.167406 0.756785i
\(685\) −24.4153 13.8066i −0.932859 0.527524i
\(686\) 0 0
\(687\) 3.26900 + 29.9132i 0.124720 + 1.14126i
\(688\) 1.73449i 0.0661268i
\(689\) 4.37824 0.166798
\(690\) −5.24555 2.25379i −0.199695 0.0858002i
\(691\) 34.2569i 1.30319i −0.758566 0.651596i \(-0.774100\pi\)
0.758566 0.651596i \(-0.225900\pi\)
\(692\) 14.8189i 0.563329i
\(693\) 0 0
\(694\) 17.0991 0.649073
\(695\) 2.61565 4.62545i 0.0992173 0.175453i
\(696\) 3.19147 + 29.2038i 0.120972 + 1.10697i
\(697\) 60.8343i 2.30426i
\(698\) 21.8383i 0.826592i
\(699\) 0.796935 0.0870911i 0.0301428 0.00329409i
\(700\) 0 0
\(701\) 17.6912i 0.668188i −0.942540 0.334094i \(-0.891570\pi\)
0.942540 0.334094i \(-0.108430\pi\)
\(702\) −12.8172 + 4.34091i −0.483756 + 0.163837i
\(703\) 9.12967 0.344332
\(704\) 22.2280i 0.837748i
\(705\) 10.5716 24.6046i 0.398148 0.926665i
\(706\) 29.0012i 1.09147i
\(707\) 0 0
\(708\) −2.02196 + 0.220965i −0.0759900 + 0.00830439i
\(709\) 15.6175 0.586527 0.293264 0.956032i \(-0.405259\pi\)
0.293264 + 0.956032i \(0.405259\pi\)
\(710\) −4.78463 + 8.46101i −0.179564 + 0.317536i
\(711\) 11.1265 2.46125i 0.417275 0.0923041i
\(712\) −29.9441 −1.12220
\(713\) 3.05268i 0.114324i
\(714\) 0 0
\(715\) 12.8972 22.8071i 0.482328 0.852936i
\(716\) 14.4039i 0.538299i
\(717\) −3.25625 29.7966i −0.121607 1.11277i
\(718\) 15.4173i 0.575369i
\(719\) −16.1436 −0.602054 −0.301027 0.953616i \(-0.597329\pi\)
−0.301027 + 0.953616i \(0.597329\pi\)
\(720\) −1.47686 0.451928i −0.0550393 0.0168424i
\(721\) 0 0
\(722\) −12.2583 −0.456207
\(723\) 0.805223 + 7.36826i 0.0299466 + 0.274029i
\(724\) 19.1536i 0.711836i
\(725\) −25.2674 + 15.1968i −0.938409 + 0.564396i
\(726\) 8.58428 0.938113i 0.318592 0.0348166i
\(727\) 16.8426 0.624657 0.312329 0.949974i \(-0.398891\pi\)
0.312329 + 0.949974i \(0.398891\pi\)
\(728\) 0 0
\(729\) 21.4434 16.4067i 0.794201 0.607655i
\(730\) −0.985717 0.557415i −0.0364830 0.0206309i
\(731\) −50.2388 −1.85815
\(732\) −1.37341 12.5675i −0.0507627 0.464509i
\(733\) 22.1743 0.819028 0.409514 0.912304i \(-0.365698\pi\)
0.409514 + 0.912304i \(0.365698\pi\)
\(734\) −14.1599 −0.522651
\(735\) 0 0
\(736\) 9.04773 0.333504
\(737\) −41.0106 −1.51065
\(738\) 24.1384 5.33959i 0.888548 0.196553i
\(739\) 42.4525 1.56164 0.780820 0.624757i \(-0.214802\pi\)
0.780820 + 0.624757i \(0.214802\pi\)
\(740\) −2.08474 + 3.68659i −0.0766364 + 0.135522i
\(741\) −3.09588 28.3291i −0.113730 1.04070i
\(742\) 0 0
\(743\) 24.5486 0.900600 0.450300 0.892877i \(-0.351317\pi\)
0.450300 + 0.892877i \(0.351317\pi\)
\(744\) −1.01241 9.26411i −0.0371166 0.339639i
\(745\) −18.1265 + 32.0544i −0.664103 + 1.17438i
\(746\) 0.947367i 0.0346856i
\(747\) −2.59462 11.7294i −0.0949323 0.429156i
\(748\) −32.0904 −1.17334
\(749\) 0 0
\(750\) −2.36599 17.3323i −0.0863938 0.632887i
\(751\) 25.3766 0.926006 0.463003 0.886357i \(-0.346772\pi\)
0.463003 + 0.886357i \(0.346772\pi\)
\(752\) 1.59195i 0.0580523i
\(753\) 29.9843 3.27676i 1.09269 0.119412i
\(754\) 15.3578i 0.559298i
\(755\) −25.5900 14.4709i −0.931314 0.526651i
\(756\) 0 0
\(757\) 18.9214i 0.687709i 0.939023 + 0.343854i \(0.111733\pi\)
−0.939023 + 0.343854i \(0.888267\pi\)
\(758\) −17.8125 −0.646979
\(759\) 1.24798 + 11.4198i 0.0452989 + 0.414512i
\(760\) 18.0672 31.9495i 0.655365 1.15893i
\(761\) 10.2582 0.371859 0.185929 0.982563i \(-0.440470\pi\)
0.185929 + 0.982563i \(0.440470\pi\)
\(762\) 3.78845 + 34.6665i 0.137241 + 1.25583i
\(763\) 0 0
\(764\) 9.80090i 0.354584i
\(765\) −13.0899 + 42.7766i −0.473267 + 1.54659i
\(766\) 2.49226i 0.0900489i
\(767\) −2.85949 −0.103250
\(768\) 28.3962 3.10321i 1.02466 0.111978i
\(769\) 17.8947i 0.645298i −0.946519 0.322649i \(-0.895427\pi\)
0.946519 0.322649i \(-0.104573\pi\)
\(770\) 0 0
\(771\) −2.90074 26.5434i −0.104468 0.955939i
\(772\) 18.8553i 0.678616i
\(773\) 10.3218i 0.371251i −0.982621 0.185626i \(-0.940569\pi\)
0.982621 0.185626i \(-0.0594311\pi\)
\(774\) 4.40960 + 19.9343i 0.158500 + 0.716522i
\(775\) 8.01539 4.82078i 0.287921 0.173167i
\(776\) 41.8116 1.50095
\(777\) 0 0
\(778\) 28.8187i 1.03320i
\(779\) 52.0619i 1.86531i
\(780\) 12.1463 + 5.21875i 0.434908 + 0.186861i
\(781\) 19.5583 0.699851
\(782\) 9.83035i 0.351533i
\(783\) −9.82935 29.0228i −0.351272 1.03719i
\(784\) 0 0
\(785\) −6.20540 3.50911i −0.221480 0.125245i
\(786\) −0.177590 + 0.0194075i −0.00633444 + 0.000692244i
\(787\) 12.5268 0.446531 0.223265 0.974758i \(-0.428328\pi\)
0.223265 + 0.974758i \(0.428328\pi\)
\(788\) −28.2661 −1.00694
\(789\) −10.6953 + 1.16881i −0.380763 + 0.0416108i
\(790\) 6.67873 + 3.77677i 0.237619 + 0.134371i
\(791\) 0 0
\(792\) 7.57462 + 34.2422i 0.269152 + 1.21674i
\(793\) 17.7731i 0.631143i
\(794\) −17.0012 −0.603352
\(795\) −5.40401 2.32187i −0.191661 0.0823484i
\(796\) 14.4768i 0.513118i
\(797\) 23.4184i 0.829521i 0.909931 + 0.414761i \(0.136135\pi\)
−0.909931 + 0.414761i \(0.863865\pi\)
\(798\) 0 0
\(799\) −46.1100 −1.63126
\(800\) 14.2881 + 23.7565i 0.505161 + 0.839919i
\(801\) 30.4956 6.74585i 1.07751 0.238353i
\(802\) 2.97123i 0.104918i
\(803\) 2.27856i 0.0804088i
\(804\) −2.24792 20.5698i −0.0792780 0.725440i
\(805\) 0 0
\(806\) 4.87184i 0.171603i
\(807\) −10.3148 + 1.12723i −0.363098 + 0.0396803i
\(808\) 39.6841 1.39608
\(809\) 10.9751i 0.385863i 0.981212 + 0.192932i \(0.0617995\pi\)
−0.981212 + 0.192932i \(0.938200\pi\)
\(810\) 18.1223 + 1.43933i 0.636752 + 0.0505727i
\(811\) 35.5390i 1.24794i −0.781448 0.623971i \(-0.785518\pi\)
0.781448 0.623971i \(-0.214482\pi\)
\(812\) 0 0
\(813\) 1.17511 + 10.7529i 0.0412127 + 0.377121i
\(814\) −5.87341 −0.205863
\(815\) 21.2204 37.5256i 0.743319 1.31446i
\(816\) 0.288896 + 2.64356i 0.0101134 + 0.0925432i
\(817\) −42.9943 −1.50418
\(818\) 3.74808i 0.131048i
\(819\) 0 0
\(820\) −21.0227 11.8882i −0.734146 0.415154i
\(821\) 45.6211i 1.59219i −0.605173 0.796094i \(-0.706896\pi\)
0.605173 0.796094i \(-0.293104\pi\)
\(822\) 19.5102 2.13212i 0.680495 0.0743663i
\(823\) 13.8784i 0.483769i −0.970305 0.241885i \(-0.922234\pi\)
0.970305 0.241885i \(-0.0777655\pi\)
\(824\) 23.9116 0.833001
\(825\) −28.0140 + 21.3109i −0.975321 + 0.741949i
\(826\) 0 0
\(827\) 12.3739 0.430283 0.215141 0.976583i \(-0.430979\pi\)
0.215141 + 0.976583i \(0.430979\pi\)
\(828\) −5.65943 + 1.25191i −0.196679 + 0.0435068i
\(829\) 10.6696i 0.370569i −0.982685 0.185284i \(-0.940679\pi\)
0.982685 0.185284i \(-0.0593206\pi\)
\(830\) 3.98143 7.04065i 0.138197 0.244384i
\(831\) 1.63781 + 14.9870i 0.0568152 + 0.519892i
\(832\) 15.7670 0.546621
\(833\) 0 0
\(834\) 0.403928 + 3.69618i 0.0139869 + 0.127988i
\(835\) −0.972905 + 1.72046i −0.0336687 + 0.0595389i
\(836\) −27.4629 −0.949825
\(837\) 3.11809 + 9.20667i 0.107777 + 0.318229i
\(838\) −20.4363 −0.705962
\(839\) 17.5497 0.605883 0.302941 0.953009i \(-0.402031\pi\)
0.302941 + 0.953009i \(0.402031\pi\)
\(840\) 0 0
\(841\) −5.77548 −0.199154
\(842\) 28.8375 0.993807
\(843\) −0.820905 7.51176i −0.0282735 0.258719i
\(844\) −22.3346 −0.768789
\(845\) −9.12558 5.16044i −0.313930 0.177525i
\(846\) 4.04721 + 18.2960i 0.139146 + 0.629030i
\(847\) 0 0
\(848\) −0.349645 −0.0120069
\(849\) 12.9492 1.41513i 0.444416 0.0485670i
\(850\) −25.8114 + 15.5240i −0.885325 + 0.532470i
\(851\) 2.61053i 0.0894876i
\(852\) 1.07205 + 9.80990i 0.0367279 + 0.336082i
\(853\) −29.6157 −1.01402 −0.507011 0.861940i \(-0.669250\pi\)
−0.507011 + 0.861940i \(0.669250\pi\)
\(854\) 0 0
\(855\) −11.2023 + 36.6082i −0.383112 + 1.25197i
\(856\) −30.8821 −1.05553
\(857\) 44.6019i 1.52357i 0.647828 + 0.761787i \(0.275677\pi\)
−0.647828 + 0.761787i \(0.724323\pi\)
\(858\) 1.99168 + 18.2250i 0.0679949 + 0.622193i
\(859\) 6.43276i 0.219483i −0.993960 0.109741i \(-0.964998\pi\)
0.993960 0.109741i \(-0.0350023\pi\)
\(860\) 9.81763 17.3612i 0.334778 0.592013i
\(861\) 0 0
\(862\) 22.6239i 0.770573i
\(863\) 53.3510 1.81609 0.908045 0.418872i \(-0.137575\pi\)
0.908045 + 0.418872i \(0.137575\pi\)
\(864\) −27.2873 + 9.24158i −0.928333 + 0.314405i
\(865\) 13.7763 24.3615i 0.468407 0.828317i
\(866\) 4.60902 0.156621
\(867\) 47.2991 5.16897i 1.60636 0.175547i
\(868\) 0 0
\(869\) 15.4384i 0.523713i
\(870\) 8.14457 18.9560i 0.276127 0.642667i
\(871\) 29.0901i 0.985679i
\(872\) −1.54359 −0.0522726
\(873\) −42.5817 + 9.41937i −1.44117 + 0.318797i
\(874\) 8.41281i 0.284567i
\(875\) 0 0
\(876\) −1.14286 + 0.124895i −0.0386138 + 0.00421982i
\(877\) 35.4862i 1.19828i −0.800643 0.599142i \(-0.795508\pi\)
0.800643 0.599142i \(-0.204492\pi\)
\(878\) 10.1969i 0.344128i
\(879\) 0.0199236 + 0.182313i 0.000672007 + 0.00614926i
\(880\) −1.02997 + 1.82137i −0.0347202 + 0.0613983i
\(881\) 25.0114 0.842655 0.421327 0.906909i \(-0.361564\pi\)
0.421327 + 0.906909i \(0.361564\pi\)
\(882\) 0 0
\(883\) 30.1344i 1.01410i −0.861916 0.507051i \(-0.830736\pi\)
0.861916 0.507051i \(-0.169264\pi\)
\(884\) 22.7627i 0.765591i
\(885\) 3.52943 + 1.51645i 0.118641 + 0.0509748i
\(886\) −19.7995 −0.665178
\(887\) 9.05903i 0.304172i −0.988367 0.152086i \(-0.951401\pi\)
0.988367 0.152086i \(-0.0485991\pi\)
\(888\) −0.865767 7.92227i −0.0290532 0.265854i
\(889\) 0 0
\(890\) 18.3052 + 10.3515i 0.613592 + 0.346982i
\(891\) −15.4283 33.1665i −0.516867 1.11112i
\(892\) −22.8247 −0.764227
\(893\) −39.4609 −1.32051
\(894\) −2.79922 25.6145i −0.0936200 0.856678i
\(895\) −13.3905 + 23.6794i −0.447595 + 0.791514i
\(896\) 0 0
\(897\) −8.10039 + 0.885232i −0.270464 + 0.0295570i
\(898\) 0.405957i 0.0135470i
\(899\) 11.0316 0.367923
\(900\) −12.2245 12.8829i −0.407482 0.429430i
\(901\) 10.1273i 0.337390i
\(902\) 33.4931i 1.11520i
\(903\) 0 0
\(904\) −34.8104 −1.15778
\(905\) −17.8060 + 31.4876i −0.591891 + 1.04668i
\(906\) 20.4489 2.23470i 0.679368 0.0742431i
\(907\) 9.48346i 0.314893i 0.987528 + 0.157447i \(0.0503262\pi\)
−0.987528 + 0.157447i \(0.949674\pi\)
\(908\) 13.6178i 0.451923i
\(909\) −40.4150 + 8.94009i −1.34048 + 0.296524i
\(910\) 0 0
\(911\) 56.8415i 1.88324i 0.336672 + 0.941622i \(0.390699\pi\)
−0.336672 + 0.941622i \(0.609301\pi\)
\(912\) 0.247236 + 2.26236i 0.00818682 + 0.0749142i
\(913\) −16.2750 −0.538625
\(914\) 8.39461i 0.277669i
\(915\) −9.42548 + 21.9372i −0.311597 + 0.725222i
\(916\) 20.5695i 0.679637i
\(917\) 0 0
\(918\) −10.0410 29.6476i −0.331402 0.978518i
\(919\) −57.3678 −1.89239 −0.946195 0.323598i \(-0.895107\pi\)
−0.946195 + 0.323598i \(0.895107\pi\)
\(920\) −9.13558 5.16610i −0.301191 0.170321i
\(921\) 16.0346 1.75230i 0.528358 0.0577404i
\(922\) 18.8498 0.620784
\(923\) 13.8733i 0.456645i
\(924\) 0 0
\(925\) 6.85442 4.12252i 0.225372 0.135548i
\(926\) 2.21584i 0.0728169i
\(927\) −24.3521 + 5.38685i −0.799827 + 0.176927i
\(928\) 32.6960i 1.07330i
\(929\) 10.2934 0.337714 0.168857 0.985641i \(-0.445992\pi\)
0.168857 + 0.985641i \(0.445992\pi\)
\(930\) −2.58364 + 6.01326i −0.0847208 + 0.197182i
\(931\) 0 0
\(932\) 0.548005 0.0179505
\(933\) −43.5862 + 4.76321i −1.42695 + 0.155941i
\(934\) 7.20859i 0.235872i
\(935\) 52.7551 + 29.8326i 1.72528 + 0.975631i
\(936\) −24.2890 + 5.37290i −0.793912 + 0.175619i
\(937\) −29.0347 −0.948522 −0.474261 0.880384i \(-0.657285\pi\)
−0.474261 + 0.880384i \(0.657285\pi\)
\(938\) 0 0
\(939\) 13.1715 1.43941i 0.429835 0.0469735i
\(940\) 9.01079 15.9344i 0.293900 0.519724i
\(941\) −14.9717 −0.488062 −0.244031 0.969767i \(-0.578470\pi\)
−0.244031 + 0.969767i \(0.578470\pi\)
\(942\) 4.95872 0.541902i 0.161564 0.0176561i
\(943\) 14.8865 0.484771
\(944\) 0.228358 0.00743242
\(945\) 0 0
\(946\) 27.6596 0.899292
\(947\) 14.5086 0.471465 0.235733 0.971818i \(-0.424251\pi\)
0.235733 + 0.971818i \(0.424251\pi\)
\(948\) 7.74348 0.846228i 0.251496 0.0274842i
\(949\) −1.61625 −0.0524658
\(950\) −22.0894 + 13.2854i −0.716675 + 0.431037i
\(951\) 42.6085 4.65637i 1.38167 0.150993i
\(952\) 0 0
\(953\) −34.9591 −1.13244 −0.566218 0.824256i \(-0.691594\pi\)
−0.566218 + 0.824256i \(0.691594\pi\)
\(954\) 4.01842 0.888904i 0.130101 0.0287793i
\(955\) 9.11134 16.1122i 0.294836 0.521380i
\(956\) 20.4893i 0.662672i
\(957\) −41.2679 + 4.50987i −1.33400 + 0.145783i
\(958\) −12.5500 −0.405473
\(959\) 0 0
\(960\) −19.4610 8.36156i −0.628101 0.269868i
\(961\) 27.5005 0.887114
\(962\) 4.16619i 0.134323i
\(963\) 31.4509 6.95717i 1.01349 0.224192i
\(964\) 5.06671i 0.163188i
\(965\) 17.5287 30.9972i 0.564268 0.997836i
\(966\) 0 0
\(967\) 46.6810i 1.50116i 0.660779 + 0.750581i \(0.270226\pi\)
−0.660779 + 0.750581i \(0.729774\pi\)
\(968\) 15.8742 0.510216
\(969\) 65.5283 7.16110i 2.10507 0.230048i
\(970\) −25.5600 14.4540i −0.820681 0.464088i
\(971\) 1.31338 0.0421484 0.0210742 0.999778i \(-0.493291\pi\)
0.0210742 + 0.999778i \(0.493291\pi\)
\(972\) 15.7897 9.55635i 0.506456 0.306520i
\(973\) 0 0
\(974\) 23.9482i 0.767350i
\(975\) −15.1164 19.8711i −0.484113 0.636386i
\(976\) 1.41936i 0.0454326i
\(977\) 53.0752 1.69803 0.849013 0.528372i \(-0.177197\pi\)
0.849013 + 0.528372i \(0.177197\pi\)
\(978\) 3.27701 + 29.9866i 0.104787 + 0.958865i
\(979\) 42.3140i 1.35236i
\(980\) 0 0
\(981\) 1.57202 0.347743i 0.0501908 0.0111026i
\(982\) 2.30000i 0.0733961i
\(983\) 21.1136i 0.673418i 0.941609 + 0.336709i \(0.109314\pi\)
−0.941609 + 0.336709i \(0.890686\pi\)
\(984\) 45.1767 4.93703i 1.44018 0.157387i
\(985\) 46.4681 + 26.2773i 1.48060 + 0.837266i
\(986\) −35.5242 −1.13132
\(987\) 0 0
\(988\) 19.4803i 0.619750i
\(989\) 12.2937i 0.390918i
\(990\) 7.20682 23.5512i 0.229048 0.748507i
\(991\) −53.6348 −1.70377 −0.851883 0.523732i \(-0.824539\pi\)
−0.851883 + 0.523732i \(0.824539\pi\)
\(992\) 10.3719i 0.329308i
\(993\) 28.1621 3.07763i 0.893698 0.0976657i
\(994\) 0 0
\(995\) −13.4583 + 23.7993i −0.426657 + 0.754488i
\(996\) −0.892084 8.16309i −0.0282668 0.258658i
\(997\) 38.8870 1.23156 0.615781 0.787917i \(-0.288841\pi\)
0.615781 + 0.787917i \(0.288841\pi\)
\(998\) 26.7836 0.847820
\(999\) 2.66646 + 7.87316i 0.0843629 + 0.249096i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.g.c.734.22 yes 32
3.2 odd 2 inner 735.2.g.c.734.9 32
5.4 even 2 inner 735.2.g.c.734.11 yes 32
7.2 even 3 735.2.p.g.374.11 64
7.3 odd 6 735.2.p.g.509.9 64
7.4 even 3 735.2.p.g.509.12 64
7.5 odd 6 735.2.p.g.374.10 64
7.6 odd 2 inner 735.2.g.c.734.23 yes 32
15.14 odd 2 inner 735.2.g.c.734.24 yes 32
21.2 odd 6 735.2.p.g.374.24 64
21.5 even 6 735.2.p.g.374.21 64
21.11 odd 6 735.2.p.g.509.23 64
21.17 even 6 735.2.p.g.509.22 64
21.20 even 2 inner 735.2.g.c.734.12 yes 32
35.4 even 6 735.2.p.g.509.21 64
35.9 even 6 735.2.p.g.374.22 64
35.19 odd 6 735.2.p.g.374.23 64
35.24 odd 6 735.2.p.g.509.24 64
35.34 odd 2 inner 735.2.g.c.734.10 yes 32
105.44 odd 6 735.2.p.g.374.9 64
105.59 even 6 735.2.p.g.509.11 64
105.74 odd 6 735.2.p.g.509.10 64
105.89 even 6 735.2.p.g.374.12 64
105.104 even 2 inner 735.2.g.c.734.21 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.9 32 3.2 odd 2 inner
735.2.g.c.734.10 yes 32 35.34 odd 2 inner
735.2.g.c.734.11 yes 32 5.4 even 2 inner
735.2.g.c.734.12 yes 32 21.20 even 2 inner
735.2.g.c.734.21 yes 32 105.104 even 2 inner
735.2.g.c.734.22 yes 32 1.1 even 1 trivial
735.2.g.c.734.23 yes 32 7.6 odd 2 inner
735.2.g.c.734.24 yes 32 15.14 odd 2 inner
735.2.p.g.374.9 64 105.44 odd 6
735.2.p.g.374.10 64 7.5 odd 6
735.2.p.g.374.11 64 7.2 even 3
735.2.p.g.374.12 64 105.89 even 6
735.2.p.g.374.21 64 21.5 even 6
735.2.p.g.374.22 64 35.9 even 6
735.2.p.g.374.23 64 35.19 odd 6
735.2.p.g.374.24 64 21.2 odd 6
735.2.p.g.509.9 64 7.3 odd 6
735.2.p.g.509.10 64 105.74 odd 6
735.2.p.g.509.11 64 105.59 even 6
735.2.p.g.509.12 64 7.4 even 3
735.2.p.g.509.21 64 35.4 even 6
735.2.p.g.509.22 64 21.17 even 6
735.2.p.g.509.23 64 21.11 odd 6
735.2.p.g.509.24 64 35.24 odd 6