Properties

Label 735.4.a.v.1.3
Level $735$
Weight $4$
Character 735.1
Self dual yes
Analytic conductor $43.366$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,4,Mod(1,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3664038542\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 35x^{2} + 19x + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.92771\) of defining polynomial
Character \(\chi\) \(=\) 735.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.92771 q^{2} -3.00000 q^{3} +0.571487 q^{4} +5.00000 q^{5} -8.78313 q^{6} -21.7485 q^{8} +9.00000 q^{9} +14.6386 q^{10} +45.3855 q^{11} -1.71446 q^{12} +24.1478 q^{13} -15.0000 q^{15} -68.2453 q^{16} +7.89162 q^{17} +26.3494 q^{18} -151.949 q^{19} +2.85744 q^{20} +132.876 q^{22} +39.3342 q^{23} +65.2456 q^{24} +25.0000 q^{25} +70.6977 q^{26} -27.0000 q^{27} +200.572 q^{29} -43.9157 q^{30} -15.0636 q^{31} -25.8142 q^{32} -136.156 q^{33} +23.1044 q^{34} +5.14339 q^{36} +119.753 q^{37} -444.864 q^{38} -72.4434 q^{39} -108.743 q^{40} +32.1480 q^{41} +358.400 q^{43} +25.9372 q^{44} +45.0000 q^{45} +115.159 q^{46} +171.051 q^{47} +204.736 q^{48} +73.1928 q^{50} -23.6749 q^{51} +13.8002 q^{52} +387.811 q^{53} -79.0482 q^{54} +226.927 q^{55} +455.848 q^{57} +587.218 q^{58} +504.229 q^{59} -8.57231 q^{60} +328.392 q^{61} -44.1017 q^{62} +470.386 q^{64} +120.739 q^{65} -398.627 q^{66} +519.007 q^{67} +4.50996 q^{68} -118.003 q^{69} +1173.62 q^{71} -195.737 q^{72} -113.604 q^{73} +350.603 q^{74} -75.0000 q^{75} -86.8371 q^{76} -212.093 q^{78} -805.369 q^{79} -341.227 q^{80} +81.0000 q^{81} +94.1201 q^{82} -1350.22 q^{83} +39.4581 q^{85} +1049.29 q^{86} -601.717 q^{87} -987.068 q^{88} +658.726 q^{89} +131.747 q^{90} +22.4790 q^{92} +45.1907 q^{93} +500.788 q^{94} -759.747 q^{95} +77.4426 q^{96} +886.401 q^{97} +408.469 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 12 q^{3} + 39 q^{4} + 20 q^{5} - 3 q^{6} + 33 q^{8} + 36 q^{9} + 5 q^{10} + 60 q^{11} - 117 q^{12} + 14 q^{13} - 60 q^{15} + 283 q^{16} + 46 q^{17} + 9 q^{18} + 40 q^{19} + 195 q^{20} - 14 q^{22}+ \cdots + 540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.92771 1.03510 0.517551 0.855652i \(-0.326844\pi\)
0.517551 + 0.855652i \(0.326844\pi\)
\(3\) −3.00000 −0.577350
\(4\) 0.571487 0.0714359
\(5\) 5.00000 0.447214
\(6\) −8.78313 −0.597616
\(7\) 0 0
\(8\) −21.7485 −0.961158
\(9\) 9.00000 0.333333
\(10\) 14.6386 0.462912
\(11\) 45.3855 1.24402 0.622011 0.783009i \(-0.286316\pi\)
0.622011 + 0.783009i \(0.286316\pi\)
\(12\) −1.71446 −0.0412436
\(13\) 24.1478 0.515184 0.257592 0.966254i \(-0.417071\pi\)
0.257592 + 0.966254i \(0.417071\pi\)
\(14\) 0 0
\(15\) −15.0000 −0.258199
\(16\) −68.2453 −1.06633
\(17\) 7.89162 0.112588 0.0562941 0.998414i \(-0.482072\pi\)
0.0562941 + 0.998414i \(0.482072\pi\)
\(18\) 26.3494 0.345034
\(19\) −151.949 −1.83471 −0.917357 0.398066i \(-0.869682\pi\)
−0.917357 + 0.398066i \(0.869682\pi\)
\(20\) 2.85744 0.0319471
\(21\) 0 0
\(22\) 132.876 1.28769
\(23\) 39.3342 0.356598 0.178299 0.983976i \(-0.442941\pi\)
0.178299 + 0.983976i \(0.442941\pi\)
\(24\) 65.2456 0.554925
\(25\) 25.0000 0.200000
\(26\) 70.6977 0.533268
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 200.572 1.28432 0.642162 0.766569i \(-0.278038\pi\)
0.642162 + 0.766569i \(0.278038\pi\)
\(30\) −43.9157 −0.267262
\(31\) −15.0636 −0.0872740 −0.0436370 0.999047i \(-0.513895\pi\)
−0.0436370 + 0.999047i \(0.513895\pi\)
\(32\) −25.8142 −0.142605
\(33\) −136.156 −0.718236
\(34\) 23.1044 0.116540
\(35\) 0 0
\(36\) 5.14339 0.0238120
\(37\) 119.753 0.532089 0.266045 0.963961i \(-0.414283\pi\)
0.266045 + 0.963961i \(0.414283\pi\)
\(38\) −444.864 −1.89912
\(39\) −72.4434 −0.297442
\(40\) −108.743 −0.429843
\(41\) 32.1480 0.122456 0.0612278 0.998124i \(-0.480498\pi\)
0.0612278 + 0.998124i \(0.480498\pi\)
\(42\) 0 0
\(43\) 358.400 1.27106 0.635530 0.772077i \(-0.280782\pi\)
0.635530 + 0.772077i \(0.280782\pi\)
\(44\) 25.9372 0.0888678
\(45\) 45.0000 0.149071
\(46\) 115.159 0.369115
\(47\) 171.051 0.530859 0.265429 0.964130i \(-0.414486\pi\)
0.265429 + 0.964130i \(0.414486\pi\)
\(48\) 204.736 0.615648
\(49\) 0 0
\(50\) 73.1928 0.207020
\(51\) −23.6749 −0.0650028
\(52\) 13.8002 0.0368026
\(53\) 387.811 1.00509 0.502547 0.864550i \(-0.332397\pi\)
0.502547 + 0.864550i \(0.332397\pi\)
\(54\) −79.0482 −0.199205
\(55\) 226.927 0.556343
\(56\) 0 0
\(57\) 455.848 1.05927
\(58\) 587.218 1.32941
\(59\) 504.229 1.11263 0.556314 0.830972i \(-0.312215\pi\)
0.556314 + 0.830972i \(0.312215\pi\)
\(60\) −8.57231 −0.0184447
\(61\) 328.392 0.689284 0.344642 0.938734i \(-0.388000\pi\)
0.344642 + 0.938734i \(0.388000\pi\)
\(62\) −44.1017 −0.0903375
\(63\) 0 0
\(64\) 470.386 0.918722
\(65\) 120.739 0.230397
\(66\) −398.627 −0.743448
\(67\) 519.007 0.946370 0.473185 0.880963i \(-0.343104\pi\)
0.473185 + 0.880963i \(0.343104\pi\)
\(68\) 4.50996 0.00804284
\(69\) −118.003 −0.205882
\(70\) 0 0
\(71\) 1173.62 1.96173 0.980863 0.194697i \(-0.0623723\pi\)
0.980863 + 0.194697i \(0.0623723\pi\)
\(72\) −195.737 −0.320386
\(73\) −113.604 −0.182142 −0.0910708 0.995844i \(-0.529029\pi\)
−0.0910708 + 0.995844i \(0.529029\pi\)
\(74\) 350.603 0.550767
\(75\) −75.0000 −0.115470
\(76\) −86.8371 −0.131064
\(77\) 0 0
\(78\) −212.093 −0.307882
\(79\) −805.369 −1.14698 −0.573488 0.819214i \(-0.694410\pi\)
−0.573488 + 0.819214i \(0.694410\pi\)
\(80\) −341.227 −0.476879
\(81\) 81.0000 0.111111
\(82\) 94.1201 0.126754
\(83\) −1350.22 −1.78561 −0.892805 0.450444i \(-0.851266\pi\)
−0.892805 + 0.450444i \(0.851266\pi\)
\(84\) 0 0
\(85\) 39.4581 0.0503510
\(86\) 1049.29 1.31568
\(87\) −601.717 −0.741504
\(88\) −987.068 −1.19570
\(89\) 658.726 0.784549 0.392274 0.919848i \(-0.371688\pi\)
0.392274 + 0.919848i \(0.371688\pi\)
\(90\) 131.747 0.154304
\(91\) 0 0
\(92\) 22.4790 0.0254739
\(93\) 45.1907 0.0503877
\(94\) 500.788 0.549493
\(95\) −759.747 −0.820509
\(96\) 77.4426 0.0823329
\(97\) 886.401 0.927839 0.463920 0.885877i \(-0.346443\pi\)
0.463920 + 0.885877i \(0.346443\pi\)
\(98\) 0 0
\(99\) 408.469 0.414674
\(100\) 14.2872 0.0142872
\(101\) 1853.00 1.82555 0.912775 0.408464i \(-0.133935\pi\)
0.912775 + 0.408464i \(0.133935\pi\)
\(102\) −69.3132 −0.0672846
\(103\) −1673.73 −1.60114 −0.800572 0.599237i \(-0.795471\pi\)
−0.800572 + 0.599237i \(0.795471\pi\)
\(104\) −525.179 −0.495173
\(105\) 0 0
\(106\) 1135.40 1.04037
\(107\) −3.50571 −0.00316738 −0.00158369 0.999999i \(-0.500504\pi\)
−0.00158369 + 0.999999i \(0.500504\pi\)
\(108\) −15.4302 −0.0137479
\(109\) −1503.52 −1.32120 −0.660600 0.750738i \(-0.729698\pi\)
−0.660600 + 0.750738i \(0.729698\pi\)
\(110\) 664.378 0.575872
\(111\) −359.260 −0.307202
\(112\) 0 0
\(113\) 211.621 0.176173 0.0880867 0.996113i \(-0.471925\pi\)
0.0880867 + 0.996113i \(0.471925\pi\)
\(114\) 1334.59 1.09646
\(115\) 196.671 0.159475
\(116\) 114.625 0.0917468
\(117\) 217.330 0.171728
\(118\) 1476.24 1.15168
\(119\) 0 0
\(120\) 326.228 0.248170
\(121\) 728.842 0.547590
\(122\) 961.437 0.713479
\(123\) −96.4441 −0.0706997
\(124\) −8.60863 −0.00623450
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 746.863 0.521837 0.260919 0.965361i \(-0.415975\pi\)
0.260919 + 0.965361i \(0.415975\pi\)
\(128\) 1583.67 1.09358
\(129\) −1075.20 −0.733846
\(130\) 353.489 0.238485
\(131\) 225.367 0.150308 0.0751541 0.997172i \(-0.476055\pi\)
0.0751541 + 0.997172i \(0.476055\pi\)
\(132\) −77.8117 −0.0513079
\(133\) 0 0
\(134\) 1519.50 0.979590
\(135\) −135.000 −0.0860663
\(136\) −171.631 −0.108215
\(137\) −1827.22 −1.13949 −0.569743 0.821823i \(-0.692957\pi\)
−0.569743 + 0.821823i \(0.692957\pi\)
\(138\) −345.478 −0.213109
\(139\) −1656.39 −1.01074 −0.505370 0.862903i \(-0.668644\pi\)
−0.505370 + 0.862903i \(0.668644\pi\)
\(140\) 0 0
\(141\) −513.153 −0.306491
\(142\) 3436.01 2.03059
\(143\) 1095.96 0.640900
\(144\) −614.208 −0.355444
\(145\) 1002.86 0.574367
\(146\) −332.600 −0.188535
\(147\) 0 0
\(148\) 68.4375 0.0380103
\(149\) 1116.84 0.614060 0.307030 0.951700i \(-0.400665\pi\)
0.307030 + 0.951700i \(0.400665\pi\)
\(150\) −219.578 −0.119523
\(151\) 438.299 0.236214 0.118107 0.993001i \(-0.462317\pi\)
0.118107 + 0.993001i \(0.462317\pi\)
\(152\) 3304.67 1.76345
\(153\) 71.0246 0.0375294
\(154\) 0 0
\(155\) −75.3178 −0.0390301
\(156\) −41.4005 −0.0212480
\(157\) −1136.54 −0.577743 −0.288872 0.957368i \(-0.593280\pi\)
−0.288872 + 0.957368i \(0.593280\pi\)
\(158\) −2357.89 −1.18724
\(159\) −1163.43 −0.580291
\(160\) −129.071 −0.0637748
\(161\) 0 0
\(162\) 237.145 0.115011
\(163\) 875.223 0.420569 0.210285 0.977640i \(-0.432561\pi\)
0.210285 + 0.977640i \(0.432561\pi\)
\(164\) 18.3722 0.00874773
\(165\) −680.782 −0.321205
\(166\) −3953.04 −1.84829
\(167\) 2121.81 0.983178 0.491589 0.870827i \(-0.336416\pi\)
0.491589 + 0.870827i \(0.336416\pi\)
\(168\) 0 0
\(169\) −1613.88 −0.734585
\(170\) 115.522 0.0521184
\(171\) −1367.54 −0.611571
\(172\) 204.821 0.0907993
\(173\) 519.259 0.228200 0.114100 0.993469i \(-0.463602\pi\)
0.114100 + 0.993469i \(0.463602\pi\)
\(174\) −1761.65 −0.767533
\(175\) 0 0
\(176\) −3097.35 −1.32654
\(177\) −1512.69 −0.642376
\(178\) 1928.56 0.812088
\(179\) −432.844 −0.180739 −0.0903696 0.995908i \(-0.528805\pi\)
−0.0903696 + 0.995908i \(0.528805\pi\)
\(180\) 25.7169 0.0106490
\(181\) 2791.71 1.14644 0.573221 0.819401i \(-0.305694\pi\)
0.573221 + 0.819401i \(0.305694\pi\)
\(182\) 0 0
\(183\) −985.177 −0.397958
\(184\) −855.461 −0.342747
\(185\) 598.766 0.237958
\(186\) 132.305 0.0521564
\(187\) 358.165 0.140062
\(188\) 97.7535 0.0379224
\(189\) 0 0
\(190\) −2224.32 −0.849310
\(191\) −3221.32 −1.22035 −0.610173 0.792268i \(-0.708900\pi\)
−0.610173 + 0.792268i \(0.708900\pi\)
\(192\) −1411.16 −0.530425
\(193\) −3640.40 −1.35773 −0.678864 0.734264i \(-0.737527\pi\)
−0.678864 + 0.734264i \(0.737527\pi\)
\(194\) 2595.13 0.960408
\(195\) −362.217 −0.133020
\(196\) 0 0
\(197\) 3178.85 1.14966 0.574832 0.818271i \(-0.305067\pi\)
0.574832 + 0.818271i \(0.305067\pi\)
\(198\) 1195.88 0.429230
\(199\) 3869.55 1.37842 0.689208 0.724563i \(-0.257959\pi\)
0.689208 + 0.724563i \(0.257959\pi\)
\(200\) −543.713 −0.192232
\(201\) −1557.02 −0.546387
\(202\) 5425.05 1.88963
\(203\) 0 0
\(204\) −13.5299 −0.00464354
\(205\) 160.740 0.0547638
\(206\) −4900.21 −1.65735
\(207\) 354.008 0.118866
\(208\) −1647.97 −0.549358
\(209\) −6896.29 −2.28242
\(210\) 0 0
\(211\) 4477.70 1.46094 0.730469 0.682946i \(-0.239302\pi\)
0.730469 + 0.682946i \(0.239302\pi\)
\(212\) 221.629 0.0717998
\(213\) −3520.85 −1.13260
\(214\) −10.2637 −0.00327856
\(215\) 1792.00 0.568435
\(216\) 587.210 0.184975
\(217\) 0 0
\(218\) −4401.86 −1.36758
\(219\) 340.812 0.105160
\(220\) 129.686 0.0397429
\(221\) 190.565 0.0580036
\(222\) −1051.81 −0.317985
\(223\) −305.552 −0.0917546 −0.0458773 0.998947i \(-0.514608\pi\)
−0.0458773 + 0.998947i \(0.514608\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 619.564 0.182357
\(227\) −6621.96 −1.93619 −0.968094 0.250587i \(-0.919376\pi\)
−0.968094 + 0.250587i \(0.919376\pi\)
\(228\) 260.511 0.0756701
\(229\) −5240.39 −1.51220 −0.756102 0.654454i \(-0.772899\pi\)
−0.756102 + 0.654454i \(0.772899\pi\)
\(230\) 575.796 0.165073
\(231\) 0 0
\(232\) −4362.16 −1.23444
\(233\) −2614.11 −0.735005 −0.367502 0.930023i \(-0.619787\pi\)
−0.367502 + 0.930023i \(0.619787\pi\)
\(234\) 636.280 0.177756
\(235\) 855.255 0.237407
\(236\) 288.161 0.0794816
\(237\) 2416.11 0.662207
\(238\) 0 0
\(239\) −319.944 −0.0865919 −0.0432960 0.999062i \(-0.513786\pi\)
−0.0432960 + 0.999062i \(0.513786\pi\)
\(240\) 1023.68 0.275326
\(241\) 3429.97 0.916778 0.458389 0.888752i \(-0.348427\pi\)
0.458389 + 0.888752i \(0.348427\pi\)
\(242\) 2133.84 0.566811
\(243\) −243.000 −0.0641500
\(244\) 187.672 0.0492396
\(245\) 0 0
\(246\) −282.360 −0.0731814
\(247\) −3669.24 −0.945215
\(248\) 327.610 0.0838842
\(249\) 4050.65 1.03092
\(250\) 365.964 0.0925823
\(251\) −5152.46 −1.29570 −0.647849 0.761768i \(-0.724331\pi\)
−0.647849 + 0.761768i \(0.724331\pi\)
\(252\) 0 0
\(253\) 1785.20 0.443615
\(254\) 2186.60 0.540155
\(255\) −118.374 −0.0290702
\(256\) 873.432 0.213240
\(257\) 1937.46 0.470254 0.235127 0.971965i \(-0.424449\pi\)
0.235127 + 0.971965i \(0.424449\pi\)
\(258\) −3147.88 −0.759606
\(259\) 0 0
\(260\) 69.0008 0.0164586
\(261\) 1805.15 0.428108
\(262\) 659.809 0.155584
\(263\) 2817.53 0.660594 0.330297 0.943877i \(-0.392851\pi\)
0.330297 + 0.943877i \(0.392851\pi\)
\(264\) 2961.20 0.690339
\(265\) 1939.05 0.449491
\(266\) 0 0
\(267\) −1976.18 −0.452959
\(268\) 296.606 0.0676048
\(269\) 7581.60 1.71843 0.859216 0.511612i \(-0.170952\pi\)
0.859216 + 0.511612i \(0.170952\pi\)
\(270\) −395.241 −0.0890874
\(271\) −2007.56 −0.450002 −0.225001 0.974359i \(-0.572239\pi\)
−0.225001 + 0.974359i \(0.572239\pi\)
\(272\) −538.566 −0.120057
\(273\) 0 0
\(274\) −5349.56 −1.17948
\(275\) 1134.64 0.248804
\(276\) −67.4370 −0.0147074
\(277\) 522.535 0.113343 0.0566716 0.998393i \(-0.481951\pi\)
0.0566716 + 0.998393i \(0.481951\pi\)
\(278\) −4849.42 −1.04622
\(279\) −135.572 −0.0290913
\(280\) 0 0
\(281\) 2528.04 0.536691 0.268345 0.963323i \(-0.413523\pi\)
0.268345 + 0.963323i \(0.413523\pi\)
\(282\) −1502.36 −0.317250
\(283\) −2608.02 −0.547812 −0.273906 0.961756i \(-0.588316\pi\)
−0.273906 + 0.961756i \(0.588316\pi\)
\(284\) 670.707 0.140138
\(285\) 2279.24 0.473721
\(286\) 3208.65 0.663397
\(287\) 0 0
\(288\) −232.328 −0.0475349
\(289\) −4850.72 −0.987324
\(290\) 2936.09 0.594528
\(291\) −2659.20 −0.535688
\(292\) −64.9233 −0.0130115
\(293\) −2830.10 −0.564287 −0.282143 0.959372i \(-0.591045\pi\)
−0.282143 + 0.959372i \(0.591045\pi\)
\(294\) 0 0
\(295\) 2521.15 0.497582
\(296\) −2604.46 −0.511422
\(297\) −1225.41 −0.239412
\(298\) 3269.78 0.635614
\(299\) 949.834 0.183713
\(300\) −42.8616 −0.00824871
\(301\) 0 0
\(302\) 1283.21 0.244505
\(303\) −5559.00 −1.05398
\(304\) 10369.8 1.95642
\(305\) 1641.96 0.308257
\(306\) 207.939 0.0388468
\(307\) 8752.67 1.62717 0.813585 0.581446i \(-0.197513\pi\)
0.813585 + 0.581446i \(0.197513\pi\)
\(308\) 0 0
\(309\) 5021.20 0.924421
\(310\) −220.509 −0.0404002
\(311\) −4245.23 −0.774034 −0.387017 0.922073i \(-0.626495\pi\)
−0.387017 + 0.922073i \(0.626495\pi\)
\(312\) 1575.54 0.285889
\(313\) −5888.63 −1.06340 −0.531702 0.846932i \(-0.678447\pi\)
−0.531702 + 0.846932i \(0.678447\pi\)
\(314\) −3327.46 −0.598023
\(315\) 0 0
\(316\) −460.258 −0.0819353
\(317\) −7074.82 −1.25351 −0.626753 0.779218i \(-0.715616\pi\)
−0.626753 + 0.779218i \(0.715616\pi\)
\(318\) −3406.19 −0.600660
\(319\) 9103.08 1.59773
\(320\) 2351.93 0.410865
\(321\) 10.5171 0.00182869
\(322\) 0 0
\(323\) −1199.13 −0.206567
\(324\) 46.2905 0.00793733
\(325\) 603.695 0.103037
\(326\) 2562.40 0.435332
\(327\) 4510.55 0.762795
\(328\) −699.172 −0.117699
\(329\) 0 0
\(330\) −1993.13 −0.332480
\(331\) −10236.4 −1.69983 −0.849916 0.526918i \(-0.823347\pi\)
−0.849916 + 0.526918i \(0.823347\pi\)
\(332\) −771.632 −0.127557
\(333\) 1077.78 0.177363
\(334\) 6212.05 1.01769
\(335\) 2595.04 0.423230
\(336\) 0 0
\(337\) −5579.42 −0.901871 −0.450935 0.892557i \(-0.648909\pi\)
−0.450935 + 0.892557i \(0.648909\pi\)
\(338\) −4724.99 −0.760371
\(339\) −634.862 −0.101714
\(340\) 22.5498 0.00359687
\(341\) −683.667 −0.108571
\(342\) −4003.77 −0.633039
\(343\) 0 0
\(344\) −7794.68 −1.22169
\(345\) −590.013 −0.0920732
\(346\) 1520.24 0.236210
\(347\) 9526.56 1.47381 0.736906 0.675995i \(-0.236286\pi\)
0.736906 + 0.675995i \(0.236286\pi\)
\(348\) −343.874 −0.0529701
\(349\) 198.263 0.0304092 0.0152046 0.999884i \(-0.495160\pi\)
0.0152046 + 0.999884i \(0.495160\pi\)
\(350\) 0 0
\(351\) −651.990 −0.0991472
\(352\) −1171.59 −0.177403
\(353\) −9280.48 −1.39929 −0.699646 0.714489i \(-0.746659\pi\)
−0.699646 + 0.714489i \(0.746659\pi\)
\(354\) −4428.71 −0.664925
\(355\) 5868.08 0.877311
\(356\) 376.454 0.0560450
\(357\) 0 0
\(358\) −1267.24 −0.187083
\(359\) −6589.47 −0.968743 −0.484372 0.874862i \(-0.660952\pi\)
−0.484372 + 0.874862i \(0.660952\pi\)
\(360\) −978.684 −0.143281
\(361\) 16229.6 2.36617
\(362\) 8173.31 1.18668
\(363\) −2186.53 −0.316151
\(364\) 0 0
\(365\) −568.020 −0.0814562
\(366\) −2884.31 −0.411927
\(367\) 10984.5 1.56236 0.781180 0.624305i \(-0.214618\pi\)
0.781180 + 0.624305i \(0.214618\pi\)
\(368\) −2684.37 −0.380252
\(369\) 289.332 0.0408185
\(370\) 1753.01 0.246310
\(371\) 0 0
\(372\) 25.8259 0.00359949
\(373\) −2190.04 −0.304010 −0.152005 0.988380i \(-0.548573\pi\)
−0.152005 + 0.988380i \(0.548573\pi\)
\(374\) 1048.60 0.144979
\(375\) −375.000 −0.0516398
\(376\) −3720.11 −0.510239
\(377\) 4843.38 0.661663
\(378\) 0 0
\(379\) 2063.29 0.279642 0.139821 0.990177i \(-0.455347\pi\)
0.139821 + 0.990177i \(0.455347\pi\)
\(380\) −434.186 −0.0586138
\(381\) −2240.59 −0.301283
\(382\) −9431.08 −1.26318
\(383\) −10582.1 −1.41180 −0.705898 0.708313i \(-0.749457\pi\)
−0.705898 + 0.708313i \(0.749457\pi\)
\(384\) −4751.00 −0.631376
\(385\) 0 0
\(386\) −10658.0 −1.40539
\(387\) 3225.60 0.423686
\(388\) 506.567 0.0662811
\(389\) 7301.27 0.951643 0.475822 0.879542i \(-0.342151\pi\)
0.475822 + 0.879542i \(0.342151\pi\)
\(390\) −1060.47 −0.137689
\(391\) 310.411 0.0401487
\(392\) 0 0
\(393\) −676.100 −0.0867805
\(394\) 9306.76 1.19002
\(395\) −4026.84 −0.512943
\(396\) 233.435 0.0296226
\(397\) 7650.00 0.967110 0.483555 0.875314i \(-0.339345\pi\)
0.483555 + 0.875314i \(0.339345\pi\)
\(398\) 11328.9 1.42680
\(399\) 0 0
\(400\) −1706.13 −0.213267
\(401\) 7383.41 0.919476 0.459738 0.888055i \(-0.347943\pi\)
0.459738 + 0.888055i \(0.347943\pi\)
\(402\) −4558.51 −0.565566
\(403\) −363.752 −0.0449622
\(404\) 1058.97 0.130410
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) 5435.06 0.661931
\(408\) 514.894 0.0624780
\(409\) 13061.0 1.57903 0.789517 0.613729i \(-0.210331\pi\)
0.789517 + 0.613729i \(0.210331\pi\)
\(410\) 470.600 0.0566861
\(411\) 5481.65 0.657883
\(412\) −956.517 −0.114379
\(413\) 0 0
\(414\) 1036.43 0.123038
\(415\) −6751.08 −0.798549
\(416\) −623.356 −0.0734677
\(417\) 4969.16 0.583551
\(418\) −20190.3 −2.36254
\(419\) −12329.9 −1.43760 −0.718800 0.695217i \(-0.755308\pi\)
−0.718800 + 0.695217i \(0.755308\pi\)
\(420\) 0 0
\(421\) −4011.19 −0.464354 −0.232177 0.972673i \(-0.574585\pi\)
−0.232177 + 0.972673i \(0.574585\pi\)
\(422\) 13109.4 1.51222
\(423\) 1539.46 0.176953
\(424\) −8434.32 −0.966054
\(425\) 197.291 0.0225176
\(426\) −10308.0 −1.17236
\(427\) 0 0
\(428\) −2.00347 −0.000226265 0
\(429\) −3287.88 −0.370024
\(430\) 5246.46 0.588388
\(431\) −12983.2 −1.45099 −0.725495 0.688227i \(-0.758389\pi\)
−0.725495 + 0.688227i \(0.758389\pi\)
\(432\) 1842.62 0.205216
\(433\) 10976.3 1.21822 0.609109 0.793087i \(-0.291527\pi\)
0.609109 + 0.793087i \(0.291527\pi\)
\(434\) 0 0
\(435\) −3008.59 −0.331611
\(436\) −859.241 −0.0943812
\(437\) −5976.81 −0.654255
\(438\) 997.799 0.108851
\(439\) 17477.2 1.90009 0.950045 0.312112i \(-0.101036\pi\)
0.950045 + 0.312112i \(0.101036\pi\)
\(440\) −4935.34 −0.534734
\(441\) 0 0
\(442\) 557.920 0.0600397
\(443\) 2083.78 0.223484 0.111742 0.993737i \(-0.464357\pi\)
0.111742 + 0.993737i \(0.464357\pi\)
\(444\) −205.312 −0.0219453
\(445\) 3293.63 0.350861
\(446\) −894.568 −0.0949754
\(447\) −3350.51 −0.354527
\(448\) 0 0
\(449\) −1874.17 −0.196988 −0.0984938 0.995138i \(-0.531402\pi\)
−0.0984938 + 0.995138i \(0.531402\pi\)
\(450\) 658.735 0.0690068
\(451\) 1459.05 0.152337
\(452\) 120.939 0.0125851
\(453\) −1314.90 −0.136378
\(454\) −19387.2 −2.00415
\(455\) 0 0
\(456\) −9914.02 −1.01813
\(457\) −6648.72 −0.680556 −0.340278 0.940325i \(-0.610521\pi\)
−0.340278 + 0.940325i \(0.610521\pi\)
\(458\) −15342.3 −1.56529
\(459\) −213.074 −0.0216676
\(460\) 112.395 0.0113923
\(461\) 15529.0 1.56888 0.784442 0.620202i \(-0.212949\pi\)
0.784442 + 0.620202i \(0.212949\pi\)
\(462\) 0 0
\(463\) 2365.89 0.237478 0.118739 0.992926i \(-0.462115\pi\)
0.118739 + 0.992926i \(0.462115\pi\)
\(464\) −13688.1 −1.36952
\(465\) 225.953 0.0225341
\(466\) −7653.36 −0.760805
\(467\) −17310.3 −1.71525 −0.857626 0.514274i \(-0.828062\pi\)
−0.857626 + 0.514274i \(0.828062\pi\)
\(468\) 124.201 0.0122675
\(469\) 0 0
\(470\) 2503.94 0.245741
\(471\) 3409.62 0.333560
\(472\) −10966.2 −1.06941
\(473\) 16266.2 1.58122
\(474\) 7073.66 0.685452
\(475\) −3798.73 −0.366943
\(476\) 0 0
\(477\) 3490.30 0.335031
\(478\) −936.704 −0.0896314
\(479\) 2363.33 0.225435 0.112717 0.993627i \(-0.464045\pi\)
0.112717 + 0.993627i \(0.464045\pi\)
\(480\) 387.213 0.0368204
\(481\) 2891.78 0.274124
\(482\) 10041.9 0.948959
\(483\) 0 0
\(484\) 416.524 0.0391176
\(485\) 4432.01 0.414942
\(486\) −711.434 −0.0664018
\(487\) −17815.5 −1.65770 −0.828849 0.559473i \(-0.811004\pi\)
−0.828849 + 0.559473i \(0.811004\pi\)
\(488\) −7142.05 −0.662511
\(489\) −2625.67 −0.242816
\(490\) 0 0
\(491\) 1968.10 0.180894 0.0904469 0.995901i \(-0.471170\pi\)
0.0904469 + 0.995901i \(0.471170\pi\)
\(492\) −55.1166 −0.00505050
\(493\) 1582.84 0.144600
\(494\) −10742.5 −0.978394
\(495\) 2042.35 0.185448
\(496\) 1028.02 0.0930632
\(497\) 0 0
\(498\) 11859.1 1.06711
\(499\) 17118.5 1.53573 0.767863 0.640614i \(-0.221320\pi\)
0.767863 + 0.640614i \(0.221320\pi\)
\(500\) 71.4359 0.00638942
\(501\) −6365.44 −0.567638
\(502\) −15084.9 −1.34118
\(503\) −7025.91 −0.622803 −0.311401 0.950278i \(-0.600798\pi\)
−0.311401 + 0.950278i \(0.600798\pi\)
\(504\) 0 0
\(505\) 9265.00 0.816410
\(506\) 5226.55 0.459187
\(507\) 4841.65 0.424113
\(508\) 426.823 0.0372779
\(509\) 5155.61 0.448955 0.224478 0.974479i \(-0.427932\pi\)
0.224478 + 0.974479i \(0.427932\pi\)
\(510\) −346.566 −0.0300906
\(511\) 0 0
\(512\) −10112.2 −0.872851
\(513\) 4102.63 0.353091
\(514\) 5672.32 0.486761
\(515\) −8368.67 −0.716053
\(516\) −614.464 −0.0524230
\(517\) 7763.23 0.660400
\(518\) 0 0
\(519\) −1557.78 −0.131751
\(520\) −2625.89 −0.221448
\(521\) −1673.01 −0.140683 −0.0703416 0.997523i \(-0.522409\pi\)
−0.0703416 + 0.997523i \(0.522409\pi\)
\(522\) 5284.96 0.443135
\(523\) 612.609 0.0512190 0.0256095 0.999672i \(-0.491847\pi\)
0.0256095 + 0.999672i \(0.491847\pi\)
\(524\) 128.794 0.0107374
\(525\) 0 0
\(526\) 8248.90 0.683782
\(527\) −118.876 −0.00982603
\(528\) 9292.04 0.765879
\(529\) −10619.8 −0.872838
\(530\) 5676.99 0.465269
\(531\) 4538.06 0.370876
\(532\) 0 0
\(533\) 776.304 0.0630871
\(534\) −5785.68 −0.468859
\(535\) −17.5285 −0.00141649
\(536\) −11287.6 −0.909612
\(537\) 1298.53 0.104350
\(538\) 22196.7 1.77875
\(539\) 0 0
\(540\) −77.1508 −0.00614823
\(541\) 12856.9 1.02174 0.510872 0.859657i \(-0.329323\pi\)
0.510872 + 0.859657i \(0.329323\pi\)
\(542\) −5877.55 −0.465798
\(543\) −8375.12 −0.661899
\(544\) −203.716 −0.0160556
\(545\) −7517.59 −0.590859
\(546\) 0 0
\(547\) −15953.2 −1.24700 −0.623500 0.781824i \(-0.714290\pi\)
−0.623500 + 0.781824i \(0.714290\pi\)
\(548\) −1044.23 −0.0814003
\(549\) 2955.53 0.229761
\(550\) 3321.89 0.257538
\(551\) −30476.9 −2.35637
\(552\) 2566.38 0.197885
\(553\) 0 0
\(554\) 1529.83 0.117322
\(555\) −1796.30 −0.137385
\(556\) −946.605 −0.0722032
\(557\) −6765.42 −0.514650 −0.257325 0.966325i \(-0.582841\pi\)
−0.257325 + 0.966325i \(0.582841\pi\)
\(558\) −396.916 −0.0301125
\(559\) 8654.58 0.654829
\(560\) 0 0
\(561\) −1074.50 −0.0808649
\(562\) 7401.36 0.555529
\(563\) −23505.6 −1.75958 −0.879789 0.475364i \(-0.842316\pi\)
−0.879789 + 0.475364i \(0.842316\pi\)
\(564\) −293.261 −0.0218945
\(565\) 1058.10 0.0787872
\(566\) −7635.53 −0.567041
\(567\) 0 0
\(568\) −25524.4 −1.88553
\(569\) 477.650 0.0351918 0.0175959 0.999845i \(-0.494399\pi\)
0.0175959 + 0.999845i \(0.494399\pi\)
\(570\) 6672.95 0.490350
\(571\) 14081.6 1.03204 0.516022 0.856576i \(-0.327412\pi\)
0.516022 + 0.856576i \(0.327412\pi\)
\(572\) 626.327 0.0457833
\(573\) 9663.95 0.704568
\(574\) 0 0
\(575\) 983.355 0.0713196
\(576\) 4233.47 0.306241
\(577\) 10405.0 0.750719 0.375359 0.926879i \(-0.377519\pi\)
0.375359 + 0.926879i \(0.377519\pi\)
\(578\) −14201.5 −1.02198
\(579\) 10921.2 0.783885
\(580\) 573.123 0.0410304
\(581\) 0 0
\(582\) −7785.38 −0.554492
\(583\) 17601.0 1.25036
\(584\) 2470.72 0.175067
\(585\) 1086.65 0.0767991
\(586\) −8285.70 −0.584094
\(587\) −14406.0 −1.01295 −0.506473 0.862256i \(-0.669051\pi\)
−0.506473 + 0.862256i \(0.669051\pi\)
\(588\) 0 0
\(589\) 2288.90 0.160123
\(590\) 7381.19 0.515049
\(591\) −9536.56 −0.663759
\(592\) −8172.60 −0.567384
\(593\) −11647.6 −0.806596 −0.403298 0.915069i \(-0.632136\pi\)
−0.403298 + 0.915069i \(0.632136\pi\)
\(594\) −3587.64 −0.247816
\(595\) 0 0
\(596\) 638.258 0.0438659
\(597\) −11608.6 −0.795829
\(598\) 2780.84 0.190162
\(599\) 6289.16 0.428995 0.214498 0.976725i \(-0.431189\pi\)
0.214498 + 0.976725i \(0.431189\pi\)
\(600\) 1631.14 0.110985
\(601\) 10340.0 0.701796 0.350898 0.936414i \(-0.385876\pi\)
0.350898 + 0.936414i \(0.385876\pi\)
\(602\) 0 0
\(603\) 4671.06 0.315457
\(604\) 250.482 0.0168741
\(605\) 3644.21 0.244890
\(606\) −16275.1 −1.09098
\(607\) 15606.3 1.04356 0.521781 0.853080i \(-0.325268\pi\)
0.521781 + 0.853080i \(0.325268\pi\)
\(608\) 3922.45 0.261639
\(609\) 0 0
\(610\) 4807.19 0.319078
\(611\) 4130.51 0.273490
\(612\) 40.5897 0.00268095
\(613\) 23004.4 1.51572 0.757861 0.652416i \(-0.226244\pi\)
0.757861 + 0.652416i \(0.226244\pi\)
\(614\) 25625.3 1.68429
\(615\) −482.220 −0.0316179
\(616\) 0 0
\(617\) 21516.8 1.40394 0.701971 0.712205i \(-0.252304\pi\)
0.701971 + 0.712205i \(0.252304\pi\)
\(618\) 14700.6 0.956870
\(619\) 7302.79 0.474191 0.237095 0.971486i \(-0.423805\pi\)
0.237095 + 0.971486i \(0.423805\pi\)
\(620\) −43.0432 −0.00278815
\(621\) −1062.02 −0.0686273
\(622\) −12428.8 −0.801204
\(623\) 0 0
\(624\) 4943.92 0.317172
\(625\) 625.000 0.0400000
\(626\) −17240.2 −1.10073
\(627\) 20688.9 1.31776
\(628\) −649.518 −0.0412716
\(629\) 945.047 0.0599070
\(630\) 0 0
\(631\) 28805.7 1.81733 0.908666 0.417524i \(-0.137102\pi\)
0.908666 + 0.417524i \(0.137102\pi\)
\(632\) 17515.6 1.10243
\(633\) −13433.1 −0.843473
\(634\) −20713.0 −1.29751
\(635\) 3734.31 0.233373
\(636\) −664.887 −0.0414536
\(637\) 0 0
\(638\) 26651.2 1.65381
\(639\) 10562.5 0.653909
\(640\) 7918.34 0.489062
\(641\) −7479.14 −0.460855 −0.230428 0.973089i \(-0.574013\pi\)
−0.230428 + 0.973089i \(0.574013\pi\)
\(642\) 30.7911 0.00189288
\(643\) −25832.0 −1.58432 −0.792158 0.610316i \(-0.791042\pi\)
−0.792158 + 0.610316i \(0.791042\pi\)
\(644\) 0 0
\(645\) −5376.01 −0.328186
\(646\) −3510.70 −0.213818
\(647\) 14971.7 0.909736 0.454868 0.890559i \(-0.349686\pi\)
0.454868 + 0.890559i \(0.349686\pi\)
\(648\) −1761.63 −0.106795
\(649\) 22884.7 1.38413
\(650\) 1767.44 0.106654
\(651\) 0 0
\(652\) 500.179 0.0300438
\(653\) 7423.31 0.444865 0.222432 0.974948i \(-0.428600\pi\)
0.222432 + 0.974948i \(0.428600\pi\)
\(654\) 13205.6 0.789571
\(655\) 1126.83 0.0672199
\(656\) −2193.95 −0.130578
\(657\) −1022.44 −0.0607139
\(658\) 0 0
\(659\) 3126.66 0.184822 0.0924109 0.995721i \(-0.470543\pi\)
0.0924109 + 0.995721i \(0.470543\pi\)
\(660\) −389.058 −0.0229456
\(661\) −7725.29 −0.454582 −0.227291 0.973827i \(-0.572987\pi\)
−0.227291 + 0.973827i \(0.572987\pi\)
\(662\) −29969.3 −1.75950
\(663\) −571.696 −0.0334884
\(664\) 29365.2 1.71625
\(665\) 0 0
\(666\) 3155.42 0.183589
\(667\) 7889.36 0.457987
\(668\) 1212.59 0.0702343
\(669\) 916.656 0.0529745
\(670\) 7597.51 0.438086
\(671\) 14904.2 0.857484
\(672\) 0 0
\(673\) 26556.6 1.52107 0.760536 0.649296i \(-0.224936\pi\)
0.760536 + 0.649296i \(0.224936\pi\)
\(674\) −16334.9 −0.933528
\(675\) −675.000 −0.0384900
\(676\) −922.315 −0.0524758
\(677\) −21375.9 −1.21350 −0.606752 0.794891i \(-0.707528\pi\)
−0.606752 + 0.794891i \(0.707528\pi\)
\(678\) −1858.69 −0.105284
\(679\) 0 0
\(680\) −858.156 −0.0483953
\(681\) 19865.9 1.11786
\(682\) −2001.58 −0.112382
\(683\) 19700.2 1.10367 0.551834 0.833954i \(-0.313928\pi\)
0.551834 + 0.833954i \(0.313928\pi\)
\(684\) −781.534 −0.0436882
\(685\) −9136.08 −0.509594
\(686\) 0 0
\(687\) 15721.2 0.873071
\(688\) −24459.1 −1.35537
\(689\) 9364.78 0.517808
\(690\) −1727.39 −0.0953051
\(691\) −4568.18 −0.251493 −0.125747 0.992062i \(-0.540133\pi\)
−0.125747 + 0.992062i \(0.540133\pi\)
\(692\) 296.750 0.0163017
\(693\) 0 0
\(694\) 27891.0 1.52555
\(695\) −8281.94 −0.452017
\(696\) 13086.5 0.712703
\(697\) 253.700 0.0137871
\(698\) 580.458 0.0314766
\(699\) 7842.33 0.424355
\(700\) 0 0
\(701\) −22203.6 −1.19632 −0.598159 0.801377i \(-0.704101\pi\)
−0.598159 + 0.801377i \(0.704101\pi\)
\(702\) −1908.84 −0.102627
\(703\) −18196.4 −0.976232
\(704\) 21348.7 1.14291
\(705\) −2565.77 −0.137067
\(706\) −27170.6 −1.44841
\(707\) 0 0
\(708\) −864.482 −0.0458887
\(709\) 25615.6 1.35686 0.678430 0.734665i \(-0.262661\pi\)
0.678430 + 0.734665i \(0.262661\pi\)
\(710\) 17180.0 0.908106
\(711\) −7248.32 −0.382325
\(712\) −14326.3 −0.754076
\(713\) −592.513 −0.0311217
\(714\) 0 0
\(715\) 5479.79 0.286619
\(716\) −247.365 −0.0129113
\(717\) 959.832 0.0499939
\(718\) −19292.1 −1.00275
\(719\) 16228.4 0.841747 0.420873 0.907119i \(-0.361724\pi\)
0.420873 + 0.907119i \(0.361724\pi\)
\(720\) −3071.04 −0.158960
\(721\) 0 0
\(722\) 47515.5 2.44923
\(723\) −10289.9 −0.529302
\(724\) 1595.43 0.0818971
\(725\) 5014.31 0.256865
\(726\) −6401.51 −0.327248
\(727\) −34994.2 −1.78523 −0.892615 0.450820i \(-0.851132\pi\)
−0.892615 + 0.450820i \(0.851132\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −1663.00 −0.0843155
\(731\) 2828.36 0.143106
\(732\) −563.016 −0.0284285
\(733\) 24430.8 1.23107 0.615533 0.788111i \(-0.288941\pi\)
0.615533 + 0.788111i \(0.288941\pi\)
\(734\) 32159.4 1.61720
\(735\) 0 0
\(736\) −1015.38 −0.0508525
\(737\) 23555.4 1.17731
\(738\) 847.081 0.0422513
\(739\) −17001.5 −0.846291 −0.423146 0.906062i \(-0.639074\pi\)
−0.423146 + 0.906062i \(0.639074\pi\)
\(740\) 342.187 0.0169987
\(741\) 11007.7 0.545720
\(742\) 0 0
\(743\) 14.3426 0.000708183 0 0.000354092 1.00000i \(-0.499887\pi\)
0.000354092 1.00000i \(0.499887\pi\)
\(744\) −982.831 −0.0484305
\(745\) 5584.19 0.274616
\(746\) −6411.80 −0.314682
\(747\) −12152.0 −0.595203
\(748\) 204.687 0.0100055
\(749\) 0 0
\(750\) −1097.89 −0.0534524
\(751\) −30724.4 −1.49287 −0.746437 0.665456i \(-0.768237\pi\)
−0.746437 + 0.665456i \(0.768237\pi\)
\(752\) −11673.4 −0.566072
\(753\) 15457.4 0.748072
\(754\) 14180.0 0.684888
\(755\) 2191.49 0.105638
\(756\) 0 0
\(757\) −27240.7 −1.30790 −0.653950 0.756538i \(-0.726889\pi\)
−0.653950 + 0.756538i \(0.726889\pi\)
\(758\) 6040.72 0.289458
\(759\) −5355.61 −0.256121
\(760\) 16523.4 0.788639
\(761\) 10252.4 0.488370 0.244185 0.969729i \(-0.421480\pi\)
0.244185 + 0.969729i \(0.421480\pi\)
\(762\) −6559.79 −0.311859
\(763\) 0 0
\(764\) −1840.94 −0.0871766
\(765\) 355.123 0.0167837
\(766\) −30981.2 −1.46135
\(767\) 12176.0 0.573208
\(768\) −2620.30 −0.123114
\(769\) −37870.0 −1.77585 −0.887925 0.459989i \(-0.847853\pi\)
−0.887925 + 0.459989i \(0.847853\pi\)
\(770\) 0 0
\(771\) −5812.37 −0.271501
\(772\) −2080.44 −0.0969906
\(773\) 16744.1 0.779098 0.389549 0.921006i \(-0.372631\pi\)
0.389549 + 0.921006i \(0.372631\pi\)
\(774\) 9443.63 0.438559
\(775\) −376.589 −0.0174548
\(776\) −19277.9 −0.891801
\(777\) 0 0
\(778\) 21376.0 0.985047
\(779\) −4884.87 −0.224671
\(780\) −207.002 −0.00950240
\(781\) 53265.1 2.44043
\(782\) 908.793 0.0415580
\(783\) −5415.46 −0.247168
\(784\) 0 0
\(785\) −5682.70 −0.258375
\(786\) −1979.43 −0.0898267
\(787\) −17080.1 −0.773622 −0.386811 0.922159i \(-0.626423\pi\)
−0.386811 + 0.922159i \(0.626423\pi\)
\(788\) 1816.68 0.0821274
\(789\) −8452.58 −0.381394
\(790\) −11789.4 −0.530948
\(791\) 0 0
\(792\) −8883.61 −0.398567
\(793\) 7929.95 0.355108
\(794\) 22397.0 1.00106
\(795\) −5817.16 −0.259514
\(796\) 2211.40 0.0984684
\(797\) −30528.1 −1.35679 −0.678395 0.734697i \(-0.737324\pi\)
−0.678395 + 0.734697i \(0.737324\pi\)
\(798\) 0 0
\(799\) 1349.87 0.0597684
\(800\) −645.355 −0.0285209
\(801\) 5928.54 0.261516
\(802\) 21616.5 0.951752
\(803\) −5155.97 −0.226588
\(804\) −889.818 −0.0390317
\(805\) 0 0
\(806\) −1064.96 −0.0465404
\(807\) −22744.8 −0.992138
\(808\) −40300.0 −1.75464
\(809\) 36969.6 1.60665 0.803325 0.595541i \(-0.203062\pi\)
0.803325 + 0.595541i \(0.203062\pi\)
\(810\) 1185.72 0.0514346
\(811\) 35231.2 1.52544 0.762722 0.646727i \(-0.223863\pi\)
0.762722 + 0.646727i \(0.223863\pi\)
\(812\) 0 0
\(813\) 6022.68 0.259809
\(814\) 15912.3 0.685166
\(815\) 4376.12 0.188084
\(816\) 1615.70 0.0693147
\(817\) −54458.7 −2.33203
\(818\) 38238.8 1.63446
\(819\) 0 0
\(820\) 91.8609 0.00391210
\(821\) −3853.10 −0.163793 −0.0818965 0.996641i \(-0.526098\pi\)
−0.0818965 + 0.996641i \(0.526098\pi\)
\(822\) 16048.7 0.680976
\(823\) −19323.3 −0.818431 −0.409216 0.912438i \(-0.634198\pi\)
−0.409216 + 0.912438i \(0.634198\pi\)
\(824\) 36401.2 1.53895
\(825\) −3403.91 −0.143647
\(826\) 0 0
\(827\) 42985.0 1.80742 0.903710 0.428145i \(-0.140833\pi\)
0.903710 + 0.428145i \(0.140833\pi\)
\(828\) 202.311 0.00849130
\(829\) 7707.12 0.322894 0.161447 0.986881i \(-0.448384\pi\)
0.161447 + 0.986881i \(0.448384\pi\)
\(830\) −19765.2 −0.826579
\(831\) −1567.60 −0.0654387
\(832\) 11358.8 0.473311
\(833\) 0 0
\(834\) 14548.3 0.604035
\(835\) 10609.1 0.439691
\(836\) −3941.14 −0.163047
\(837\) 406.716 0.0167959
\(838\) −36098.3 −1.48806
\(839\) 15324.4 0.630579 0.315290 0.948995i \(-0.397898\pi\)
0.315290 + 0.948995i \(0.397898\pi\)
\(840\) 0 0
\(841\) 15840.3 0.649486
\(842\) −11743.6 −0.480654
\(843\) −7584.11 −0.309858
\(844\) 2558.95 0.104363
\(845\) −8069.42 −0.328517
\(846\) 4507.09 0.183164
\(847\) 0 0
\(848\) −26466.3 −1.07176
\(849\) 7824.06 0.316279
\(850\) 577.610 0.0233081
\(851\) 4710.40 0.189742
\(852\) −2012.12 −0.0809086
\(853\) 21332.0 0.856266 0.428133 0.903716i \(-0.359172\pi\)
0.428133 + 0.903716i \(0.359172\pi\)
\(854\) 0 0
\(855\) −6837.72 −0.273503
\(856\) 76.2440 0.00304435
\(857\) 32731.6 1.30466 0.652328 0.757936i \(-0.273792\pi\)
0.652328 + 0.757936i \(0.273792\pi\)
\(858\) −9625.95 −0.383012
\(859\) 35989.8 1.42952 0.714759 0.699371i \(-0.246536\pi\)
0.714759 + 0.699371i \(0.246536\pi\)
\(860\) 1024.11 0.0406067
\(861\) 0 0
\(862\) −38010.9 −1.50192
\(863\) −40400.4 −1.59356 −0.796781 0.604268i \(-0.793466\pi\)
−0.796781 + 0.604268i \(0.793466\pi\)
\(864\) 696.984 0.0274443
\(865\) 2596.30 0.102054
\(866\) 32135.5 1.26098
\(867\) 14552.2 0.570032
\(868\) 0 0
\(869\) −36552.1 −1.42686
\(870\) −8808.27 −0.343251
\(871\) 12532.9 0.487555
\(872\) 32699.3 1.26988
\(873\) 7977.61 0.309280
\(874\) −17498.4 −0.677221
\(875\) 0 0
\(876\) 194.770 0.00751217
\(877\) 15813.9 0.608890 0.304445 0.952530i \(-0.401529\pi\)
0.304445 + 0.952530i \(0.401529\pi\)
\(878\) 51168.1 1.96679
\(879\) 8490.29 0.325791
\(880\) −15486.7 −0.593247
\(881\) 11465.6 0.438461 0.219231 0.975673i \(-0.429645\pi\)
0.219231 + 0.975673i \(0.429645\pi\)
\(882\) 0 0
\(883\) −15044.6 −0.573376 −0.286688 0.958024i \(-0.592554\pi\)
−0.286688 + 0.958024i \(0.592554\pi\)
\(884\) 108.906 0.00414354
\(885\) −7563.44 −0.287279
\(886\) 6100.70 0.231329
\(887\) −4917.35 −0.186143 −0.0930714 0.995659i \(-0.529668\pi\)
−0.0930714 + 0.995659i \(0.529668\pi\)
\(888\) 7813.37 0.295270
\(889\) 0 0
\(890\) 9642.80 0.363177
\(891\) 3676.22 0.138225
\(892\) −174.619 −0.00655458
\(893\) −25991.1 −0.973974
\(894\) −9809.33 −0.366972
\(895\) −2164.22 −0.0808290
\(896\) 0 0
\(897\) −2849.50 −0.106067
\(898\) −5487.02 −0.203902
\(899\) −3021.34 −0.112088
\(900\) 128.585 0.00476240
\(901\) 3060.46 0.113162
\(902\) 4271.69 0.157685
\(903\) 0 0
\(904\) −4602.44 −0.169331
\(905\) 13958.5 0.512704
\(906\) −3849.64 −0.141165
\(907\) −37984.5 −1.39058 −0.695289 0.718731i \(-0.744723\pi\)
−0.695289 + 0.718731i \(0.744723\pi\)
\(908\) −3784.37 −0.138313
\(909\) 16677.0 0.608516
\(910\) 0 0
\(911\) 5336.79 0.194090 0.0970449 0.995280i \(-0.469061\pi\)
0.0970449 + 0.995280i \(0.469061\pi\)
\(912\) −31109.5 −1.12954
\(913\) −61280.2 −2.22134
\(914\) −19465.5 −0.704444
\(915\) −4925.88 −0.177972
\(916\) −2994.82 −0.108026
\(917\) 0 0
\(918\) −623.818 −0.0224282
\(919\) −37636.1 −1.35093 −0.675463 0.737394i \(-0.736056\pi\)
−0.675463 + 0.737394i \(0.736056\pi\)
\(920\) −4277.31 −0.153281
\(921\) −26258.0 −0.939447
\(922\) 45464.3 1.62396
\(923\) 28340.2 1.01065
\(924\) 0 0
\(925\) 2993.83 0.106418
\(926\) 6926.64 0.245814
\(927\) −15063.6 −0.533715
\(928\) −5177.62 −0.183151
\(929\) −15972.3 −0.564084 −0.282042 0.959402i \(-0.591012\pi\)
−0.282042 + 0.959402i \(0.591012\pi\)
\(930\) 661.526 0.0233250
\(931\) 0 0
\(932\) −1493.93 −0.0525057
\(933\) 12735.7 0.446889
\(934\) −50679.4 −1.77546
\(935\) 1790.83 0.0626377
\(936\) −4726.61 −0.165058
\(937\) −47349.8 −1.65085 −0.825426 0.564510i \(-0.809065\pi\)
−0.825426 + 0.564510i \(0.809065\pi\)
\(938\) 0 0
\(939\) 17665.9 0.613956
\(940\) 488.768 0.0169594
\(941\) 30521.3 1.05735 0.528674 0.848825i \(-0.322689\pi\)
0.528674 + 0.848825i \(0.322689\pi\)
\(942\) 9982.37 0.345269
\(943\) 1264.52 0.0436674
\(944\) −34411.3 −1.18643
\(945\) 0 0
\(946\) 47622.6 1.63673
\(947\) −18950.3 −0.650267 −0.325134 0.945668i \(-0.605409\pi\)
−0.325134 + 0.945668i \(0.605409\pi\)
\(948\) 1380.77 0.0473054
\(949\) −2743.29 −0.0938365
\(950\) −11121.6 −0.379823
\(951\) 21224.5 0.723712
\(952\) 0 0
\(953\) −34526.2 −1.17357 −0.586785 0.809743i \(-0.699607\pi\)
−0.586785 + 0.809743i \(0.699607\pi\)
\(954\) 10218.6 0.346791
\(955\) −16106.6 −0.545756
\(956\) −182.844 −0.00618577
\(957\) −27309.2 −0.922447
\(958\) 6919.14 0.233348
\(959\) 0 0
\(960\) −7055.79 −0.237213
\(961\) −29564.1 −0.992383
\(962\) 8466.28 0.283746
\(963\) −31.5514 −0.00105579
\(964\) 1960.18 0.0654909
\(965\) −18202.0 −0.607195
\(966\) 0 0
\(967\) −41107.3 −1.36703 −0.683517 0.729934i \(-0.739551\pi\)
−0.683517 + 0.729934i \(0.739551\pi\)
\(968\) −15851.2 −0.526320
\(969\) 3597.38 0.119262
\(970\) 12975.6 0.429508
\(971\) −13730.5 −0.453793 −0.226896 0.973919i \(-0.572858\pi\)
−0.226896 + 0.973919i \(0.572858\pi\)
\(972\) −138.871 −0.00458262
\(973\) 0 0
\(974\) −52158.7 −1.71589
\(975\) −1811.08 −0.0594883
\(976\) −22411.2 −0.735006
\(977\) −15039.7 −0.492490 −0.246245 0.969208i \(-0.579197\pi\)
−0.246245 + 0.969208i \(0.579197\pi\)
\(978\) −7687.20 −0.251339
\(979\) 29896.6 0.975996
\(980\) 0 0
\(981\) −13531.7 −0.440400
\(982\) 5762.01 0.187244
\(983\) −27849.6 −0.903627 −0.451814 0.892112i \(-0.649223\pi\)
−0.451814 + 0.892112i \(0.649223\pi\)
\(984\) 2097.52 0.0679537
\(985\) 15894.3 0.514146
\(986\) 4634.10 0.149675
\(987\) 0 0
\(988\) −2096.92 −0.0675223
\(989\) 14097.4 0.453257
\(990\) 5979.40 0.191957
\(991\) 4838.08 0.155082 0.0775411 0.996989i \(-0.475293\pi\)
0.0775411 + 0.996989i \(0.475293\pi\)
\(992\) 388.854 0.0124457
\(993\) 30709.3 0.981399
\(994\) 0 0
\(995\) 19347.7 0.616446
\(996\) 2314.90 0.0736449
\(997\) 37173.5 1.18084 0.590419 0.807097i \(-0.298962\pi\)
0.590419 + 0.807097i \(0.298962\pi\)
\(998\) 50117.9 1.58963
\(999\) −3233.34 −0.102401
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.4.a.v.1.3 4
3.2 odd 2 2205.4.a.bn.1.2 4
7.6 odd 2 735.4.a.w.1.3 yes 4
21.20 even 2 2205.4.a.bo.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.4.a.v.1.3 4 1.1 even 1 trivial
735.4.a.w.1.3 yes 4 7.6 odd 2
2205.4.a.bn.1.2 4 3.2 odd 2
2205.4.a.bo.1.2 4 21.20 even 2