Properties

Label 7360.2.a.cp.1.5
Level $7360$
Weight $2$
Character 7360.1
Self dual yes
Analytic conductor $58.770$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7360,2,Mod(1,7360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7360.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7360 = 2^{6} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(58.7698958877\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.13955077.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 14x^{3} - x^{2} + 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 920)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(3.30649\) of defining polynomial
Character \(\chi\) \(=\) 7360.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.30649 q^{3} +1.00000 q^{5} +2.55040 q^{7} +7.93288 q^{9} -2.72314 q^{11} -7.12637 q^{13} +3.30649 q^{15} +0.924010 q^{17} +7.51623 q^{19} +8.43286 q^{21} +1.00000 q^{23} +1.00000 q^{25} +16.3105 q^{27} +2.38248 q^{29} -0.866248 q^{31} -9.00402 q^{33} +2.55040 q^{35} -0.352855 q^{37} -23.5633 q^{39} +4.34066 q^{41} +7.93288 q^{45} +13.3239 q^{47} -0.495474 q^{49} +3.05523 q^{51} -3.99262 q^{53} -2.72314 q^{55} +24.8523 q^{57} -3.84064 q^{59} +9.14262 q^{61} +20.2320 q^{63} -7.12637 q^{65} -3.15933 q^{67} +3.30649 q^{69} +6.07883 q^{71} -11.3239 q^{73} +3.30649 q^{75} -6.94508 q^{77} +12.0593 q^{79} +30.1319 q^{81} -6.35285 q^{83} +0.924010 q^{85} +7.87765 q^{87} -9.71377 q^{89} -18.1751 q^{91} -2.86424 q^{93} +7.51623 q^{95} +8.76465 q^{97} -21.6023 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{5} + 2 q^{7} + 13 q^{9} - q^{11} - 4 q^{13} + 4 q^{17} + 7 q^{19} - 6 q^{21} + 5 q^{23} + 5 q^{25} + 3 q^{27} - 4 q^{29} - 19 q^{31} + 17 q^{33} + 2 q^{35} - 15 q^{37} - 19 q^{39} + 25 q^{41}+ \cdots - 65 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.30649 1.90900 0.954501 0.298206i \(-0.0963883\pi\)
0.954501 + 0.298206i \(0.0963883\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.55040 0.963960 0.481980 0.876182i \(-0.339918\pi\)
0.481980 + 0.876182i \(0.339918\pi\)
\(8\) 0 0
\(9\) 7.93288 2.64429
\(10\) 0 0
\(11\) −2.72314 −0.821056 −0.410528 0.911848i \(-0.634656\pi\)
−0.410528 + 0.911848i \(0.634656\pi\)
\(12\) 0 0
\(13\) −7.12637 −1.97650 −0.988250 0.152845i \(-0.951156\pi\)
−0.988250 + 0.152845i \(0.951156\pi\)
\(14\) 0 0
\(15\) 3.30649 0.853732
\(16\) 0 0
\(17\) 0.924010 0.224105 0.112053 0.993702i \(-0.464257\pi\)
0.112053 + 0.993702i \(0.464257\pi\)
\(18\) 0 0
\(19\) 7.51623 1.72434 0.862171 0.506617i \(-0.169104\pi\)
0.862171 + 0.506617i \(0.169104\pi\)
\(20\) 0 0
\(21\) 8.43286 1.84020
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 16.3105 3.13896
\(28\) 0 0
\(29\) 2.38248 0.442415 0.221208 0.975227i \(-0.429000\pi\)
0.221208 + 0.975227i \(0.429000\pi\)
\(30\) 0 0
\(31\) −0.866248 −0.155583 −0.0777913 0.996970i \(-0.524787\pi\)
−0.0777913 + 0.996970i \(0.524787\pi\)
\(32\) 0 0
\(33\) −9.00402 −1.56740
\(34\) 0 0
\(35\) 2.55040 0.431096
\(36\) 0 0
\(37\) −0.352855 −0.0580089 −0.0290045 0.999579i \(-0.509234\pi\)
−0.0290045 + 0.999579i \(0.509234\pi\)
\(38\) 0 0
\(39\) −23.5633 −3.77315
\(40\) 0 0
\(41\) 4.34066 0.677896 0.338948 0.940805i \(-0.389929\pi\)
0.338948 + 0.940805i \(0.389929\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 7.93288 1.18256
\(46\) 0 0
\(47\) 13.3239 1.94349 0.971746 0.236027i \(-0.0758454\pi\)
0.971746 + 0.236027i \(0.0758454\pi\)
\(48\) 0 0
\(49\) −0.495474 −0.0707819
\(50\) 0 0
\(51\) 3.05523 0.427818
\(52\) 0 0
\(53\) −3.99262 −0.548429 −0.274214 0.961669i \(-0.588418\pi\)
−0.274214 + 0.961669i \(0.588418\pi\)
\(54\) 0 0
\(55\) −2.72314 −0.367187
\(56\) 0 0
\(57\) 24.8523 3.29177
\(58\) 0 0
\(59\) −3.84064 −0.500009 −0.250004 0.968245i \(-0.580432\pi\)
−0.250004 + 0.968245i \(0.580432\pi\)
\(60\) 0 0
\(61\) 9.14262 1.17059 0.585296 0.810820i \(-0.300978\pi\)
0.585296 + 0.810820i \(0.300978\pi\)
\(62\) 0 0
\(63\) 20.2320 2.54899
\(64\) 0 0
\(65\) −7.12637 −0.883918
\(66\) 0 0
\(67\) −3.15933 −0.385974 −0.192987 0.981201i \(-0.561817\pi\)
−0.192987 + 0.981201i \(0.561817\pi\)
\(68\) 0 0
\(69\) 3.30649 0.398055
\(70\) 0 0
\(71\) 6.07883 0.721424 0.360712 0.932677i \(-0.382534\pi\)
0.360712 + 0.932677i \(0.382534\pi\)
\(72\) 0 0
\(73\) −11.3239 −1.32536 −0.662682 0.748901i \(-0.730582\pi\)
−0.662682 + 0.748901i \(0.730582\pi\)
\(74\) 0 0
\(75\) 3.30649 0.381801
\(76\) 0 0
\(77\) −6.94508 −0.791465
\(78\) 0 0
\(79\) 12.0593 1.35677 0.678386 0.734706i \(-0.262680\pi\)
0.678386 + 0.734706i \(0.262680\pi\)
\(80\) 0 0
\(81\) 30.1319 3.34799
\(82\) 0 0
\(83\) −6.35285 −0.697316 −0.348658 0.937250i \(-0.613363\pi\)
−0.348658 + 0.937250i \(0.613363\pi\)
\(84\) 0 0
\(85\) 0.924010 0.100223
\(86\) 0 0
\(87\) 7.87765 0.844572
\(88\) 0 0
\(89\) −9.71377 −1.02966 −0.514829 0.857293i \(-0.672145\pi\)
−0.514829 + 0.857293i \(0.672145\pi\)
\(90\) 0 0
\(91\) −18.1751 −1.90527
\(92\) 0 0
\(93\) −2.86424 −0.297008
\(94\) 0 0
\(95\) 7.51623 0.771149
\(96\) 0 0
\(97\) 8.76465 0.889916 0.444958 0.895552i \(-0.353219\pi\)
0.444958 + 0.895552i \(0.353219\pi\)
\(98\) 0 0
\(99\) −21.6023 −2.17111
\(100\) 0 0
\(101\) −4.74794 −0.472438 −0.236219 0.971700i \(-0.575908\pi\)
−0.236219 + 0.971700i \(0.575908\pi\)
\(102\) 0 0
\(103\) −12.6304 −1.24451 −0.622255 0.782814i \(-0.713783\pi\)
−0.622255 + 0.782814i \(0.713783\pi\)
\(104\) 0 0
\(105\) 8.43286 0.822963
\(106\) 0 0
\(107\) −12.9658 −1.25345 −0.626727 0.779239i \(-0.715606\pi\)
−0.626727 + 0.779239i \(0.715606\pi\)
\(108\) 0 0
\(109\) 15.0040 1.43712 0.718562 0.695463i \(-0.244801\pi\)
0.718562 + 0.695463i \(0.244801\pi\)
\(110\) 0 0
\(111\) −1.16671 −0.110739
\(112\) 0 0
\(113\) 2.13496 0.200840 0.100420 0.994945i \(-0.467981\pi\)
0.100420 + 0.994945i \(0.467981\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) −56.5326 −5.22644
\(118\) 0 0
\(119\) 2.35659 0.216029
\(120\) 0 0
\(121\) −3.58454 −0.325867
\(122\) 0 0
\(123\) 14.3523 1.29411
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 3.54181 0.314285 0.157142 0.987576i \(-0.449772\pi\)
0.157142 + 0.987576i \(0.449772\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 19.5499 1.70808 0.854042 0.520205i \(-0.174144\pi\)
0.854042 + 0.520205i \(0.174144\pi\)
\(132\) 0 0
\(133\) 19.1694 1.66220
\(134\) 0 0
\(135\) 16.3105 1.40379
\(136\) 0 0
\(137\) 4.41544 0.377236 0.188618 0.982051i \(-0.439599\pi\)
0.188618 + 0.982051i \(0.439599\pi\)
\(138\) 0 0
\(139\) 21.9954 1.86563 0.932814 0.360358i \(-0.117345\pi\)
0.932814 + 0.360358i \(0.117345\pi\)
\(140\) 0 0
\(141\) 44.0554 3.71013
\(142\) 0 0
\(143\) 19.4061 1.62282
\(144\) 0 0
\(145\) 2.38248 0.197854
\(146\) 0 0
\(147\) −1.63828 −0.135123
\(148\) 0 0
\(149\) −19.0780 −1.56293 −0.781466 0.623947i \(-0.785528\pi\)
−0.781466 + 0.623947i \(0.785528\pi\)
\(150\) 0 0
\(151\) 7.75273 0.630908 0.315454 0.948941i \(-0.397843\pi\)
0.315454 + 0.948941i \(0.397843\pi\)
\(152\) 0 0
\(153\) 7.33006 0.592600
\(154\) 0 0
\(155\) −0.866248 −0.0695787
\(156\) 0 0
\(157\) −17.5129 −1.39768 −0.698841 0.715277i \(-0.746300\pi\)
−0.698841 + 0.715277i \(0.746300\pi\)
\(158\) 0 0
\(159\) −13.2016 −1.04695
\(160\) 0 0
\(161\) 2.55040 0.200999
\(162\) 0 0
\(163\) −2.55491 −0.200116 −0.100058 0.994982i \(-0.531903\pi\)
−0.100058 + 0.994982i \(0.531903\pi\)
\(164\) 0 0
\(165\) −9.00402 −0.700962
\(166\) 0 0
\(167\) 3.61301 0.279583 0.139791 0.990181i \(-0.455357\pi\)
0.139791 + 0.990181i \(0.455357\pi\)
\(168\) 0 0
\(169\) 37.7852 2.90655
\(170\) 0 0
\(171\) 59.6253 4.55966
\(172\) 0 0
\(173\) −12.7824 −0.971827 −0.485913 0.874007i \(-0.661513\pi\)
−0.485913 + 0.874007i \(0.661513\pi\)
\(174\) 0 0
\(175\) 2.55040 0.192792
\(176\) 0 0
\(177\) −12.6990 −0.954519
\(178\) 0 0
\(179\) 10.0149 0.748546 0.374273 0.927318i \(-0.377892\pi\)
0.374273 + 0.927318i \(0.377892\pi\)
\(180\) 0 0
\(181\) −9.96248 −0.740505 −0.370252 0.928931i \(-0.620729\pi\)
−0.370252 + 0.928931i \(0.620729\pi\)
\(182\) 0 0
\(183\) 30.2300 2.23466
\(184\) 0 0
\(185\) −0.352855 −0.0259424
\(186\) 0 0
\(187\) −2.51621 −0.184003
\(188\) 0 0
\(189\) 41.5983 3.02583
\(190\) 0 0
\(191\) 6.61298 0.478498 0.239249 0.970958i \(-0.423099\pi\)
0.239249 + 0.970958i \(0.423099\pi\)
\(192\) 0 0
\(193\) −19.0540 −1.37154 −0.685768 0.727820i \(-0.740534\pi\)
−0.685768 + 0.727820i \(0.740534\pi\)
\(194\) 0 0
\(195\) −23.5633 −1.68740
\(196\) 0 0
\(197\) 11.0886 0.790030 0.395015 0.918675i \(-0.370739\pi\)
0.395015 + 0.918675i \(0.370739\pi\)
\(198\) 0 0
\(199\) −3.71377 −0.263263 −0.131631 0.991299i \(-0.542021\pi\)
−0.131631 + 0.991299i \(0.542021\pi\)
\(200\) 0 0
\(201\) −10.4463 −0.736825
\(202\) 0 0
\(203\) 6.07627 0.426471
\(204\) 0 0
\(205\) 4.34066 0.303165
\(206\) 0 0
\(207\) 7.93288 0.551373
\(208\) 0 0
\(209\) −20.4677 −1.41578
\(210\) 0 0
\(211\) −21.7656 −1.49841 −0.749204 0.662339i \(-0.769564\pi\)
−0.749204 + 0.662339i \(0.769564\pi\)
\(212\) 0 0
\(213\) 20.0996 1.37720
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.20928 −0.149975
\(218\) 0 0
\(219\) −37.4424 −2.53012
\(220\) 0 0
\(221\) −6.58484 −0.442944
\(222\) 0 0
\(223\) −6.90730 −0.462547 −0.231273 0.972889i \(-0.574289\pi\)
−0.231273 + 0.972889i \(0.574289\pi\)
\(224\) 0 0
\(225\) 7.93288 0.528858
\(226\) 0 0
\(227\) −23.0325 −1.52872 −0.764359 0.644791i \(-0.776945\pi\)
−0.764359 + 0.644791i \(0.776945\pi\)
\(228\) 0 0
\(229\) −12.9665 −0.856854 −0.428427 0.903576i \(-0.640932\pi\)
−0.428427 + 0.903576i \(0.640932\pi\)
\(230\) 0 0
\(231\) −22.9638 −1.51091
\(232\) 0 0
\(233\) −4.80934 −0.315071 −0.157535 0.987513i \(-0.550355\pi\)
−0.157535 + 0.987513i \(0.550355\pi\)
\(234\) 0 0
\(235\) 13.3239 0.869156
\(236\) 0 0
\(237\) 39.8738 2.59008
\(238\) 0 0
\(239\) 20.4661 1.32384 0.661922 0.749573i \(-0.269741\pi\)
0.661922 + 0.749573i \(0.269741\pi\)
\(240\) 0 0
\(241\) 26.8657 1.73057 0.865287 0.501277i \(-0.167136\pi\)
0.865287 + 0.501277i \(0.167136\pi\)
\(242\) 0 0
\(243\) 50.6993 3.25236
\(244\) 0 0
\(245\) −0.495474 −0.0316546
\(246\) 0 0
\(247\) −53.5635 −3.40816
\(248\) 0 0
\(249\) −21.0057 −1.33118
\(250\) 0 0
\(251\) −15.9625 −1.00754 −0.503771 0.863837i \(-0.668055\pi\)
−0.503771 + 0.863837i \(0.668055\pi\)
\(252\) 0 0
\(253\) −2.72314 −0.171202
\(254\) 0 0
\(255\) 3.05523 0.191326
\(256\) 0 0
\(257\) 3.33867 0.208261 0.104130 0.994564i \(-0.466794\pi\)
0.104130 + 0.994564i \(0.466794\pi\)
\(258\) 0 0
\(259\) −0.899919 −0.0559183
\(260\) 0 0
\(261\) 18.8999 1.16988
\(262\) 0 0
\(263\) 23.3880 1.44217 0.721083 0.692849i \(-0.243645\pi\)
0.721083 + 0.692849i \(0.243645\pi\)
\(264\) 0 0
\(265\) −3.99262 −0.245265
\(266\) 0 0
\(267\) −32.1185 −1.96562
\(268\) 0 0
\(269\) −14.1378 −0.861995 −0.430998 0.902353i \(-0.641838\pi\)
−0.430998 + 0.902353i \(0.641838\pi\)
\(270\) 0 0
\(271\) −25.9283 −1.57503 −0.787517 0.616293i \(-0.788634\pi\)
−0.787517 + 0.616293i \(0.788634\pi\)
\(272\) 0 0
\(273\) −60.0957 −3.63716
\(274\) 0 0
\(275\) −2.72314 −0.164211
\(276\) 0 0
\(277\) −1.07117 −0.0643603 −0.0321802 0.999482i \(-0.510245\pi\)
−0.0321802 + 0.999482i \(0.510245\pi\)
\(278\) 0 0
\(279\) −6.87184 −0.411406
\(280\) 0 0
\(281\) 12.2260 0.729341 0.364671 0.931137i \(-0.381182\pi\)
0.364671 + 0.931137i \(0.381182\pi\)
\(282\) 0 0
\(283\) −30.5454 −1.81573 −0.907867 0.419259i \(-0.862290\pi\)
−0.907867 + 0.419259i \(0.862290\pi\)
\(284\) 0 0
\(285\) 24.8523 1.47213
\(286\) 0 0
\(287\) 11.0704 0.653465
\(288\) 0 0
\(289\) −16.1462 −0.949777
\(290\) 0 0
\(291\) 28.9802 1.69885
\(292\) 0 0
\(293\) 8.46838 0.494728 0.247364 0.968923i \(-0.420436\pi\)
0.247364 + 0.968923i \(0.420436\pi\)
\(294\) 0 0
\(295\) −3.84064 −0.223611
\(296\) 0 0
\(297\) −44.4157 −2.57726
\(298\) 0 0
\(299\) −7.12637 −0.412129
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −15.6990 −0.901885
\(304\) 0 0
\(305\) 9.14262 0.523505
\(306\) 0 0
\(307\) −1.32802 −0.0757942 −0.0378971 0.999282i \(-0.512066\pi\)
−0.0378971 + 0.999282i \(0.512066\pi\)
\(308\) 0 0
\(309\) −41.7623 −2.37578
\(310\) 0 0
\(311\) −24.2971 −1.37776 −0.688882 0.724874i \(-0.741898\pi\)
−0.688882 + 0.724874i \(0.741898\pi\)
\(312\) 0 0
\(313\) 20.3478 1.15013 0.575063 0.818109i \(-0.304977\pi\)
0.575063 + 0.818109i \(0.304977\pi\)
\(314\) 0 0
\(315\) 20.2320 1.13994
\(316\) 0 0
\(317\) 8.57309 0.481513 0.240756 0.970586i \(-0.422604\pi\)
0.240756 + 0.970586i \(0.422604\pi\)
\(318\) 0 0
\(319\) −6.48781 −0.363248
\(320\) 0 0
\(321\) −42.8714 −2.39285
\(322\) 0 0
\(323\) 6.94508 0.386434
\(324\) 0 0
\(325\) −7.12637 −0.395300
\(326\) 0 0
\(327\) 49.6106 2.74347
\(328\) 0 0
\(329\) 33.9813 1.87345
\(330\) 0 0
\(331\) −20.9767 −1.15299 −0.576493 0.817102i \(-0.695579\pi\)
−0.576493 + 0.817102i \(0.695579\pi\)
\(332\) 0 0
\(333\) −2.79915 −0.153393
\(334\) 0 0
\(335\) −3.15933 −0.172613
\(336\) 0 0
\(337\) −2.17314 −0.118379 −0.0591894 0.998247i \(-0.518852\pi\)
−0.0591894 + 0.998247i \(0.518852\pi\)
\(338\) 0 0
\(339\) 7.05922 0.383404
\(340\) 0 0
\(341\) 2.35891 0.127742
\(342\) 0 0
\(343\) −19.1164 −1.03219
\(344\) 0 0
\(345\) 3.30649 0.178015
\(346\) 0 0
\(347\) −32.1335 −1.72502 −0.862509 0.506042i \(-0.831108\pi\)
−0.862509 + 0.506042i \(0.831108\pi\)
\(348\) 0 0
\(349\) −13.5157 −0.723479 −0.361740 0.932279i \(-0.617817\pi\)
−0.361740 + 0.932279i \(0.617817\pi\)
\(350\) 0 0
\(351\) −116.235 −6.20415
\(352\) 0 0
\(353\) −28.0645 −1.49372 −0.746861 0.664981i \(-0.768440\pi\)
−0.746861 + 0.664981i \(0.768440\pi\)
\(354\) 0 0
\(355\) 6.07883 0.322631
\(356\) 0 0
\(357\) 7.79205 0.412399
\(358\) 0 0
\(359\) −20.2340 −1.06791 −0.533956 0.845513i \(-0.679295\pi\)
−0.533956 + 0.845513i \(0.679295\pi\)
\(360\) 0 0
\(361\) 37.4937 1.97336
\(362\) 0 0
\(363\) −11.8522 −0.622081
\(364\) 0 0
\(365\) −11.3239 −0.592721
\(366\) 0 0
\(367\) −4.76666 −0.248818 −0.124409 0.992231i \(-0.539703\pi\)
−0.124409 + 0.992231i \(0.539703\pi\)
\(368\) 0 0
\(369\) 34.4339 1.79256
\(370\) 0 0
\(371\) −10.1828 −0.528663
\(372\) 0 0
\(373\) 29.1510 1.50938 0.754690 0.656082i \(-0.227787\pi\)
0.754690 + 0.656082i \(0.227787\pi\)
\(374\) 0 0
\(375\) 3.30649 0.170746
\(376\) 0 0
\(377\) −16.9784 −0.874434
\(378\) 0 0
\(379\) 4.20856 0.216179 0.108090 0.994141i \(-0.465527\pi\)
0.108090 + 0.994141i \(0.465527\pi\)
\(380\) 0 0
\(381\) 11.7110 0.599971
\(382\) 0 0
\(383\) −3.55206 −0.181502 −0.0907508 0.995874i \(-0.528927\pi\)
−0.0907508 + 0.995874i \(0.528927\pi\)
\(384\) 0 0
\(385\) −6.94508 −0.353954
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 29.2515 1.48311 0.741554 0.670893i \(-0.234089\pi\)
0.741554 + 0.670893i \(0.234089\pi\)
\(390\) 0 0
\(391\) 0.924010 0.0467292
\(392\) 0 0
\(393\) 64.6416 3.26074
\(394\) 0 0
\(395\) 12.0593 0.606767
\(396\) 0 0
\(397\) 17.8000 0.893356 0.446678 0.894695i \(-0.352607\pi\)
0.446678 + 0.894695i \(0.352607\pi\)
\(398\) 0 0
\(399\) 63.3834 3.17314
\(400\) 0 0
\(401\) −11.6210 −0.580327 −0.290164 0.956977i \(-0.593710\pi\)
−0.290164 + 0.956977i \(0.593710\pi\)
\(402\) 0 0
\(403\) 6.17320 0.307509
\(404\) 0 0
\(405\) 30.1319 1.49727
\(406\) 0 0
\(407\) 0.960871 0.0476286
\(408\) 0 0
\(409\) −13.5710 −0.671041 −0.335521 0.942033i \(-0.608912\pi\)
−0.335521 + 0.942033i \(0.608912\pi\)
\(410\) 0 0
\(411\) 14.5996 0.720145
\(412\) 0 0
\(413\) −9.79516 −0.481988
\(414\) 0 0
\(415\) −6.35285 −0.311849
\(416\) 0 0
\(417\) 72.7277 3.56149
\(418\) 0 0
\(419\) 13.4959 0.659317 0.329658 0.944100i \(-0.393066\pi\)
0.329658 + 0.944100i \(0.393066\pi\)
\(420\) 0 0
\(421\) −37.6495 −1.83492 −0.917462 0.397824i \(-0.869766\pi\)
−0.917462 + 0.397824i \(0.869766\pi\)
\(422\) 0 0
\(423\) 105.697 5.13916
\(424\) 0 0
\(425\) 0.924010 0.0448211
\(426\) 0 0
\(427\) 23.3173 1.12840
\(428\) 0 0
\(429\) 64.1660 3.09796
\(430\) 0 0
\(431\) −10.0568 −0.484421 −0.242210 0.970224i \(-0.577872\pi\)
−0.242210 + 0.970224i \(0.577872\pi\)
\(432\) 0 0
\(433\) 2.30001 0.110531 0.0552657 0.998472i \(-0.482399\pi\)
0.0552657 + 0.998472i \(0.482399\pi\)
\(434\) 0 0
\(435\) 7.87765 0.377704
\(436\) 0 0
\(437\) 7.51623 0.359550
\(438\) 0 0
\(439\) −12.4273 −0.593124 −0.296562 0.955014i \(-0.595840\pi\)
−0.296562 + 0.955014i \(0.595840\pi\)
\(440\) 0 0
\(441\) −3.93053 −0.187168
\(442\) 0 0
\(443\) 2.18268 0.103702 0.0518510 0.998655i \(-0.483488\pi\)
0.0518510 + 0.998655i \(0.483488\pi\)
\(444\) 0 0
\(445\) −9.71377 −0.460477
\(446\) 0 0
\(447\) −63.0813 −2.98364
\(448\) 0 0
\(449\) 3.09603 0.146111 0.0730554 0.997328i \(-0.476725\pi\)
0.0730554 + 0.997328i \(0.476725\pi\)
\(450\) 0 0
\(451\) −11.8202 −0.556591
\(452\) 0 0
\(453\) 25.6343 1.20441
\(454\) 0 0
\(455\) −18.1751 −0.852061
\(456\) 0 0
\(457\) −0.320363 −0.0149860 −0.00749298 0.999972i \(-0.502385\pi\)
−0.00749298 + 0.999972i \(0.502385\pi\)
\(458\) 0 0
\(459\) 15.0711 0.703458
\(460\) 0 0
\(461\) 15.3239 0.713706 0.356853 0.934161i \(-0.383850\pi\)
0.356853 + 0.934161i \(0.383850\pi\)
\(462\) 0 0
\(463\) −6.81556 −0.316746 −0.158373 0.987379i \(-0.550625\pi\)
−0.158373 + 0.987379i \(0.550625\pi\)
\(464\) 0 0
\(465\) −2.86424 −0.132826
\(466\) 0 0
\(467\) 27.2444 1.26072 0.630360 0.776303i \(-0.282907\pi\)
0.630360 + 0.776303i \(0.282907\pi\)
\(468\) 0 0
\(469\) −8.05755 −0.372063
\(470\) 0 0
\(471\) −57.9062 −2.66818
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 7.51623 0.344868
\(476\) 0 0
\(477\) −31.6730 −1.45021
\(478\) 0 0
\(479\) −23.5031 −1.07388 −0.536942 0.843619i \(-0.680421\pi\)
−0.536942 + 0.843619i \(0.680421\pi\)
\(480\) 0 0
\(481\) 2.51457 0.114655
\(482\) 0 0
\(483\) 8.43286 0.383709
\(484\) 0 0
\(485\) 8.76465 0.397982
\(486\) 0 0
\(487\) −7.63058 −0.345774 −0.172887 0.984942i \(-0.555310\pi\)
−0.172887 + 0.984942i \(0.555310\pi\)
\(488\) 0 0
\(489\) −8.44779 −0.382022
\(490\) 0 0
\(491\) −19.1206 −0.862902 −0.431451 0.902136i \(-0.641998\pi\)
−0.431451 + 0.902136i \(0.641998\pi\)
\(492\) 0 0
\(493\) 2.20144 0.0991477
\(494\) 0 0
\(495\) −21.6023 −0.970951
\(496\) 0 0
\(497\) 15.5034 0.695424
\(498\) 0 0
\(499\) −25.6581 −1.14861 −0.574306 0.818641i \(-0.694728\pi\)
−0.574306 + 0.818641i \(0.694728\pi\)
\(500\) 0 0
\(501\) 11.9464 0.533725
\(502\) 0 0
\(503\) 8.42282 0.375555 0.187777 0.982212i \(-0.439872\pi\)
0.187777 + 0.982212i \(0.439872\pi\)
\(504\) 0 0
\(505\) −4.74794 −0.211281
\(506\) 0 0
\(507\) 124.936 5.54862
\(508\) 0 0
\(509\) −18.2328 −0.808153 −0.404076 0.914725i \(-0.632407\pi\)
−0.404076 + 0.914725i \(0.632407\pi\)
\(510\) 0 0
\(511\) −28.8805 −1.27760
\(512\) 0 0
\(513\) 122.594 5.41264
\(514\) 0 0
\(515\) −12.6304 −0.556562
\(516\) 0 0
\(517\) −36.2828 −1.59572
\(518\) 0 0
\(519\) −42.2648 −1.85522
\(520\) 0 0
\(521\) 19.8738 0.870689 0.435345 0.900264i \(-0.356627\pi\)
0.435345 + 0.900264i \(0.356627\pi\)
\(522\) 0 0
\(523\) −19.7228 −0.862418 −0.431209 0.902252i \(-0.641913\pi\)
−0.431209 + 0.902252i \(0.641913\pi\)
\(524\) 0 0
\(525\) 8.43286 0.368040
\(526\) 0 0
\(527\) −0.800422 −0.0348669
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −30.4673 −1.32217
\(532\) 0 0
\(533\) −30.9331 −1.33986
\(534\) 0 0
\(535\) −12.9658 −0.560562
\(536\) 0 0
\(537\) 33.1141 1.42898
\(538\) 0 0
\(539\) 1.34924 0.0581160
\(540\) 0 0
\(541\) 16.4662 0.707938 0.353969 0.935257i \(-0.384832\pi\)
0.353969 + 0.935257i \(0.384832\pi\)
\(542\) 0 0
\(543\) −32.9408 −1.41363
\(544\) 0 0
\(545\) 15.0040 0.642702
\(546\) 0 0
\(547\) −38.3286 −1.63881 −0.819405 0.573215i \(-0.805696\pi\)
−0.819405 + 0.573215i \(0.805696\pi\)
\(548\) 0 0
\(549\) 72.5273 3.09539
\(550\) 0 0
\(551\) 17.9073 0.762875
\(552\) 0 0
\(553\) 30.7559 1.30787
\(554\) 0 0
\(555\) −1.16671 −0.0495241
\(556\) 0 0
\(557\) 20.3973 0.864263 0.432132 0.901811i \(-0.357762\pi\)
0.432132 + 0.901811i \(0.357762\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −8.31981 −0.351263
\(562\) 0 0
\(563\) −1.72270 −0.0726032 −0.0363016 0.999341i \(-0.511558\pi\)
−0.0363016 + 0.999341i \(0.511558\pi\)
\(564\) 0 0
\(565\) 2.13496 0.0898184
\(566\) 0 0
\(567\) 76.8483 3.22733
\(568\) 0 0
\(569\) 25.3283 1.06182 0.530909 0.847429i \(-0.321850\pi\)
0.530909 + 0.847429i \(0.321850\pi\)
\(570\) 0 0
\(571\) −5.68968 −0.238106 −0.119053 0.992888i \(-0.537986\pi\)
−0.119053 + 0.992888i \(0.537986\pi\)
\(572\) 0 0
\(573\) 21.8658 0.913455
\(574\) 0 0
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) −18.0377 −0.750918 −0.375459 0.926839i \(-0.622515\pi\)
−0.375459 + 0.926839i \(0.622515\pi\)
\(578\) 0 0
\(579\) −63.0019 −2.61827
\(580\) 0 0
\(581\) −16.2023 −0.672185
\(582\) 0 0
\(583\) 10.8724 0.450291
\(584\) 0 0
\(585\) −56.5326 −2.33734
\(586\) 0 0
\(587\) 13.1894 0.544383 0.272192 0.962243i \(-0.412252\pi\)
0.272192 + 0.962243i \(0.412252\pi\)
\(588\) 0 0
\(589\) −6.51092 −0.268278
\(590\) 0 0
\(591\) 36.6643 1.50817
\(592\) 0 0
\(593\) −0.326755 −0.0134182 −0.00670911 0.999977i \(-0.502136\pi\)
−0.00670911 + 0.999977i \(0.502136\pi\)
\(594\) 0 0
\(595\) 2.35659 0.0966109
\(596\) 0 0
\(597\) −12.2796 −0.502569
\(598\) 0 0
\(599\) 7.49619 0.306286 0.153143 0.988204i \(-0.451061\pi\)
0.153143 + 0.988204i \(0.451061\pi\)
\(600\) 0 0
\(601\) 0.121724 0.00496523 0.00248262 0.999997i \(-0.499210\pi\)
0.00248262 + 0.999997i \(0.499210\pi\)
\(602\) 0 0
\(603\) −25.0626 −1.02063
\(604\) 0 0
\(605\) −3.58454 −0.145732
\(606\) 0 0
\(607\) −1.52992 −0.0620975 −0.0310488 0.999518i \(-0.509885\pi\)
−0.0310488 + 0.999518i \(0.509885\pi\)
\(608\) 0 0
\(609\) 20.0911 0.814134
\(610\) 0 0
\(611\) −94.9512 −3.84131
\(612\) 0 0
\(613\) −24.3927 −0.985211 −0.492605 0.870253i \(-0.663955\pi\)
−0.492605 + 0.870253i \(0.663955\pi\)
\(614\) 0 0
\(615\) 14.3523 0.578742
\(616\) 0 0
\(617\) 27.8906 1.12283 0.561416 0.827534i \(-0.310257\pi\)
0.561416 + 0.827534i \(0.310257\pi\)
\(618\) 0 0
\(619\) 12.8617 0.516957 0.258478 0.966017i \(-0.416779\pi\)
0.258478 + 0.966017i \(0.416779\pi\)
\(620\) 0 0
\(621\) 16.3105 0.654518
\(622\) 0 0
\(623\) −24.7740 −0.992549
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −67.6763 −2.70273
\(628\) 0 0
\(629\) −0.326041 −0.0130001
\(630\) 0 0
\(631\) 11.9518 0.475794 0.237897 0.971290i \(-0.423542\pi\)
0.237897 + 0.971290i \(0.423542\pi\)
\(632\) 0 0
\(633\) −71.9679 −2.86047
\(634\) 0 0
\(635\) 3.54181 0.140552
\(636\) 0 0
\(637\) 3.53093 0.139901
\(638\) 0 0
\(639\) 48.2226 1.90766
\(640\) 0 0
\(641\) −23.9139 −0.944544 −0.472272 0.881453i \(-0.656566\pi\)
−0.472272 + 0.881453i \(0.656566\pi\)
\(642\) 0 0
\(643\) 3.87313 0.152741 0.0763707 0.997079i \(-0.475667\pi\)
0.0763707 + 0.997079i \(0.475667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.3330 0.406231 0.203115 0.979155i \(-0.434893\pi\)
0.203115 + 0.979155i \(0.434893\pi\)
\(648\) 0 0
\(649\) 10.4586 0.410535
\(650\) 0 0
\(651\) −7.30495 −0.286303
\(652\) 0 0
\(653\) −21.6319 −0.846522 −0.423261 0.906008i \(-0.639115\pi\)
−0.423261 + 0.906008i \(0.639115\pi\)
\(654\) 0 0
\(655\) 19.5499 0.763878
\(656\) 0 0
\(657\) −89.8312 −3.50465
\(658\) 0 0
\(659\) 15.7168 0.612238 0.306119 0.951993i \(-0.400970\pi\)
0.306119 + 0.951993i \(0.400970\pi\)
\(660\) 0 0
\(661\) 40.3002 1.56750 0.783749 0.621078i \(-0.213305\pi\)
0.783749 + 0.621078i \(0.213305\pi\)
\(662\) 0 0
\(663\) −21.7727 −0.845582
\(664\) 0 0
\(665\) 19.1694 0.743357
\(666\) 0 0
\(667\) 2.38248 0.0922500
\(668\) 0 0
\(669\) −22.8389 −0.883003
\(670\) 0 0
\(671\) −24.8966 −0.961122
\(672\) 0 0
\(673\) −6.69888 −0.258223 −0.129111 0.991630i \(-0.541212\pi\)
−0.129111 + 0.991630i \(0.541212\pi\)
\(674\) 0 0
\(675\) 16.3105 0.627792
\(676\) 0 0
\(677\) 22.5812 0.867866 0.433933 0.900945i \(-0.357125\pi\)
0.433933 + 0.900945i \(0.357125\pi\)
\(678\) 0 0
\(679\) 22.3533 0.857843
\(680\) 0 0
\(681\) −76.1566 −2.91833
\(682\) 0 0
\(683\) −1.42797 −0.0546398 −0.0273199 0.999627i \(-0.508697\pi\)
−0.0273199 + 0.999627i \(0.508697\pi\)
\(684\) 0 0
\(685\) 4.41544 0.168705
\(686\) 0 0
\(687\) −42.8738 −1.63574
\(688\) 0 0
\(689\) 28.4529 1.08397
\(690\) 0 0
\(691\) −1.50255 −0.0571595 −0.0285798 0.999592i \(-0.509098\pi\)
−0.0285798 + 0.999592i \(0.509098\pi\)
\(692\) 0 0
\(693\) −55.0944 −2.09286
\(694\) 0 0
\(695\) 21.9954 0.834334
\(696\) 0 0
\(697\) 4.01081 0.151920
\(698\) 0 0
\(699\) −15.9020 −0.601471
\(700\) 0 0
\(701\) −18.7341 −0.707577 −0.353789 0.935325i \(-0.615107\pi\)
−0.353789 + 0.935325i \(0.615107\pi\)
\(702\) 0 0
\(703\) −2.65214 −0.100027
\(704\) 0 0
\(705\) 44.0554 1.65922
\(706\) 0 0
\(707\) −12.1091 −0.455411
\(708\) 0 0
\(709\) 13.5052 0.507199 0.253599 0.967309i \(-0.418385\pi\)
0.253599 + 0.967309i \(0.418385\pi\)
\(710\) 0 0
\(711\) 95.6646 3.58770
\(712\) 0 0
\(713\) −0.866248 −0.0324412
\(714\) 0 0
\(715\) 19.4061 0.725746
\(716\) 0 0
\(717\) 67.6711 2.52722
\(718\) 0 0
\(719\) −31.7496 −1.18406 −0.592030 0.805916i \(-0.701673\pi\)
−0.592030 + 0.805916i \(0.701673\pi\)
\(720\) 0 0
\(721\) −32.2126 −1.19966
\(722\) 0 0
\(723\) 88.8313 3.30367
\(724\) 0 0
\(725\) 2.38248 0.0884831
\(726\) 0 0
\(727\) −21.6531 −0.803070 −0.401535 0.915844i \(-0.631523\pi\)
−0.401535 + 0.915844i \(0.631523\pi\)
\(728\) 0 0
\(729\) 77.2411 2.86078
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −0.640507 −0.0236577 −0.0118288 0.999930i \(-0.503765\pi\)
−0.0118288 + 0.999930i \(0.503765\pi\)
\(734\) 0 0
\(735\) −1.63828 −0.0604288
\(736\) 0 0
\(737\) 8.60329 0.316906
\(738\) 0 0
\(739\) 16.8191 0.618700 0.309350 0.950948i \(-0.399889\pi\)
0.309350 + 0.950948i \(0.399889\pi\)
\(740\) 0 0
\(741\) −177.107 −6.50619
\(742\) 0 0
\(743\) 15.9691 0.585851 0.292925 0.956135i \(-0.405371\pi\)
0.292925 + 0.956135i \(0.405371\pi\)
\(744\) 0 0
\(745\) −19.0780 −0.698965
\(746\) 0 0
\(747\) −50.3964 −1.84391
\(748\) 0 0
\(749\) −33.0680 −1.20828
\(750\) 0 0
\(751\) 8.09841 0.295515 0.147758 0.989024i \(-0.452794\pi\)
0.147758 + 0.989024i \(0.452794\pi\)
\(752\) 0 0
\(753\) −52.7798 −1.92340
\(754\) 0 0
\(755\) 7.75273 0.282151
\(756\) 0 0
\(757\) −20.5691 −0.747598 −0.373799 0.927510i \(-0.621945\pi\)
−0.373799 + 0.927510i \(0.621945\pi\)
\(758\) 0 0
\(759\) −9.00402 −0.326825
\(760\) 0 0
\(761\) −17.1840 −0.622919 −0.311459 0.950259i \(-0.600818\pi\)
−0.311459 + 0.950259i \(0.600818\pi\)
\(762\) 0 0
\(763\) 38.2662 1.38533
\(764\) 0 0
\(765\) 7.33006 0.265019
\(766\) 0 0
\(767\) 27.3698 0.988268
\(768\) 0 0
\(769\) 41.8648 1.50968 0.754841 0.655908i \(-0.227714\pi\)
0.754841 + 0.655908i \(0.227714\pi\)
\(770\) 0 0
\(771\) 11.0393 0.397570
\(772\) 0 0
\(773\) 35.7639 1.28634 0.643170 0.765724i \(-0.277619\pi\)
0.643170 + 0.765724i \(0.277619\pi\)
\(774\) 0 0
\(775\) −0.866248 −0.0311165
\(776\) 0 0
\(777\) −2.97557 −0.106748
\(778\) 0 0
\(779\) 32.6254 1.16893
\(780\) 0 0
\(781\) −16.5535 −0.592330
\(782\) 0 0
\(783\) 38.8595 1.38872
\(784\) 0 0
\(785\) −17.5129 −0.625062
\(786\) 0 0
\(787\) 26.9835 0.961858 0.480929 0.876759i \(-0.340299\pi\)
0.480929 + 0.876759i \(0.340299\pi\)
\(788\) 0 0
\(789\) 77.3321 2.75310
\(790\) 0 0
\(791\) 5.44500 0.193602
\(792\) 0 0
\(793\) −65.1537 −2.31368
\(794\) 0 0
\(795\) −13.2016 −0.468211
\(796\) 0 0
\(797\) −26.7226 −0.946561 −0.473281 0.880912i \(-0.656930\pi\)
−0.473281 + 0.880912i \(0.656930\pi\)
\(798\) 0 0
\(799\) 12.3114 0.435547
\(800\) 0 0
\(801\) −77.0582 −2.72272
\(802\) 0 0
\(803\) 30.8366 1.08820
\(804\) 0 0
\(805\) 2.55040 0.0898897
\(806\) 0 0
\(807\) −46.7464 −1.64555
\(808\) 0 0
\(809\) 50.0319 1.75903 0.879513 0.475874i \(-0.157868\pi\)
0.879513 + 0.475874i \(0.157868\pi\)
\(810\) 0 0
\(811\) 33.5774 1.17906 0.589531 0.807746i \(-0.299313\pi\)
0.589531 + 0.807746i \(0.299313\pi\)
\(812\) 0 0
\(813\) −85.7318 −3.00675
\(814\) 0 0
\(815\) −2.55491 −0.0894946
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −144.181 −5.03808
\(820\) 0 0
\(821\) −27.1429 −0.947295 −0.473647 0.880715i \(-0.657063\pi\)
−0.473647 + 0.880715i \(0.657063\pi\)
\(822\) 0 0
\(823\) −32.6392 −1.13773 −0.568866 0.822431i \(-0.692618\pi\)
−0.568866 + 0.822431i \(0.692618\pi\)
\(824\) 0 0
\(825\) −9.00402 −0.313480
\(826\) 0 0
\(827\) −37.0828 −1.28949 −0.644747 0.764396i \(-0.723037\pi\)
−0.644747 + 0.764396i \(0.723037\pi\)
\(828\) 0 0
\(829\) −33.9405 −1.17880 −0.589401 0.807841i \(-0.700636\pi\)
−0.589401 + 0.807841i \(0.700636\pi\)
\(830\) 0 0
\(831\) −3.54181 −0.122864
\(832\) 0 0
\(833\) −0.457823 −0.0158626
\(834\) 0 0
\(835\) 3.61301 0.125033
\(836\) 0 0
\(837\) −14.1289 −0.488368
\(838\) 0 0
\(839\) 1.36929 0.0472730 0.0236365 0.999721i \(-0.492476\pi\)
0.0236365 + 0.999721i \(0.492476\pi\)
\(840\) 0 0
\(841\) −23.3238 −0.804269
\(842\) 0 0
\(843\) 40.4251 1.39231
\(844\) 0 0
\(845\) 37.7852 1.29985
\(846\) 0 0
\(847\) −9.14199 −0.314122
\(848\) 0 0
\(849\) −100.998 −3.46624
\(850\) 0 0
\(851\) −0.352855 −0.0120957
\(852\) 0 0
\(853\) −9.21382 −0.315475 −0.157738 0.987481i \(-0.550420\pi\)
−0.157738 + 0.987481i \(0.550420\pi\)
\(854\) 0 0
\(855\) 59.6253 2.03914
\(856\) 0 0
\(857\) 14.3564 0.490405 0.245202 0.969472i \(-0.421146\pi\)
0.245202 + 0.969472i \(0.421146\pi\)
\(858\) 0 0
\(859\) 31.3758 1.07053 0.535264 0.844685i \(-0.320212\pi\)
0.535264 + 0.844685i \(0.320212\pi\)
\(860\) 0 0
\(861\) 36.6042 1.24747
\(862\) 0 0
\(863\) −26.1214 −0.889182 −0.444591 0.895734i \(-0.646651\pi\)
−0.444591 + 0.895734i \(0.646651\pi\)
\(864\) 0 0
\(865\) −12.7824 −0.434614
\(866\) 0 0
\(867\) −53.3873 −1.81313
\(868\) 0 0
\(869\) −32.8390 −1.11399
\(870\) 0 0
\(871\) 22.5146 0.762877
\(872\) 0 0
\(873\) 69.5289 2.35320
\(874\) 0 0
\(875\) 2.55040 0.0862192
\(876\) 0 0
\(877\) 11.5530 0.390118 0.195059 0.980792i \(-0.437510\pi\)
0.195059 + 0.980792i \(0.437510\pi\)
\(878\) 0 0
\(879\) 28.0006 0.944437
\(880\) 0 0
\(881\) −34.3559 −1.15748 −0.578740 0.815512i \(-0.696456\pi\)
−0.578740 + 0.815512i \(0.696456\pi\)
\(882\) 0 0
\(883\) 12.8316 0.431818 0.215909 0.976414i \(-0.430729\pi\)
0.215909 + 0.976414i \(0.430729\pi\)
\(884\) 0 0
\(885\) −12.6990 −0.426874
\(886\) 0 0
\(887\) 1.46724 0.0492652 0.0246326 0.999697i \(-0.492158\pi\)
0.0246326 + 0.999697i \(0.492158\pi\)
\(888\) 0 0
\(889\) 9.03303 0.302958
\(890\) 0 0
\(891\) −82.0533 −2.74889
\(892\) 0 0
\(893\) 100.146 3.35125
\(894\) 0 0
\(895\) 10.0149 0.334760
\(896\) 0 0
\(897\) −23.5633 −0.786755
\(898\) 0 0
\(899\) −2.06382 −0.0688322
\(900\) 0 0
\(901\) −3.68922 −0.122906
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.96248 −0.331164
\(906\) 0 0
\(907\) 4.44558 0.147613 0.0738066 0.997273i \(-0.476485\pi\)
0.0738066 + 0.997273i \(0.476485\pi\)
\(908\) 0 0
\(909\) −37.6648 −1.24926
\(910\) 0 0
\(911\) −40.1697 −1.33088 −0.665440 0.746451i \(-0.731756\pi\)
−0.665440 + 0.746451i \(0.731756\pi\)
\(912\) 0 0
\(913\) 17.2997 0.572536
\(914\) 0 0
\(915\) 30.2300 0.999372
\(916\) 0 0
\(917\) 49.8600 1.64652
\(918\) 0 0
\(919\) −46.8063 −1.54400 −0.771999 0.635624i \(-0.780743\pi\)
−0.771999 + 0.635624i \(0.780743\pi\)
\(920\) 0 0
\(921\) −4.39109 −0.144691
\(922\) 0 0
\(923\) −43.3200 −1.42590
\(924\) 0 0
\(925\) −0.352855 −0.0116018
\(926\) 0 0
\(927\) −100.195 −3.29085
\(928\) 0 0
\(929\) 8.92145 0.292703 0.146352 0.989233i \(-0.453247\pi\)
0.146352 + 0.989233i \(0.453247\pi\)
\(930\) 0 0
\(931\) −3.72409 −0.122052
\(932\) 0 0
\(933\) −80.3382 −2.63016
\(934\) 0 0
\(935\) −2.51621 −0.0822887
\(936\) 0 0
\(937\) 7.70070 0.251571 0.125785 0.992057i \(-0.459855\pi\)
0.125785 + 0.992057i \(0.459855\pi\)
\(938\) 0 0
\(939\) 67.2799 2.19560
\(940\) 0 0
\(941\) 16.8979 0.550856 0.275428 0.961322i \(-0.411180\pi\)
0.275428 + 0.961322i \(0.411180\pi\)
\(942\) 0 0
\(943\) 4.34066 0.141351
\(944\) 0 0
\(945\) 41.5983 1.35319
\(946\) 0 0
\(947\) −43.7150 −1.42055 −0.710273 0.703927i \(-0.751428\pi\)
−0.710273 + 0.703927i \(0.751428\pi\)
\(948\) 0 0
\(949\) 80.6985 2.61958
\(950\) 0 0
\(951\) 28.3469 0.919210
\(952\) 0 0
\(953\) 30.2353 0.979418 0.489709 0.871886i \(-0.337103\pi\)
0.489709 + 0.871886i \(0.337103\pi\)
\(954\) 0 0
\(955\) 6.61298 0.213991
\(956\) 0 0
\(957\) −21.4519 −0.693441
\(958\) 0 0
\(959\) 11.2611 0.363641
\(960\) 0 0
\(961\) −30.2496 −0.975794
\(962\) 0 0
\(963\) −102.856 −3.31450
\(964\) 0 0
\(965\) −19.0540 −0.613370
\(966\) 0 0
\(967\) −16.2727 −0.523296 −0.261648 0.965163i \(-0.584266\pi\)
−0.261648 + 0.965163i \(0.584266\pi\)
\(968\) 0 0
\(969\) 22.9638 0.737704
\(970\) 0 0
\(971\) 6.21424 0.199424 0.0997122 0.995016i \(-0.468208\pi\)
0.0997122 + 0.995016i \(0.468208\pi\)
\(972\) 0 0
\(973\) 56.0971 1.79839
\(974\) 0 0
\(975\) −23.5633 −0.754629
\(976\) 0 0
\(977\) 25.6705 0.821271 0.410636 0.911800i \(-0.365307\pi\)
0.410636 + 0.911800i \(0.365307\pi\)
\(978\) 0 0
\(979\) 26.4519 0.845407
\(980\) 0 0
\(981\) 119.025 3.80018
\(982\) 0 0
\(983\) 30.7124 0.979574 0.489787 0.871842i \(-0.337075\pi\)
0.489787 + 0.871842i \(0.337075\pi\)
\(984\) 0 0
\(985\) 11.0886 0.353312
\(986\) 0 0
\(987\) 112.359 3.57642
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −29.4052 −0.934086 −0.467043 0.884235i \(-0.654681\pi\)
−0.467043 + 0.884235i \(0.654681\pi\)
\(992\) 0 0
\(993\) −69.3594 −2.20105
\(994\) 0 0
\(995\) −3.71377 −0.117735
\(996\) 0 0
\(997\) −5.59825 −0.177298 −0.0886492 0.996063i \(-0.528255\pi\)
−0.0886492 + 0.996063i \(0.528255\pi\)
\(998\) 0 0
\(999\) −5.75524 −0.182088
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7360.2.a.cp.1.5 5
4.3 odd 2 7360.2.a.co.1.1 5
8.3 odd 2 920.2.a.j.1.5 5
8.5 even 2 1840.2.a.v.1.1 5
24.11 even 2 8280.2.a.bs.1.2 5
40.3 even 4 4600.2.e.u.4049.9 10
40.19 odd 2 4600.2.a.be.1.1 5
40.27 even 4 4600.2.e.u.4049.2 10
40.29 even 2 9200.2.a.cu.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.a.j.1.5 5 8.3 odd 2
1840.2.a.v.1.1 5 8.5 even 2
4600.2.a.be.1.1 5 40.19 odd 2
4600.2.e.u.4049.2 10 40.27 even 4
4600.2.e.u.4049.9 10 40.3 even 4
7360.2.a.co.1.1 5 4.3 odd 2
7360.2.a.cp.1.5 5 1.1 even 1 trivial
8280.2.a.bs.1.2 5 24.11 even 2
9200.2.a.cu.1.5 5 40.29 even 2