Properties

Label 7360.2.a.cs.1.2
Level $7360$
Weight $2$
Character 7360.1
Self dual yes
Analytic conductor $58.770$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7360,2,Mod(1,7360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7360.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7360 = 2^{6} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(58.7698958877\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.2255384.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 8x^{3} + 5x^{2} + 13x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3680)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.26789\) of defining polynomial
Character \(\chi\) \(=\) 7360.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.26789 q^{3} +1.00000 q^{5} +0.504137 q^{7} -1.39245 q^{9} -4.19785 q^{11} -3.16448 q^{13} -1.26789 q^{15} +0.400727 q^{17} +5.32241 q^{19} -0.639190 q^{21} +1.00000 q^{23} +1.00000 q^{25} +5.56915 q^{27} -8.27114 q^{29} -1.19785 q^{31} +5.32241 q^{33} +0.504137 q^{35} +3.05452 q^{37} +4.01222 q^{39} +5.83704 q^{41} -7.80606 q^{43} -1.39245 q^{45} +3.70199 q^{47} -6.74585 q^{49} -0.508078 q^{51} -11.8898 q^{53} -4.19785 q^{55} -6.74824 q^{57} -3.82655 q^{59} +1.66207 q^{61} -0.701987 q^{63} -3.16448 q^{65} -1.26134 q^{67} -1.26789 q^{69} +6.28011 q^{71} -6.17081 q^{73} -1.26789 q^{75} -2.11629 q^{77} +9.76375 q^{79} -2.88371 q^{81} +5.02510 q^{83} +0.400727 q^{85} +10.4869 q^{87} -7.37455 q^{89} -1.59533 q^{91} +1.51874 q^{93} +5.32241 q^{95} -7.23189 q^{97} +5.84531 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{3} + 5 q^{5} + 4 q^{7} + 2 q^{9} + 3 q^{11} - q^{13} + q^{15} - 4 q^{17} + q^{19} + 4 q^{21} + 5 q^{23} + 5 q^{25} + 4 q^{27} + 5 q^{29} + 18 q^{31} + q^{33} + 4 q^{35} - 3 q^{37} + 20 q^{39}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.26789 −0.732017 −0.366008 0.930612i \(-0.619276\pi\)
−0.366008 + 0.930612i \(0.619276\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.504137 0.190546 0.0952729 0.995451i \(-0.469628\pi\)
0.0952729 + 0.995451i \(0.469628\pi\)
\(8\) 0 0
\(9\) −1.39245 −0.464151
\(10\) 0 0
\(11\) −4.19785 −1.26570 −0.632850 0.774275i \(-0.718115\pi\)
−0.632850 + 0.774275i \(0.718115\pi\)
\(12\) 0 0
\(13\) −3.16448 −0.877669 −0.438835 0.898568i \(-0.644609\pi\)
−0.438835 + 0.898568i \(0.644609\pi\)
\(14\) 0 0
\(15\) −1.26789 −0.327368
\(16\) 0 0
\(17\) 0.400727 0.0971907 0.0485953 0.998819i \(-0.484526\pi\)
0.0485953 + 0.998819i \(0.484526\pi\)
\(18\) 0 0
\(19\) 5.32241 1.22105 0.610523 0.791999i \(-0.290959\pi\)
0.610523 + 0.791999i \(0.290959\pi\)
\(20\) 0 0
\(21\) −0.639190 −0.139483
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.56915 1.07178
\(28\) 0 0
\(29\) −8.27114 −1.53591 −0.767956 0.640503i \(-0.778726\pi\)
−0.767956 + 0.640503i \(0.778726\pi\)
\(30\) 0 0
\(31\) −1.19785 −0.215140 −0.107570 0.994197i \(-0.534307\pi\)
−0.107570 + 0.994197i \(0.534307\pi\)
\(32\) 0 0
\(33\) 5.32241 0.926513
\(34\) 0 0
\(35\) 0.504137 0.0852146
\(36\) 0 0
\(37\) 3.05452 0.502161 0.251080 0.967966i \(-0.419214\pi\)
0.251080 + 0.967966i \(0.419214\pi\)
\(38\) 0 0
\(39\) 4.01222 0.642469
\(40\) 0 0
\(41\) 5.83704 0.911593 0.455796 0.890084i \(-0.349355\pi\)
0.455796 + 0.890084i \(0.349355\pi\)
\(42\) 0 0
\(43\) −7.80606 −1.19041 −0.595207 0.803573i \(-0.702930\pi\)
−0.595207 + 0.803573i \(0.702930\pi\)
\(44\) 0 0
\(45\) −1.39245 −0.207575
\(46\) 0 0
\(47\) 3.70199 0.539990 0.269995 0.962862i \(-0.412978\pi\)
0.269995 + 0.962862i \(0.412978\pi\)
\(48\) 0 0
\(49\) −6.74585 −0.963692
\(50\) 0 0
\(51\) −0.508078 −0.0711452
\(52\) 0 0
\(53\) −11.8898 −1.63319 −0.816597 0.577208i \(-0.804142\pi\)
−0.816597 + 0.577208i \(0.804142\pi\)
\(54\) 0 0
\(55\) −4.19785 −0.566038
\(56\) 0 0
\(57\) −6.74824 −0.893826
\(58\) 0 0
\(59\) −3.82655 −0.498174 −0.249087 0.968481i \(-0.580131\pi\)
−0.249087 + 0.968481i \(0.580131\pi\)
\(60\) 0 0
\(61\) 1.66207 0.212806 0.106403 0.994323i \(-0.466067\pi\)
0.106403 + 0.994323i \(0.466067\pi\)
\(62\) 0 0
\(63\) −0.701987 −0.0884421
\(64\) 0 0
\(65\) −3.16448 −0.392506
\(66\) 0 0
\(67\) −1.26134 −0.154097 −0.0770487 0.997027i \(-0.524550\pi\)
−0.0770487 + 0.997027i \(0.524550\pi\)
\(68\) 0 0
\(69\) −1.26789 −0.152636
\(70\) 0 0
\(71\) 6.28011 0.745311 0.372656 0.927970i \(-0.378447\pi\)
0.372656 + 0.927970i \(0.378447\pi\)
\(72\) 0 0
\(73\) −6.17081 −0.722239 −0.361120 0.932520i \(-0.617605\pi\)
−0.361120 + 0.932520i \(0.617605\pi\)
\(74\) 0 0
\(75\) −1.26789 −0.146403
\(76\) 0 0
\(77\) −2.11629 −0.241174
\(78\) 0 0
\(79\) 9.76375 1.09851 0.549254 0.835655i \(-0.314912\pi\)
0.549254 + 0.835655i \(0.314912\pi\)
\(80\) 0 0
\(81\) −2.88371 −0.320412
\(82\) 0 0
\(83\) 5.02510 0.551576 0.275788 0.961218i \(-0.411061\pi\)
0.275788 + 0.961218i \(0.411061\pi\)
\(84\) 0 0
\(85\) 0.400727 0.0434650
\(86\) 0 0
\(87\) 10.4869 1.12431
\(88\) 0 0
\(89\) −7.37455 −0.781700 −0.390850 0.920454i \(-0.627819\pi\)
−0.390850 + 0.920454i \(0.627819\pi\)
\(90\) 0 0
\(91\) −1.59533 −0.167236
\(92\) 0 0
\(93\) 1.51874 0.157486
\(94\) 0 0
\(95\) 5.32241 0.546068
\(96\) 0 0
\(97\) −7.23189 −0.734287 −0.367143 0.930164i \(-0.619664\pi\)
−0.367143 + 0.930164i \(0.619664\pi\)
\(98\) 0 0
\(99\) 5.84531 0.587476
\(100\) 0 0
\(101\) 15.4373 1.53607 0.768037 0.640406i \(-0.221234\pi\)
0.768037 + 0.640406i \(0.221234\pi\)
\(102\) 0 0
\(103\) 16.7465 1.65008 0.825041 0.565072i \(-0.191152\pi\)
0.825041 + 0.565072i \(0.191152\pi\)
\(104\) 0 0
\(105\) −0.639190 −0.0623786
\(106\) 0 0
\(107\) 6.29538 0.608597 0.304299 0.952577i \(-0.401578\pi\)
0.304299 + 0.952577i \(0.401578\pi\)
\(108\) 0 0
\(109\) −10.1906 −0.976083 −0.488042 0.872820i \(-0.662289\pi\)
−0.488042 + 0.872820i \(0.662289\pi\)
\(110\) 0 0
\(111\) −3.87280 −0.367590
\(112\) 0 0
\(113\) 14.2596 1.34143 0.670713 0.741717i \(-0.265988\pi\)
0.670713 + 0.741717i \(0.265988\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 4.40639 0.407371
\(118\) 0 0
\(119\) 0.202021 0.0185193
\(120\) 0 0
\(121\) 6.62195 0.601995
\(122\) 0 0
\(123\) −7.40073 −0.667301
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 9.41188 0.835170 0.417585 0.908638i \(-0.362877\pi\)
0.417585 + 0.908638i \(0.362877\pi\)
\(128\) 0 0
\(129\) 9.89723 0.871403
\(130\) 0 0
\(131\) 11.8191 1.03264 0.516321 0.856395i \(-0.327301\pi\)
0.516321 + 0.856395i \(0.327301\pi\)
\(132\) 0 0
\(133\) 2.68322 0.232665
\(134\) 0 0
\(135\) 5.56915 0.479316
\(136\) 0 0
\(137\) 14.3436 1.22545 0.612727 0.790295i \(-0.290073\pi\)
0.612727 + 0.790295i \(0.290073\pi\)
\(138\) 0 0
\(139\) −20.1016 −1.70500 −0.852499 0.522729i \(-0.824914\pi\)
−0.852499 + 0.522729i \(0.824914\pi\)
\(140\) 0 0
\(141\) −4.69371 −0.395282
\(142\) 0 0
\(143\) 13.2840 1.11087
\(144\) 0 0
\(145\) −8.27114 −0.686881
\(146\) 0 0
\(147\) 8.55299 0.705439
\(148\) 0 0
\(149\) −4.01461 −0.328889 −0.164445 0.986386i \(-0.552583\pi\)
−0.164445 + 0.986386i \(0.552583\pi\)
\(150\) 0 0
\(151\) 10.8414 0.882258 0.441129 0.897444i \(-0.354578\pi\)
0.441129 + 0.897444i \(0.354578\pi\)
\(152\) 0 0
\(153\) −0.557994 −0.0451112
\(154\) 0 0
\(155\) −1.19785 −0.0962137
\(156\) 0 0
\(157\) 1.25789 0.100391 0.0501953 0.998739i \(-0.484016\pi\)
0.0501953 + 0.998739i \(0.484016\pi\)
\(158\) 0 0
\(159\) 15.0750 1.19553
\(160\) 0 0
\(161\) 0.504137 0.0397315
\(162\) 0 0
\(163\) −12.7624 −0.999628 −0.499814 0.866133i \(-0.666598\pi\)
−0.499814 + 0.866133i \(0.666598\pi\)
\(164\) 0 0
\(165\) 5.32241 0.414349
\(166\) 0 0
\(167\) −10.9315 −0.845903 −0.422952 0.906152i \(-0.639006\pi\)
−0.422952 + 0.906152i \(0.639006\pi\)
\(168\) 0 0
\(169\) −2.98606 −0.229697
\(170\) 0 0
\(171\) −7.41122 −0.566750
\(172\) 0 0
\(173\) 11.7173 0.890847 0.445423 0.895320i \(-0.353053\pi\)
0.445423 + 0.895320i \(0.353053\pi\)
\(174\) 0 0
\(175\) 0.504137 0.0381091
\(176\) 0 0
\(177\) 4.85165 0.364672
\(178\) 0 0
\(179\) 7.44919 0.556779 0.278389 0.960468i \(-0.410199\pi\)
0.278389 + 0.960468i \(0.410199\pi\)
\(180\) 0 0
\(181\) −11.9249 −0.886373 −0.443187 0.896429i \(-0.646152\pi\)
−0.443187 + 0.896429i \(0.646152\pi\)
\(182\) 0 0
\(183\) −2.10732 −0.155778
\(184\) 0 0
\(185\) 3.05452 0.224573
\(186\) 0 0
\(187\) −1.68219 −0.123014
\(188\) 0 0
\(189\) 2.80761 0.204224
\(190\) 0 0
\(191\) 3.92017 0.283653 0.141827 0.989892i \(-0.454702\pi\)
0.141827 + 0.989892i \(0.454702\pi\)
\(192\) 0 0
\(193\) −2.96749 −0.213604 −0.106802 0.994280i \(-0.534061\pi\)
−0.106802 + 0.994280i \(0.534061\pi\)
\(194\) 0 0
\(195\) 4.01222 0.287321
\(196\) 0 0
\(197\) −6.35578 −0.452831 −0.226415 0.974031i \(-0.572701\pi\)
−0.226415 + 0.974031i \(0.572701\pi\)
\(198\) 0 0
\(199\) 21.5569 1.52813 0.764065 0.645139i \(-0.223201\pi\)
0.764065 + 0.645139i \(0.223201\pi\)
\(200\) 0 0
\(201\) 1.59924 0.112802
\(202\) 0 0
\(203\) −4.16978 −0.292661
\(204\) 0 0
\(205\) 5.83704 0.407677
\(206\) 0 0
\(207\) −1.39245 −0.0967822
\(208\) 0 0
\(209\) −22.3427 −1.54548
\(210\) 0 0
\(211\) −10.7026 −0.736799 −0.368400 0.929668i \(-0.620094\pi\)
−0.368400 + 0.929668i \(0.620094\pi\)
\(212\) 0 0
\(213\) −7.96249 −0.545580
\(214\) 0 0
\(215\) −7.80606 −0.532369
\(216\) 0 0
\(217\) −0.603880 −0.0409941
\(218\) 0 0
\(219\) 7.82392 0.528691
\(220\) 0 0
\(221\) −1.26809 −0.0853012
\(222\) 0 0
\(223\) 13.8599 0.928129 0.464064 0.885801i \(-0.346391\pi\)
0.464064 + 0.885801i \(0.346391\pi\)
\(224\) 0 0
\(225\) −1.39245 −0.0928303
\(226\) 0 0
\(227\) 0.0896727 0.00595179 0.00297589 0.999996i \(-0.499053\pi\)
0.00297589 + 0.999996i \(0.499053\pi\)
\(228\) 0 0
\(229\) 18.2485 1.20590 0.602948 0.797781i \(-0.293993\pi\)
0.602948 + 0.797781i \(0.293993\pi\)
\(230\) 0 0
\(231\) 2.68322 0.176543
\(232\) 0 0
\(233\) 5.73141 0.375477 0.187739 0.982219i \(-0.439884\pi\)
0.187739 + 0.982219i \(0.439884\pi\)
\(234\) 0 0
\(235\) 3.70199 0.241491
\(236\) 0 0
\(237\) −12.3794 −0.804126
\(238\) 0 0
\(239\) 2.27752 0.147321 0.0736604 0.997283i \(-0.476532\pi\)
0.0736604 + 0.997283i \(0.476532\pi\)
\(240\) 0 0
\(241\) 7.84337 0.505236 0.252618 0.967566i \(-0.418708\pi\)
0.252618 + 0.967566i \(0.418708\pi\)
\(242\) 0 0
\(243\) −13.0512 −0.837236
\(244\) 0 0
\(245\) −6.74585 −0.430976
\(246\) 0 0
\(247\) −16.8427 −1.07167
\(248\) 0 0
\(249\) −6.37127 −0.403763
\(250\) 0 0
\(251\) 16.2620 1.02645 0.513224 0.858255i \(-0.328451\pi\)
0.513224 + 0.858255i \(0.328451\pi\)
\(252\) 0 0
\(253\) −4.19785 −0.263917
\(254\) 0 0
\(255\) −0.508078 −0.0318171
\(256\) 0 0
\(257\) 11.5913 0.723048 0.361524 0.932363i \(-0.382257\pi\)
0.361524 + 0.932363i \(0.382257\pi\)
\(258\) 0 0
\(259\) 1.53990 0.0956846
\(260\) 0 0
\(261\) 11.5172 0.712895
\(262\) 0 0
\(263\) −15.6108 −0.962601 −0.481300 0.876556i \(-0.659835\pi\)
−0.481300 + 0.876556i \(0.659835\pi\)
\(264\) 0 0
\(265\) −11.8898 −0.730387
\(266\) 0 0
\(267\) 9.35012 0.572218
\(268\) 0 0
\(269\) 22.7301 1.38588 0.692940 0.720995i \(-0.256315\pi\)
0.692940 + 0.720995i \(0.256315\pi\)
\(270\) 0 0
\(271\) 31.9275 1.93946 0.969728 0.244186i \(-0.0785209\pi\)
0.969728 + 0.244186i \(0.0785209\pi\)
\(272\) 0 0
\(273\) 2.02270 0.122420
\(274\) 0 0
\(275\) −4.19785 −0.253140
\(276\) 0 0
\(277\) −16.5665 −0.995385 −0.497693 0.867353i \(-0.665819\pi\)
−0.497693 + 0.867353i \(0.665819\pi\)
\(278\) 0 0
\(279\) 1.66795 0.0998577
\(280\) 0 0
\(281\) 2.21492 0.132131 0.0660654 0.997815i \(-0.478955\pi\)
0.0660654 + 0.997815i \(0.478955\pi\)
\(282\) 0 0
\(283\) 19.6097 1.16567 0.582837 0.812589i \(-0.301943\pi\)
0.582837 + 0.812589i \(0.301943\pi\)
\(284\) 0 0
\(285\) −6.74824 −0.399731
\(286\) 0 0
\(287\) 2.94267 0.173700
\(288\) 0 0
\(289\) −16.8394 −0.990554
\(290\) 0 0
\(291\) 9.16924 0.537510
\(292\) 0 0
\(293\) 9.09183 0.531151 0.265575 0.964090i \(-0.414438\pi\)
0.265575 + 0.964090i \(0.414438\pi\)
\(294\) 0 0
\(295\) −3.82655 −0.222790
\(296\) 0 0
\(297\) −23.3785 −1.35656
\(298\) 0 0
\(299\) −3.16448 −0.183007
\(300\) 0 0
\(301\) −3.93532 −0.226828
\(302\) 0 0
\(303\) −19.5729 −1.12443
\(304\) 0 0
\(305\) 1.66207 0.0951698
\(306\) 0 0
\(307\) 28.6274 1.63385 0.816926 0.576742i \(-0.195676\pi\)
0.816926 + 0.576742i \(0.195676\pi\)
\(308\) 0 0
\(309\) −21.2327 −1.20789
\(310\) 0 0
\(311\) 11.1398 0.631681 0.315841 0.948812i \(-0.397713\pi\)
0.315841 + 0.948812i \(0.397713\pi\)
\(312\) 0 0
\(313\) −23.4550 −1.32575 −0.662877 0.748728i \(-0.730665\pi\)
−0.662877 + 0.748728i \(0.730665\pi\)
\(314\) 0 0
\(315\) −0.701987 −0.0395525
\(316\) 0 0
\(317\) 28.5665 1.60446 0.802228 0.597018i \(-0.203648\pi\)
0.802228 + 0.597018i \(0.203648\pi\)
\(318\) 0 0
\(319\) 34.7210 1.94400
\(320\) 0 0
\(321\) −7.98185 −0.445503
\(322\) 0 0
\(323\) 2.13284 0.118674
\(324\) 0 0
\(325\) −3.16448 −0.175534
\(326\) 0 0
\(327\) 12.9206 0.714509
\(328\) 0 0
\(329\) 1.86631 0.102893
\(330\) 0 0
\(331\) 0.671893 0.0369306 0.0184653 0.999830i \(-0.494122\pi\)
0.0184653 + 0.999830i \(0.494122\pi\)
\(332\) 0 0
\(333\) −4.25328 −0.233079
\(334\) 0 0
\(335\) −1.26134 −0.0689145
\(336\) 0 0
\(337\) −7.32241 −0.398877 −0.199439 0.979910i \(-0.563912\pi\)
−0.199439 + 0.979910i \(0.563912\pi\)
\(338\) 0 0
\(339\) −18.0796 −0.981947
\(340\) 0 0
\(341\) 5.02840 0.272303
\(342\) 0 0
\(343\) −6.92979 −0.374173
\(344\) 0 0
\(345\) −1.26789 −0.0682609
\(346\) 0 0
\(347\) −31.9925 −1.71745 −0.858723 0.512440i \(-0.828742\pi\)
−0.858723 + 0.512440i \(0.828742\pi\)
\(348\) 0 0
\(349\) 30.5866 1.63726 0.818631 0.574319i \(-0.194733\pi\)
0.818631 + 0.574319i \(0.194733\pi\)
\(350\) 0 0
\(351\) −17.6235 −0.940671
\(352\) 0 0
\(353\) −21.5958 −1.14943 −0.574713 0.818355i \(-0.694886\pi\)
−0.574713 + 0.818355i \(0.694886\pi\)
\(354\) 0 0
\(355\) 6.28011 0.333313
\(356\) 0 0
\(357\) −0.256141 −0.0135564
\(358\) 0 0
\(359\) 19.5814 1.03346 0.516732 0.856147i \(-0.327148\pi\)
0.516732 + 0.856147i \(0.327148\pi\)
\(360\) 0 0
\(361\) 9.32809 0.490952
\(362\) 0 0
\(363\) −8.39590 −0.440671
\(364\) 0 0
\(365\) −6.17081 −0.322995
\(366\) 0 0
\(367\) −11.9731 −0.624992 −0.312496 0.949919i \(-0.601165\pi\)
−0.312496 + 0.949919i \(0.601165\pi\)
\(368\) 0 0
\(369\) −8.12781 −0.423117
\(370\) 0 0
\(371\) −5.99410 −0.311198
\(372\) 0 0
\(373\) −26.9803 −1.39699 −0.698493 0.715617i \(-0.746146\pi\)
−0.698493 + 0.715617i \(0.746146\pi\)
\(374\) 0 0
\(375\) −1.26789 −0.0654736
\(376\) 0 0
\(377\) 26.1739 1.34802
\(378\) 0 0
\(379\) −13.2269 −0.679420 −0.339710 0.940530i \(-0.610329\pi\)
−0.339710 + 0.940530i \(0.610329\pi\)
\(380\) 0 0
\(381\) −11.9332 −0.611358
\(382\) 0 0
\(383\) −7.06241 −0.360872 −0.180436 0.983587i \(-0.557751\pi\)
−0.180436 + 0.983587i \(0.557751\pi\)
\(384\) 0 0
\(385\) −2.11629 −0.107856
\(386\) 0 0
\(387\) 10.8696 0.552532
\(388\) 0 0
\(389\) 33.3429 1.69055 0.845275 0.534331i \(-0.179437\pi\)
0.845275 + 0.534331i \(0.179437\pi\)
\(390\) 0 0
\(391\) 0.400727 0.0202657
\(392\) 0 0
\(393\) −14.9854 −0.755912
\(394\) 0 0
\(395\) 9.76375 0.491268
\(396\) 0 0
\(397\) 9.14900 0.459175 0.229588 0.973288i \(-0.426262\pi\)
0.229588 + 0.973288i \(0.426262\pi\)
\(398\) 0 0
\(399\) −3.40203 −0.170315
\(400\) 0 0
\(401\) −11.8076 −0.589641 −0.294821 0.955553i \(-0.595260\pi\)
−0.294821 + 0.955553i \(0.595260\pi\)
\(402\) 0 0
\(403\) 3.79058 0.188822
\(404\) 0 0
\(405\) −2.88371 −0.143293
\(406\) 0 0
\(407\) −12.8224 −0.635584
\(408\) 0 0
\(409\) 38.1500 1.88640 0.943199 0.332228i \(-0.107800\pi\)
0.943199 + 0.332228i \(0.107800\pi\)
\(410\) 0 0
\(411\) −18.1861 −0.897053
\(412\) 0 0
\(413\) −1.92910 −0.0949250
\(414\) 0 0
\(415\) 5.02510 0.246672
\(416\) 0 0
\(417\) 25.4867 1.24809
\(418\) 0 0
\(419\) 2.87325 0.140367 0.0701837 0.997534i \(-0.477641\pi\)
0.0701837 + 0.997534i \(0.477641\pi\)
\(420\) 0 0
\(421\) −14.2085 −0.692479 −0.346240 0.938146i \(-0.612542\pi\)
−0.346240 + 0.938146i \(0.612542\pi\)
\(422\) 0 0
\(423\) −5.15485 −0.250637
\(424\) 0 0
\(425\) 0.400727 0.0194381
\(426\) 0 0
\(427\) 0.837910 0.0405493
\(428\) 0 0
\(429\) −16.8427 −0.813172
\(430\) 0 0
\(431\) −5.76236 −0.277563 −0.138782 0.990323i \(-0.544319\pi\)
−0.138782 + 0.990323i \(0.544319\pi\)
\(432\) 0 0
\(433\) 1.65671 0.0796163 0.0398081 0.999207i \(-0.487325\pi\)
0.0398081 + 0.999207i \(0.487325\pi\)
\(434\) 0 0
\(435\) 10.4869 0.502808
\(436\) 0 0
\(437\) 5.32241 0.254606
\(438\) 0 0
\(439\) 12.5017 0.596674 0.298337 0.954461i \(-0.403568\pi\)
0.298337 + 0.954461i \(0.403568\pi\)
\(440\) 0 0
\(441\) 9.39328 0.447299
\(442\) 0 0
\(443\) −2.08447 −0.0990362 −0.0495181 0.998773i \(-0.515769\pi\)
−0.0495181 + 0.998773i \(0.515769\pi\)
\(444\) 0 0
\(445\) −7.37455 −0.349587
\(446\) 0 0
\(447\) 5.09008 0.240753
\(448\) 0 0
\(449\) −24.8717 −1.17377 −0.586885 0.809670i \(-0.699646\pi\)
−0.586885 + 0.809670i \(0.699646\pi\)
\(450\) 0 0
\(451\) −24.5030 −1.15380
\(452\) 0 0
\(453\) −13.7457 −0.645828
\(454\) 0 0
\(455\) −1.59533 −0.0747903
\(456\) 0 0
\(457\) 10.5949 0.495609 0.247805 0.968810i \(-0.420291\pi\)
0.247805 + 0.968810i \(0.420291\pi\)
\(458\) 0 0
\(459\) 2.23171 0.104167
\(460\) 0 0
\(461\) 11.7443 0.546986 0.273493 0.961874i \(-0.411821\pi\)
0.273493 + 0.961874i \(0.411821\pi\)
\(462\) 0 0
\(463\) −16.7927 −0.780425 −0.390212 0.920725i \(-0.627598\pi\)
−0.390212 + 0.920725i \(0.627598\pi\)
\(464\) 0 0
\(465\) 1.51874 0.0704300
\(466\) 0 0
\(467\) 25.3448 1.17282 0.586410 0.810015i \(-0.300541\pi\)
0.586410 + 0.810015i \(0.300541\pi\)
\(468\) 0 0
\(469\) −0.635889 −0.0293626
\(470\) 0 0
\(471\) −1.59487 −0.0734877
\(472\) 0 0
\(473\) 32.7687 1.50671
\(474\) 0 0
\(475\) 5.32241 0.244209
\(476\) 0 0
\(477\) 16.5561 0.758050
\(478\) 0 0
\(479\) 23.4215 1.07016 0.535078 0.844803i \(-0.320282\pi\)
0.535078 + 0.844803i \(0.320282\pi\)
\(480\) 0 0
\(481\) −9.66598 −0.440731
\(482\) 0 0
\(483\) −0.639190 −0.0290842
\(484\) 0 0
\(485\) −7.23189 −0.328383
\(486\) 0 0
\(487\) −25.9132 −1.17424 −0.587119 0.809501i \(-0.699738\pi\)
−0.587119 + 0.809501i \(0.699738\pi\)
\(488\) 0 0
\(489\) 16.1813 0.731744
\(490\) 0 0
\(491\) 17.5545 0.792224 0.396112 0.918202i \(-0.370359\pi\)
0.396112 + 0.918202i \(0.370359\pi\)
\(492\) 0 0
\(493\) −3.31447 −0.149276
\(494\) 0 0
\(495\) 5.84531 0.262727
\(496\) 0 0
\(497\) 3.16603 0.142016
\(498\) 0 0
\(499\) 36.9650 1.65478 0.827390 0.561628i \(-0.189825\pi\)
0.827390 + 0.561628i \(0.189825\pi\)
\(500\) 0 0
\(501\) 13.8599 0.619216
\(502\) 0 0
\(503\) 25.0868 1.11856 0.559282 0.828978i \(-0.311077\pi\)
0.559282 + 0.828978i \(0.311077\pi\)
\(504\) 0 0
\(505\) 15.4373 0.686953
\(506\) 0 0
\(507\) 3.78600 0.168142
\(508\) 0 0
\(509\) 18.3097 0.811564 0.405782 0.913970i \(-0.366999\pi\)
0.405782 + 0.913970i \(0.366999\pi\)
\(510\) 0 0
\(511\) −3.11093 −0.137620
\(512\) 0 0
\(513\) 29.6413 1.30870
\(514\) 0 0
\(515\) 16.7465 0.737939
\(516\) 0 0
\(517\) −15.5404 −0.683466
\(518\) 0 0
\(519\) −14.8562 −0.652115
\(520\) 0 0
\(521\) 32.2129 1.41127 0.705636 0.708574i \(-0.250661\pi\)
0.705636 + 0.708574i \(0.250661\pi\)
\(522\) 0 0
\(523\) −26.2049 −1.14586 −0.572929 0.819605i \(-0.694193\pi\)
−0.572929 + 0.819605i \(0.694193\pi\)
\(524\) 0 0
\(525\) −0.639190 −0.0278965
\(526\) 0 0
\(527\) −0.480011 −0.0209096
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 5.32830 0.231228
\(532\) 0 0
\(533\) −18.4712 −0.800077
\(534\) 0 0
\(535\) 6.29538 0.272173
\(536\) 0 0
\(537\) −9.44476 −0.407572
\(538\) 0 0
\(539\) 28.3181 1.21974
\(540\) 0 0
\(541\) 28.3643 1.21948 0.609739 0.792602i \(-0.291274\pi\)
0.609739 + 0.792602i \(0.291274\pi\)
\(542\) 0 0
\(543\) 15.1195 0.648840
\(544\) 0 0
\(545\) −10.1906 −0.436518
\(546\) 0 0
\(547\) 29.5775 1.26464 0.632321 0.774706i \(-0.282102\pi\)
0.632321 + 0.774706i \(0.282102\pi\)
\(548\) 0 0
\(549\) −2.31436 −0.0987743
\(550\) 0 0
\(551\) −44.0224 −1.87542
\(552\) 0 0
\(553\) 4.92227 0.209316
\(554\) 0 0
\(555\) −3.87280 −0.164391
\(556\) 0 0
\(557\) 26.6439 1.12894 0.564470 0.825454i \(-0.309081\pi\)
0.564470 + 0.825454i \(0.309081\pi\)
\(558\) 0 0
\(559\) 24.7021 1.04479
\(560\) 0 0
\(561\) 2.13284 0.0900484
\(562\) 0 0
\(563\) 43.7187 1.84252 0.921262 0.388942i \(-0.127159\pi\)
0.921262 + 0.388942i \(0.127159\pi\)
\(564\) 0 0
\(565\) 14.2596 0.599904
\(566\) 0 0
\(567\) −1.45378 −0.0610532
\(568\) 0 0
\(569\) −20.5148 −0.860025 −0.430013 0.902823i \(-0.641491\pi\)
−0.430013 + 0.902823i \(0.641491\pi\)
\(570\) 0 0
\(571\) −15.5314 −0.649970 −0.324985 0.945719i \(-0.605359\pi\)
−0.324985 + 0.945719i \(0.605359\pi\)
\(572\) 0 0
\(573\) −4.97034 −0.207639
\(574\) 0 0
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) 29.4587 1.22638 0.613192 0.789934i \(-0.289885\pi\)
0.613192 + 0.789934i \(0.289885\pi\)
\(578\) 0 0
\(579\) 3.76245 0.156362
\(580\) 0 0
\(581\) 2.53334 0.105100
\(582\) 0 0
\(583\) 49.9118 2.06713
\(584\) 0 0
\(585\) 4.40639 0.182182
\(586\) 0 0
\(587\) 29.6993 1.22582 0.612911 0.790152i \(-0.289999\pi\)
0.612911 + 0.790152i \(0.289999\pi\)
\(588\) 0 0
\(589\) −6.37546 −0.262696
\(590\) 0 0
\(591\) 8.05844 0.331480
\(592\) 0 0
\(593\) −13.0357 −0.535314 −0.267657 0.963514i \(-0.586249\pi\)
−0.267657 + 0.963514i \(0.586249\pi\)
\(594\) 0 0
\(595\) 0.202021 0.00828207
\(596\) 0 0
\(597\) −27.3318 −1.11862
\(598\) 0 0
\(599\) 33.5204 1.36961 0.684803 0.728728i \(-0.259888\pi\)
0.684803 + 0.728728i \(0.259888\pi\)
\(600\) 0 0
\(601\) 21.1257 0.861736 0.430868 0.902415i \(-0.358208\pi\)
0.430868 + 0.902415i \(0.358208\pi\)
\(602\) 0 0
\(603\) 1.75636 0.0715246
\(604\) 0 0
\(605\) 6.62195 0.269220
\(606\) 0 0
\(607\) −8.11565 −0.329404 −0.164702 0.986343i \(-0.552666\pi\)
−0.164702 + 0.986343i \(0.552666\pi\)
\(608\) 0 0
\(609\) 5.28683 0.214233
\(610\) 0 0
\(611\) −11.7149 −0.473933
\(612\) 0 0
\(613\) −11.4463 −0.462311 −0.231156 0.972917i \(-0.574251\pi\)
−0.231156 + 0.972917i \(0.574251\pi\)
\(614\) 0 0
\(615\) −7.40073 −0.298426
\(616\) 0 0
\(617\) −16.1789 −0.651336 −0.325668 0.945484i \(-0.605589\pi\)
−0.325668 + 0.945484i \(0.605589\pi\)
\(618\) 0 0
\(619\) 28.8789 1.16074 0.580371 0.814352i \(-0.302907\pi\)
0.580371 + 0.814352i \(0.302907\pi\)
\(620\) 0 0
\(621\) 5.56915 0.223482
\(622\) 0 0
\(623\) −3.71778 −0.148950
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 28.3281 1.13132
\(628\) 0 0
\(629\) 1.22403 0.0488053
\(630\) 0 0
\(631\) −38.7017 −1.54069 −0.770346 0.637626i \(-0.779916\pi\)
−0.770346 + 0.637626i \(0.779916\pi\)
\(632\) 0 0
\(633\) 13.5698 0.539349
\(634\) 0 0
\(635\) 9.41188 0.373499
\(636\) 0 0
\(637\) 21.3471 0.845803
\(638\) 0 0
\(639\) −8.74476 −0.345937
\(640\) 0 0
\(641\) −15.9732 −0.630903 −0.315451 0.948942i \(-0.602156\pi\)
−0.315451 + 0.948942i \(0.602156\pi\)
\(642\) 0 0
\(643\) −7.50147 −0.295829 −0.147915 0.989000i \(-0.547256\pi\)
−0.147915 + 0.989000i \(0.547256\pi\)
\(644\) 0 0
\(645\) 9.89723 0.389703
\(646\) 0 0
\(647\) −18.8857 −0.742473 −0.371237 0.928538i \(-0.621066\pi\)
−0.371237 + 0.928538i \(0.621066\pi\)
\(648\) 0 0
\(649\) 16.0633 0.630539
\(650\) 0 0
\(651\) 0.765654 0.0300083
\(652\) 0 0
\(653\) 5.97078 0.233655 0.116827 0.993152i \(-0.462728\pi\)
0.116827 + 0.993152i \(0.462728\pi\)
\(654\) 0 0
\(655\) 11.8191 0.461812
\(656\) 0 0
\(657\) 8.59258 0.335228
\(658\) 0 0
\(659\) −44.7975 −1.74506 −0.872531 0.488558i \(-0.837523\pi\)
−0.872531 + 0.488558i \(0.837523\pi\)
\(660\) 0 0
\(661\) 16.6409 0.647254 0.323627 0.946185i \(-0.395098\pi\)
0.323627 + 0.946185i \(0.395098\pi\)
\(662\) 0 0
\(663\) 1.60780 0.0624419
\(664\) 0 0
\(665\) 2.68322 0.104051
\(666\) 0 0
\(667\) −8.27114 −0.320260
\(668\) 0 0
\(669\) −17.5729 −0.679406
\(670\) 0 0
\(671\) −6.97712 −0.269349
\(672\) 0 0
\(673\) −41.0272 −1.58148 −0.790741 0.612150i \(-0.790305\pi\)
−0.790741 + 0.612150i \(0.790305\pi\)
\(674\) 0 0
\(675\) 5.56915 0.214357
\(676\) 0 0
\(677\) −7.19094 −0.276370 −0.138185 0.990406i \(-0.544127\pi\)
−0.138185 + 0.990406i \(0.544127\pi\)
\(678\) 0 0
\(679\) −3.64586 −0.139915
\(680\) 0 0
\(681\) −0.113695 −0.00435681
\(682\) 0 0
\(683\) −15.6677 −0.599507 −0.299754 0.954017i \(-0.596904\pi\)
−0.299754 + 0.954017i \(0.596904\pi\)
\(684\) 0 0
\(685\) 14.3436 0.548040
\(686\) 0 0
\(687\) −23.1371 −0.882736
\(688\) 0 0
\(689\) 37.6252 1.43340
\(690\) 0 0
\(691\) 45.1395 1.71719 0.858594 0.512656i \(-0.171338\pi\)
0.858594 + 0.512656i \(0.171338\pi\)
\(692\) 0 0
\(693\) 2.94684 0.111941
\(694\) 0 0
\(695\) −20.1016 −0.762498
\(696\) 0 0
\(697\) 2.33906 0.0885983
\(698\) 0 0
\(699\) −7.26681 −0.274856
\(700\) 0 0
\(701\) −25.3079 −0.955867 −0.477934 0.878396i \(-0.658614\pi\)
−0.477934 + 0.878396i \(0.658614\pi\)
\(702\) 0 0
\(703\) 16.2574 0.613161
\(704\) 0 0
\(705\) −4.69371 −0.176775
\(706\) 0 0
\(707\) 7.78253 0.292692
\(708\) 0 0
\(709\) 20.3833 0.765510 0.382755 0.923850i \(-0.374975\pi\)
0.382755 + 0.923850i \(0.374975\pi\)
\(710\) 0 0
\(711\) −13.5956 −0.509874
\(712\) 0 0
\(713\) −1.19785 −0.0448599
\(714\) 0 0
\(715\) 13.2840 0.496794
\(716\) 0 0
\(717\) −2.88765 −0.107841
\(718\) 0 0
\(719\) 8.37523 0.312343 0.156172 0.987730i \(-0.450085\pi\)
0.156172 + 0.987730i \(0.450085\pi\)
\(720\) 0 0
\(721\) 8.44253 0.314416
\(722\) 0 0
\(723\) −9.94454 −0.369841
\(724\) 0 0
\(725\) −8.27114 −0.307182
\(726\) 0 0
\(727\) −42.6494 −1.58178 −0.790890 0.611958i \(-0.790382\pi\)
−0.790890 + 0.611958i \(0.790382\pi\)
\(728\) 0 0
\(729\) 25.1986 0.933283
\(730\) 0 0
\(731\) −3.12810 −0.115697
\(732\) 0 0
\(733\) 32.5756 1.20321 0.601603 0.798795i \(-0.294529\pi\)
0.601603 + 0.798795i \(0.294529\pi\)
\(734\) 0 0
\(735\) 8.55299 0.315482
\(736\) 0 0
\(737\) 5.29493 0.195041
\(738\) 0 0
\(739\) −29.2378 −1.07553 −0.537765 0.843095i \(-0.680731\pi\)
−0.537765 + 0.843095i \(0.680731\pi\)
\(740\) 0 0
\(741\) 21.3547 0.784483
\(742\) 0 0
\(743\) −19.1316 −0.701869 −0.350935 0.936400i \(-0.614136\pi\)
−0.350935 + 0.936400i \(0.614136\pi\)
\(744\) 0 0
\(745\) −4.01461 −0.147084
\(746\) 0 0
\(747\) −6.99722 −0.256015
\(748\) 0 0
\(749\) 3.17373 0.115966
\(750\) 0 0
\(751\) 27.5211 1.00426 0.502130 0.864792i \(-0.332550\pi\)
0.502130 + 0.864792i \(0.332550\pi\)
\(752\) 0 0
\(753\) −20.6184 −0.751377
\(754\) 0 0
\(755\) 10.8414 0.394558
\(756\) 0 0
\(757\) −9.38998 −0.341285 −0.170642 0.985333i \(-0.554584\pi\)
−0.170642 + 0.985333i \(0.554584\pi\)
\(758\) 0 0
\(759\) 5.32241 0.193191
\(760\) 0 0
\(761\) −37.0902 −1.34452 −0.672260 0.740315i \(-0.734676\pi\)
−0.672260 + 0.740315i \(0.734676\pi\)
\(762\) 0 0
\(763\) −5.13746 −0.185989
\(764\) 0 0
\(765\) −0.557994 −0.0201743
\(766\) 0 0
\(767\) 12.1090 0.437232
\(768\) 0 0
\(769\) 34.0797 1.22895 0.614473 0.788938i \(-0.289369\pi\)
0.614473 + 0.788938i \(0.289369\pi\)
\(770\) 0 0
\(771\) −14.6965 −0.529283
\(772\) 0 0
\(773\) −32.7693 −1.17863 −0.589315 0.807903i \(-0.700602\pi\)
−0.589315 + 0.807903i \(0.700602\pi\)
\(774\) 0 0
\(775\) −1.19785 −0.0430281
\(776\) 0 0
\(777\) −1.95242 −0.0700427
\(778\) 0 0
\(779\) 31.0671 1.11310
\(780\) 0 0
\(781\) −26.3629 −0.943340
\(782\) 0 0
\(783\) −46.0632 −1.64616
\(784\) 0 0
\(785\) 1.25789 0.0448961
\(786\) 0 0
\(787\) 7.38411 0.263215 0.131608 0.991302i \(-0.457986\pi\)
0.131608 + 0.991302i \(0.457986\pi\)
\(788\) 0 0
\(789\) 19.7927 0.704640
\(790\) 0 0
\(791\) 7.18877 0.255603
\(792\) 0 0
\(793\) −5.25959 −0.186773
\(794\) 0 0
\(795\) 15.0750 0.534656
\(796\) 0 0
\(797\) 26.1488 0.926237 0.463119 0.886296i \(-0.346730\pi\)
0.463119 + 0.886296i \(0.346730\pi\)
\(798\) 0 0
\(799\) 1.48349 0.0524820
\(800\) 0 0
\(801\) 10.2687 0.362827
\(802\) 0 0
\(803\) 25.9042 0.914138
\(804\) 0 0
\(805\) 0.504137 0.0177685
\(806\) 0 0
\(807\) −28.8193 −1.01449
\(808\) 0 0
\(809\) −10.5132 −0.369625 −0.184813 0.982774i \(-0.559168\pi\)
−0.184813 + 0.982774i \(0.559168\pi\)
\(810\) 0 0
\(811\) −29.3074 −1.02912 −0.514562 0.857453i \(-0.672045\pi\)
−0.514562 + 0.857453i \(0.672045\pi\)
\(812\) 0 0
\(813\) −40.4806 −1.41971
\(814\) 0 0
\(815\) −12.7624 −0.447047
\(816\) 0 0
\(817\) −41.5471 −1.45355
\(818\) 0 0
\(819\) 2.22142 0.0776229
\(820\) 0 0
\(821\) −39.1661 −1.36691 −0.683454 0.729994i \(-0.739523\pi\)
−0.683454 + 0.729994i \(0.739523\pi\)
\(822\) 0 0
\(823\) −15.3245 −0.534180 −0.267090 0.963672i \(-0.586062\pi\)
−0.267090 + 0.963672i \(0.586062\pi\)
\(824\) 0 0
\(825\) 5.32241 0.185303
\(826\) 0 0
\(827\) 22.8118 0.793243 0.396622 0.917982i \(-0.370182\pi\)
0.396622 + 0.917982i \(0.370182\pi\)
\(828\) 0 0
\(829\) −19.7511 −0.685984 −0.342992 0.939338i \(-0.611440\pi\)
−0.342992 + 0.939338i \(0.611440\pi\)
\(830\) 0 0
\(831\) 21.0045 0.728639
\(832\) 0 0
\(833\) −2.70325 −0.0936619
\(834\) 0 0
\(835\) −10.9315 −0.378300
\(836\) 0 0
\(837\) −6.67101 −0.230584
\(838\) 0 0
\(839\) −12.7833 −0.441329 −0.220664 0.975350i \(-0.570823\pi\)
−0.220664 + 0.975350i \(0.570823\pi\)
\(840\) 0 0
\(841\) 39.4117 1.35902
\(842\) 0 0
\(843\) −2.80827 −0.0967220
\(844\) 0 0
\(845\) −2.98606 −0.102724
\(846\) 0 0
\(847\) 3.33837 0.114708
\(848\) 0 0
\(849\) −24.8629 −0.853293
\(850\) 0 0
\(851\) 3.05452 0.104708
\(852\) 0 0
\(853\) 19.4643 0.666446 0.333223 0.942848i \(-0.391864\pi\)
0.333223 + 0.942848i \(0.391864\pi\)
\(854\) 0 0
\(855\) −7.41122 −0.253458
\(856\) 0 0
\(857\) −12.0525 −0.411705 −0.205853 0.978583i \(-0.565997\pi\)
−0.205853 + 0.978583i \(0.565997\pi\)
\(858\) 0 0
\(859\) 7.42232 0.253246 0.126623 0.991951i \(-0.459586\pi\)
0.126623 + 0.991951i \(0.459586\pi\)
\(860\) 0 0
\(861\) −3.73098 −0.127151
\(862\) 0 0
\(863\) 24.4442 0.832090 0.416045 0.909344i \(-0.363416\pi\)
0.416045 + 0.909344i \(0.363416\pi\)
\(864\) 0 0
\(865\) 11.7173 0.398399
\(866\) 0 0
\(867\) 21.3505 0.725102
\(868\) 0 0
\(869\) −40.9868 −1.39038
\(870\) 0 0
\(871\) 3.99149 0.135247
\(872\) 0 0
\(873\) 10.0701 0.340820
\(874\) 0 0
\(875\) 0.504137 0.0170429
\(876\) 0 0
\(877\) 35.4611 1.19744 0.598719 0.800960i \(-0.295677\pi\)
0.598719 + 0.800960i \(0.295677\pi\)
\(878\) 0 0
\(879\) −11.5274 −0.388811
\(880\) 0 0
\(881\) 19.7120 0.664113 0.332056 0.943260i \(-0.392258\pi\)
0.332056 + 0.943260i \(0.392258\pi\)
\(882\) 0 0
\(883\) −32.2916 −1.08670 −0.543349 0.839507i \(-0.682844\pi\)
−0.543349 + 0.839507i \(0.682844\pi\)
\(884\) 0 0
\(885\) 4.85165 0.163086
\(886\) 0 0
\(887\) 15.7766 0.529727 0.264864 0.964286i \(-0.414673\pi\)
0.264864 + 0.964286i \(0.414673\pi\)
\(888\) 0 0
\(889\) 4.74488 0.159138
\(890\) 0 0
\(891\) 12.1054 0.405546
\(892\) 0 0
\(893\) 19.7035 0.659353
\(894\) 0 0
\(895\) 7.44919 0.248999
\(896\) 0 0
\(897\) 4.01222 0.133964
\(898\) 0 0
\(899\) 9.90759 0.330436
\(900\) 0 0
\(901\) −4.76458 −0.158731
\(902\) 0 0
\(903\) 4.98956 0.166042
\(904\) 0 0
\(905\) −11.9249 −0.396398
\(906\) 0 0
\(907\) −46.7141 −1.55112 −0.775558 0.631276i \(-0.782532\pi\)
−0.775558 + 0.631276i \(0.782532\pi\)
\(908\) 0 0
\(909\) −21.4958 −0.712970
\(910\) 0 0
\(911\) 33.8989 1.12312 0.561560 0.827436i \(-0.310201\pi\)
0.561560 + 0.827436i \(0.310201\pi\)
\(912\) 0 0
\(913\) −21.0946 −0.698129
\(914\) 0 0
\(915\) −2.10732 −0.0696659
\(916\) 0 0
\(917\) 5.95846 0.196766
\(918\) 0 0
\(919\) 19.1171 0.630615 0.315308 0.948990i \(-0.397892\pi\)
0.315308 + 0.948990i \(0.397892\pi\)
\(920\) 0 0
\(921\) −36.2964 −1.19601
\(922\) 0 0
\(923\) −19.8733 −0.654137
\(924\) 0 0
\(925\) 3.05452 0.100432
\(926\) 0 0
\(927\) −23.3187 −0.765888
\(928\) 0 0
\(929\) 30.0512 0.985949 0.492974 0.870044i \(-0.335910\pi\)
0.492974 + 0.870044i \(0.335910\pi\)
\(930\) 0 0
\(931\) −35.9042 −1.17671
\(932\) 0 0
\(933\) −14.1241 −0.462401
\(934\) 0 0
\(935\) −1.68219 −0.0550136
\(936\) 0 0
\(937\) −31.6714 −1.03466 −0.517329 0.855786i \(-0.673074\pi\)
−0.517329 + 0.855786i \(0.673074\pi\)
\(938\) 0 0
\(939\) 29.7384 0.970475
\(940\) 0 0
\(941\) −24.9550 −0.813509 −0.406755 0.913537i \(-0.633340\pi\)
−0.406755 + 0.913537i \(0.633340\pi\)
\(942\) 0 0
\(943\) 5.83704 0.190080
\(944\) 0 0
\(945\) 2.80761 0.0913317
\(946\) 0 0
\(947\) 22.1419 0.719516 0.359758 0.933046i \(-0.382859\pi\)
0.359758 + 0.933046i \(0.382859\pi\)
\(948\) 0 0
\(949\) 19.5274 0.633887
\(950\) 0 0
\(951\) −36.2192 −1.17449
\(952\) 0 0
\(953\) −45.2529 −1.46589 −0.732943 0.680290i \(-0.761854\pi\)
−0.732943 + 0.680290i \(0.761854\pi\)
\(954\) 0 0
\(955\) 3.92017 0.126854
\(956\) 0 0
\(957\) −44.0224 −1.42304
\(958\) 0 0
\(959\) 7.23112 0.233505
\(960\) 0 0
\(961\) −29.5652 −0.953715
\(962\) 0 0
\(963\) −8.76602 −0.282481
\(964\) 0 0
\(965\) −2.96749 −0.0955268
\(966\) 0 0
\(967\) 23.4231 0.753236 0.376618 0.926369i \(-0.377087\pi\)
0.376618 + 0.926369i \(0.377087\pi\)
\(968\) 0 0
\(969\) −2.70420 −0.0868715
\(970\) 0 0
\(971\) 20.4616 0.656643 0.328322 0.944566i \(-0.393517\pi\)
0.328322 + 0.944566i \(0.393517\pi\)
\(972\) 0 0
\(973\) −10.1340 −0.324880
\(974\) 0 0
\(975\) 4.01222 0.128494
\(976\) 0 0
\(977\) 10.9208 0.349388 0.174694 0.984623i \(-0.444106\pi\)
0.174694 + 0.984623i \(0.444106\pi\)
\(978\) 0 0
\(979\) 30.9572 0.989398
\(980\) 0 0
\(981\) 14.1900 0.453050
\(982\) 0 0
\(983\) −43.1629 −1.37668 −0.688342 0.725387i \(-0.741661\pi\)
−0.688342 + 0.725387i \(0.741661\pi\)
\(984\) 0 0
\(985\) −6.35578 −0.202512
\(986\) 0 0
\(987\) −2.36627 −0.0753193
\(988\) 0 0
\(989\) −7.80606 −0.248218
\(990\) 0 0
\(991\) −21.9381 −0.696887 −0.348444 0.937330i \(-0.613290\pi\)
−0.348444 + 0.937330i \(0.613290\pi\)
\(992\) 0 0
\(993\) −0.851887 −0.0270338
\(994\) 0 0
\(995\) 21.5569 0.683401
\(996\) 0 0
\(997\) 14.5061 0.459414 0.229707 0.973260i \(-0.426223\pi\)
0.229707 + 0.973260i \(0.426223\pi\)
\(998\) 0 0
\(999\) 17.0111 0.538207
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7360.2.a.cs.1.2 5
4.3 odd 2 7360.2.a.cm.1.4 5
8.3 odd 2 3680.2.a.y.1.2 yes 5
8.5 even 2 3680.2.a.w.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3680.2.a.w.1.4 5 8.5 even 2
3680.2.a.y.1.2 yes 5 8.3 odd 2
7360.2.a.cm.1.4 5 4.3 odd 2
7360.2.a.cs.1.2 5 1.1 even 1 trivial