Properties

Label 74.2.f.b.33.1
Level $74$
Weight $2$
Character 74.33
Analytic conductor $0.591$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,2,Mod(7,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 74.f (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.590892974957\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 24x^{10} + 264x^{8} - 1687x^{6} + 6600x^{4} - 15000x^{2} + 15625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 33.1
Root \(-2.14169 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 74.33
Dual form 74.2.f.b.9.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.173648 - 0.984808i) q^{2} +(-0.238878 - 1.35474i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(0.266044 - 0.223238i) q^{5} -1.37564 q^{6} +(-0.365982 + 0.307095i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(1.04081 - 0.378824i) q^{9} +O(q^{10})\) \(q+(0.173648 - 0.984808i) q^{2} +(-0.238878 - 1.35474i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(0.266044 - 0.223238i) q^{5} -1.37564 q^{6} +(-0.365982 + 0.307095i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(1.04081 - 0.378824i) q^{9} +(-0.173648 - 0.300767i) q^{10} +(-1.29268 + 2.23899i) q^{11} +(-0.238878 + 1.35474i) q^{12} +(4.21288 + 1.53336i) q^{13} +(0.238878 + 0.413749i) q^{14} +(-0.365982 - 0.307095i) q^{15} +(0.766044 + 0.642788i) q^{16} +(-1.88864 + 0.687407i) q^{17} +(-0.192334 - 1.09078i) q^{18} +(0.611631 + 3.46873i) q^{19} +(-0.326352 + 0.118782i) q^{20} +(0.503461 + 0.422454i) q^{21} +(1.98050 + 1.66184i) q^{22} +(-2.60486 - 4.51175i) q^{23} +(1.29268 + 0.470498i) q^{24} +(-0.847296 + 4.80526i) q^{25} +(2.24162 - 3.88261i) q^{26} +(-2.82530 - 4.89356i) q^{27} +(0.448944 - 0.163402i) q^{28} +(-0.114111 + 0.197646i) q^{29} +(-0.365982 + 0.307095i) q^{30} -6.74658 q^{31} +(0.766044 - 0.642788i) q^{32} +(3.34205 + 1.21641i) q^{33} +(0.349006 + 1.97931i) q^{34} +(-0.0288122 + 0.163402i) q^{35} -1.10761 q^{36} +(2.42322 - 5.57925i) q^{37} +3.52224 q^{38} +(1.07095 - 6.07365i) q^{39} +(0.0603074 + 0.342020i) q^{40} +(-10.0701 - 3.66521i) q^{41} +(0.503461 - 0.422454i) q^{42} +8.85889 q^{43} +(1.98050 - 1.66184i) q^{44} +(0.192334 - 0.333132i) q^{45} +(-4.89554 + 1.78183i) q^{46} +(-3.72890 - 6.45864i) q^{47} +(0.687821 - 1.19134i) q^{48} +(-1.17590 + 6.66887i) q^{49} +(4.58512 + 1.66885i) q^{50} +(1.38241 + 2.39441i) q^{51} +(-3.43437 - 2.88178i) q^{52} +(3.35194 + 2.81261i) q^{53} +(-5.30983 + 1.93262i) q^{54} +(0.155916 + 0.884246i) q^{55} +(-0.0829614 - 0.470498i) q^{56} +(4.55314 - 1.65721i) q^{57} +(0.174828 + 0.146698i) q^{58} +(3.43016 + 2.87825i) q^{59} +(0.238878 + 0.413749i) q^{60} +(1.35175 + 0.491998i) q^{61} +(-1.17153 + 6.64409i) q^{62} +(-0.264583 + 0.458271i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(1.46312 - 0.532531i) q^{65} +(1.77827 - 3.08005i) q^{66} +(-8.06111 + 6.76408i) q^{67} +2.00984 q^{68} +(-5.49002 + 4.60667i) q^{69} +(0.155916 + 0.0567489i) q^{70} +(1.54193 + 8.74474i) q^{71} +(-0.192334 + 1.09078i) q^{72} +7.18667 q^{73} +(-5.07370 - 3.35524i) q^{74} +6.71229 q^{75} +(0.611631 - 3.46873i) q^{76} +(-0.214485 - 1.21641i) q^{77} +(-5.79541 - 2.10936i) q^{78} +(2.70857 - 2.27276i) q^{79} +0.347296 q^{80} +(-3.40919 + 2.86065i) q^{81} +(-5.35818 + 9.28064i) q^{82} +(-1.32932 + 0.483834i) q^{83} +(-0.328611 - 0.569170i) q^{84} +(-0.349006 + 0.604496i) q^{85} +(1.53833 - 8.72431i) q^{86} +(0.295018 + 0.107378i) q^{87} +(-1.29268 - 2.23899i) q^{88} +(2.92954 + 2.45818i) q^{89} +(-0.294673 - 0.247260i) q^{90} +(-2.01273 + 0.732572i) q^{91} +(0.904658 + 5.13057i) q^{92} +(1.61161 + 9.13989i) q^{93} +(-7.00804 + 2.55072i) q^{94} +(0.937074 + 0.786298i) q^{95} +(-1.05380 - 0.884246i) q^{96} +(-9.24175 - 16.0072i) q^{97} +(6.36336 + 2.31607i) q^{98} +(-0.497253 + 2.82006i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} - 6 q^{5} + 6 q^{7} - 6 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{3} - 6 q^{5} + 6 q^{7} - 6 q^{8} - 3 q^{9} + 3 q^{11} - 3 q^{12} - 6 q^{13} + 3 q^{14} + 6 q^{15} - 3 q^{17} + 6 q^{18} - 3 q^{19} - 6 q^{20} - 33 q^{21} - 3 q^{22} - 21 q^{23} - 3 q^{24} - 6 q^{25} + 3 q^{27} - 3 q^{28} + 6 q^{29} + 6 q^{30} + 42 q^{31} + 57 q^{33} - 3 q^{34} - 9 q^{35} + 24 q^{36} - 3 q^{37} + 42 q^{38} - 24 q^{39} + 12 q^{40} - 21 q^{41} - 33 q^{42} + 36 q^{43} - 3 q^{44} - 6 q^{45} + 3 q^{46} + 9 q^{47} - 12 q^{49} + 12 q^{50} + 3 q^{52} - 6 q^{53} - 27 q^{54} - 3 q^{56} - 36 q^{57} - 3 q^{58} - 6 q^{59} + 3 q^{60} - 18 q^{61} - 33 q^{62} + 36 q^{63} - 6 q^{64} + 3 q^{65} + 3 q^{66} - 27 q^{67} + 6 q^{68} - 12 q^{69} - 18 q^{71} + 6 q^{72} + 54 q^{73} + 3 q^{74} - 6 q^{75} - 3 q^{76} + 51 q^{77} - 33 q^{78} - 12 q^{79} - 36 q^{81} - 18 q^{82} - 6 q^{83} - 6 q^{84} + 3 q^{85} + 39 q^{87} + 3 q^{88} - 15 q^{89} - 15 q^{90} - 51 q^{91} - 6 q^{92} + 45 q^{93} - 12 q^{94} - 15 q^{95} + 6 q^{96} - 42 q^{97} + 51 q^{98} - 33 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/74\mathbb{Z}\right)^\times\).

\(n\) \(39\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.173648 0.984808i 0.122788 0.696364i
\(3\) −0.238878 1.35474i −0.137916 0.782162i −0.972784 0.231712i \(-0.925567\pi\)
0.834868 0.550450i \(-0.185544\pi\)
\(4\) −0.939693 0.342020i −0.469846 0.171010i
\(5\) 0.266044 0.223238i 0.118979 0.0998350i −0.581357 0.813649i \(-0.697478\pi\)
0.700336 + 0.713814i \(0.253034\pi\)
\(6\) −1.37564 −0.561604
\(7\) −0.365982 + 0.307095i −0.138328 + 0.116071i −0.709326 0.704880i \(-0.751001\pi\)
0.570998 + 0.820951i \(0.306556\pi\)
\(8\) −0.500000 + 0.866025i −0.176777 + 0.306186i
\(9\) 1.04081 0.378824i 0.346937 0.126275i
\(10\) −0.173648 0.300767i −0.0549124 0.0951110i
\(11\) −1.29268 + 2.23899i −0.389758 + 0.675081i −0.992417 0.122918i \(-0.960775\pi\)
0.602659 + 0.797999i \(0.294108\pi\)
\(12\) −0.238878 + 1.35474i −0.0689581 + 0.391081i
\(13\) 4.21288 + 1.53336i 1.16844 + 0.425278i 0.852106 0.523369i \(-0.175325\pi\)
0.316336 + 0.948647i \(0.397547\pi\)
\(14\) 0.238878 + 0.413749i 0.0638428 + 0.110579i
\(15\) −0.365982 0.307095i −0.0944962 0.0792917i
\(16\) 0.766044 + 0.642788i 0.191511 + 0.160697i
\(17\) −1.88864 + 0.687407i −0.458062 + 0.166721i −0.560737 0.827994i \(-0.689482\pi\)
0.102675 + 0.994715i \(0.467260\pi\)
\(18\) −0.192334 1.09078i −0.0453335 0.257099i
\(19\) 0.611631 + 3.46873i 0.140318 + 0.795782i 0.971008 + 0.239047i \(0.0768350\pi\)
−0.830690 + 0.556735i \(0.812054\pi\)
\(20\) −0.326352 + 0.118782i −0.0729745 + 0.0265605i
\(21\) 0.503461 + 0.422454i 0.109864 + 0.0921869i
\(22\) 1.98050 + 1.66184i 0.422245 + 0.354305i
\(23\) −2.60486 4.51175i −0.543151 0.940765i −0.998721 0.0505649i \(-0.983898\pi\)
0.455570 0.890200i \(-0.349435\pi\)
\(24\) 1.29268 + 0.470498i 0.263867 + 0.0960399i
\(25\) −0.847296 + 4.80526i −0.169459 + 0.961051i
\(26\) 2.24162 3.88261i 0.439619 0.761442i
\(27\) −2.82530 4.89356i −0.543729 0.941767i
\(28\) 0.448944 0.163402i 0.0848424 0.0308801i
\(29\) −0.114111 + 0.197646i −0.0211899 + 0.0367019i −0.876426 0.481537i \(-0.840079\pi\)
0.855236 + 0.518239i \(0.173412\pi\)
\(30\) −0.365982 + 0.307095i −0.0668189 + 0.0560677i
\(31\) −6.74658 −1.21172 −0.605861 0.795571i \(-0.707171\pi\)
−0.605861 + 0.795571i \(0.707171\pi\)
\(32\) 0.766044 0.642788i 0.135419 0.113630i
\(33\) 3.34205 + 1.21641i 0.581776 + 0.211749i
\(34\) 0.349006 + 1.97931i 0.0598540 + 0.339449i
\(35\) −0.0288122 + 0.163402i −0.00487015 + 0.0276200i
\(36\) −1.10761 −0.184601
\(37\) 2.42322 5.57925i 0.398376 0.917222i
\(38\) 3.52224 0.571383
\(39\) 1.07095 6.07365i 0.171489 0.972563i
\(40\) 0.0603074 + 0.342020i 0.00953543 + 0.0540781i
\(41\) −10.0701 3.66521i −1.57268 0.572410i −0.599086 0.800685i \(-0.704469\pi\)
−0.973597 + 0.228275i \(0.926691\pi\)
\(42\) 0.503461 0.422454i 0.0776857 0.0651860i
\(43\) 8.85889 1.35097 0.675484 0.737374i \(-0.263935\pi\)
0.675484 + 0.737374i \(0.263935\pi\)
\(44\) 1.98050 1.66184i 0.298572 0.250532i
\(45\) 0.192334 0.333132i 0.0286715 0.0496604i
\(46\) −4.89554 + 1.78183i −0.721807 + 0.262716i
\(47\) −3.72890 6.45864i −0.543916 0.942090i −0.998674 0.0514750i \(-0.983608\pi\)
0.454758 0.890615i \(-0.349726\pi\)
\(48\) 0.687821 1.19134i 0.0992785 0.171955i
\(49\) −1.17590 + 6.66887i −0.167986 + 0.952696i
\(50\) 4.58512 + 1.66885i 0.648434 + 0.236011i
\(51\) 1.38241 + 2.39441i 0.193577 + 0.335285i
\(52\) −3.43437 2.88178i −0.476261 0.399631i
\(53\) 3.35194 + 2.81261i 0.460424 + 0.386342i 0.843287 0.537464i \(-0.180617\pi\)
−0.382863 + 0.923805i \(0.625062\pi\)
\(54\) −5.30983 + 1.93262i −0.722576 + 0.262996i
\(55\) 0.155916 + 0.884246i 0.0210238 + 0.119232i
\(56\) −0.0829614 0.470498i −0.0110862 0.0628729i
\(57\) 4.55314 1.65721i 0.603078 0.219502i
\(58\) 0.174828 + 0.146698i 0.0229560 + 0.0192624i
\(59\) 3.43016 + 2.87825i 0.446569 + 0.374716i 0.838161 0.545423i \(-0.183631\pi\)
−0.391592 + 0.920139i \(0.628076\pi\)
\(60\) 0.238878 + 0.413749i 0.0308390 + 0.0534147i
\(61\) 1.35175 + 0.491998i 0.173074 + 0.0629939i 0.427104 0.904203i \(-0.359534\pi\)
−0.254030 + 0.967196i \(0.581756\pi\)
\(62\) −1.17153 + 6.64409i −0.148785 + 0.843800i
\(63\) −0.264583 + 0.458271i −0.0333343 + 0.0577367i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 1.46312 0.532531i 0.181477 0.0660523i
\(66\) 1.77827 3.08005i 0.218890 0.379128i
\(67\) −8.06111 + 6.76408i −0.984822 + 0.826363i −0.984810 0.173637i \(-0.944448\pi\)
−1.18267e−5 1.00000i \(0.500004\pi\)
\(68\) 2.00984 0.243729
\(69\) −5.49002 + 4.60667i −0.660921 + 0.554578i
\(70\) 0.155916 + 0.0567489i 0.0186356 + 0.00678280i
\(71\) 1.54193 + 8.74474i 0.182994 + 1.03781i 0.928506 + 0.371318i \(0.121094\pi\)
−0.745512 + 0.666492i \(0.767795\pi\)
\(72\) −0.192334 + 1.09078i −0.0226668 + 0.128550i
\(73\) 7.18667 0.841136 0.420568 0.907261i \(-0.361831\pi\)
0.420568 + 0.907261i \(0.361831\pi\)
\(74\) −5.07370 3.35524i −0.589805 0.390038i
\(75\) 6.71229 0.775069
\(76\) 0.611631 3.46873i 0.0701589 0.397891i
\(77\) −0.214485 1.21641i −0.0244429 0.138622i
\(78\) −5.79541 2.10936i −0.656201 0.238838i
\(79\) 2.70857 2.27276i 0.304738 0.255705i −0.477575 0.878591i \(-0.658484\pi\)
0.782313 + 0.622885i \(0.214040\pi\)
\(80\) 0.347296 0.0388289
\(81\) −3.40919 + 2.86065i −0.378799 + 0.317850i
\(82\) −5.35818 + 9.28064i −0.591712 + 1.02487i
\(83\) −1.32932 + 0.483834i −0.145912 + 0.0531077i −0.413944 0.910302i \(-0.635849\pi\)
0.268032 + 0.963410i \(0.413627\pi\)
\(84\) −0.328611 0.569170i −0.0358544 0.0621016i
\(85\) −0.349006 + 0.604496i −0.0378550 + 0.0655668i
\(86\) 1.53833 8.72431i 0.165882 0.940766i
\(87\) 0.295018 + 0.107378i 0.0316292 + 0.0115121i
\(88\) −1.29268 2.23899i −0.137800 0.238677i
\(89\) 2.92954 + 2.45818i 0.310531 + 0.260567i 0.784711 0.619861i \(-0.212811\pi\)
−0.474180 + 0.880428i \(0.657256\pi\)
\(90\) −0.294673 0.247260i −0.0310612 0.0260635i
\(91\) −2.01273 + 0.732572i −0.210991 + 0.0767944i
\(92\) 0.904658 + 5.13057i 0.0943172 + 0.534899i
\(93\) 1.61161 + 9.13989i 0.167116 + 0.947762i
\(94\) −7.00804 + 2.55072i −0.722824 + 0.263086i
\(95\) 0.937074 + 0.786298i 0.0961417 + 0.0806725i
\(96\) −1.05380 0.884246i −0.107553 0.0902480i
\(97\) −9.24175 16.0072i −0.938358 1.62528i −0.768534 0.639809i \(-0.779013\pi\)
−0.169824 0.985474i \(-0.554320\pi\)
\(98\) 6.36336 + 2.31607i 0.642797 + 0.233959i
\(99\) −0.497253 + 2.82006i −0.0499758 + 0.283427i
\(100\) 2.43969 4.22567i 0.243969 0.422567i
\(101\) −8.56431 14.8338i −0.852180 1.47602i −0.879236 0.476386i \(-0.841947\pi\)
0.0270562 0.999634i \(-0.491387\pi\)
\(102\) 2.59809 0.945627i 0.257249 0.0936310i
\(103\) 6.71012 11.6223i 0.661167 1.14518i −0.319142 0.947707i \(-0.603395\pi\)
0.980309 0.197468i \(-0.0632720\pi\)
\(104\) −3.43437 + 2.88178i −0.336768 + 0.282582i
\(105\) 0.228251 0.0222750
\(106\) 3.35194 2.81261i 0.325569 0.273185i
\(107\) 19.2261 + 6.99774i 1.85866 + 0.676497i 0.979984 + 0.199079i \(0.0637949\pi\)
0.878676 + 0.477418i \(0.158427\pi\)
\(108\) 0.981216 + 5.56475i 0.0944176 + 0.535469i
\(109\) 1.85087 10.4968i 0.177281 1.00541i −0.758197 0.652026i \(-0.773919\pi\)
0.935478 0.353385i \(-0.114970\pi\)
\(110\) 0.897887 0.0856102
\(111\) −8.13730 1.95009i −0.772359 0.185094i
\(112\) −0.477756 −0.0451437
\(113\) 2.12063 12.0267i 0.199492 1.13138i −0.706383 0.707830i \(-0.749674\pi\)
0.905875 0.423546i \(-0.139215\pi\)
\(114\) −0.841386 4.77174i −0.0788030 0.446914i
\(115\) −1.70020 0.618823i −0.158545 0.0577055i
\(116\) 0.174828 0.146698i 0.0162324 0.0136206i
\(117\) 4.96568 0.459077
\(118\) 3.43016 2.87825i 0.315772 0.264964i
\(119\) 0.480107 0.831570i 0.0440114 0.0762299i
\(120\) 0.448944 0.163402i 0.0409827 0.0149165i
\(121\) 2.15795 + 3.73768i 0.196177 + 0.339789i
\(122\) 0.719253 1.24578i 0.0651181 0.112788i
\(123\) −2.55990 + 14.5179i −0.230818 + 1.30904i
\(124\) 6.33971 + 2.30747i 0.569323 + 0.207217i
\(125\) 1.71554 + 2.97140i 0.153442 + 0.265770i
\(126\) 0.405364 + 0.340141i 0.0361127 + 0.0303022i
\(127\) −5.40029 4.53138i −0.479198 0.402095i 0.370938 0.928658i \(-0.379036\pi\)
−0.850136 + 0.526563i \(0.823481\pi\)
\(128\) −0.939693 + 0.342020i −0.0830579 + 0.0302306i
\(129\) −2.11619 12.0015i −0.186320 1.05668i
\(130\) −0.270373 1.53336i −0.0237133 0.134485i
\(131\) −1.86532 + 0.678920i −0.162974 + 0.0593175i −0.422219 0.906494i \(-0.638749\pi\)
0.259245 + 0.965812i \(0.416526\pi\)
\(132\) −2.72446 2.28610i −0.237134 0.198979i
\(133\) −1.28908 1.08167i −0.111777 0.0937923i
\(134\) 5.26152 + 9.11322i 0.454526 + 0.787262i
\(135\) −1.84408 0.671192i −0.158713 0.0577670i
\(136\) 0.349006 1.97931i 0.0299270 0.169724i
\(137\) −8.69897 + 15.0671i −0.743203 + 1.28727i 0.207826 + 0.978166i \(0.433361\pi\)
−0.951029 + 0.309100i \(0.899972\pi\)
\(138\) 3.58336 + 6.20656i 0.305036 + 0.528337i
\(139\) −0.692602 + 0.252086i −0.0587457 + 0.0213817i −0.371226 0.928543i \(-0.621062\pi\)
0.312480 + 0.949924i \(0.398840\pi\)
\(140\) 0.0829614 0.143693i 0.00701152 0.0121443i
\(141\) −7.85905 + 6.59453i −0.661852 + 0.555360i
\(142\) 8.87964 0.745163
\(143\) −8.87909 + 7.45044i −0.742507 + 0.623037i
\(144\) 1.04081 + 0.378824i 0.0867342 + 0.0315687i
\(145\) 0.0137635 + 0.0780564i 0.00114299 + 0.00648223i
\(146\) 1.24795 7.07749i 0.103281 0.585737i
\(147\) 9.31551 0.768330
\(148\) −4.18530 + 4.41398i −0.344030 + 0.362827i
\(149\) −19.0346 −1.55938 −0.779689 0.626167i \(-0.784623\pi\)
−0.779689 + 0.626167i \(0.784623\pi\)
\(150\) 1.16558 6.61032i 0.0951690 0.539730i
\(151\) −1.12385 6.37365i −0.0914574 0.518681i −0.995775 0.0918214i \(-0.970731\pi\)
0.904318 0.426859i \(-0.140380\pi\)
\(152\) −3.30983 1.20468i −0.268462 0.0977123i
\(153\) −1.70531 + 1.43092i −0.137866 + 0.115683i
\(154\) −1.23517 −0.0995330
\(155\) −1.79489 + 1.50609i −0.144169 + 0.120972i
\(156\) −3.08368 + 5.34108i −0.246892 + 0.427629i
\(157\) −11.3628 + 4.13571i −0.906847 + 0.330065i −0.752993 0.658028i \(-0.771391\pi\)
−0.153854 + 0.988094i \(0.549169\pi\)
\(158\) −1.76789 3.06208i −0.140646 0.243606i
\(159\) 3.00966 5.21289i 0.238682 0.413409i
\(160\) 0.0603074 0.342020i 0.00476772 0.0270391i
\(161\) 2.33887 + 0.851279i 0.184329 + 0.0670902i
\(162\) 2.22519 + 3.85415i 0.174828 + 0.302810i
\(163\) 11.2965 + 9.47892i 0.884813 + 0.742446i 0.967163 0.254157i \(-0.0817980\pi\)
−0.0823498 + 0.996603i \(0.526242\pi\)
\(164\) 8.20921 + 6.88834i 0.641031 + 0.537889i
\(165\) 1.16068 0.422454i 0.0903590 0.0328880i
\(166\) 0.245649 + 1.39315i 0.0190661 + 0.108129i
\(167\) 1.44239 + 8.18020i 0.111616 + 0.633003i 0.988370 + 0.152066i \(0.0485925\pi\)
−0.876755 + 0.480937i \(0.840296\pi\)
\(168\) −0.617586 + 0.224783i −0.0476478 + 0.0173424i
\(169\) 5.43855 + 4.56349i 0.418350 + 0.351038i
\(170\) 0.534708 + 0.448673i 0.0410102 + 0.0344117i
\(171\) 1.95063 + 3.37859i 0.149168 + 0.258367i
\(172\) −8.32464 3.02992i −0.634748 0.231029i
\(173\) −1.14829 + 6.51227i −0.0873028 + 0.495119i 0.909533 + 0.415632i \(0.136439\pi\)
−0.996836 + 0.0794872i \(0.974672\pi\)
\(174\) 0.156976 0.271890i 0.0119003 0.0206119i
\(175\) −1.16558 2.01884i −0.0881093 0.152610i
\(176\) −2.42945 + 0.884246i −0.183126 + 0.0666526i
\(177\) 3.07990 5.33454i 0.231499 0.400968i
\(178\) 2.92954 2.45818i 0.219579 0.184248i
\(179\) 4.53985 0.339325 0.169662 0.985502i \(-0.445732\pi\)
0.169662 + 0.985502i \(0.445732\pi\)
\(180\) −0.294673 + 0.247260i −0.0219636 + 0.0184297i
\(181\) 1.46942 + 0.534826i 0.109221 + 0.0397533i 0.396053 0.918228i \(-0.370380\pi\)
−0.286831 + 0.957981i \(0.592602\pi\)
\(182\) 0.371937 + 2.10936i 0.0275698 + 0.156356i
\(183\) 0.343627 1.94881i 0.0254016 0.144060i
\(184\) 5.20972 0.384066
\(185\) −0.600813 2.02528i −0.0441727 0.148902i
\(186\) 9.28089 0.680508
\(187\) 0.902307 5.11724i 0.0659832 0.374209i
\(188\) 1.29503 + 7.34450i 0.0944500 + 0.535653i
\(189\) 2.53680 + 0.923320i 0.184525 + 0.0671616i
\(190\) 0.937074 0.786298i 0.0679825 0.0570441i
\(191\) 23.0183 1.66555 0.832773 0.553615i \(-0.186752\pi\)
0.832773 + 0.553615i \(0.186752\pi\)
\(192\) −1.05380 + 0.884246i −0.0760517 + 0.0638150i
\(193\) 5.27705 9.14013i 0.379851 0.657921i −0.611190 0.791484i \(-0.709309\pi\)
0.991040 + 0.133564i \(0.0426420\pi\)
\(194\) −17.3688 + 6.32173i −1.24701 + 0.453874i
\(195\) −1.07095 1.85494i −0.0766923 0.132835i
\(196\) 3.38587 5.86451i 0.241848 0.418893i
\(197\) 0.838489 4.75531i 0.0597399 0.338802i −0.940259 0.340461i \(-0.889417\pi\)
0.999999 + 0.00165899i \(0.000528074\pi\)
\(198\) 2.69087 + 0.979397i 0.191232 + 0.0696027i
\(199\) −5.14608 8.91327i −0.364796 0.631845i 0.623947 0.781466i \(-0.285528\pi\)
−0.988743 + 0.149621i \(0.952195\pi\)
\(200\) −3.73783 3.13641i −0.264304 0.221778i
\(201\) 11.0892 + 9.30495i 0.782173 + 0.656321i
\(202\) −16.0956 + 5.85833i −1.13248 + 0.412191i
\(203\) −0.0189336 0.107378i −0.00132888 0.00753644i
\(204\) −0.480107 2.72282i −0.0336142 0.190636i
\(205\) −3.49730 + 1.27291i −0.244262 + 0.0889042i
\(206\) −10.2805 8.62636i −0.716276 0.601027i
\(207\) −4.42032 3.70909i −0.307234 0.257800i
\(208\) 2.24162 + 3.88261i 0.155429 + 0.269210i
\(209\) −8.55710 3.11453i −0.591907 0.215437i
\(210\) 0.0396353 0.224783i 0.00273509 0.0155115i
\(211\) −0.685470 + 1.18727i −0.0471897 + 0.0817349i −0.888655 0.458576i \(-0.848360\pi\)
0.841466 + 0.540310i \(0.181693\pi\)
\(212\) −2.18782 3.78942i −0.150260 0.260258i
\(213\) 11.4785 4.17785i 0.786497 0.286262i
\(214\) 10.2300 17.7189i 0.699309 1.21124i
\(215\) 2.35686 1.97764i 0.160736 0.134874i
\(216\) 5.65060 0.384475
\(217\) 2.46913 2.07184i 0.167615 0.140646i
\(218\) −10.0159 3.64550i −0.678365 0.246904i
\(219\) −1.71674 9.73610i −0.116006 0.657904i
\(220\) 0.155916 0.884246i 0.0105119 0.0596159i
\(221\) −9.01064 −0.606121
\(222\) −3.33349 + 7.67505i −0.223729 + 0.515116i
\(223\) −29.2612 −1.95947 −0.979736 0.200292i \(-0.935811\pi\)
−0.979736 + 0.200292i \(0.935811\pi\)
\(224\) −0.0829614 + 0.470498i −0.00554309 + 0.0314364i
\(225\) 0.938471 + 5.32234i 0.0625648 + 0.354822i
\(226\) −11.4757 4.17683i −0.763355 0.277838i
\(227\) 7.89376 6.62365i 0.523927 0.439627i −0.342071 0.939674i \(-0.611128\pi\)
0.865998 + 0.500047i \(0.166684\pi\)
\(228\) −4.84535 −0.320891
\(229\) 12.0022 10.0711i 0.793128 0.665514i −0.153389 0.988166i \(-0.549019\pi\)
0.946518 + 0.322652i \(0.104574\pi\)
\(230\) −0.904658 + 1.56691i −0.0596514 + 0.103319i
\(231\) −1.59668 + 0.581145i −0.105054 + 0.0382366i
\(232\) −0.114111 0.197646i −0.00749175 0.0129761i
\(233\) −3.60202 + 6.23888i −0.235976 + 0.408723i −0.959556 0.281518i \(-0.909162\pi\)
0.723580 + 0.690241i \(0.242495\pi\)
\(234\) 0.862281 4.89024i 0.0563691 0.319685i
\(235\) −2.43387 0.885855i −0.158768 0.0577868i
\(236\) −2.23888 3.87785i −0.145739 0.252427i
\(237\) −3.72602 3.12651i −0.242031 0.203088i
\(238\) −0.735567 0.617214i −0.0476797 0.0400081i
\(239\) 20.6291 7.50838i 1.33439 0.485677i 0.426346 0.904560i \(-0.359801\pi\)
0.908040 + 0.418884i \(0.137579\pi\)
\(240\) −0.0829614 0.470498i −0.00535514 0.0303705i
\(241\) 2.57180 + 14.5854i 0.165664 + 0.939527i 0.948377 + 0.317145i \(0.102724\pi\)
−0.782713 + 0.622383i \(0.786165\pi\)
\(242\) 4.05562 1.47612i 0.260705 0.0948889i
\(243\) −8.29600 6.96117i −0.532189 0.446559i
\(244\) −1.10196 0.924653i −0.0705457 0.0591949i
\(245\) 1.17590 + 2.03672i 0.0751256 + 0.130121i
\(246\) 13.8528 + 5.04202i 0.883224 + 0.321467i
\(247\) −2.74210 + 15.5512i −0.174475 + 0.989499i
\(248\) 3.37329 5.84271i 0.214204 0.371013i
\(249\) 0.973018 + 1.68532i 0.0616625 + 0.106803i
\(250\) 3.22416 1.17350i 0.203913 0.0742184i
\(251\) −6.64493 + 11.5094i −0.419424 + 0.726464i −0.995882 0.0906631i \(-0.971101\pi\)
0.576457 + 0.817127i \(0.304435\pi\)
\(252\) 0.405364 0.340141i 0.0255356 0.0214269i
\(253\) 13.4690 0.846790
\(254\) −5.40029 + 4.53138i −0.338844 + 0.284324i
\(255\) 0.902307 + 0.328413i 0.0565046 + 0.0205660i
\(256\) 0.173648 + 0.984808i 0.0108530 + 0.0615505i
\(257\) 3.03928 17.2366i 0.189585 1.07519i −0.730336 0.683088i \(-0.760636\pi\)
0.919921 0.392104i \(-0.128253\pi\)
\(258\) −12.1867 −0.758709
\(259\) 0.826504 + 2.78607i 0.0513565 + 0.173118i
\(260\) −1.55702 −0.0965621
\(261\) −0.0438948 + 0.248940i −0.00271702 + 0.0154090i
\(262\) 0.344697 + 1.95487i 0.0212954 + 0.120772i
\(263\) 13.2811 + 4.83392i 0.818947 + 0.298072i 0.717314 0.696750i \(-0.245371\pi\)
0.101633 + 0.994822i \(0.467593\pi\)
\(264\) −2.72446 + 2.28610i −0.167679 + 0.140700i
\(265\) 1.51964 0.0933510
\(266\) −1.28908 + 1.08167i −0.0790385 + 0.0663211i
\(267\) 2.63040 4.55599i 0.160978 0.278822i
\(268\) 9.88842 3.59909i 0.604031 0.219849i
\(269\) 13.4051 + 23.2183i 0.817324 + 1.41565i 0.907647 + 0.419734i \(0.137876\pi\)
−0.0903238 + 0.995912i \(0.528790\pi\)
\(270\) −0.981216 + 1.69952i −0.0597149 + 0.103429i
\(271\) −1.89500 + 10.7471i −0.115113 + 0.652838i 0.871581 + 0.490251i \(0.163095\pi\)
−0.986694 + 0.162587i \(0.948016\pi\)
\(272\) −1.88864 0.687407i −0.114515 0.0416802i
\(273\) 1.47324 + 2.55173i 0.0891647 + 0.154438i
\(274\) 13.3276 + 11.1832i 0.805150 + 0.675601i
\(275\) −9.66364 8.10875i −0.582739 0.488976i
\(276\) 6.73451 2.45116i 0.405370 0.147543i
\(277\) 1.06680 + 6.05012i 0.0640978 + 0.363517i 0.999938 + 0.0110932i \(0.00353116\pi\)
−0.935841 + 0.352423i \(0.885358\pi\)
\(278\) 0.127988 + 0.725854i 0.00767619 + 0.0435338i
\(279\) −7.02191 + 2.55577i −0.420391 + 0.153010i
\(280\) −0.127104 0.106653i −0.00759593 0.00637374i
\(281\) 2.26215 + 1.89817i 0.134948 + 0.113235i 0.707763 0.706449i \(-0.249704\pi\)
−0.572815 + 0.819685i \(0.694149\pi\)
\(282\) 5.12963 + 8.88478i 0.305465 + 0.529081i
\(283\) −13.6016 4.95056i −0.808529 0.294280i −0.0955129 0.995428i \(-0.530449\pi\)
−0.713016 + 0.701148i \(0.752671\pi\)
\(284\) 1.54193 8.74474i 0.0914969 0.518905i
\(285\) 0.841386 1.45732i 0.0498394 0.0863244i
\(286\) 5.79541 + 10.0380i 0.342690 + 0.593556i
\(287\) 4.81104 1.75108i 0.283987 0.103363i
\(288\) 0.553803 0.959216i 0.0326332 0.0565223i
\(289\) −9.92834 + 8.33086i −0.584020 + 0.490051i
\(290\) 0.0792606 0.00465434
\(291\) −19.4780 + 16.3440i −1.14182 + 0.958100i
\(292\) −6.75326 2.45799i −0.395205 0.143843i
\(293\) −2.18486 12.3910i −0.127641 0.723888i −0.979704 0.200449i \(-0.935760\pi\)
0.852063 0.523439i \(-0.175351\pi\)
\(294\) 1.61762 9.17398i 0.0943416 0.535038i
\(295\) 1.55511 0.0905419
\(296\) 3.62016 + 4.88820i 0.210417 + 0.284121i
\(297\) 14.6089 0.847691
\(298\) −3.30533 + 18.7455i −0.191473 + 1.08589i
\(299\) −4.05581 23.0016i −0.234554 1.33022i
\(300\) −6.30749 2.29574i −0.364163 0.132545i
\(301\) −3.24220 + 2.72053i −0.186877 + 0.156808i
\(302\) −6.47198 −0.372420
\(303\) −18.0502 + 15.1459i −1.03696 + 0.870110i
\(304\) −1.76112 + 3.05035i −0.101007 + 0.174950i
\(305\) 0.469459 0.170869i 0.0268811 0.00978393i
\(306\) 1.11306 + 1.92787i 0.0636293 + 0.110209i
\(307\) 9.44985 16.3676i 0.539331 0.934149i −0.459609 0.888121i \(-0.652010\pi\)
0.998940 0.0460279i \(-0.0146563\pi\)
\(308\) −0.214485 + 1.21641i −0.0122214 + 0.0693112i
\(309\) −17.3481 6.31419i −0.986898 0.359201i
\(310\) 1.17153 + 2.02915i 0.0665385 + 0.115248i
\(311\) −0.0868584 0.0728829i −0.00492529 0.00413281i 0.640322 0.768107i \(-0.278801\pi\)
−0.645247 + 0.763974i \(0.723246\pi\)
\(312\) 4.72446 + 3.96430i 0.267470 + 0.224434i
\(313\) −8.62740 + 3.14012i −0.487650 + 0.177490i −0.574131 0.818764i \(-0.694660\pi\)
0.0864813 + 0.996253i \(0.472438\pi\)
\(314\) 2.09975 + 11.9083i 0.118496 + 0.672024i
\(315\) 0.0319126 + 0.180985i 0.00179807 + 0.0101974i
\(316\) −3.32255 + 1.20931i −0.186908 + 0.0680290i
\(317\) 20.1198 + 16.8826i 1.13004 + 0.948219i 0.999068 0.0431670i \(-0.0137447\pi\)
0.130975 + 0.991386i \(0.458189\pi\)
\(318\) −4.61107 3.86915i −0.258576 0.216971i
\(319\) −0.295018 0.510986i −0.0165178 0.0286097i
\(320\) −0.326352 0.118782i −0.0182436 0.00664014i
\(321\) 4.88744 27.7181i 0.272791 1.54707i
\(322\) 1.24449 2.15551i 0.0693525 0.120122i
\(323\) −3.53958 6.13074i −0.196948 0.341123i
\(324\) 4.18199 1.52212i 0.232333 0.0845623i
\(325\) −10.9378 + 18.9447i −0.606717 + 1.05087i
\(326\) 11.2965 9.47892i 0.625657 0.524989i
\(327\) −14.6626 −0.810844
\(328\) 8.20921 6.88834i 0.453278 0.380345i
\(329\) 3.34813 + 1.21862i 0.184588 + 0.0671847i
\(330\) −0.214485 1.21641i −0.0118070 0.0669610i
\(331\) −4.96254 + 28.1439i −0.272766 + 1.54693i 0.473205 + 0.880952i \(0.343097\pi\)
−0.745971 + 0.665979i \(0.768014\pi\)
\(332\) 1.41464 0.0776383
\(333\) 0.408565 6.72491i 0.0223892 0.368523i
\(334\) 8.30639 0.454506
\(335\) −0.634617 + 3.59909i −0.0346728 + 0.196639i
\(336\) 0.114125 + 0.647237i 0.00622604 + 0.0353096i
\(337\) 9.18348 + 3.34251i 0.500256 + 0.182078i 0.579809 0.814752i \(-0.303127\pi\)
−0.0795532 + 0.996831i \(0.525349\pi\)
\(338\) 5.43855 4.56349i 0.295818 0.248221i
\(339\) −16.7997 −0.912432
\(340\) 0.534708 0.448673i 0.0289986 0.0243327i
\(341\) 8.72118 15.1055i 0.472278 0.818010i
\(342\) 3.66599 1.33431i 0.198234 0.0721512i
\(343\) −3.28977 5.69804i −0.177631 0.307665i
\(344\) −4.42945 + 7.67203i −0.238820 + 0.413648i
\(345\) −0.432206 + 2.45116i −0.0232692 + 0.131966i
\(346\) 6.21394 + 2.26169i 0.334063 + 0.121589i
\(347\) −8.28817 14.3555i −0.444932 0.770645i 0.553115 0.833105i \(-0.313439\pi\)
−0.998047 + 0.0624595i \(0.980106\pi\)
\(348\) −0.240501 0.201804i −0.0128922 0.0108178i
\(349\) 14.3165 + 12.0129i 0.766342 + 0.643038i 0.939769 0.341809i \(-0.111040\pi\)
−0.173427 + 0.984847i \(0.555484\pi\)
\(350\) −2.19057 + 0.797302i −0.117091 + 0.0426176i
\(351\) −4.39904 24.9482i −0.234803 1.33164i
\(352\) 0.448944 + 2.54609i 0.0239288 + 0.135707i
\(353\) −5.07813 + 1.84829i −0.270282 + 0.0983745i −0.473606 0.880737i \(-0.657048\pi\)
0.203324 + 0.979112i \(0.434826\pi\)
\(354\) −4.71867 3.95944i −0.250795 0.210442i
\(355\) 2.36238 + 1.98227i 0.125382 + 0.105208i
\(356\) −1.91212 3.31190i −0.101342 0.175530i
\(357\) −1.24125 0.451779i −0.0656940 0.0239107i
\(358\) 0.788337 4.47088i 0.0416649 0.236294i
\(359\) 5.28319 9.15075i 0.278836 0.482958i −0.692260 0.721649i \(-0.743385\pi\)
0.971096 + 0.238690i \(0.0767180\pi\)
\(360\) 0.192334 + 0.333132i 0.0101369 + 0.0175576i
\(361\) 6.19614 2.25521i 0.326113 0.118695i
\(362\) 0.781863 1.35423i 0.0410938 0.0711766i
\(363\) 4.54811 3.81632i 0.238714 0.200305i
\(364\) 2.14190 0.112266
\(365\) 1.91197 1.60434i 0.100077 0.0839748i
\(366\) −1.85953 0.676813i −0.0971991 0.0353776i
\(367\) −0.0374864 0.212596i −0.00195677 0.0110974i 0.983814 0.179194i \(-0.0573490\pi\)
−0.985771 + 0.168097i \(0.946238\pi\)
\(368\) 0.904658 5.13057i 0.0471586 0.267450i
\(369\) −11.8695 −0.617902
\(370\) −2.09884 + 0.239999i −0.109114 + 0.0124769i
\(371\) −2.09049 −0.108533
\(372\) 1.61161 9.13989i 0.0835580 0.473881i
\(373\) −3.43905 19.5038i −0.178067 1.00987i −0.934543 0.355849i \(-0.884192\pi\)
0.756476 0.654021i \(-0.226919\pi\)
\(374\) −4.88281 1.77720i −0.252484 0.0918967i
\(375\) 3.61568 3.03391i 0.186713 0.156671i
\(376\) 7.45780 0.384607
\(377\) −0.783798 + 0.657684i −0.0403676 + 0.0338725i
\(378\) 1.34980 2.33793i 0.0694264 0.120250i
\(379\) 21.7031 7.89927i 1.11481 0.405758i 0.282056 0.959398i \(-0.408984\pi\)
0.832756 + 0.553640i \(0.186761\pi\)
\(380\) −0.611631 1.05938i −0.0313760 0.0543449i
\(381\) −4.84885 + 8.39845i −0.248414 + 0.430266i
\(382\) 3.99708 22.6686i 0.204509 1.15983i
\(383\) 4.77929 + 1.73952i 0.244210 + 0.0888853i 0.461226 0.887283i \(-0.347410\pi\)
−0.217015 + 0.976168i \(0.569632\pi\)
\(384\) 0.687821 + 1.19134i 0.0351002 + 0.0607954i
\(385\) −0.328611 0.275737i −0.0167475 0.0140529i
\(386\) −8.08492 6.78405i −0.411511 0.345299i
\(387\) 9.22042 3.35596i 0.468701 0.170593i
\(388\) 3.20963 + 18.2027i 0.162944 + 0.924102i
\(389\) −5.06138 28.7045i −0.256622 1.45538i −0.791874 0.610684i \(-0.790895\pi\)
0.535252 0.844692i \(-0.320217\pi\)
\(390\) −2.01273 + 0.732572i −0.101918 + 0.0370952i
\(391\) 8.02104 + 6.73045i 0.405642 + 0.340374i
\(392\) −5.18746 4.35280i −0.262006 0.219849i
\(393\) 1.36535 + 2.36485i 0.0688726 + 0.119291i
\(394\) −4.53746 1.65150i −0.228594 0.0832014i
\(395\) 0.213234 1.20931i 0.0107290 0.0608470i
\(396\) 1.43178 2.47992i 0.0719498 0.124621i
\(397\) 7.99625 + 13.8499i 0.401320 + 0.695107i 0.993886 0.110416i \(-0.0352182\pi\)
−0.592565 + 0.805522i \(0.701885\pi\)
\(398\) −9.67147 + 3.52013i −0.484787 + 0.176448i
\(399\) −1.15745 + 2.00476i −0.0579448 + 0.100363i
\(400\) −3.73783 + 3.13641i −0.186891 + 0.156820i
\(401\) −5.43983 −0.271652 −0.135826 0.990733i \(-0.543369\pi\)
−0.135826 + 0.990733i \(0.543369\pi\)
\(402\) 11.0892 9.30495i 0.553080 0.464089i
\(403\) −28.4225 10.3450i −1.41583 0.515319i
\(404\) 2.97435 + 16.8684i 0.147980 + 0.839234i
\(405\) −0.268391 + 1.52212i −0.0133365 + 0.0756348i
\(406\) −0.109034 −0.00541128
\(407\) 9.35942 + 12.6378i 0.463929 + 0.626431i
\(408\) −2.76483 −0.136879
\(409\) −6.55076 + 37.1512i −0.323914 + 1.83701i 0.193283 + 0.981143i \(0.438086\pi\)
−0.517198 + 0.855866i \(0.673025\pi\)
\(410\) 0.646275 + 3.66521i 0.0319173 + 0.181012i
\(411\) 22.4900 + 8.18569i 1.10935 + 0.403770i
\(412\) −10.2805 + 8.62636i −0.506484 + 0.424990i
\(413\) −2.13927 −0.105267
\(414\) −4.42032 + 3.70909i −0.217247 + 0.182292i
\(415\) −0.245649 + 0.425477i −0.0120584 + 0.0208858i
\(416\) 4.21288 1.53336i 0.206553 0.0751792i
\(417\) 0.506960 + 0.878080i 0.0248259 + 0.0429998i
\(418\) −4.55314 + 7.88627i −0.222701 + 0.385730i
\(419\) 1.07518 6.09766i 0.0525261 0.297890i −0.947216 0.320596i \(-0.896117\pi\)
0.999742 + 0.0227055i \(0.00722800\pi\)
\(420\) −0.214485 0.0780663i −0.0104658 0.00380924i
\(421\) 5.05431 + 8.75433i 0.246332 + 0.426660i 0.962505 0.271263i \(-0.0874412\pi\)
−0.716173 + 0.697923i \(0.754108\pi\)
\(422\) 1.05020 + 0.881223i 0.0511230 + 0.0428973i
\(423\) −6.32776 5.30962i −0.307666 0.258163i
\(424\) −4.11176 + 1.49656i −0.199685 + 0.0726793i
\(425\) −1.70293 9.65782i −0.0826044 0.468473i
\(426\) −2.12115 12.0296i −0.102770 0.582838i
\(427\) −0.645808 + 0.235055i −0.0312528 + 0.0113751i
\(428\) −15.6733 13.1514i −0.757597 0.635699i
\(429\) 12.2145 + 10.2491i 0.589719 + 0.494833i
\(430\) −1.53833 2.66447i −0.0741849 0.128492i
\(431\) 32.1170 + 11.6896i 1.54702 + 0.563070i 0.967716 0.252042i \(-0.0811020\pi\)
0.579304 + 0.815111i \(0.303324\pi\)
\(432\) 0.981216 5.56475i 0.0472088 0.267734i
\(433\) 0.343160 0.594370i 0.0164912 0.0285636i −0.857662 0.514214i \(-0.828084\pi\)
0.874153 + 0.485650i \(0.161417\pi\)
\(434\) −1.61161 2.79139i −0.0773597 0.133991i
\(435\) 0.102459 0.0372919i 0.00491252 0.00178801i
\(436\) −5.32937 + 9.23073i −0.255230 + 0.442072i
\(437\) 14.0568 11.7951i 0.672430 0.564236i
\(438\) −9.88629 −0.472385
\(439\) 16.4768 13.8257i 0.786393 0.659862i −0.158456 0.987366i \(-0.550652\pi\)
0.944850 + 0.327503i \(0.106207\pi\)
\(440\) −0.843738 0.307095i −0.0402236 0.0146402i
\(441\) 1.30244 + 7.38649i 0.0620208 + 0.351738i
\(442\) −1.56468 + 8.87374i −0.0744243 + 0.422081i
\(443\) −28.5971 −1.35869 −0.679344 0.733820i \(-0.737736\pi\)
−0.679344 + 0.733820i \(0.737736\pi\)
\(444\) 6.97959 + 4.61561i 0.331237 + 0.219047i
\(445\) 1.32815 0.0629602
\(446\) −5.08115 + 28.8166i −0.240599 + 1.36451i
\(447\) 4.54695 + 25.7870i 0.215063 + 1.21969i
\(448\) 0.448944 + 0.163402i 0.0212106 + 0.00772002i
\(449\) −26.4813 + 22.2204i −1.24973 + 1.04865i −0.253031 + 0.967458i \(0.581427\pi\)
−0.996699 + 0.0811896i \(0.974128\pi\)
\(450\) 5.40444 0.254768
\(451\) 21.2238 17.8089i 0.999388 0.838587i
\(452\) −6.10611 + 10.5761i −0.287207 + 0.497458i
\(453\) −8.36620 + 3.04505i −0.393079 + 0.143069i
\(454\) −5.15229 8.92402i −0.241809 0.418825i
\(455\) −0.371937 + 0.644213i −0.0174367 + 0.0302012i
\(456\) −0.841386 + 4.77174i −0.0394015 + 0.223457i
\(457\) −30.9238 11.2553i −1.44655 0.526503i −0.504928 0.863162i \(-0.668481\pi\)
−0.941627 + 0.336659i \(0.890703\pi\)
\(458\) −7.83389 13.5687i −0.366053 0.634023i
\(459\) 8.69983 + 7.30003i 0.406074 + 0.340736i
\(460\) 1.38602 + 1.16301i 0.0646234 + 0.0542255i
\(461\) 17.0455 6.20405i 0.793888 0.288952i 0.0869368 0.996214i \(-0.472292\pi\)
0.706951 + 0.707262i \(0.250070\pi\)
\(462\) 0.295055 + 1.67334i 0.0137272 + 0.0778509i
\(463\) 0.0589368 + 0.334247i 0.00273903 + 0.0155338i 0.986147 0.165876i \(-0.0530451\pi\)
−0.983408 + 0.181410i \(0.941934\pi\)
\(464\) −0.214458 + 0.0780564i −0.00995598 + 0.00362368i
\(465\) 2.46913 + 2.07184i 0.114503 + 0.0960795i
\(466\) 5.51861 + 4.63067i 0.255645 + 0.214512i
\(467\) 7.10101 + 12.2993i 0.328596 + 0.569144i 0.982233 0.187663i \(-0.0600913\pi\)
−0.653638 + 0.756808i \(0.726758\pi\)
\(468\) −4.66621 1.69836i −0.215696 0.0785068i
\(469\) 0.873006 4.95106i 0.0403117 0.228619i
\(470\) −1.29503 + 2.24306i −0.0597354 + 0.103465i
\(471\) 8.31714 + 14.4057i 0.383233 + 0.663780i
\(472\) −4.20771 + 1.53148i −0.193676 + 0.0704922i
\(473\) −11.4517 + 19.8350i −0.526551 + 0.912013i
\(474\) −3.72602 + 3.12651i −0.171142 + 0.143605i
\(475\) −17.1864 −0.788566
\(476\) −0.735567 + 0.617214i −0.0337147 + 0.0282900i
\(477\) 4.55421 + 1.65760i 0.208523 + 0.0758962i
\(478\) −3.81210 21.6195i −0.174362 0.988853i
\(479\) −5.90065 + 33.4642i −0.269608 + 1.52902i 0.485979 + 0.873971i \(0.338463\pi\)
−0.755586 + 0.655049i \(0.772648\pi\)
\(480\) −0.477756 −0.0218065
\(481\) 18.7637 19.7890i 0.855553 0.902301i
\(482\) 14.8104 0.674595
\(483\) 0.594561 3.37192i 0.0270534 0.153428i
\(484\) −0.749448 4.25033i −0.0340658 0.193197i
\(485\) −6.03213 2.19551i −0.273905 0.0996932i
\(486\) −8.29600 + 6.96117i −0.376314 + 0.315765i
\(487\) −25.3330 −1.14795 −0.573974 0.818874i \(-0.694599\pi\)
−0.573974 + 0.818874i \(0.694599\pi\)
\(488\) −1.10196 + 0.924653i −0.0498833 + 0.0418571i
\(489\) 10.1430 17.5682i 0.458683 0.794462i
\(490\) 2.20997 0.804364i 0.0998364 0.0363375i
\(491\) −10.6344 18.4193i −0.479922 0.831249i 0.519813 0.854280i \(-0.326002\pi\)
−0.999735 + 0.0230308i \(0.992668\pi\)
\(492\) 7.37094 12.7668i 0.332308 0.575574i
\(493\) 0.0796507 0.451722i 0.00358729 0.0203445i
\(494\) 14.8388 + 5.40087i 0.667628 + 0.242997i
\(495\) 0.497253 + 0.861267i 0.0223499 + 0.0387111i
\(496\) −5.16818 4.33662i −0.232058 0.194720i
\(497\) −3.24979 2.72690i −0.145773 0.122318i
\(498\) 1.82868 0.665583i 0.0819449 0.0298255i
\(499\) 2.85314 + 16.1810i 0.127724 + 0.724359i 0.979653 + 0.200701i \(0.0643220\pi\)
−0.851928 + 0.523658i \(0.824567\pi\)
\(500\) −0.595800 3.37895i −0.0266450 0.151111i
\(501\) 10.7375 3.90814i 0.479717 0.174603i
\(502\) 10.1806 + 8.54256i 0.454383 + 0.381273i
\(503\) 15.9979 + 13.4238i 0.713311 + 0.598539i 0.925526 0.378684i \(-0.123623\pi\)
−0.212215 + 0.977223i \(0.568068\pi\)
\(504\) −0.264583 0.458271i −0.0117855 0.0204130i
\(505\) −5.58995 2.03458i −0.248750 0.0905375i
\(506\) 2.33887 13.2644i 0.103975 0.589674i
\(507\) 4.88321 8.45796i 0.216871 0.375631i
\(508\) 3.52479 + 6.10511i 0.156387 + 0.270871i
\(509\) −37.6746 + 13.7124i −1.66990 + 0.607793i −0.991871 0.127245i \(-0.959386\pi\)
−0.678026 + 0.735038i \(0.737164\pi\)
\(510\) 0.480107 0.831570i 0.0212595 0.0368226i
\(511\) −2.63019 + 2.20699i −0.116353 + 0.0976317i
\(512\) 1.00000 0.0441942
\(513\) 15.2464 12.7933i 0.673146 0.564837i
\(514\) −16.4470 5.98622i −0.725447 0.264041i
\(515\) −0.809339 4.58999i −0.0356637 0.202259i
\(516\) −2.11619 + 12.0015i −0.0931602 + 0.528338i
\(517\) 19.2811 0.847982
\(518\) 2.88726 0.330153i 0.126859 0.0145061i
\(519\) 9.09676 0.399303
\(520\) −0.270373 + 1.53336i −0.0118566 + 0.0672424i
\(521\) 1.59181 + 9.02760i 0.0697384 + 0.395506i 0.999618 + 0.0276419i \(0.00879982\pi\)
−0.929879 + 0.367864i \(0.880089\pi\)
\(522\) 0.237536 + 0.0864559i 0.0103966 + 0.00378407i
\(523\) 22.7091 19.0552i 0.993000 0.833226i 0.00700102 0.999975i \(-0.497771\pi\)
0.985999 + 0.166749i \(0.0533270\pi\)
\(524\) 1.98503 0.0867164
\(525\) −2.45658 + 2.06131i −0.107214 + 0.0899631i
\(526\) 7.06672 12.2399i 0.308124 0.533686i
\(527\) 12.7418 4.63765i 0.555043 0.202019i
\(528\) 1.77827 + 3.08005i 0.0773892 + 0.134042i
\(529\) −2.07059 + 3.58637i −0.0900257 + 0.155929i
\(530\) 0.263884 1.49656i 0.0114624 0.0650063i
\(531\) 4.66049 + 1.69628i 0.202248 + 0.0736123i
\(532\) 0.841386 + 1.45732i 0.0364787 + 0.0631830i
\(533\) −36.8039 30.8822i −1.59415 1.33765i
\(534\) −4.03001 3.38158i −0.174395 0.146335i
\(535\) 6.67716 2.43029i 0.288679 0.105071i
\(536\) −1.82731 10.3632i −0.0789276 0.447621i
\(537\) −1.08447 6.15034i −0.0467984 0.265407i
\(538\) 25.1934 9.16963i 1.08616 0.395331i
\(539\) −13.4115 11.2536i −0.577673 0.484725i
\(540\) 1.50331 + 1.26143i 0.0646922 + 0.0542832i
\(541\) −14.4930 25.1027i −0.623104 1.07925i −0.988904 0.148554i \(-0.952538\pi\)
0.365800 0.930693i \(-0.380795\pi\)
\(542\) 10.2547 + 3.73242i 0.440478 + 0.160321i
\(543\) 0.373540 2.11845i 0.0160301 0.0909113i
\(544\) −1.00492 + 1.74058i −0.0430857 + 0.0746266i
\(545\) −1.85087 3.20580i −0.0792825 0.137321i
\(546\) 2.76879 1.00776i 0.118493 0.0431281i
\(547\) −2.68304 + 4.64717i −0.114719 + 0.198699i −0.917667 0.397350i \(-0.869930\pi\)
0.802949 + 0.596048i \(0.203263\pi\)
\(548\) 13.3276 11.1832i 0.569327 0.477722i
\(549\) 1.59330 0.0680003
\(550\) −9.66364 + 8.10875i −0.412059 + 0.345758i
\(551\) −0.755374 0.274934i −0.0321800 0.0117126i
\(552\) −1.24449 7.05784i −0.0529689 0.300401i
\(553\) −0.293334 + 1.66358i −0.0124738 + 0.0707426i
\(554\) 6.14345 0.261010
\(555\) −2.60022 + 1.29774i −0.110373 + 0.0550861i
\(556\) 0.737051 0.0312579
\(557\) −2.03774 + 11.5566i −0.0863416 + 0.489668i 0.910717 + 0.413030i \(0.135530\pi\)
−0.997059 + 0.0766376i \(0.975582\pi\)
\(558\) 1.29760 + 7.35904i 0.0549316 + 0.311533i
\(559\) 37.3214 + 13.5839i 1.57853 + 0.574537i
\(560\) −0.127104 + 0.106653i −0.00537114 + 0.00450692i
\(561\) −7.14808 −0.301792
\(562\) 2.26215 1.89817i 0.0954229 0.0800693i
\(563\) −9.45929 + 16.3840i −0.398662 + 0.690502i −0.993561 0.113298i \(-0.963859\pi\)
0.594899 + 0.803800i \(0.297192\pi\)
\(564\) 9.64056 3.50888i 0.405941 0.147750i
\(565\) −2.12063 3.67304i −0.0892156 0.154526i
\(566\) −7.23724 + 12.5353i −0.304204 + 0.526897i
\(567\) 0.369210 2.09390i 0.0155054 0.0879353i
\(568\) −8.34413 3.03702i −0.350112 0.127430i
\(569\) 10.8074 + 18.7189i 0.453068 + 0.784737i 0.998575 0.0533694i \(-0.0169961\pi\)
−0.545507 + 0.838107i \(0.683663\pi\)
\(570\) −1.28908 1.08167i −0.0539936 0.0453060i
\(571\) −26.8881 22.5618i −1.12523 0.944181i −0.126374 0.991983i \(-0.540334\pi\)
−0.998857 + 0.0478018i \(0.984778\pi\)
\(572\) 10.8918 3.96430i 0.455410 0.165756i
\(573\) −5.49856 31.1839i −0.229706 1.30273i
\(574\) −0.889044 5.04202i −0.0371080 0.210450i
\(575\) 23.8872 8.69423i 0.996165 0.362574i
\(576\) −0.848476 0.711956i −0.0353532 0.0296648i
\(577\) −33.0040 27.6937i −1.37398 1.15290i −0.971382 0.237523i \(-0.923664\pi\)
−0.402593 0.915379i \(-0.631891\pi\)
\(578\) 6.48026 + 11.2241i 0.269543 + 0.466863i
\(579\) −13.6431 4.96568i −0.566988 0.206367i
\(580\) 0.0137635 0.0780564i 0.000571496 0.00324112i
\(581\) 0.337926 0.585304i 0.0140195 0.0242825i
\(582\) 12.7134 + 22.0202i 0.526985 + 0.912765i
\(583\) −10.6304 + 3.86915i −0.440266 + 0.160244i
\(584\) −3.59334 + 6.22384i −0.148693 + 0.257544i
\(585\) 1.32109 1.10853i 0.0546204 0.0458320i
\(586\) −12.5821 −0.519762
\(587\) −15.6463 + 13.1288i −0.645790 + 0.541882i −0.905790 0.423726i \(-0.860722\pi\)
0.260000 + 0.965609i \(0.416277\pi\)
\(588\) −8.75371 3.18609i −0.360997 0.131392i
\(589\) −4.12642 23.4021i −0.170026 0.964267i
\(590\) 0.270042 1.53148i 0.0111174 0.0630501i
\(591\) −6.64252 −0.273237
\(592\) 5.44257 2.71633i 0.223688 0.111641i
\(593\) −0.908005 −0.0372873 −0.0186436 0.999826i \(-0.505935\pi\)
−0.0186436 + 0.999826i \(0.505935\pi\)
\(594\) 2.53680 14.3869i 0.104086 0.590302i
\(595\) −0.0579080 0.328413i −0.00237400 0.0134636i
\(596\) 17.8867 + 6.51023i 0.732668 + 0.266669i
\(597\) −10.8459 + 9.10080i −0.443894 + 0.372471i
\(598\) −23.3565 −0.955117
\(599\) −9.44037 + 7.92141i −0.385723 + 0.323660i −0.814944 0.579539i \(-0.803233\pi\)
0.429221 + 0.903199i \(0.358788\pi\)
\(600\) −3.35615 + 5.81301i −0.137014 + 0.237315i
\(601\) 32.2492 11.7377i 1.31547 0.478792i 0.413467 0.910519i \(-0.364318\pi\)
0.902004 + 0.431727i \(0.142095\pi\)
\(602\) 2.11619 + 3.66535i 0.0862496 + 0.149389i
\(603\) −5.82769 + 10.0939i −0.237322 + 0.411054i
\(604\) −1.12385 + 6.37365i −0.0457287 + 0.259340i
\(605\) 1.40850 + 0.512653i 0.0572637 + 0.0208423i
\(606\) 11.7814 + 20.4060i 0.478588 + 0.828938i
\(607\) −3.12973 2.62616i −0.127032 0.106593i 0.577058 0.816703i \(-0.304201\pi\)
−0.704090 + 0.710110i \(0.748645\pi\)
\(608\) 2.69820 + 2.26405i 0.109426 + 0.0918196i
\(609\) −0.140947 + 0.0513003i −0.00571144 + 0.00207879i
\(610\) −0.0867525 0.491998i −0.00351251 0.0199204i
\(611\) −5.80596 32.9272i −0.234884 1.33209i
\(612\) 2.09187 0.761377i 0.0845587 0.0307768i
\(613\) 15.2276 + 12.7775i 0.615036 + 0.516077i 0.896239 0.443572i \(-0.146289\pi\)
−0.281202 + 0.959648i \(0.590733\pi\)
\(614\) −14.4780 12.1485i −0.584285 0.490273i
\(615\) 2.55990 + 4.43388i 0.103225 + 0.178791i
\(616\) 1.16068 + 0.422454i 0.0467652 + 0.0170211i
\(617\) 0.664267 3.76724i 0.0267424 0.151664i −0.968513 0.248964i \(-0.919910\pi\)
0.995255 + 0.0973009i \(0.0310209\pi\)
\(618\) −9.23072 + 15.9881i −0.371314 + 0.643135i
\(619\) 5.97516 + 10.3493i 0.240162 + 0.415973i 0.960760 0.277380i \(-0.0894661\pi\)
−0.720598 + 0.693353i \(0.756133\pi\)
\(620\) 2.20176 0.801375i 0.0884248 0.0321840i
\(621\) −14.7190 + 25.4941i −0.590654 + 1.02304i
\(622\) −0.0868584 + 0.0728829i −0.00348271 + 0.00292234i
\(623\) −1.82706 −0.0731995
\(624\) 4.72446 3.96430i 0.189130 0.158699i
\(625\) −21.8059 7.93669i −0.872235 0.317468i
\(626\) 1.59428 + 9.04161i 0.0637202 + 0.361375i
\(627\) −2.17529 + 12.3367i −0.0868727 + 0.492679i
\(628\) 12.0920 0.482523
\(629\) −0.741374 + 12.2029i −0.0295605 + 0.486562i
\(630\) 0.183777 0.00732186
\(631\) −3.49888 + 19.8431i −0.139288 + 0.789942i 0.832489 + 0.554041i \(0.186915\pi\)
−0.971777 + 0.235901i \(0.924196\pi\)
\(632\) 0.613983 + 3.48207i 0.0244229 + 0.138509i
\(633\) 1.77219 + 0.645024i 0.0704381 + 0.0256374i
\(634\) 20.1198 16.8826i 0.799061 0.670492i
\(635\) −2.44829 −0.0971575
\(636\) −4.61107 + 3.86915i −0.182841 + 0.153422i
\(637\) −15.1797 + 26.2920i −0.601442 + 1.04173i
\(638\) −0.554452 + 0.201804i −0.0219510 + 0.00798950i
\(639\) 4.91758 + 8.51749i 0.194536 + 0.336947i
\(640\) −0.173648 + 0.300767i −0.00686405 + 0.0118889i
\(641\) 5.23531 29.6909i 0.206782 1.17272i −0.687828 0.725874i \(-0.741435\pi\)
0.894610 0.446848i \(-0.147453\pi\)
\(642\) −26.4483 9.62639i −1.04383 0.379923i
\(643\) 6.52757 + 11.3061i 0.257422 + 0.445868i 0.965551 0.260215i \(-0.0837936\pi\)
−0.708128 + 0.706084i \(0.750460\pi\)
\(644\) −1.90666 1.59988i −0.0751331 0.0630442i
\(645\) −3.24220 2.72053i −0.127661 0.107121i
\(646\) −6.65224 + 2.42122i −0.261729 + 0.0952615i
\(647\) 8.16883 + 46.3278i 0.321150 + 1.82133i 0.535453 + 0.844565i \(0.320141\pi\)
−0.214303 + 0.976767i \(0.568748\pi\)
\(648\) −0.772801 4.38277i −0.0303585 0.172172i
\(649\) −10.8785 + 3.95944i −0.427017 + 0.155422i
\(650\) 16.7576 + 14.0613i 0.657287 + 0.551530i
\(651\) −3.39664 2.85012i −0.133125 0.111705i
\(652\) −7.37329 12.7709i −0.288760 0.500148i
\(653\) 25.9534 + 9.44628i 1.01564 + 0.369661i 0.795595 0.605829i \(-0.207158\pi\)
0.220042 + 0.975491i \(0.429381\pi\)
\(654\) −2.54614 + 14.4399i −0.0995618 + 0.564643i
\(655\) −0.344697 + 0.597032i −0.0134684 + 0.0233280i
\(656\) −5.35818 9.28064i −0.209202 0.362348i
\(657\) 7.47996 2.72248i 0.291821 0.106214i
\(658\) 1.78150 3.08565i 0.0694502 0.120291i
\(659\) 27.5226 23.0942i 1.07213 0.899624i 0.0768864 0.997040i \(-0.475502\pi\)
0.995244 + 0.0974158i \(0.0310577\pi\)
\(660\) −1.23517 −0.0480790
\(661\) 30.2001 25.3409i 1.17465 0.985645i 0.174647 0.984631i \(-0.444122\pi\)
0.999999 0.00101438i \(-0.000322887\pi\)
\(662\) 26.8546 + 9.77429i 1.04373 + 0.379888i
\(663\) 2.15244 + 12.2071i 0.0835939 + 0.474085i
\(664\) 0.245649 1.39315i 0.00953304 0.0540645i
\(665\) −0.584421 −0.0226629
\(666\) −6.55180 1.57013i −0.253877 0.0608411i
\(667\) 1.18897 0.0460372
\(668\) 1.44239 8.18020i 0.0558078 0.316501i
\(669\) 6.98984 + 39.6414i 0.270243 + 1.53262i
\(670\) 3.43421 + 1.24995i 0.132675 + 0.0482898i
\(671\) −2.84896 + 2.39056i −0.109983 + 0.0922867i
\(672\) 0.657221 0.0253529
\(673\) 11.6863 9.80600i 0.450475 0.377994i −0.389137 0.921180i \(-0.627227\pi\)
0.839612 + 0.543186i \(0.182782\pi\)
\(674\) 4.88643 8.46354i 0.188218 0.326003i
\(675\) 25.9087 9.42999i 0.997226 0.362961i
\(676\) −3.54976 6.14837i −0.136529 0.236476i
\(677\) −10.7029 + 18.5379i −0.411345 + 0.712471i −0.995037 0.0995043i \(-0.968274\pi\)
0.583692 + 0.811975i \(0.301608\pi\)
\(678\) −2.91723 + 16.5444i −0.112036 + 0.635385i
\(679\) 8.29805 + 3.02024i 0.318450 + 0.115906i
\(680\) −0.349006 0.604496i −0.0133838 0.0231814i
\(681\) −10.8590 9.11178i −0.416118 0.349164i
\(682\) −13.3616 11.2117i −0.511643 0.429319i
\(683\) −11.8657 + 4.31877i −0.454029 + 0.165253i −0.558904 0.829232i \(-0.688778\pi\)
0.104875 + 0.994485i \(0.466556\pi\)
\(684\) −0.677447 3.84199i −0.0259028 0.146902i
\(685\) 1.04922 + 5.95045i 0.0400888 + 0.227355i
\(686\) −6.18274 + 2.25033i −0.236058 + 0.0859181i
\(687\) −16.5108 13.8542i −0.629925 0.528569i
\(688\) 6.78631 + 5.69439i 0.258725 + 0.217096i
\(689\) 9.80855 + 16.9889i 0.373676 + 0.647226i
\(690\) 2.33887 + 0.851279i 0.0890393 + 0.0324076i
\(691\) −0.596082 + 3.38055i −0.0226760 + 0.128602i −0.994044 0.108977i \(-0.965243\pi\)
0.971368 + 0.237579i \(0.0763538\pi\)
\(692\) 3.30637 5.72679i 0.125689 0.217700i
\(693\) −0.684042 1.18480i −0.0259846 0.0450067i
\(694\) −15.5767 + 5.66944i −0.591282 + 0.215209i
\(695\) −0.127988 + 0.221681i −0.00485485 + 0.00840884i
\(696\) −0.240501 + 0.201804i −0.00911616 + 0.00764937i
\(697\) 21.5382 0.815818
\(698\) 14.3165 12.0129i 0.541886 0.454696i
\(699\) 9.31253 + 3.38948i 0.352232 + 0.128202i
\(700\) 0.404801 + 2.29574i 0.0153000 + 0.0867708i
\(701\) 0.0325577 0.184644i 0.00122969 0.00697390i −0.984187 0.177134i \(-0.943317\pi\)
0.985416 + 0.170160i \(0.0544285\pi\)
\(702\) −25.3331 −0.956134
\(703\) 20.8350 + 4.99308i 0.785808 + 0.188317i
\(704\) 2.58536 0.0974395
\(705\) −0.618709 + 3.50888i −0.0233019 + 0.132152i
\(706\) 0.938401 + 5.32193i 0.0353172 + 0.200294i
\(707\) 7.68978 + 2.79885i 0.289204 + 0.105262i
\(708\) −4.71867 + 3.95944i −0.177339 + 0.148805i
\(709\) −48.4114 −1.81813 −0.909064 0.416656i \(-0.863202\pi\)
−0.909064 + 0.416656i \(0.863202\pi\)
\(710\) 2.36238 1.98227i 0.0886585 0.0743933i
\(711\) 1.95813 3.39158i 0.0734357 0.127194i
\(712\) −3.59362 + 1.30797i −0.134677 + 0.0490182i
\(713\) 17.5739 + 30.4389i 0.658148 + 1.13995i
\(714\) −0.660456 + 1.14394i −0.0247170 + 0.0428110i
\(715\) −0.699012 + 3.96430i −0.0261416 + 0.148256i
\(716\) −4.26607 1.55272i −0.159430 0.0580279i
\(717\) −15.0998 26.1536i −0.563911 0.976722i
\(718\) −8.09432 6.79194i −0.302077 0.253473i
\(719\) −34.9152 29.2973i −1.30212 1.09261i −0.989775 0.142635i \(-0.954443\pi\)
−0.312341 0.949970i \(-0.601113\pi\)
\(720\) 0.361470 0.131564i 0.0134712 0.00490311i
\(721\) 1.11336 + 6.31419i 0.0414637 + 0.235153i
\(722\) −1.14500 6.49362i −0.0426125 0.241668i
\(723\) 19.1451 6.96825i 0.712015 0.259152i
\(724\) −1.19788 1.00514i −0.0445190 0.0373559i
\(725\) −0.853053 0.715797i −0.0316816 0.0265840i
\(726\) −2.96857 5.14171i −0.110174 0.190827i
\(727\) −39.4113 14.3445i −1.46168 0.532009i −0.515854 0.856676i \(-0.672525\pi\)
−0.945828 + 0.324667i \(0.894748\pi\)
\(728\) 0.371937 2.10936i 0.0137849 0.0781780i
\(729\) −14.1244 + 24.4643i −0.523128 + 0.906084i
\(730\) −1.24795 2.16152i −0.0461888 0.0800013i
\(731\) −16.7312 + 6.08967i −0.618827 + 0.225234i
\(732\) −0.989435 + 1.71375i −0.0365706 + 0.0633421i
\(733\) 13.4938 11.3227i 0.498406 0.418212i −0.358622 0.933483i \(-0.616753\pi\)
0.857027 + 0.515271i \(0.172309\pi\)
\(734\) −0.215875 −0.00796811
\(735\) 2.47834 2.07957i 0.0914149 0.0767062i
\(736\) −4.89554 1.78183i −0.180452 0.0656791i
\(737\) −4.72425 26.7925i −0.174020 0.986916i
\(738\) −2.06112 + 11.6892i −0.0758708 + 0.430285i
\(739\) 39.4393 1.45080 0.725400 0.688328i \(-0.241655\pi\)
0.725400 + 0.688328i \(0.241655\pi\)
\(740\) −0.128108 + 2.10863i −0.00470933 + 0.0775149i
\(741\) 21.7229 0.798011
\(742\) −0.363009 + 2.05873i −0.0133265 + 0.0755783i
\(743\) 2.27755 + 12.9167i 0.0835554 + 0.473866i 0.997659 + 0.0683854i \(0.0217847\pi\)
−0.914104 + 0.405481i \(0.867104\pi\)
\(744\) −8.72118 3.17425i −0.319734 0.116374i
\(745\) −5.06406 + 4.24925i −0.185533 + 0.155680i
\(746\) −19.8047 −0.725102
\(747\) −1.20029 + 1.00716i −0.0439162 + 0.0368500i
\(748\) −2.59809 + 4.50002i −0.0949955 + 0.164537i
\(749\) −9.18539 + 3.34321i −0.335627 + 0.122158i
\(750\) −2.35997 4.08758i −0.0861738 0.149257i
\(751\) 19.9893 34.6226i 0.729421 1.26340i −0.227707 0.973730i \(-0.573123\pi\)
0.957128 0.289665i \(-0.0935440\pi\)
\(752\) 1.29503 7.34450i 0.0472250 0.267826i
\(753\) 17.1796 + 6.25285i 0.626058 + 0.227866i
\(754\) 0.511588 + 0.886096i 0.0186309 + 0.0322697i
\(755\) −1.72183 1.44479i −0.0626639 0.0525813i
\(756\) −2.06802 1.73527i −0.0752131 0.0631113i
\(757\) −26.2852 + 9.56703i −0.955352 + 0.347720i −0.772210 0.635367i \(-0.780849\pi\)
−0.183141 + 0.983087i \(0.558627\pi\)
\(758\) −4.01057 22.7451i −0.145670 0.826137i
\(759\) −3.21745 18.2471i −0.116786 0.662326i
\(760\) −1.14949 + 0.418380i −0.0416964 + 0.0151763i
\(761\) −1.66744 1.39915i −0.0604447 0.0507191i 0.612065 0.790808i \(-0.290339\pi\)
−0.672510 + 0.740088i \(0.734784\pi\)
\(762\) 7.42887 + 6.23356i 0.269119 + 0.225818i
\(763\) 2.54614 + 4.41004i 0.0921763 + 0.159654i
\(764\) −21.6301 7.87272i −0.782550 0.284825i
\(765\) −0.134251 + 0.761377i −0.00485387 + 0.0275276i
\(766\) 2.54301 4.40462i 0.0918826 0.159145i
\(767\) 10.0374 + 17.3854i 0.362431 + 0.627749i
\(768\) 1.29268 0.470498i 0.0466456 0.0169776i
\(769\) 20.6905 35.8370i 0.746118 1.29231i −0.203553 0.979064i \(-0.565249\pi\)
0.949671 0.313250i \(-0.101418\pi\)
\(770\) −0.328611 + 0.275737i −0.0118423 + 0.00993687i
\(771\) −24.0772 −0.867121
\(772\) −8.08492 + 6.78405i −0.290983 + 0.244163i
\(773\) 11.5459 + 4.20237i 0.415278 + 0.151149i 0.541205 0.840891i \(-0.317968\pi\)
−0.125927 + 0.992040i \(0.540191\pi\)
\(774\) −1.70387 9.66310i −0.0612442 0.347333i
\(775\) 5.71635 32.4191i 0.205338 1.16453i
\(776\) 18.4835 0.663519
\(777\) 3.57697 1.78523i 0.128323 0.0640448i
\(778\) −29.1473 −1.04498
\(779\) 6.55446 37.1722i 0.234838 1.33183i
\(780\) 0.371937 + 2.10936i 0.0133175 + 0.0755271i
\(781\) −21.5726 7.85179i −0.771929 0.280959i
\(782\) 8.02104 6.73045i 0.286832 0.240681i
\(783\) 1.28959 0.0460862
\(784\) −5.18746 + 4.35280i −0.185266 + 0.155457i
\(785\) −2.09975 + 3.63688i −0.0749434 + 0.129806i
\(786\) 2.56601 0.933952i 0.0915266 0.0333130i
\(787\) −12.0763 20.9167i −0.430473 0.745601i 0.566441 0.824102i \(-0.308320\pi\)
−0.996914 + 0.0785015i \(0.974986\pi\)
\(788\) −2.41433 + 4.18175i −0.0860071 + 0.148969i
\(789\) 3.37617 19.1472i 0.120195 0.681658i
\(790\) −1.15391 0.419989i −0.0410543 0.0149425i
\(791\) 2.91723 + 5.05279i 0.103725 + 0.179657i
\(792\) −2.19362 1.84066i −0.0779468 0.0654052i
\(793\) 4.94036 + 4.14545i 0.175437 + 0.147209i
\(794\) 15.0280 5.46975i 0.533325 0.194114i
\(795\) −0.363009 2.05873i −0.0128746 0.0730156i
\(796\) 1.78721 + 10.1358i 0.0633461 + 0.359254i
\(797\) 30.9648 11.2703i 1.09683 0.399214i 0.270684 0.962668i \(-0.412750\pi\)
0.826147 + 0.563455i \(0.190528\pi\)
\(798\) 1.77331 + 1.48798i 0.0627745 + 0.0526741i
\(799\) 11.4823 + 9.63475i 0.406213 + 0.340853i
\(800\) 2.43969 + 4.22567i 0.0862562 + 0.149400i
\(801\) 3.98032 + 1.44872i 0.140638 + 0.0511879i
\(802\) −0.944617 + 5.35719i −0.0333556 + 0.189169i
\(803\) −9.29008 + 16.0909i −0.327840 + 0.567835i
\(804\) −7.23797 12.5365i −0.255263 0.442129i
\(805\) 0.812281 0.295646i 0.0286291 0.0104202i
\(806\) −15.1233 + 26.1943i −0.532696 + 0.922656i
\(807\) 28.2527 23.7068i 0.994542 0.834520i
\(808\) 17.1286 0.602582
\(809\) 27.3400 22.9410i 0.961224 0.806563i −0.0199275 0.999801i \(-0.506344\pi\)
0.981152 + 0.193238i \(0.0618991\pi\)
\(810\) 1.45239 + 0.528627i 0.0510318 + 0.0185741i
\(811\) 5.88324 + 33.3655i 0.206589 + 1.17162i 0.894920 + 0.446226i \(0.147232\pi\)
−0.688332 + 0.725396i \(0.741657\pi\)
\(812\) −0.0189336 + 0.107378i −0.000664439 + 0.00376822i
\(813\) 15.0122 0.526501
\(814\) 14.0710 7.02270i 0.493189 0.246146i
\(815\) 5.12143 0.179396
\(816\) −0.480107 + 2.72282i −0.0168071 + 0.0953179i
\(817\) 5.41838 + 30.7291i 0.189565 + 1.07508i
\(818\) 35.4493 + 12.9025i 1.23945 + 0.451125i
\(819\) −1.81735 + 1.52494i −0.0635033 + 0.0532856i
\(820\) 3.72175 0.129969
\(821\) −18.1645 + 15.2418i −0.633945 + 0.531943i −0.902152 0.431418i \(-0.858013\pi\)
0.268207 + 0.963361i \(0.413569\pi\)
\(822\) 11.9667 20.7269i 0.417386 0.722934i
\(823\) −23.3126 + 8.48508i −0.812625 + 0.295771i −0.714708 0.699423i \(-0.753440\pi\)
−0.0979172 + 0.995195i \(0.531218\pi\)
\(824\) 6.71012 + 11.6223i 0.233758 + 0.404881i
\(825\) −8.67685 + 15.0288i −0.302089 + 0.523234i
\(826\) −0.371481 + 2.10677i −0.0129255 + 0.0733040i
\(827\) −49.8660 18.1497i −1.73401 0.631129i −0.735108 0.677950i \(-0.762869\pi\)
−0.998903 + 0.0468213i \(0.985091\pi\)
\(828\) 2.88516 + 4.99725i 0.100266 + 0.173666i
\(829\) −4.78684 4.01663i −0.166254 0.139503i 0.555865 0.831273i \(-0.312387\pi\)
−0.722119 + 0.691769i \(0.756832\pi\)
\(830\) 0.376356 + 0.315801i 0.0130635 + 0.0109616i
\(831\) 7.94153 2.89048i 0.275489 0.100270i
\(832\) −0.778508 4.41514i −0.0269899 0.153067i
\(833\) −2.36338 13.4034i −0.0818863 0.464400i
\(834\) 0.952773 0.346781i 0.0329918 0.0120080i
\(835\) 2.20987 + 1.85430i 0.0764757 + 0.0641707i
\(836\) 6.97581 + 5.85340i 0.241264 + 0.202444i
\(837\) 19.0611 + 33.0148i 0.658849 + 1.14116i
\(838\) −5.81832 2.11770i −0.200991 0.0731546i
\(839\) 1.97545 11.2033i 0.0682002 0.386783i −0.931532 0.363658i \(-0.881528\pi\)
0.999733 0.0231242i \(-0.00736132\pi\)
\(840\) −0.114125 + 0.197671i −0.00393770 + 0.00682029i
\(841\) 14.4740 + 25.0696i 0.499102 + 0.864470i
\(842\) 9.49900 3.45735i 0.327357 0.119148i
\(843\) 2.03115 3.51806i 0.0699566 0.121168i
\(844\) 1.05020 0.881223i 0.0361494 0.0303329i
\(845\) 2.46564 0.0848206
\(846\) −6.32776 + 5.30962i −0.217553 + 0.182549i
\(847\) −1.93760 0.705227i −0.0665766 0.0242319i
\(848\) 0.759822 + 4.30917i 0.0260924 + 0.147977i
\(849\) −3.45763 + 19.6092i −0.118666 + 0.672986i
\(850\) −9.80681 −0.336371
\(851\) −31.4843 + 3.60017i −1.07927 + 0.123412i
\(852\) −12.2152 −0.418486
\(853\) −0.162161 + 0.919663i −0.00555230 + 0.0314886i −0.987458 0.157882i \(-0.949534\pi\)
0.981906 + 0.189370i \(0.0606447\pi\)
\(854\) 0.119340 + 0.676813i 0.00408375 + 0.0231601i
\(855\) 1.27318 + 0.463401i 0.0435420 + 0.0158480i
\(856\) −15.6733 + 13.1514i −0.535702 + 0.449507i
\(857\) 34.2745 1.17080 0.585398 0.810746i \(-0.300938\pi\)
0.585398 + 0.810746i \(0.300938\pi\)
\(858\) 12.2145 10.2491i 0.416995 0.349900i
\(859\) 8.03105 13.9102i 0.274016 0.474609i −0.695871 0.718167i \(-0.744981\pi\)
0.969886 + 0.243558i \(0.0783146\pi\)
\(860\) −2.89112 + 1.05228i −0.0985862 + 0.0358825i
\(861\) −3.52151 6.09943i −0.120013 0.207868i
\(862\) 17.0891 29.5992i 0.582057 1.00815i
\(863\) −1.11602 + 6.32926i −0.0379898 + 0.215451i −0.997893 0.0648808i \(-0.979333\pi\)
0.959903 + 0.280331i \(0.0904444\pi\)
\(864\) −5.30983 1.93262i −0.180644 0.0657490i
\(865\) 1.14829 + 1.98889i 0.0390430 + 0.0676245i
\(866\) −0.525751 0.441157i −0.0178657 0.0149911i
\(867\) 13.6578 + 11.4603i 0.463845 + 0.389212i
\(868\) −3.02883 + 1.10241i −0.102805 + 0.0374181i
\(869\) 1.58737 + 9.00241i 0.0538478 + 0.305386i
\(870\) −0.0189336 0.107378i −0.000641909 0.00364045i
\(871\) −44.3322 + 16.1356i −1.50214 + 0.546735i
\(872\) 8.16506 + 6.85130i 0.276504 + 0.232014i
\(873\) −15.6828 13.1594i −0.530783 0.445380i
\(874\) −9.17495 15.8915i −0.310347 0.537537i
\(875\) −1.54036 0.560645i −0.0520736 0.0189533i
\(876\) −1.71674 + 9.73610i −0.0580032 + 0.328952i
\(877\) −21.9328 + 37.9888i −0.740619 + 1.28279i 0.211595 + 0.977357i \(0.432134\pi\)
−0.952214 + 0.305432i \(0.901199\pi\)
\(878\) −10.7545 18.6273i −0.362945 0.628639i
\(879\) −16.2647 + 5.91985i −0.548594 + 0.199672i
\(880\) −0.448944 + 0.777593i −0.0151339 + 0.0262127i
\(881\) −18.2452 + 15.3095i −0.614696 + 0.515791i −0.896131 0.443789i \(-0.853634\pi\)
0.281436 + 0.959580i \(0.409189\pi\)
\(882\) 7.50044 0.252553
\(883\) 5.99963 5.03429i 0.201904 0.169417i −0.536230 0.844072i \(-0.680152\pi\)
0.738133 + 0.674655i \(0.235708\pi\)
\(884\) 8.46723 + 3.08182i 0.284784 + 0.103653i
\(885\) −0.371481 2.10677i −0.0124872 0.0708184i
\(886\) −4.96583 + 28.1626i −0.166830 + 0.946142i
\(887\) −37.5492 −1.26078 −0.630389 0.776280i \(-0.717104\pi\)
−0.630389 + 0.776280i \(0.717104\pi\)
\(888\) 5.75748 6.07207i 0.193208 0.203765i
\(889\) 3.36798 0.112958
\(890\) 0.230630 1.30797i 0.00773075 0.0438433i
\(891\) −1.99797 11.3311i −0.0669346 0.379605i
\(892\) 27.4965 + 10.0079i 0.920651 + 0.335090i
\(893\) 20.1226 16.8849i 0.673377 0.565030i
\(894\) 26.1849 0.875752
\(895\) 1.20780 1.01347i 0.0403724 0.0338765i
\(896\) 0.238878 0.413749i 0.00798035 0.0138224i
\(897\) −30.1925 + 10.9892i −1.00810 + 0.366918i
\(898\) 17.2844 + 29.9375i 0.576789 + 0.999028i
\(899\) 0.769858 1.33343i 0.0256762 0.0444725i
\(900\) 0.938471 5.32234i 0.0312824 0.177411i
\(901\) −8.26400 3.00785i −0.275314 0.100206i
\(902\) −13.8528 23.9938i −0.461249 0.798907i
\(903\) 4.46010 + 3.74247i 0.148423 + 0.124542i
\(904\) 9.35511 + 7.84987i 0.311146 + 0.261083i
\(905\) 0.510325 0.185743i 0.0169638 0.00617431i
\(906\) 1.54601 + 8.76787i 0.0513628 + 0.291293i
\(907\) 5.69564 + 32.3016i 0.189120 + 1.07256i 0.920546 + 0.390634i \(0.127744\pi\)
−0.731426 + 0.681921i \(0.761145\pi\)
\(908\) −9.68313 + 3.52437i −0.321346 + 0.116960i
\(909\) −14.5332 12.1948i −0.482036 0.404477i
\(910\) 0.569840 + 0.478153i 0.0188900 + 0.0158506i
\(911\) −16.8114 29.1181i −0.556985 0.964727i −0.997746 0.0671021i \(-0.978625\pi\)
0.440761 0.897625i \(-0.354709\pi\)
\(912\) 4.55314 + 1.65721i 0.150770 + 0.0548756i
\(913\) 0.635092 3.60179i 0.0210185 0.119202i
\(914\) −16.4542 + 28.4995i −0.544257 + 0.942680i
\(915\) −0.343627 0.595180i −0.0113600 0.0196760i
\(916\) −14.7229 + 5.35869i −0.486458 + 0.177056i
\(917\) 0.474180 0.821303i 0.0156588 0.0271218i
\(918\) 8.69983 7.30003i 0.287137 0.240937i
\(919\) −29.1313 −0.960954 −0.480477 0.877007i \(-0.659536\pi\)
−0.480477 + 0.877007i \(0.659536\pi\)
\(920\) 1.38602 1.16301i 0.0456956 0.0383432i
\(921\) −24.4313 8.89226i −0.805038 0.293010i
\(922\) −3.14988 17.8639i −0.103736 0.588315i
\(923\) −6.91287 + 39.2049i −0.227540 + 1.29044i
\(924\) 1.69916 0.0558981
\(925\) 24.7565 + 16.3715i 0.813989 + 0.538291i
\(926\) 0.339403 0.0111535
\(927\) 2.58117 14.6385i 0.0847766 0.480792i
\(928\) 0.0396303 + 0.224755i 0.00130093 + 0.00737793i
\(929\) −28.9996 10.5550i −0.951446 0.346298i −0.180770 0.983525i \(-0.557859\pi\)
−0.770676 + 0.637228i \(0.780081\pi\)
\(930\) 2.46913 2.07184i 0.0809659 0.0679385i
\(931\) −23.8518 −0.781710
\(932\) 5.51861 4.63067i 0.180768 0.151683i
\(933\) −0.0779891 + 0.135081i −0.00255325 + 0.00442235i
\(934\) 13.3455 4.85738i 0.436679 0.158938i
\(935\) −0.902307 1.56284i −0.0295086 0.0511104i
\(936\) −2.48284 + 4.30040i −0.0811541 + 0.140563i
\(937\) 1.27251 7.21677i 0.0415711 0.235762i −0.956942 0.290281i \(-0.906251\pi\)
0.998513 + 0.0545189i \(0.0173625\pi\)
\(938\) −4.72425 1.71949i −0.154252 0.0561432i
\(939\) 6.31495 + 10.9378i 0.206081 + 0.356942i
\(940\) 1.98411 + 1.66486i 0.0647144 + 0.0543018i
\(941\) 32.3208 + 27.1204i 1.05363 + 0.884098i 0.993470 0.114090i \(-0.0363954\pi\)
0.0601572 + 0.998189i \(0.480840\pi\)
\(942\) 15.6311 5.68926i 0.509289 0.185366i
\(943\) 9.69464 + 54.9810i 0.315701 + 1.79043i
\(944\) 0.777554 + 4.40973i 0.0253072 + 0.143524i
\(945\) 0.881021 0.320666i 0.0286596 0.0104313i
\(946\) 17.5451 + 14.7221i 0.570439 + 0.478655i
\(947\) −29.9494 25.1305i −0.973224 0.816632i 0.00982951 0.999952i \(-0.496871\pi\)
−0.983053 + 0.183320i \(0.941316\pi\)
\(948\) 2.43199 + 4.21233i 0.0789874 + 0.136810i
\(949\) 30.2766 + 11.0198i 0.982819 + 0.357717i
\(950\) −2.98438 + 16.9253i −0.0968262 + 0.549129i
\(951\) 18.0653 31.2901i 0.585809 1.01465i
\(952\) 0.480107 + 0.831570i 0.0155604 + 0.0269514i
\(953\) 1.14509 0.416780i 0.0370932 0.0135008i −0.323407 0.946260i \(-0.604828\pi\)
0.360500 + 0.932759i \(0.382606\pi\)
\(954\) 2.42325 4.19719i 0.0784555 0.135889i
\(955\) 6.12389 5.13855i 0.198164 0.166280i
\(956\) −21.9530 −0.710012
\(957\) −0.621782 + 0.521737i −0.0200994 + 0.0168654i
\(958\) 31.9312 + 11.6220i 1.03165 + 0.375490i
\(959\) −1.44336 8.18569i −0.0466085 0.264330i
\(960\) −0.0829614 + 0.470498i −0.00267757 + 0.0151852i
\(961\) 14.5164 0.468270
\(962\) −16.2301 21.9150i −0.523278 0.706568i
\(963\) 22.6617 0.730262
\(964\) 2.57180 14.5854i 0.0828320 0.469764i
\(965\) −0.636491 3.60972i −0.0204894 0.116201i
\(966\) −3.21745 1.17106i −0.103520 0.0376781i
\(967\) 9.72067 8.15661i 0.312596 0.262299i −0.472968 0.881080i \(-0.656817\pi\)
0.785564 + 0.618781i \(0.212373\pi\)
\(968\) −4.31590 −0.138718
\(969\) −7.46005 + 6.25972i −0.239651 + 0.201091i
\(970\) −3.20963 + 5.55924i −0.103055 + 0.178496i
\(971\) −0.827436 + 0.301162i −0.0265537 + 0.00966475i −0.355263 0.934766i \(-0.615609\pi\)
0.328709 + 0.944431i \(0.393386\pi\)
\(972\) 5.41483 + 9.37876i 0.173681 + 0.300824i
\(973\) 0.176065 0.304954i 0.00564439 0.00977638i
\(974\) −4.39903 + 24.9481i −0.140954 + 0.799389i
\(975\) 28.2781 + 10.2924i 0.905623 + 0.329620i
\(976\) 0.719253 + 1.24578i 0.0230227 + 0.0398765i
\(977\) 35.8592 + 30.0895i 1.14724 + 0.962647i 0.999651 0.0264023i \(-0.00840510\pi\)
0.147586 + 0.989049i \(0.452850\pi\)
\(978\) −15.5400 13.0396i −0.496914 0.416961i
\(979\) −9.29081 + 3.38158i −0.296935 + 0.108076i
\(980\) −0.408386 2.31607i −0.0130454 0.0739843i
\(981\) −2.05004 11.6263i −0.0654526 0.371200i
\(982\) −19.9861 + 7.27433i −0.637781 + 0.232133i
\(983\) −26.4449 22.1899i −0.843460 0.707747i 0.114879 0.993379i \(-0.463352\pi\)
−0.958339 + 0.285633i \(0.907796\pi\)
\(984\) −11.2929 9.47590i −0.360006 0.302081i
\(985\) −0.838489 1.45231i −0.0267165 0.0462743i
\(986\) −0.431028 0.156881i −0.0137267 0.00499612i
\(987\) 0.851123 4.82696i 0.0270915 0.153644i
\(988\) 7.89555 13.6755i 0.251191 0.435075i
\(989\) −23.0762 39.9691i −0.733780 1.27094i
\(990\) 0.934530 0.340141i 0.0297013 0.0108104i
\(991\) 23.7701 41.1711i 0.755083 1.30784i −0.190249 0.981736i \(-0.560930\pi\)
0.945333 0.326107i \(-0.105737\pi\)
\(992\) −5.16818 + 4.33662i −0.164090 + 0.137688i
\(993\) 39.3133 1.24757
\(994\) −3.24979 + 2.72690i −0.103077 + 0.0864919i
\(995\) −3.35887 1.22253i −0.106483 0.0387567i
\(996\) −0.337926 1.91647i −0.0107076 0.0607257i
\(997\) 9.31464 52.8259i 0.294998 1.67301i −0.372215 0.928147i \(-0.621401\pi\)
0.667212 0.744868i \(-0.267487\pi\)
\(998\) 16.4306 0.520101
\(999\) −34.1487 + 3.90484i −1.08042 + 0.123544i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.2.f.b.33.1 yes 12
3.2 odd 2 666.2.x.g.181.1 12
4.3 odd 2 592.2.bc.d.33.2 12
37.3 even 18 2738.2.a.q.1.3 6
37.9 even 9 inner 74.2.f.b.9.1 12
37.34 even 9 2738.2.a.t.1.3 6
111.83 odd 18 666.2.x.g.379.1 12
148.83 odd 18 592.2.bc.d.305.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.2.f.b.9.1 12 37.9 even 9 inner
74.2.f.b.33.1 yes 12 1.1 even 1 trivial
592.2.bc.d.33.2 12 4.3 odd 2
592.2.bc.d.305.2 12 148.83 odd 18
666.2.x.g.181.1 12 3.2 odd 2
666.2.x.g.379.1 12 111.83 odd 18
2738.2.a.q.1.3 6 37.3 even 18
2738.2.a.t.1.3 6 37.34 even 9