Properties

Label 74.8.a.b.1.1
Level $74$
Weight $8$
Character 74.1
Self dual yes
Analytic conductor $23.116$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(1,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1164918858\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 2177x^{2} - 14018x + 634476 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(14.6748\) of defining polynomial
Character \(\chi\) \(=\) 74.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} -82.6714 q^{3} +64.0000 q^{4} +114.337 q^{5} -661.371 q^{6} +130.721 q^{7} +512.000 q^{8} +4647.56 q^{9} +914.695 q^{10} +2344.52 q^{11} -5290.97 q^{12} -5974.20 q^{13} +1045.76 q^{14} -9452.39 q^{15} +4096.00 q^{16} -19882.8 q^{17} +37180.5 q^{18} -7787.29 q^{19} +7317.56 q^{20} -10806.9 q^{21} +18756.2 q^{22} +4821.07 q^{23} -42327.8 q^{24} -65052.1 q^{25} -47793.6 q^{26} -203418. q^{27} +8366.12 q^{28} -246156. q^{29} -75619.1 q^{30} -67628.9 q^{31} +32768.0 q^{32} -193825. q^{33} -159062. q^{34} +14946.2 q^{35} +297444. q^{36} -50653.0 q^{37} -62298.3 q^{38} +493895. q^{39} +58540.4 q^{40} -242383. q^{41} -86454.9 q^{42} +660296. q^{43} +150049. q^{44} +531388. q^{45} +38568.6 q^{46} -310360. q^{47} -338622. q^{48} -806455. q^{49} -520417. q^{50} +1.64374e6 q^{51} -382349. q^{52} +859068. q^{53} -1.62735e6 q^{54} +268065. q^{55} +66929.0 q^{56} +643786. q^{57} -1.96925e6 q^{58} -1.22165e6 q^{59} -604953. q^{60} -1.70926e6 q^{61} -541031. q^{62} +607532. q^{63} +262144. q^{64} -683071. q^{65} -1.55060e6 q^{66} +1.29584e6 q^{67} -1.27250e6 q^{68} -398565. q^{69} +119569. q^{70} -518524. q^{71} +2.37955e6 q^{72} +872444. q^{73} -405224. q^{74} +5.37795e6 q^{75} -498387. q^{76} +306477. q^{77} +3.95116e6 q^{78} -4.72622e6 q^{79} +468324. q^{80} +6.65266e6 q^{81} -1.93906e6 q^{82} +1.69885e6 q^{83} -691639. q^{84} -2.27333e6 q^{85} +5.28237e6 q^{86} +2.03501e7 q^{87} +1.20039e6 q^{88} -4.21199e6 q^{89} +4.25110e6 q^{90} -780951. q^{91} +308549. q^{92} +5.59098e6 q^{93} -2.48288e6 q^{94} -890374. q^{95} -2.70898e6 q^{96} +1.31862e7 q^{97} -6.45164e6 q^{98} +1.08963e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} - 41 q^{3} + 256 q^{4} - 363 q^{5} - 328 q^{6} - 774 q^{7} + 2048 q^{8} - 1079 q^{9} - 2904 q^{10} - 309 q^{11} - 2624 q^{12} - 20827 q^{13} - 6192 q^{14} - 22940 q^{15} + 16384 q^{16} - 48756 q^{17}+ \cdots + 16949258 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) −82.6714 −1.76779 −0.883896 0.467684i \(-0.845088\pi\)
−0.883896 + 0.467684i \(0.845088\pi\)
\(4\) 64.0000 0.500000
\(5\) 114.337 0.409064 0.204532 0.978860i \(-0.434433\pi\)
0.204532 + 0.978860i \(0.434433\pi\)
\(6\) −661.371 −1.25002
\(7\) 130.721 0.144046 0.0720230 0.997403i \(-0.477055\pi\)
0.0720230 + 0.997403i \(0.477055\pi\)
\(8\) 512.000 0.353553
\(9\) 4647.56 2.12509
\(10\) 914.695 0.289252
\(11\) 2344.52 0.531104 0.265552 0.964097i \(-0.414446\pi\)
0.265552 + 0.964097i \(0.414446\pi\)
\(12\) −5290.97 −0.883896
\(13\) −5974.20 −0.754185 −0.377092 0.926176i \(-0.623076\pi\)
−0.377092 + 0.926176i \(0.623076\pi\)
\(14\) 1045.76 0.101856
\(15\) −9452.39 −0.723139
\(16\) 4096.00 0.250000
\(17\) −19882.8 −0.981535 −0.490767 0.871291i \(-0.663284\pi\)
−0.490767 + 0.871291i \(0.663284\pi\)
\(18\) 37180.5 1.50266
\(19\) −7787.29 −0.260465 −0.130232 0.991484i \(-0.541572\pi\)
−0.130232 + 0.991484i \(0.541572\pi\)
\(20\) 7317.56 0.204532
\(21\) −10806.9 −0.254643
\(22\) 18756.2 0.375547
\(23\) 4821.07 0.0826221 0.0413111 0.999146i \(-0.486847\pi\)
0.0413111 + 0.999146i \(0.486847\pi\)
\(24\) −42327.8 −0.625009
\(25\) −65052.1 −0.832667
\(26\) −47793.6 −0.533289
\(27\) −203418. −1.98892
\(28\) 8366.12 0.0720230
\(29\) −246156. −1.87421 −0.937105 0.349048i \(-0.886505\pi\)
−0.937105 + 0.349048i \(0.886505\pi\)
\(30\) −75619.1 −0.511337
\(31\) −67628.9 −0.407724 −0.203862 0.979000i \(-0.565349\pi\)
−0.203862 + 0.979000i \(0.565349\pi\)
\(32\) 32768.0 0.176777
\(33\) −193825. −0.938881
\(34\) −159062. −0.694050
\(35\) 14946.2 0.0589240
\(36\) 297444. 1.06254
\(37\) −50653.0 −0.164399
\(38\) −62298.3 −0.184176
\(39\) 493895. 1.33324
\(40\) 58540.4 0.144626
\(41\) −242383. −0.549236 −0.274618 0.961553i \(-0.588551\pi\)
−0.274618 + 0.961553i \(0.588551\pi\)
\(42\) −86454.9 −0.180060
\(43\) 660296. 1.26648 0.633241 0.773955i \(-0.281724\pi\)
0.633241 + 0.773955i \(0.281724\pi\)
\(44\) 150049. 0.265552
\(45\) 531388. 0.869296
\(46\) 38568.6 0.0584227
\(47\) −310360. −0.436037 −0.218019 0.975945i \(-0.569959\pi\)
−0.218019 + 0.975945i \(0.569959\pi\)
\(48\) −338622. −0.441948
\(49\) −806455. −0.979251
\(50\) −520417. −0.588784
\(51\) 1.64374e6 1.73515
\(52\) −382349. −0.377092
\(53\) 859068. 0.792614 0.396307 0.918118i \(-0.370292\pi\)
0.396307 + 0.918118i \(0.370292\pi\)
\(54\) −1.62735e6 −1.40638
\(55\) 268065. 0.217255
\(56\) 66929.0 0.0509279
\(57\) 643786. 0.460447
\(58\) −1.96925e6 −1.32527
\(59\) −1.22165e6 −0.774396 −0.387198 0.921996i \(-0.626557\pi\)
−0.387198 + 0.921996i \(0.626557\pi\)
\(60\) −604953. −0.361570
\(61\) −1.70926e6 −0.964170 −0.482085 0.876124i \(-0.660120\pi\)
−0.482085 + 0.876124i \(0.660120\pi\)
\(62\) −541031. −0.288305
\(63\) 607532. 0.306110
\(64\) 262144. 0.125000
\(65\) −683071. −0.308510
\(66\) −1.55060e6 −0.663889
\(67\) 1.29584e6 0.526367 0.263184 0.964746i \(-0.415227\pi\)
0.263184 + 0.964746i \(0.415227\pi\)
\(68\) −1.27250e6 −0.490767
\(69\) −398565. −0.146059
\(70\) 119569. 0.0416655
\(71\) −518524. −0.171935 −0.0859675 0.996298i \(-0.527398\pi\)
−0.0859675 + 0.996298i \(0.527398\pi\)
\(72\) 2.37955e6 0.751331
\(73\) 872444. 0.262487 0.131243 0.991350i \(-0.458103\pi\)
0.131243 + 0.991350i \(0.458103\pi\)
\(74\) −405224. −0.116248
\(75\) 5.37795e6 1.47198
\(76\) −498387. −0.130232
\(77\) 306477. 0.0765033
\(78\) 3.95116e6 0.942744
\(79\) −4.72622e6 −1.07850 −0.539249 0.842147i \(-0.681292\pi\)
−0.539249 + 0.842147i \(0.681292\pi\)
\(80\) 468324. 0.102266
\(81\) 6.65266e6 1.39091
\(82\) −1.93906e6 −0.388368
\(83\) 1.69885e6 0.326124 0.163062 0.986616i \(-0.447863\pi\)
0.163062 + 0.986616i \(0.447863\pi\)
\(84\) −691639. −0.127322
\(85\) −2.27333e6 −0.401510
\(86\) 5.28237e6 0.895538
\(87\) 2.03501e7 3.31321
\(88\) 1.20039e6 0.187774
\(89\) −4.21199e6 −0.633318 −0.316659 0.948539i \(-0.602561\pi\)
−0.316659 + 0.948539i \(0.602561\pi\)
\(90\) 4.25110e6 0.614685
\(91\) −780951. −0.108637
\(92\) 308549. 0.0413111
\(93\) 5.59098e6 0.720771
\(94\) −2.48288e6 −0.308325
\(95\) −890374. −0.106547
\(96\) −2.70898e6 −0.312504
\(97\) 1.31862e7 1.46697 0.733483 0.679708i \(-0.237894\pi\)
0.733483 + 0.679708i \(0.237894\pi\)
\(98\) −6.45164e6 −0.692435
\(99\) 1.08963e7 1.12864
\(100\) −4.16333e6 −0.416333
\(101\) −1.96105e7 −1.89393 −0.946965 0.321336i \(-0.895868\pi\)
−0.946965 + 0.321336i \(0.895868\pi\)
\(102\) 1.31499e7 1.22694
\(103\) −7.59111e6 −0.684502 −0.342251 0.939609i \(-0.611189\pi\)
−0.342251 + 0.939609i \(0.611189\pi\)
\(104\) −3.05879e6 −0.266645
\(105\) −1.23562e6 −0.104165
\(106\) 6.87254e6 0.560463
\(107\) 1.56821e7 1.23755 0.618773 0.785570i \(-0.287630\pi\)
0.618773 + 0.785570i \(0.287630\pi\)
\(108\) −1.30188e7 −0.994459
\(109\) −533820. −0.0394823 −0.0197411 0.999805i \(-0.506284\pi\)
−0.0197411 + 0.999805i \(0.506284\pi\)
\(110\) 2.14452e6 0.153623
\(111\) 4.18756e6 0.290623
\(112\) 535432. 0.0360115
\(113\) −1.42250e7 −0.927420 −0.463710 0.885987i \(-0.653482\pi\)
−0.463710 + 0.885987i \(0.653482\pi\)
\(114\) 5.15029e6 0.325585
\(115\) 551226. 0.0337977
\(116\) −1.57540e7 −0.937105
\(117\) −2.77655e7 −1.60271
\(118\) −9.77317e6 −0.547581
\(119\) −2.59909e6 −0.141386
\(120\) −4.83962e6 −0.255668
\(121\) −1.39904e7 −0.717929
\(122\) −1.36741e7 −0.681771
\(123\) 2.00381e7 0.970934
\(124\) −4.32825e6 −0.203862
\(125\) −1.63704e7 −0.749678
\(126\) 4.86026e6 0.216452
\(127\) −2.12729e7 −0.921537 −0.460768 0.887520i \(-0.652426\pi\)
−0.460768 + 0.887520i \(0.652426\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) −5.45876e7 −2.23888
\(130\) −5.46457e6 −0.218149
\(131\) 1.89968e7 0.738297 0.369148 0.929370i \(-0.379649\pi\)
0.369148 + 0.929370i \(0.379649\pi\)
\(132\) −1.24048e7 −0.469440
\(133\) −1.01796e6 −0.0375189
\(134\) 1.03667e7 0.372198
\(135\) −2.32582e7 −0.813594
\(136\) −1.01800e7 −0.347025
\(137\) 5.66328e7 1.88168 0.940841 0.338848i \(-0.110037\pi\)
0.940841 + 0.338848i \(0.110037\pi\)
\(138\) −3.18852e6 −0.103279
\(139\) 3.15115e7 0.995215 0.497607 0.867402i \(-0.334212\pi\)
0.497607 + 0.867402i \(0.334212\pi\)
\(140\) 956555. 0.0294620
\(141\) 2.56579e7 0.770823
\(142\) −4.14819e6 −0.121576
\(143\) −1.40066e7 −0.400551
\(144\) 1.90364e7 0.531272
\(145\) −2.81447e7 −0.766671
\(146\) 6.97955e6 0.185606
\(147\) 6.66708e7 1.73111
\(148\) −3.24179e6 −0.0821995
\(149\) 206567. 0.00511575 0.00255787 0.999997i \(-0.499186\pi\)
0.00255787 + 0.999997i \(0.499186\pi\)
\(150\) 4.30236e7 1.04085
\(151\) 3.08004e7 0.728009 0.364005 0.931397i \(-0.381409\pi\)
0.364005 + 0.931397i \(0.381409\pi\)
\(152\) −3.98709e6 −0.0920882
\(153\) −9.24064e7 −2.08585
\(154\) 2.45182e6 0.0540960
\(155\) −7.73248e6 −0.166785
\(156\) 3.16093e7 0.666621
\(157\) 5.53862e7 1.14223 0.571114 0.820871i \(-0.306511\pi\)
0.571114 + 0.820871i \(0.306511\pi\)
\(158\) −3.78097e7 −0.762613
\(159\) −7.10204e7 −1.40118
\(160\) 3.74659e6 0.0723130
\(161\) 630214. 0.0119014
\(162\) 5.32213e7 0.983519
\(163\) −1.01371e8 −1.83340 −0.916701 0.399574i \(-0.869158\pi\)
−0.916701 + 0.399574i \(0.869158\pi\)
\(164\) −1.55125e7 −0.274618
\(165\) −2.21613e7 −0.384062
\(166\) 1.35908e7 0.230605
\(167\) −1.14227e8 −1.89785 −0.948926 0.315498i \(-0.897829\pi\)
−0.948926 + 0.315498i \(0.897829\pi\)
\(168\) −5.53311e6 −0.0900299
\(169\) −2.70575e7 −0.431205
\(170\) −1.81867e7 −0.283911
\(171\) −3.61919e7 −0.553510
\(172\) 4.22589e7 0.633241
\(173\) −4.78631e7 −0.702813 −0.351407 0.936223i \(-0.614297\pi\)
−0.351407 + 0.936223i \(0.614297\pi\)
\(174\) 1.62801e8 2.34279
\(175\) −8.50365e6 −0.119942
\(176\) 9.60315e6 0.132776
\(177\) 1.00995e8 1.36897
\(178\) −3.36959e7 −0.447824
\(179\) 1.97413e7 0.257271 0.128635 0.991692i \(-0.458940\pi\)
0.128635 + 0.991692i \(0.458940\pi\)
\(180\) 3.40088e7 0.434648
\(181\) 6.57898e7 0.824676 0.412338 0.911031i \(-0.364712\pi\)
0.412338 + 0.911031i \(0.364712\pi\)
\(182\) −6.24761e6 −0.0768181
\(183\) 1.41307e8 1.70445
\(184\) 2.46839e6 0.0292113
\(185\) −5.79150e6 −0.0672497
\(186\) 4.47278e7 0.509662
\(187\) −4.66155e7 −0.521297
\(188\) −1.98631e7 −0.218019
\(189\) −2.65910e7 −0.286495
\(190\) −7.12299e6 −0.0753399
\(191\) −6.84589e7 −0.710907 −0.355454 0.934694i \(-0.615674\pi\)
−0.355454 + 0.934694i \(0.615674\pi\)
\(192\) −2.16718e7 −0.220974
\(193\) 9.33194e7 0.934375 0.467187 0.884158i \(-0.345267\pi\)
0.467187 + 0.884158i \(0.345267\pi\)
\(194\) 1.05490e8 1.03730
\(195\) 5.64704e7 0.545381
\(196\) −5.16131e7 −0.489625
\(197\) 1.41425e8 1.31794 0.658970 0.752169i \(-0.270992\pi\)
0.658970 + 0.752169i \(0.270992\pi\)
\(198\) 8.71704e7 0.798070
\(199\) 1.09895e8 0.988531 0.494265 0.869311i \(-0.335437\pi\)
0.494265 + 0.869311i \(0.335437\pi\)
\(200\) −3.33067e7 −0.294392
\(201\) −1.07129e8 −0.930508
\(202\) −1.56884e8 −1.33921
\(203\) −3.21777e7 −0.269972
\(204\) 1.05199e8 0.867574
\(205\) −2.77133e7 −0.224672
\(206\) −6.07288e7 −0.484016
\(207\) 2.24062e7 0.175579
\(208\) −2.44703e7 −0.188546
\(209\) −1.82575e7 −0.138334
\(210\) −9.88497e6 −0.0736560
\(211\) 1.70421e8 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(212\) 5.49804e7 0.396307
\(213\) 4.28671e7 0.303945
\(214\) 1.25457e8 0.875078
\(215\) 7.54961e7 0.518072
\(216\) −1.04150e8 −0.703189
\(217\) −8.84049e6 −0.0587310
\(218\) −4.27056e6 −0.0279182
\(219\) −7.21262e7 −0.464022
\(220\) 1.71562e7 0.108628
\(221\) 1.18784e8 0.740259
\(222\) 3.35004e7 0.205502
\(223\) 5.64211e7 0.340702 0.170351 0.985383i \(-0.445510\pi\)
0.170351 + 0.985383i \(0.445510\pi\)
\(224\) 4.28345e6 0.0254640
\(225\) −3.02334e8 −1.76949
\(226\) −1.13800e8 −0.655785
\(227\) −1.82878e8 −1.03770 −0.518848 0.854866i \(-0.673639\pi\)
−0.518848 + 0.854866i \(0.673639\pi\)
\(228\) 4.12023e7 0.230224
\(229\) 1.93904e7 0.106700 0.0533498 0.998576i \(-0.483010\pi\)
0.0533498 + 0.998576i \(0.483010\pi\)
\(230\) 4.40981e6 0.0238986
\(231\) −2.53369e7 −0.135242
\(232\) −1.26032e8 −0.662633
\(233\) −7.65219e7 −0.396314 −0.198157 0.980170i \(-0.563496\pi\)
−0.198157 + 0.980170i \(0.563496\pi\)
\(234\) −2.22124e8 −1.13329
\(235\) −3.54856e7 −0.178367
\(236\) −7.81853e7 −0.387198
\(237\) 3.90723e8 1.90656
\(238\) −2.07927e7 −0.0999750
\(239\) 3.45231e8 1.63575 0.817875 0.575396i \(-0.195152\pi\)
0.817875 + 0.575396i \(0.195152\pi\)
\(240\) −3.87170e7 −0.180785
\(241\) −2.61103e8 −1.20158 −0.600789 0.799408i \(-0.705147\pi\)
−0.600789 + 0.799408i \(0.705147\pi\)
\(242\) −1.11923e8 −0.507652
\(243\) −1.05109e8 −0.469913
\(244\) −1.09393e8 −0.482085
\(245\) −9.22075e7 −0.400576
\(246\) 1.60305e8 0.686554
\(247\) 4.65228e7 0.196439
\(248\) −3.46260e7 −0.144152
\(249\) −1.40447e8 −0.576519
\(250\) −1.30963e8 −0.530102
\(251\) 1.56531e8 0.624804 0.312402 0.949950i \(-0.398866\pi\)
0.312402 + 0.949950i \(0.398866\pi\)
\(252\) 3.88821e7 0.153055
\(253\) 1.13031e7 0.0438809
\(254\) −1.70183e8 −0.651625
\(255\) 1.87940e8 0.709787
\(256\) 1.67772e7 0.0625000
\(257\) 1.85640e8 0.682191 0.341095 0.940029i \(-0.389202\pi\)
0.341095 + 0.940029i \(0.389202\pi\)
\(258\) −4.36701e8 −1.58312
\(259\) −6.62139e6 −0.0236810
\(260\) −4.37165e7 −0.154255
\(261\) −1.14403e9 −3.98286
\(262\) 1.51974e8 0.522055
\(263\) 5.09760e8 1.72791 0.863953 0.503572i \(-0.167981\pi\)
0.863953 + 0.503572i \(0.167981\pi\)
\(264\) −9.92383e7 −0.331945
\(265\) 9.82231e7 0.324230
\(266\) −8.14368e6 −0.0265298
\(267\) 3.48211e8 1.11957
\(268\) 8.29336e7 0.263184
\(269\) 3.92417e8 1.22918 0.614589 0.788848i \(-0.289322\pi\)
0.614589 + 0.788848i \(0.289322\pi\)
\(270\) −1.86066e8 −0.575298
\(271\) −4.63684e8 −1.41524 −0.707619 0.706594i \(-0.750231\pi\)
−0.707619 + 0.706594i \(0.750231\pi\)
\(272\) −8.14398e7 −0.245384
\(273\) 6.45623e7 0.192048
\(274\) 4.53063e8 1.33055
\(275\) −1.52516e8 −0.442233
\(276\) −2.55082e7 −0.0730293
\(277\) 1.93073e8 0.545811 0.272906 0.962041i \(-0.412015\pi\)
0.272906 + 0.962041i \(0.412015\pi\)
\(278\) 2.52092e8 0.703723
\(279\) −3.14310e8 −0.866449
\(280\) 7.65244e6 0.0208328
\(281\) 3.95956e8 1.06457 0.532285 0.846565i \(-0.321333\pi\)
0.532285 + 0.846565i \(0.321333\pi\)
\(282\) 2.05263e8 0.545054
\(283\) −5.52836e8 −1.44992 −0.724959 0.688792i \(-0.758142\pi\)
−0.724959 + 0.688792i \(0.758142\pi\)
\(284\) −3.31855e7 −0.0859675
\(285\) 7.36085e7 0.188352
\(286\) −1.12053e8 −0.283232
\(287\) −3.16845e7 −0.0791151
\(288\) 1.52291e8 0.375666
\(289\) −1.50141e7 −0.0365895
\(290\) −2.25158e8 −0.542119
\(291\) −1.09013e9 −2.59329
\(292\) 5.58364e7 0.131243
\(293\) −8.34151e7 −0.193735 −0.0968675 0.995297i \(-0.530882\pi\)
−0.0968675 + 0.995297i \(0.530882\pi\)
\(294\) 5.33366e8 1.22408
\(295\) −1.39679e8 −0.316778
\(296\) −2.59343e7 −0.0581238
\(297\) −4.76918e8 −1.05632
\(298\) 1.65254e6 0.00361738
\(299\) −2.88020e7 −0.0623123
\(300\) 3.44189e8 0.735991
\(301\) 8.63143e7 0.182432
\(302\) 2.46403e8 0.514780
\(303\) 1.62123e9 3.34807
\(304\) −3.18967e7 −0.0651162
\(305\) −1.95431e8 −0.394407
\(306\) −7.39252e8 −1.47492
\(307\) 8.49160e8 1.67496 0.837482 0.546466i \(-0.184027\pi\)
0.837482 + 0.546466i \(0.184027\pi\)
\(308\) 1.96145e7 0.0382517
\(309\) 6.27567e8 1.21006
\(310\) −6.18598e7 −0.117935
\(311\) 3.12972e8 0.589990 0.294995 0.955499i \(-0.404682\pi\)
0.294995 + 0.955499i \(0.404682\pi\)
\(312\) 2.52874e8 0.471372
\(313\) −3.68233e8 −0.678763 −0.339381 0.940649i \(-0.610218\pi\)
−0.339381 + 0.940649i \(0.610218\pi\)
\(314\) 4.43090e8 0.807677
\(315\) 6.94633e7 0.125219
\(316\) −3.02478e8 −0.539249
\(317\) 8.20621e8 1.44689 0.723445 0.690382i \(-0.242558\pi\)
0.723445 + 0.690382i \(0.242558\pi\)
\(318\) −5.68163e8 −0.990782
\(319\) −5.77119e8 −0.995400
\(320\) 2.99727e7 0.0511330
\(321\) −1.29646e9 −2.18772
\(322\) 5.04171e6 0.00841554
\(323\) 1.54833e8 0.255655
\(324\) 4.25770e8 0.695453
\(325\) 3.88634e8 0.627985
\(326\) −8.10969e8 −1.29641
\(327\) 4.41317e7 0.0697964
\(328\) −1.24100e8 −0.194184
\(329\) −4.05705e7 −0.0628094
\(330\) −1.77290e8 −0.271573
\(331\) 3.11691e7 0.0472418 0.0236209 0.999721i \(-0.492481\pi\)
0.0236209 + 0.999721i \(0.492481\pi\)
\(332\) 1.08727e8 0.163062
\(333\) −2.35413e8 −0.349362
\(334\) −9.13819e8 −1.34198
\(335\) 1.48162e8 0.215318
\(336\) −4.42649e7 −0.0636608
\(337\) −1.31728e9 −1.87487 −0.937437 0.348155i \(-0.886808\pi\)
−0.937437 + 0.348155i \(0.886808\pi\)
\(338\) −2.16460e8 −0.304908
\(339\) 1.17600e9 1.63949
\(340\) −1.45493e8 −0.200755
\(341\) −1.58557e8 −0.216544
\(342\) −2.89535e8 −0.391391
\(343\) −2.13074e8 −0.285103
\(344\) 3.38071e8 0.447769
\(345\) −4.55706e7 −0.0597473
\(346\) −3.82905e8 −0.496964
\(347\) 1.01825e9 1.30829 0.654144 0.756370i \(-0.273029\pi\)
0.654144 + 0.756370i \(0.273029\pi\)
\(348\) 1.30241e9 1.65661
\(349\) −1.02153e9 −1.28636 −0.643182 0.765713i \(-0.722386\pi\)
−0.643182 + 0.765713i \(0.722386\pi\)
\(350\) −6.80292e7 −0.0848120
\(351\) 1.21526e9 1.50001
\(352\) 7.68252e7 0.0938868
\(353\) 1.14845e8 0.138964 0.0694818 0.997583i \(-0.477865\pi\)
0.0694818 + 0.997583i \(0.477865\pi\)
\(354\) 8.07962e8 0.968009
\(355\) −5.92863e7 −0.0703324
\(356\) −2.69567e8 −0.316659
\(357\) 2.14870e8 0.249941
\(358\) 1.57931e8 0.181918
\(359\) 1.15379e9 1.31612 0.658061 0.752965i \(-0.271377\pi\)
0.658061 + 0.752965i \(0.271377\pi\)
\(360\) 2.72070e8 0.307343
\(361\) −8.33230e8 −0.932158
\(362\) 5.26318e8 0.583134
\(363\) 1.15661e9 1.26915
\(364\) −4.99808e7 −0.0543186
\(365\) 9.97525e7 0.107374
\(366\) 1.13046e9 1.20523
\(367\) −7.43776e7 −0.0785436 −0.0392718 0.999229i \(-0.512504\pi\)
−0.0392718 + 0.999229i \(0.512504\pi\)
\(368\) 1.97471e7 0.0206555
\(369\) −1.12649e9 −1.16717
\(370\) −4.63320e7 −0.0475527
\(371\) 1.12298e8 0.114173
\(372\) 3.57823e8 0.360386
\(373\) −1.22089e9 −1.21814 −0.609070 0.793117i \(-0.708457\pi\)
−0.609070 + 0.793117i \(0.708457\pi\)
\(374\) −3.72924e8 −0.368613
\(375\) 1.35337e9 1.32527
\(376\) −1.58904e8 −0.154162
\(377\) 1.47059e9 1.41350
\(378\) −2.12728e8 −0.202583
\(379\) −1.09902e9 −1.03698 −0.518490 0.855084i \(-0.673506\pi\)
−0.518490 + 0.855084i \(0.673506\pi\)
\(380\) −5.69839e7 −0.0532733
\(381\) 1.75866e9 1.62908
\(382\) −5.47671e8 −0.502687
\(383\) −5.67152e8 −0.515827 −0.257913 0.966168i \(-0.583035\pi\)
−0.257913 + 0.966168i \(0.583035\pi\)
\(384\) −1.73375e8 −0.156252
\(385\) 3.50416e7 0.0312947
\(386\) 7.46555e8 0.660703
\(387\) 3.06877e9 2.69138
\(388\) 8.43919e8 0.733483
\(389\) −7.90877e8 −0.681217 −0.340608 0.940205i \(-0.610633\pi\)
−0.340608 + 0.940205i \(0.610633\pi\)
\(390\) 4.51763e8 0.385643
\(391\) −9.58563e7 −0.0810965
\(392\) −4.12905e8 −0.346217
\(393\) −1.57049e9 −1.30515
\(394\) 1.13140e9 0.931925
\(395\) −5.40381e8 −0.441174
\(396\) 6.97363e8 0.564321
\(397\) −1.40683e9 −1.12843 −0.564217 0.825626i \(-0.690822\pi\)
−0.564217 + 0.825626i \(0.690822\pi\)
\(398\) 8.79156e8 0.698997
\(399\) 8.41562e7 0.0663255
\(400\) −2.66453e8 −0.208167
\(401\) −2.07896e9 −1.61005 −0.805027 0.593238i \(-0.797849\pi\)
−0.805027 + 0.593238i \(0.797849\pi\)
\(402\) −8.57030e8 −0.657968
\(403\) 4.04029e8 0.307499
\(404\) −1.25507e9 −0.946965
\(405\) 7.60644e8 0.568969
\(406\) −2.57422e8 −0.190899
\(407\) −1.18757e8 −0.0873129
\(408\) 8.41593e8 0.613468
\(409\) −1.36197e8 −0.0984319 −0.0492160 0.998788i \(-0.515672\pi\)
−0.0492160 + 0.998788i \(0.515672\pi\)
\(410\) −2.21706e8 −0.158867
\(411\) −4.68192e9 −3.32642
\(412\) −4.85831e8 −0.342251
\(413\) −1.59694e8 −0.111549
\(414\) 1.79250e8 0.124153
\(415\) 1.94242e8 0.133406
\(416\) −1.95763e8 −0.133322
\(417\) −2.60510e9 −1.75933
\(418\) −1.46060e8 −0.0978168
\(419\) 8.70749e8 0.578287 0.289144 0.957286i \(-0.406629\pi\)
0.289144 + 0.957286i \(0.406629\pi\)
\(420\) −7.90798e7 −0.0520826
\(421\) −1.78983e9 −1.16903 −0.584514 0.811384i \(-0.698715\pi\)
−0.584514 + 0.811384i \(0.698715\pi\)
\(422\) 1.36336e9 0.883118
\(423\) −1.44242e9 −0.926617
\(424\) 4.39843e8 0.280232
\(425\) 1.29342e9 0.817291
\(426\) 3.42937e8 0.214922
\(427\) −2.23435e8 −0.138885
\(428\) 1.00366e9 0.618773
\(429\) 1.15795e9 0.708090
\(430\) 6.03969e8 0.366332
\(431\) −2.43619e9 −1.46568 −0.732842 0.680399i \(-0.761807\pi\)
−0.732842 + 0.680399i \(0.761807\pi\)
\(432\) −8.33201e8 −0.497229
\(433\) 1.60081e8 0.0947614 0.0473807 0.998877i \(-0.484913\pi\)
0.0473807 + 0.998877i \(0.484913\pi\)
\(434\) −7.07240e7 −0.0415291
\(435\) 2.32677e9 1.35532
\(436\) −3.41645e7 −0.0197411
\(437\) −3.75431e7 −0.0215201
\(438\) −5.77009e8 −0.328113
\(439\) −2.78349e9 −1.57023 −0.785115 0.619350i \(-0.787396\pi\)
−0.785115 + 0.619350i \(0.787396\pi\)
\(440\) 1.37249e8 0.0768114
\(441\) −3.74805e9 −2.08099
\(442\) 9.50269e8 0.523442
\(443\) −2.30211e9 −1.25809 −0.629046 0.777368i \(-0.716554\pi\)
−0.629046 + 0.777368i \(0.716554\pi\)
\(444\) 2.68004e8 0.145312
\(445\) −4.81585e8 −0.259068
\(446\) 4.51369e8 0.240913
\(447\) −1.70772e7 −0.00904357
\(448\) 3.42676e7 0.0180057
\(449\) −1.65040e9 −0.860451 −0.430225 0.902721i \(-0.641566\pi\)
−0.430225 + 0.902721i \(0.641566\pi\)
\(450\) −2.41867e9 −1.25122
\(451\) −5.68272e8 −0.291701
\(452\) −9.10398e8 −0.463710
\(453\) −2.54631e9 −1.28697
\(454\) −1.46302e9 −0.733763
\(455\) −8.92914e7 −0.0444396
\(456\) 3.29619e8 0.162793
\(457\) 2.78651e8 0.136569 0.0682847 0.997666i \(-0.478247\pi\)
0.0682847 + 0.997666i \(0.478247\pi\)
\(458\) 1.55123e8 0.0754479
\(459\) 4.04452e9 1.95219
\(460\) 3.52785e7 0.0168989
\(461\) 3.50867e9 1.66798 0.833988 0.551783i \(-0.186052\pi\)
0.833988 + 0.551783i \(0.186052\pi\)
\(462\) −2.02695e8 −0.0956305
\(463\) −9.72895e8 −0.455546 −0.227773 0.973714i \(-0.573144\pi\)
−0.227773 + 0.973714i \(0.573144\pi\)
\(464\) −1.00826e9 −0.468552
\(465\) 6.39255e8 0.294842
\(466\) −6.12175e8 −0.280237
\(467\) 1.32759e9 0.603191 0.301596 0.953436i \(-0.402481\pi\)
0.301596 + 0.953436i \(0.402481\pi\)
\(468\) −1.77699e9 −0.801354
\(469\) 1.69393e8 0.0758211
\(470\) −2.83885e8 −0.126125
\(471\) −4.57886e9 −2.01922
\(472\) −6.25483e8 −0.273790
\(473\) 1.54808e9 0.672633
\(474\) 3.12579e9 1.34814
\(475\) 5.06580e8 0.216880
\(476\) −1.66342e8 −0.0706930
\(477\) 3.99257e9 1.68437
\(478\) 2.76185e9 1.15665
\(479\) 4.21765e9 1.75346 0.876730 0.480983i \(-0.159720\pi\)
0.876730 + 0.480983i \(0.159720\pi\)
\(480\) −3.09736e8 −0.127834
\(481\) 3.02611e8 0.123987
\(482\) −2.08882e9 −0.849644
\(483\) −5.21006e7 −0.0210391
\(484\) −8.95386e8 −0.358964
\(485\) 1.50767e9 0.600082
\(486\) −8.40870e8 −0.332278
\(487\) −1.37133e9 −0.538012 −0.269006 0.963139i \(-0.586695\pi\)
−0.269006 + 0.963139i \(0.586695\pi\)
\(488\) −8.75141e8 −0.340886
\(489\) 8.38049e9 3.24107
\(490\) −7.37660e8 −0.283250
\(491\) 8.25588e8 0.314759 0.157379 0.987538i \(-0.449695\pi\)
0.157379 + 0.987538i \(0.449695\pi\)
\(492\) 1.28244e9 0.485467
\(493\) 4.89427e9 1.83960
\(494\) 3.72183e8 0.138903
\(495\) 1.24585e9 0.461686
\(496\) −2.77008e8 −0.101931
\(497\) −6.77817e7 −0.0247665
\(498\) −1.12357e9 −0.407661
\(499\) 4.64880e9 1.67490 0.837450 0.546514i \(-0.184045\pi\)
0.837450 + 0.546514i \(0.184045\pi\)
\(500\) −1.04771e9 −0.374839
\(501\) 9.44334e9 3.35501
\(502\) 1.25225e9 0.441803
\(503\) −5.35012e9 −1.87446 −0.937228 0.348716i \(-0.886618\pi\)
−0.937228 + 0.348716i \(0.886618\pi\)
\(504\) 3.11057e8 0.108226
\(505\) −2.24220e9 −0.774738
\(506\) 9.04248e7 0.0310285
\(507\) 2.23688e9 0.762281
\(508\) −1.36146e9 −0.460768
\(509\) 2.75912e9 0.927383 0.463691 0.885997i \(-0.346525\pi\)
0.463691 + 0.885997i \(0.346525\pi\)
\(510\) 1.50352e9 0.501895
\(511\) 1.14046e8 0.0378102
\(512\) 1.34218e8 0.0441942
\(513\) 1.58408e9 0.518043
\(514\) 1.48512e9 0.482382
\(515\) −8.67943e8 −0.280005
\(516\) −3.49361e9 −1.11944
\(517\) −7.27646e8 −0.231581
\(518\) −5.29711e7 −0.0167450
\(519\) 3.95691e9 1.24243
\(520\) −3.49732e8 −0.109075
\(521\) −4.81094e9 −1.49038 −0.745191 0.666851i \(-0.767642\pi\)
−0.745191 + 0.666851i \(0.767642\pi\)
\(522\) −9.15222e9 −2.81631
\(523\) −1.61447e9 −0.493486 −0.246743 0.969081i \(-0.579360\pi\)
−0.246743 + 0.969081i \(0.579360\pi\)
\(524\) 1.21580e9 0.369148
\(525\) 7.03009e8 0.212033
\(526\) 4.07808e9 1.22181
\(527\) 1.34465e9 0.400196
\(528\) −7.93906e8 −0.234720
\(529\) −3.38158e9 −0.993174
\(530\) 7.85785e8 0.229265
\(531\) −5.67768e9 −1.64566
\(532\) −6.51494e7 −0.0187594
\(533\) 1.44804e9 0.414225
\(534\) 2.78569e9 0.791659
\(535\) 1.79304e9 0.506236
\(536\) 6.63469e8 0.186099
\(537\) −1.63204e9 −0.454801
\(538\) 3.13933e9 0.869159
\(539\) −1.89075e9 −0.520084
\(540\) −1.48852e9 −0.406797
\(541\) 6.90904e9 1.87598 0.937988 0.346667i \(-0.112687\pi\)
0.937988 + 0.346667i \(0.112687\pi\)
\(542\) −3.70947e9 −1.00072
\(543\) −5.43893e9 −1.45785
\(544\) −6.51519e8 −0.173512
\(545\) −6.10353e7 −0.0161508
\(546\) 5.16498e8 0.135798
\(547\) −4.45727e9 −1.16443 −0.582215 0.813035i \(-0.697814\pi\)
−0.582215 + 0.813035i \(0.697814\pi\)
\(548\) 3.62450e9 0.940841
\(549\) −7.94389e9 −2.04894
\(550\) −1.22013e9 −0.312706
\(551\) 1.91689e9 0.488165
\(552\) −2.04065e8 −0.0516395
\(553\) −6.17814e8 −0.155353
\(554\) 1.54458e9 0.385947
\(555\) 4.78792e8 0.118883
\(556\) 2.01673e9 0.497607
\(557\) −1.21053e9 −0.296813 −0.148406 0.988926i \(-0.547414\pi\)
−0.148406 + 0.988926i \(0.547414\pi\)
\(558\) −2.51448e9 −0.612672
\(559\) −3.94474e9 −0.955162
\(560\) 6.12195e7 0.0147310
\(561\) 3.85377e9 0.921544
\(562\) 3.16764e9 0.752765
\(563\) 3.68621e9 0.870565 0.435282 0.900294i \(-0.356649\pi\)
0.435282 + 0.900294i \(0.356649\pi\)
\(564\) 1.64211e9 0.385411
\(565\) −1.62644e9 −0.379374
\(566\) −4.42269e9 −1.02525
\(567\) 8.69639e8 0.200354
\(568\) −2.65484e8 −0.0607882
\(569\) 4.78409e9 1.08869 0.544347 0.838860i \(-0.316777\pi\)
0.544347 + 0.838860i \(0.316777\pi\)
\(570\) 5.88868e8 0.133185
\(571\) 4.52250e9 1.01661 0.508303 0.861178i \(-0.330273\pi\)
0.508303 + 0.861178i \(0.330273\pi\)
\(572\) −8.96424e8 −0.200275
\(573\) 5.65959e9 1.25674
\(574\) −2.53476e8 −0.0559429
\(575\) −3.13621e8 −0.0687967
\(576\) 1.21833e9 0.265636
\(577\) −3.92270e9 −0.850100 −0.425050 0.905170i \(-0.639743\pi\)
−0.425050 + 0.905170i \(0.639743\pi\)
\(578\) −1.20113e8 −0.0258727
\(579\) −7.71484e9 −1.65178
\(580\) −1.80126e9 −0.383336
\(581\) 2.22075e8 0.0469768
\(582\) −8.72100e9 −1.83373
\(583\) 2.01410e9 0.420961
\(584\) 4.46691e8 0.0928031
\(585\) −3.17461e9 −0.655610
\(586\) −6.67321e8 −0.136991
\(587\) 4.45656e9 0.909424 0.454712 0.890638i \(-0.349742\pi\)
0.454712 + 0.890638i \(0.349742\pi\)
\(588\) 4.26693e9 0.865556
\(589\) 5.26646e8 0.106198
\(590\) −1.11743e9 −0.223996
\(591\) −1.16918e10 −2.32984
\(592\) −2.07475e8 −0.0410997
\(593\) 3.49353e9 0.687976 0.343988 0.938974i \(-0.388222\pi\)
0.343988 + 0.938974i \(0.388222\pi\)
\(594\) −3.81535e9 −0.746932
\(595\) −2.97171e8 −0.0578359
\(596\) 1.32203e7 0.00255787
\(597\) −9.08513e9 −1.74752
\(598\) −2.30416e8 −0.0440615
\(599\) −2.49362e9 −0.474063 −0.237032 0.971502i \(-0.576175\pi\)
−0.237032 + 0.971502i \(0.576175\pi\)
\(600\) 2.75351e9 0.520424
\(601\) 1.04034e10 1.95486 0.977429 0.211262i \(-0.0677574\pi\)
0.977429 + 0.211262i \(0.0677574\pi\)
\(602\) 6.90514e8 0.128999
\(603\) 6.02249e9 1.11858
\(604\) 1.97123e9 0.364005
\(605\) −1.59962e9 −0.293679
\(606\) 1.29698e10 2.36745
\(607\) 3.56887e9 0.647694 0.323847 0.946110i \(-0.395024\pi\)
0.323847 + 0.946110i \(0.395024\pi\)
\(608\) −2.55174e8 −0.0460441
\(609\) 2.66018e9 0.477255
\(610\) −1.56345e9 −0.278888
\(611\) 1.85415e9 0.328853
\(612\) −5.91401e9 −1.04292
\(613\) −5.03005e8 −0.0881984 −0.0440992 0.999027i \(-0.514042\pi\)
−0.0440992 + 0.999027i \(0.514042\pi\)
\(614\) 6.79328e9 1.18438
\(615\) 2.29110e9 0.397174
\(616\) 1.56916e8 0.0270480
\(617\) −1.25403e9 −0.214936 −0.107468 0.994209i \(-0.534274\pi\)
−0.107468 + 0.994209i \(0.534274\pi\)
\(618\) 5.02054e9 0.855639
\(619\) −9.27046e9 −1.57103 −0.785514 0.618843i \(-0.787602\pi\)
−0.785514 + 0.618843i \(0.787602\pi\)
\(620\) −4.94878e8 −0.0833926
\(621\) −9.80694e8 −0.164329
\(622\) 2.50378e9 0.417186
\(623\) −5.50593e8 −0.0912269
\(624\) 2.02300e9 0.333310
\(625\) 3.21045e9 0.526001
\(626\) −2.94587e9 −0.479958
\(627\) 1.50937e9 0.244545
\(628\) 3.54472e9 0.571114
\(629\) 1.00712e9 0.161363
\(630\) 5.55706e8 0.0885429
\(631\) 1.19395e9 0.189184 0.0945918 0.995516i \(-0.469845\pi\)
0.0945918 + 0.995516i \(0.469845\pi\)
\(632\) −2.41982e9 −0.381306
\(633\) −1.40889e10 −2.20782
\(634\) 6.56497e9 1.02311
\(635\) −2.43227e9 −0.376967
\(636\) −4.54530e9 −0.700589
\(637\) 4.81792e9 0.738536
\(638\) −4.61695e9 −0.703854
\(639\) −2.40987e9 −0.365377
\(640\) 2.39782e8 0.0361565
\(641\) −6.01299e9 −0.901752 −0.450876 0.892587i \(-0.648888\pi\)
−0.450876 + 0.892587i \(0.648888\pi\)
\(642\) −1.03717e10 −1.54695
\(643\) −8.03723e9 −1.19225 −0.596126 0.802891i \(-0.703294\pi\)
−0.596126 + 0.802891i \(0.703294\pi\)
\(644\) 4.03337e7 0.00595069
\(645\) −6.24137e9 −0.915843
\(646\) 1.23866e9 0.180775
\(647\) −2.66241e9 −0.386465 −0.193233 0.981153i \(-0.561897\pi\)
−0.193233 + 0.981153i \(0.561897\pi\)
\(648\) 3.40616e9 0.491759
\(649\) −2.86417e9 −0.411285
\(650\) 3.10907e9 0.444052
\(651\) 7.30856e8 0.103824
\(652\) −6.48775e9 −0.916701
\(653\) 2.98529e9 0.419557 0.209779 0.977749i \(-0.432726\pi\)
0.209779 + 0.977749i \(0.432726\pi\)
\(654\) 3.53053e8 0.0493535
\(655\) 2.17203e9 0.302010
\(656\) −9.92801e8 −0.137309
\(657\) 4.05474e9 0.557807
\(658\) −3.24564e8 −0.0444129
\(659\) −6.82535e9 −0.929022 −0.464511 0.885567i \(-0.653770\pi\)
−0.464511 + 0.885567i \(0.653770\pi\)
\(660\) −1.41832e9 −0.192031
\(661\) −5.93750e9 −0.799648 −0.399824 0.916592i \(-0.630929\pi\)
−0.399824 + 0.916592i \(0.630929\pi\)
\(662\) 2.49353e8 0.0334050
\(663\) −9.82001e9 −1.30862
\(664\) 8.69813e8 0.115302
\(665\) −1.16390e8 −0.0153476
\(666\) −1.88330e9 −0.247036
\(667\) −1.18674e9 −0.154851
\(668\) −7.31055e9 −0.948926
\(669\) −4.66442e9 −0.602290
\(670\) 1.18530e9 0.152253
\(671\) −4.00739e9 −0.512074
\(672\) −3.54119e8 −0.0450150
\(673\) 2.34747e9 0.296857 0.148428 0.988923i \(-0.452579\pi\)
0.148428 + 0.988923i \(0.452579\pi\)
\(674\) −1.05382e10 −1.32574
\(675\) 1.32328e10 1.65611
\(676\) −1.73168e9 −0.215603
\(677\) 2.16956e9 0.268727 0.134363 0.990932i \(-0.457101\pi\)
0.134363 + 0.990932i \(0.457101\pi\)
\(678\) 9.40798e9 1.15929
\(679\) 1.72371e9 0.211310
\(680\) −1.16395e9 −0.141955
\(681\) 1.51188e10 1.83443
\(682\) −1.26846e9 −0.153120
\(683\) 2.03106e9 0.243922 0.121961 0.992535i \(-0.461082\pi\)
0.121961 + 0.992535i \(0.461082\pi\)
\(684\) −2.31628e9 −0.276755
\(685\) 6.47522e9 0.769728
\(686\) −1.70459e9 −0.201598
\(687\) −1.60303e9 −0.188622
\(688\) 2.70457e9 0.316620
\(689\) −5.13224e9 −0.597778
\(690\) −3.64565e8 −0.0422477
\(691\) 1.81275e9 0.209009 0.104504 0.994524i \(-0.466674\pi\)
0.104504 + 0.994524i \(0.466674\pi\)
\(692\) −3.06324e9 −0.351407
\(693\) 1.42437e9 0.162576
\(694\) 8.14604e9 0.925099
\(695\) 3.60292e9 0.407106
\(696\) 1.04193e10 1.17140
\(697\) 4.81925e9 0.539094
\(698\) −8.17227e9 −0.909597
\(699\) 6.32617e9 0.700601
\(700\) −5.44234e8 −0.0599711
\(701\) 1.39158e10 1.52580 0.762898 0.646519i \(-0.223776\pi\)
0.762898 + 0.646519i \(0.223776\pi\)
\(702\) 9.72209e9 1.06067
\(703\) 3.94450e8 0.0428201
\(704\) 6.14602e8 0.0663880
\(705\) 2.93364e9 0.315316
\(706\) 9.18761e8 0.0982621
\(707\) −2.56350e9 −0.272813
\(708\) 6.46369e9 0.684486
\(709\) 7.10889e9 0.749100 0.374550 0.927207i \(-0.377797\pi\)
0.374550 + 0.927207i \(0.377797\pi\)
\(710\) −4.74291e8 −0.0497325
\(711\) −2.19654e10 −2.29190
\(712\) −2.15654e9 −0.223912
\(713\) −3.26044e8 −0.0336870
\(714\) 1.71896e9 0.176735
\(715\) −1.60147e9 −0.163851
\(716\) 1.26345e9 0.128635
\(717\) −2.85407e10 −2.89166
\(718\) 9.23032e9 0.930639
\(719\) −1.34368e10 −1.34818 −0.674088 0.738651i \(-0.735463\pi\)
−0.674088 + 0.738651i \(0.735463\pi\)
\(720\) 2.17656e9 0.217324
\(721\) −9.92314e8 −0.0985997
\(722\) −6.66584e9 −0.659135
\(723\) 2.15857e10 2.12414
\(724\) 4.21054e9 0.412338
\(725\) 1.60130e10 1.56059
\(726\) 9.25285e9 0.897423
\(727\) 1.28066e10 1.23612 0.618062 0.786129i \(-0.287918\pi\)
0.618062 + 0.786129i \(0.287918\pi\)
\(728\) −3.99847e8 −0.0384091
\(729\) −5.85987e9 −0.560198
\(730\) 7.98020e8 0.0759248
\(731\) −1.31285e10 −1.24310
\(732\) 9.04364e9 0.852226
\(733\) −1.30841e10 −1.22710 −0.613549 0.789657i \(-0.710259\pi\)
−0.613549 + 0.789657i \(0.710259\pi\)
\(734\) −5.95021e8 −0.0555387
\(735\) 7.62293e9 0.708135
\(736\) 1.57977e8 0.0146057
\(737\) 3.03812e9 0.279556
\(738\) −9.01192e9 −0.825316
\(739\) −1.06618e10 −0.971800 −0.485900 0.874014i \(-0.661508\pi\)
−0.485900 + 0.874014i \(0.661508\pi\)
\(740\) −3.70656e8 −0.0336248
\(741\) −3.84611e9 −0.347262
\(742\) 8.98383e8 0.0807324
\(743\) 4.71447e9 0.421670 0.210835 0.977522i \(-0.432382\pi\)
0.210835 + 0.977522i \(0.432382\pi\)
\(744\) 2.86258e9 0.254831
\(745\) 2.36182e7 0.00209267
\(746\) −9.76715e9 −0.861354
\(747\) 7.89553e9 0.693042
\(748\) −2.98340e9 −0.260648
\(749\) 2.04998e9 0.178264
\(750\) 1.08269e10 0.937110
\(751\) 1.44861e10 1.24799 0.623996 0.781427i \(-0.285508\pi\)
0.623996 + 0.781427i \(0.285508\pi\)
\(752\) −1.27124e9 −0.109009
\(753\) −1.29407e10 −1.10452
\(754\) 1.17647e10 0.999496
\(755\) 3.52162e9 0.297802
\(756\) −1.70182e9 −0.143248
\(757\) 1.05477e10 0.883737 0.441869 0.897080i \(-0.354316\pi\)
0.441869 + 0.897080i \(0.354316\pi\)
\(758\) −8.79220e9 −0.733255
\(759\) −9.34443e8 −0.0775723
\(760\) −4.55872e8 −0.0376699
\(761\) 1.75003e9 0.143946 0.0719730 0.997407i \(-0.477070\pi\)
0.0719730 + 0.997407i \(0.477070\pi\)
\(762\) 1.40693e10 1.15194
\(763\) −6.97813e7 −0.00568726
\(764\) −4.38137e9 −0.355454
\(765\) −1.05655e10 −0.853244
\(766\) −4.53722e9 −0.364745
\(767\) 7.29835e9 0.584038
\(768\) −1.38700e9 −0.110487
\(769\) 9.57155e8 0.0758997 0.0379498 0.999280i \(-0.487917\pi\)
0.0379498 + 0.999280i \(0.487917\pi\)
\(770\) 2.80333e8 0.0221287
\(771\) −1.53471e10 −1.20597
\(772\) 5.97244e9 0.467187
\(773\) 6.52807e9 0.508343 0.254171 0.967159i \(-0.418197\pi\)
0.254171 + 0.967159i \(0.418197\pi\)
\(774\) 2.45501e10 1.90310
\(775\) 4.39940e9 0.339498
\(776\) 6.75135e9 0.518651
\(777\) 5.47400e8 0.0418631
\(778\) −6.32701e9 −0.481693
\(779\) 1.88751e9 0.143056
\(780\) 3.61411e9 0.272690
\(781\) −1.21569e9 −0.0913154
\(782\) −7.66850e8 −0.0573439
\(783\) 5.00727e10 3.72765
\(784\) −3.30324e9 −0.244813
\(785\) 6.33268e9 0.467244
\(786\) −1.25639e10 −0.922884
\(787\) 1.10475e10 0.807889 0.403944 0.914784i \(-0.367639\pi\)
0.403944 + 0.914784i \(0.367639\pi\)
\(788\) 9.05123e9 0.658970
\(789\) −4.21426e10 −3.05458
\(790\) −4.32305e9 −0.311957
\(791\) −1.85950e9 −0.133591
\(792\) 5.57891e9 0.399035
\(793\) 1.02115e10 0.727162
\(794\) −1.12547e10 −0.797924
\(795\) −8.12024e9 −0.573171
\(796\) 7.03325e9 0.494265
\(797\) −1.85828e10 −1.30019 −0.650095 0.759853i \(-0.725271\pi\)
−0.650095 + 0.759853i \(0.725271\pi\)
\(798\) 6.73249e8 0.0468992
\(799\) 6.17082e9 0.427986
\(800\) −2.13163e9 −0.147196
\(801\) −1.95755e10 −1.34586
\(802\) −1.66317e10 −1.13848
\(803\) 2.04546e9 0.139408
\(804\) −6.85624e9 −0.465254
\(805\) 7.20566e7 0.00486842
\(806\) 3.23223e9 0.217435
\(807\) −3.24416e10 −2.17293
\(808\) −1.00406e10 −0.669606
\(809\) −9.21373e9 −0.611809 −0.305904 0.952062i \(-0.598959\pi\)
−0.305904 + 0.952062i \(0.598959\pi\)
\(810\) 6.08515e9 0.402322
\(811\) −5.90313e8 −0.0388606 −0.0194303 0.999811i \(-0.506185\pi\)
−0.0194303 + 0.999811i \(0.506185\pi\)
\(812\) −2.05937e9 −0.134986
\(813\) 3.83334e10 2.50185
\(814\) −9.50056e8 −0.0617396
\(815\) −1.15904e10 −0.749978
\(816\) 6.73275e9 0.433787
\(817\) −5.14192e9 −0.329874
\(818\) −1.08958e9 −0.0696019
\(819\) −3.62952e9 −0.230864
\(820\) −1.77365e9 −0.112336
\(821\) 4.22037e9 0.266164 0.133082 0.991105i \(-0.457513\pi\)
0.133082 + 0.991105i \(0.457513\pi\)
\(822\) −3.74553e10 −2.35214
\(823\) 3.49867e8 0.0218778 0.0109389 0.999940i \(-0.496518\pi\)
0.0109389 + 0.999940i \(0.496518\pi\)
\(824\) −3.88665e9 −0.242008
\(825\) 1.26087e10 0.781775
\(826\) −1.27755e9 −0.0788768
\(827\) 2.50807e10 1.54195 0.770976 0.636864i \(-0.219769\pi\)
0.770976 + 0.636864i \(0.219769\pi\)
\(828\) 1.43400e9 0.0877896
\(829\) −1.89801e10 −1.15706 −0.578532 0.815660i \(-0.696374\pi\)
−0.578532 + 0.815660i \(0.696374\pi\)
\(830\) 1.55393e9 0.0943320
\(831\) −1.59616e10 −0.964880
\(832\) −1.56610e9 −0.0942731
\(833\) 1.60346e10 0.961169
\(834\) −2.08408e10 −1.24404
\(835\) −1.30604e10 −0.776343
\(836\) −1.16848e9 −0.0691669
\(837\) 1.37570e10 0.810930
\(838\) 6.96599e9 0.408911
\(839\) −8.08351e9 −0.472534 −0.236267 0.971688i \(-0.575924\pi\)
−0.236267 + 0.971688i \(0.575924\pi\)
\(840\) −6.32638e8 −0.0368280
\(841\) 4.33431e10 2.51266
\(842\) −1.43186e10 −0.826627
\(843\) −3.27342e10 −1.88194
\(844\) 1.09069e10 0.624458
\(845\) −3.09367e9 −0.176390
\(846\) −1.15394e10 −0.655217
\(847\) −1.82883e9 −0.103415
\(848\) 3.51874e9 0.198154
\(849\) 4.57037e10 2.56315
\(850\) 1.03473e10 0.577912
\(851\) −2.44202e8 −0.0135830
\(852\) 2.74349e9 0.151973
\(853\) 7.31648e9 0.403627 0.201814 0.979424i \(-0.435316\pi\)
0.201814 + 0.979424i \(0.435316\pi\)
\(854\) −1.78748e9 −0.0982063
\(855\) −4.13807e9 −0.226421
\(856\) 8.02925e9 0.437539
\(857\) 1.69375e10 0.919214 0.459607 0.888122i \(-0.347990\pi\)
0.459607 + 0.888122i \(0.347990\pi\)
\(858\) 9.26358e9 0.500695
\(859\) −3.12574e10 −1.68258 −0.841292 0.540581i \(-0.818204\pi\)
−0.841292 + 0.540581i \(0.818204\pi\)
\(860\) 4.83175e9 0.259036
\(861\) 2.61940e9 0.139859
\(862\) −1.94895e10 −1.03640
\(863\) −1.82116e10 −0.964517 −0.482258 0.876029i \(-0.660183\pi\)
−0.482258 + 0.876029i \(0.660183\pi\)
\(864\) −6.66561e9 −0.351594
\(865\) −5.47252e9 −0.287495
\(866\) 1.28065e9 0.0670065
\(867\) 1.24124e9 0.0646827
\(868\) −5.65792e8 −0.0293655
\(869\) −1.10807e10 −0.572794
\(870\) 1.86141e10 0.958353
\(871\) −7.74159e9 −0.396978
\(872\) −2.73316e8 −0.0139591
\(873\) 6.12839e10 3.11743
\(874\) −3.00345e8 −0.0152170
\(875\) −2.13995e9 −0.107988
\(876\) −4.61608e9 −0.232011
\(877\) −4.59540e9 −0.230051 −0.115026 0.993363i \(-0.536695\pi\)
−0.115026 + 0.993363i \(0.536695\pi\)
\(878\) −2.22679e10 −1.11032
\(879\) 6.89604e9 0.342483
\(880\) 1.09799e9 0.0543138
\(881\) 2.03239e10 1.00136 0.500680 0.865632i \(-0.333083\pi\)
0.500680 + 0.865632i \(0.333083\pi\)
\(882\) −2.99844e10 −1.47148
\(883\) 3.32637e10 1.62595 0.812976 0.582297i \(-0.197846\pi\)
0.812976 + 0.582297i \(0.197846\pi\)
\(884\) 7.60215e9 0.370129
\(885\) 1.15475e10 0.559997
\(886\) −1.84168e10 −0.889605
\(887\) −8.51025e8 −0.0409458 −0.0204729 0.999790i \(-0.506517\pi\)
−0.0204729 + 0.999790i \(0.506517\pi\)
\(888\) 2.14403e9 0.102751
\(889\) −2.78080e9 −0.132744
\(890\) −3.85268e9 −0.183188
\(891\) 1.55973e10 0.738715
\(892\) 3.61095e9 0.170351
\(893\) 2.41687e9 0.113572
\(894\) −1.36617e8 −0.00639477
\(895\) 2.25716e9 0.105240
\(896\) 2.74141e8 0.0127320
\(897\) 2.38111e9 0.110155
\(898\) −1.32032e10 −0.608431
\(899\) 1.66473e10 0.764161
\(900\) −1.93494e10 −0.884744
\(901\) −1.70807e10 −0.777979
\(902\) −4.54617e9 −0.206264
\(903\) −7.13572e9 −0.322501
\(904\) −7.28318e9 −0.327893
\(905\) 7.52219e9 0.337345
\(906\) −2.03705e10 −0.910024
\(907\) −2.88263e10 −1.28282 −0.641408 0.767200i \(-0.721649\pi\)
−0.641408 + 0.767200i \(0.721649\pi\)
\(908\) −1.17042e10 −0.518848
\(909\) −9.11411e10 −4.02477
\(910\) −7.14331e8 −0.0314235
\(911\) −1.58607e10 −0.695039 −0.347519 0.937673i \(-0.612976\pi\)
−0.347519 + 0.937673i \(0.612976\pi\)
\(912\) 2.63695e9 0.115112
\(913\) 3.98300e9 0.173206
\(914\) 2.22920e9 0.0965691
\(915\) 1.61566e10 0.697229
\(916\) 1.24099e9 0.0533498
\(917\) 2.48327e9 0.106349
\(918\) 3.23562e10 1.38041
\(919\) 2.56364e9 0.108956 0.0544782 0.998515i \(-0.482650\pi\)
0.0544782 + 0.998515i \(0.482650\pi\)
\(920\) 2.82228e8 0.0119493
\(921\) −7.02013e10 −2.96099
\(922\) 2.80694e10 1.17944
\(923\) 3.09776e9 0.129671
\(924\) −1.62156e9 −0.0676210
\(925\) 3.29508e9 0.136890
\(926\) −7.78316e9 −0.322120
\(927\) −3.52801e10 −1.45463
\(928\) −8.06605e9 −0.331317
\(929\) 3.94497e10 1.61431 0.807157 0.590336i \(-0.201005\pi\)
0.807157 + 0.590336i \(0.201005\pi\)
\(930\) 5.11404e9 0.208484
\(931\) 6.28010e9 0.255060
\(932\) −4.89740e9 −0.198157
\(933\) −2.58739e10 −1.04298
\(934\) 1.06207e10 0.426520
\(935\) −5.32987e9 −0.213244
\(936\) −1.42159e10 −0.566643
\(937\) 3.28786e9 0.130564 0.0652822 0.997867i \(-0.479205\pi\)
0.0652822 + 0.997867i \(0.479205\pi\)
\(938\) 1.35514e9 0.0536136
\(939\) 3.04424e10 1.19991
\(940\) −2.27108e9 −0.0891835
\(941\) 1.85752e9 0.0726724 0.0363362 0.999340i \(-0.488431\pi\)
0.0363362 + 0.999340i \(0.488431\pi\)
\(942\) −3.66308e10 −1.42780
\(943\) −1.16855e9 −0.0453790
\(944\) −5.00386e9 −0.193599
\(945\) −3.04033e9 −0.117195
\(946\) 1.23846e10 0.475624
\(947\) 1.06515e10 0.407556 0.203778 0.979017i \(-0.434678\pi\)
0.203778 + 0.979017i \(0.434678\pi\)
\(948\) 2.50063e10 0.953279
\(949\) −5.21215e9 −0.197964
\(950\) 4.05264e9 0.153358
\(951\) −6.78419e10 −2.55780
\(952\) −1.33073e9 −0.0499875
\(953\) −5.95593e9 −0.222907 −0.111454 0.993770i \(-0.535551\pi\)
−0.111454 + 0.993770i \(0.535551\pi\)
\(954\) 3.19406e10 1.19103
\(955\) −7.82737e9 −0.290807
\(956\) 2.20948e10 0.817875
\(957\) 4.77112e10 1.75966
\(958\) 3.37412e10 1.23988
\(959\) 7.40308e9 0.271049
\(960\) −2.47789e9 −0.0903924
\(961\) −2.29389e10 −0.833761
\(962\) 2.42089e9 0.0876722
\(963\) 7.28837e10 2.62989
\(964\) −1.67106e10 −0.600789
\(965\) 1.06698e10 0.382219
\(966\) −4.16805e8 −0.0148769
\(967\) −1.98986e10 −0.707669 −0.353834 0.935308i \(-0.615122\pi\)
−0.353834 + 0.935308i \(0.615122\pi\)
\(968\) −7.16308e9 −0.253826
\(969\) −1.28003e10 −0.451945
\(970\) 1.20614e10 0.424322
\(971\) 4.28048e10 1.50046 0.750231 0.661176i \(-0.229942\pi\)
0.750231 + 0.661176i \(0.229942\pi\)
\(972\) −6.72696e9 −0.234956
\(973\) 4.11920e9 0.143357
\(974\) −1.09707e10 −0.380432
\(975\) −3.21289e10 −1.11015
\(976\) −7.00113e9 −0.241042
\(977\) −3.09752e10 −1.06263 −0.531316 0.847174i \(-0.678302\pi\)
−0.531316 + 0.847174i \(0.678302\pi\)
\(978\) 6.70439e10 2.29178
\(979\) −9.87509e9 −0.336358
\(980\) −5.90128e9 −0.200288
\(981\) −2.48096e9 −0.0839032
\(982\) 6.60470e9 0.222568
\(983\) −1.77744e10 −0.596839 −0.298420 0.954435i \(-0.596459\pi\)
−0.298420 + 0.954435i \(0.596459\pi\)
\(984\) 1.02595e10 0.343277
\(985\) 1.61701e10 0.539122
\(986\) 3.91542e10 1.30080
\(987\) 3.35402e9 0.111034
\(988\) 2.97746e9 0.0982193
\(989\) 3.18333e9 0.104639
\(990\) 9.96679e9 0.326462
\(991\) −5.34227e10 −1.74369 −0.871843 0.489786i \(-0.837075\pi\)
−0.871843 + 0.489786i \(0.837075\pi\)
\(992\) −2.21606e9 −0.0720761
\(993\) −2.57679e9 −0.0835136
\(994\) −5.42254e8 −0.0175126
\(995\) 1.25650e10 0.404372
\(996\) −8.98859e9 −0.288260
\(997\) 1.20062e10 0.383682 0.191841 0.981426i \(-0.438554\pi\)
0.191841 + 0.981426i \(0.438554\pi\)
\(998\) 3.71904e10 1.18433
\(999\) 1.03037e10 0.326976
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.a.b.1.1 4
4.3 odd 2 592.8.a.a.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.b.1.1 4 1.1 even 1 trivial
592.8.a.a.1.4 4 4.3 odd 2