Properties

Label 74.8.a.b.1.4
Level 7474
Weight 88
Character 74.1
Self dual yes
Analytic conductor 23.11623.116
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(1,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 74=237 74 = 2 \cdot 37
Weight: k k == 8 8
Character orbit: [χ][\chi] == 74.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 23.116491885823.1164918858
Analytic rank: 11
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x32177x214018x+634476 x^{4} - 2x^{3} - 2177x^{2} - 14018x + 634476 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 47.837847.8378 of defining polynomial
Character χ\chi == 74.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+8.00000q2+22.3907q3+64.0000q4504.619q5+179.126q6+892.385q7+512.000q81685.66q94036.95q10+4703.14q11+1433.01q1211843.3q13+7139.08q1411298.8q15+4096.00q1622642.5q1713485.2q1851600.8q1932295.6q20+19981.1q21+37625.1q2272804.0q23+11464.0q24+176515.q2594746.6q2686711.5q27+57112.7q28+162871.q2990390.2q3020354.2q31+32768.0q32+105307.q33181140.q34450314.q35107882.q3650653.0q37412806.q38265180.q39258365.q40540030.q41+159849.q42+158658.q43+301001.q44+850613.q45582432.q46+470210.q47+91712.4q4827191.7q49+1.41212e6q50506981.q51757973.q52+1.52235e6q53693692.q542.37329e6q55+456901.q561.15538e6q57+1.30297e6q58+1.33575e6q59723121.q603.08165e6q61162833.q621.50425e6q63+262144.q64+5.97636e6q65+842454.q66+202860.q671.44912e6q681.63013e6q693.60251e6q701.68686e6q71863056.q72+3.90554e6q73405224.q74+3.95230e6q753.30245e6q76+4.19702e6q772.12144e6q78+4.25515e6q792.06692e6q80+1.74500e6q814.32024e6q82+2.69308e6q83+1.27879e6q84+1.14258e7q85+1.26926e6q86+3.64679e6q87+2.40801e6q88+6.50359e6q89+6.80491e6q901.05688e7q914.65946e6q92455744.q93+3.76168e6q94+2.60387e7q95+733699.q967.24155e6q97217533.q987.92788e6q99+O(q100)q+8.00000 q^{2} +22.3907 q^{3} +64.0000 q^{4} -504.619 q^{5} +179.126 q^{6} +892.385 q^{7} +512.000 q^{8} -1685.66 q^{9} -4036.95 q^{10} +4703.14 q^{11} +1433.01 q^{12} -11843.3 q^{13} +7139.08 q^{14} -11298.8 q^{15} +4096.00 q^{16} -22642.5 q^{17} -13485.2 q^{18} -51600.8 q^{19} -32295.6 q^{20} +19981.1 q^{21} +37625.1 q^{22} -72804.0 q^{23} +11464.0 q^{24} +176515. q^{25} -94746.6 q^{26} -86711.5 q^{27} +57112.7 q^{28} +162871. q^{29} -90390.2 q^{30} -20354.2 q^{31} +32768.0 q^{32} +105307. q^{33} -181140. q^{34} -450314. q^{35} -107882. q^{36} -50653.0 q^{37} -412806. q^{38} -265180. q^{39} -258365. q^{40} -540030. q^{41} +159849. q^{42} +158658. q^{43} +301001. q^{44} +850613. q^{45} -582432. q^{46} +470210. q^{47} +91712.4 q^{48} -27191.7 q^{49} +1.41212e6 q^{50} -506981. q^{51} -757973. q^{52} +1.52235e6 q^{53} -693692. q^{54} -2.37329e6 q^{55} +456901. q^{56} -1.15538e6 q^{57} +1.30297e6 q^{58} +1.33575e6 q^{59} -723121. q^{60} -3.08165e6 q^{61} -162833. q^{62} -1.50425e6 q^{63} +262144. q^{64} +5.97636e6 q^{65} +842454. q^{66} +202860. q^{67} -1.44912e6 q^{68} -1.63013e6 q^{69} -3.60251e6 q^{70} -1.68686e6 q^{71} -863056. q^{72} +3.90554e6 q^{73} -405224. q^{74} +3.95230e6 q^{75} -3.30245e6 q^{76} +4.19702e6 q^{77} -2.12144e6 q^{78} +4.25515e6 q^{79} -2.06692e6 q^{80} +1.74500e6 q^{81} -4.32024e6 q^{82} +2.69308e6 q^{83} +1.27879e6 q^{84} +1.14258e7 q^{85} +1.26926e6 q^{86} +3.64679e6 q^{87} +2.40801e6 q^{88} +6.50359e6 q^{89} +6.80491e6 q^{90} -1.05688e7 q^{91} -4.65946e6 q^{92} -455744. q^{93} +3.76168e6 q^{94} +2.60387e7 q^{95} +733699. q^{96} -7.24155e6 q^{97} -217533. q^{98} -7.92788e6 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+32q241q3+256q4363q5328q6774q7+2048q81079q92904q10309q112624q1220827q136192q1422940q15+16384q1648756q17++16949258q99+O(q100) 4 q + 32 q^{2} - 41 q^{3} + 256 q^{4} - 363 q^{5} - 328 q^{6} - 774 q^{7} + 2048 q^{8} - 1079 q^{9} - 2904 q^{10} - 309 q^{11} - 2624 q^{12} - 20827 q^{13} - 6192 q^{14} - 22940 q^{15} + 16384 q^{16} - 48756 q^{17}+ \cdots + 16949258 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 8.00000 0.707107
33 22.3907 0.478788 0.239394 0.970922i 0.423051π-0.423051\pi
0.239394 + 0.970922i 0.423051π0.423051\pi
44 64.0000 0.500000
55 −504.619 −1.80538 −0.902689 0.430293i 0.858410π-0.858410\pi
−0.902689 + 0.430293i 0.858410π0.858410\pi
66 179.126 0.338554
77 892.385 0.983352 0.491676 0.870778i 0.336384π-0.336384\pi
0.491676 + 0.870778i 0.336384π0.336384\pi
88 512.000 0.353553
99 −1685.66 −0.770762
1010 −4036.95 −1.27660
1111 4703.14 1.06540 0.532701 0.846303i 0.321177π-0.321177\pi
0.532701 + 0.846303i 0.321177π0.321177\pi
1212 1433.01 0.239394
1313 −11843.3 −1.49511 −0.747553 0.664202i 0.768771π-0.768771\pi
−0.747553 + 0.664202i 0.768771π0.768771\pi
1414 7139.08 0.695335
1515 −11298.8 −0.864394
1616 4096.00 0.250000
1717 −22642.5 −1.11777 −0.558885 0.829245i 0.688771π-0.688771\pi
−0.558885 + 0.829245i 0.688771π0.688771\pi
1818 −13485.2 −0.545011
1919 −51600.8 −1.72591 −0.862956 0.505279i 0.831390π-0.831390\pi
−0.862956 + 0.505279i 0.831390π0.831390\pi
2020 −32295.6 −0.902689
2121 19981.1 0.470818
2222 37625.1 0.753353
2323 −72804.0 −1.24769 −0.623847 0.781547i 0.714431π-0.714431\pi
−0.623847 + 0.781547i 0.714431π0.714431\pi
2424 11464.0 0.169277
2525 176515. 2.25939
2626 −94746.6 −1.05720
2727 −86711.5 −0.847820
2828 57112.7 0.491676
2929 162871. 1.24008 0.620041 0.784570i 0.287116π-0.287116\pi
0.620041 + 0.784570i 0.287116π0.287116\pi
3030 −90390.2 −0.611219
3131 −20354.2 −0.122712 −0.0613560 0.998116i 0.519543π-0.519543\pi
−0.0613560 + 0.998116i 0.519543π0.519543\pi
3232 32768.0 0.176777
3333 105307. 0.510102
3434 −181140. −0.790383
3535 −450314. −1.77532
3636 −107882. −0.385381
3737 −50653.0 −0.164399
3838 −412806. −1.22040
3939 −265180. −0.715839
4040 −258365. −0.638298
4141 −540030. −1.22370 −0.611849 0.790975i 0.709574π-0.709574\pi
−0.611849 + 0.790975i 0.709574π0.709574\pi
4242 159849. 0.332918
4343 158658. 0.304314 0.152157 0.988356i 0.451378π-0.451378\pi
0.152157 + 0.988356i 0.451378π0.451378\pi
4444 301001. 0.532701
4545 850613. 1.39152
4646 −582432. −0.882252
4747 470210. 0.660617 0.330308 0.943873i 0.392847π-0.392847\pi
0.330308 + 0.943873i 0.392847π0.392847\pi
4848 91712.4 0.119697
4949 −27191.7 −0.0330179
5050 1.41212e6 1.59763
5151 −506981. −0.535175
5252 −757973. −0.747553
5353 1.52235e6 1.40458 0.702292 0.711889i 0.252160π-0.252160\pi
0.702292 + 0.711889i 0.252160π0.252160\pi
5454 −693692. −0.599499
5555 −2.37329e6 −1.92346
5656 456901. 0.347668
5757 −1.15538e6 −0.826346
5858 1.30297e6 0.876870
5959 1.33575e6 0.846725 0.423362 0.905960i 0.360850π-0.360850\pi
0.423362 + 0.905960i 0.360850π0.360850\pi
6060 −723121. −0.432197
6161 −3.08165e6 −1.73832 −0.869159 0.494532i 0.835339π-0.835339\pi
−0.869159 + 0.494532i 0.835339π0.835339\pi
6262 −162833. −0.0867705
6363 −1.50425e6 −0.757930
6464 262144. 0.125000
6565 5.97636e6 2.69923
6666 842454. 0.360697
6767 202860. 0.0824015 0.0412008 0.999151i 0.486882π-0.486882\pi
0.0412008 + 0.999151i 0.486882π0.486882\pi
6868 −1.44912e6 −0.558885
6969 −1.63013e6 −0.597381
7070 −3.60251e6 −1.25534
7171 −1.68686e6 −0.559338 −0.279669 0.960096i 0.590225π-0.590225\pi
−0.279669 + 0.960096i 0.590225π0.590225\pi
7272 −863056. −0.272505
7373 3.90554e6 1.17504 0.587518 0.809211i 0.300105π-0.300105\pi
0.587518 + 0.809211i 0.300105π0.300105\pi
7474 −405224. −0.116248
7575 3.95230e6 1.08177
7676 −3.30245e6 −0.862956
7777 4.19702e6 1.04767
7878 −2.12144e6 −0.506175
7979 4.25515e6 0.971001 0.485501 0.874236i 0.338637π-0.338637\pi
0.485501 + 0.874236i 0.338637π0.338637\pi
8080 −2.06692e6 −0.451345
8181 1.74500e6 0.364835
8282 −4.32024e6 −0.865285
8383 2.69308e6 0.516982 0.258491 0.966014i 0.416775π-0.416775\pi
0.258491 + 0.966014i 0.416775π0.416775\pi
8484 1.27879e6 0.235409
8585 1.14258e7 2.01800
8686 1.26926e6 0.215182
8787 3.64679e6 0.593736
8888 2.40801e6 0.376677
8989 6.50359e6 0.977885 0.488943 0.872316i 0.337383π-0.337383\pi
0.488943 + 0.872316i 0.337383π0.337383\pi
9090 6.80491e6 0.983951
9191 −1.05688e7 −1.47022
9292 −4.65946e6 −0.623847
9393 −455744. −0.0587531
9494 3.76168e6 0.467127
9595 2.60387e7 3.11592
9696 733699. 0.0846386
9797 −7.24155e6 −0.805620 −0.402810 0.915284i 0.631966π-0.631966\pi
−0.402810 + 0.915284i 0.631966π0.631966\pi
9898 −217533. −0.0233472
9999 −7.92788e6 −0.821172
100100 1.12970e7 1.12970
101101 −1.45545e7 −1.40563 −0.702815 0.711372i 0.748074π-0.748074\pi
−0.702815 + 0.711372i 0.748074π0.748074\pi
102102 −4.05585e6 −0.378426
103103 −1.89626e7 −1.70989 −0.854946 0.518717i 0.826410π-0.826410\pi
−0.854946 + 0.518717i 0.826410π0.826410\pi
104104 −6.06378e6 −0.528600
105105 −1.00829e7 −0.850004
106106 1.21788e7 0.993191
107107 1.11941e6 0.0883374 0.0441687 0.999024i 0.485936π-0.485936\pi
0.0441687 + 0.999024i 0.485936π0.485936\pi
108108 −5.54954e6 −0.423910
109109 4.69508e6 0.347256 0.173628 0.984811i 0.444451π-0.444451\pi
0.173628 + 0.984811i 0.444451π0.444451\pi
110110 −1.89863e7 −1.36009
111111 −1.13416e6 −0.0787123
112112 3.65521e6 0.245838
113113 1.57905e7 1.02949 0.514745 0.857343i 0.327887π-0.327887\pi
0.514745 + 0.857343i 0.327887π0.327887\pi
114114 −9.24303e6 −0.584315
115115 3.67383e7 2.25256
116116 1.04237e7 0.620041
117117 1.99638e7 1.15237
118118 1.06860e7 0.598725
119119 −2.02058e7 −1.09916
120120 −5.78497e6 −0.305609
121121 2.63238e6 0.135083
122122 −2.46532e7 −1.22918
123123 −1.20916e7 −0.585892
124124 −1.30267e6 −0.0613560
125125 −4.96494e7 −2.27368
126126 −1.20340e7 −0.535938
127127 −2.06929e7 −0.896415 −0.448208 0.893930i 0.647937π-0.647937\pi
−0.448208 + 0.893930i 0.647937π0.647937\pi
128128 2.09715e6 0.0883883
129129 3.55246e6 0.145702
130130 4.78109e7 1.90864
131131 1.60306e7 0.623017 0.311508 0.950243i 0.399166π-0.399166\pi
0.311508 + 0.950243i 0.399166π0.399166\pi
132132 6.73963e6 0.255051
133133 −4.60478e7 −1.69718
134134 1.62288e6 0.0582667
135135 4.37563e7 1.53064
136136 −1.15929e7 −0.395192
137137 −3.82499e7 −1.27089 −0.635446 0.772145i 0.719184π-0.719184\pi
−0.635446 + 0.772145i 0.719184π0.719184\pi
138138 −1.30411e7 −0.422412
139139 2.59639e7 0.820009 0.410004 0.912084i 0.365527π-0.365527\pi
0.410004 + 0.912084i 0.365527π0.365527\pi
140140 −2.88201e7 −0.887662
141141 1.05283e7 0.316296
142142 −1.34949e7 −0.395512
143143 −5.57008e7 −1.59289
144144 −6.90445e6 −0.192690
145145 −8.21876e7 −2.23882
146146 3.12443e7 0.830876
147147 −608840. −0.0158086
148148 −3.24179e6 −0.0821995
149149 2.14478e7 0.531168 0.265584 0.964088i 0.414435π-0.414435\pi
0.265584 + 0.964088i 0.414435π0.414435\pi
150150 3.16184e7 0.764927
151151 −7.61861e7 −1.80076 −0.900382 0.435101i 0.856713π-0.856713\pi
−0.900382 + 0.435101i 0.856713π0.856713\pi
152152 −2.64196e7 −0.610202
153153 3.81674e7 0.861535
154154 3.35761e7 0.740812
155155 1.02711e7 0.221542
156156 −1.69715e7 −0.357920
157157 4.99325e6 0.102976 0.0514878 0.998674i 0.483604π-0.483604\pi
0.0514878 + 0.998674i 0.483604π0.483604\pi
158158 3.40412e7 0.686602
159159 3.40864e7 0.672499
160160 −1.65353e7 −0.319149
161161 −6.49692e7 −1.22692
162162 1.39600e7 0.257978
163163 −7.53673e7 −1.36310 −0.681548 0.731774i 0.738693π-0.738693\pi
−0.681548 + 0.731774i 0.738693π0.738693\pi
164164 −3.45619e7 −0.611849
165165 −5.31397e7 −0.920928
166166 2.15446e7 0.365562
167167 1.76591e7 0.293401 0.146701 0.989181i 0.453135π-0.453135\pi
0.146701 + 0.989181i 0.453135π0.453135\pi
168168 1.02303e7 0.166459
169169 7.75158e7 1.23534
170170 9.14065e7 1.42694
171171 8.69812e7 1.33027
172172 1.01541e7 0.152157
173173 5.17704e7 0.760187 0.380093 0.924948i 0.375892π-0.375892\pi
0.380093 + 0.924948i 0.375892π0.375892\pi
174174 2.91743e7 0.419835
175175 1.57519e8 2.22178
176176 1.92641e7 0.266351
177177 2.99083e7 0.405402
178178 5.20287e7 0.691469
179179 3.40585e7 0.443853 0.221927 0.975063i 0.428765π-0.428765\pi
0.221927 + 0.975063i 0.428765π0.428765\pi
180180 5.44393e7 0.695758
181181 9.39883e7 1.17814 0.589072 0.808080i 0.299493π-0.299493\pi
0.589072 + 0.808080i 0.299493π0.299493\pi
182182 −8.45505e7 −1.03960
183183 −6.90004e7 −0.832287
184184 −3.72756e7 −0.441126
185185 2.55604e7 0.296802
186186 −3.64595e6 −0.0415447
187187 −1.06491e8 −1.19088
188188 3.00935e7 0.330308
189189 −7.73801e7 −0.833706
190190 2.08310e8 2.20329
191191 −7.50093e7 −0.778930 −0.389465 0.921041i 0.627340π-0.627340\pi
−0.389465 + 0.921041i 0.627340π0.627340\pi
192192 5.86959e6 0.0598485
193193 −4.91473e7 −0.492095 −0.246047 0.969258i 0.579132π-0.579132\pi
−0.246047 + 0.969258i 0.579132π0.579132\pi
194194 −5.79324e7 −0.569659
195195 1.33815e8 1.29236
196196 −1.74027e6 −0.0165089
197197 −1.33349e8 −1.24268 −0.621339 0.783542i 0.713411π-0.713411\pi
−0.621339 + 0.783542i 0.713411π0.713411\pi
198198 −6.34231e7 −0.580656
199199 −8.34957e7 −0.751066 −0.375533 0.926809i 0.622540π-0.622540\pi
−0.375533 + 0.926809i 0.622540π0.622540\pi
200200 9.03756e7 0.798815
201201 4.54219e6 0.0394529
202202 −1.16436e8 −0.993931
203203 1.45343e8 1.21944
204204 −3.24468e7 −0.267588
205205 2.72509e8 2.20924
206206 −1.51701e8 −1.20908
207207 1.22722e8 0.961674
208208 −4.85103e7 −0.373776
209209 −2.42686e8 −1.83879
210210 −8.06628e7 −0.601044
211211 −5.17239e7 −0.379056 −0.189528 0.981875i 0.560696π-0.560696\pi
−0.189528 + 0.981875i 0.560696π0.560696\pi
212212 9.74302e7 0.702292
213213 −3.77700e7 −0.267805
214214 8.95525e6 0.0624640
215215 −8.00617e7 −0.549402
216216 −4.43963e7 −0.299750
217217 −1.81637e7 −0.120669
218218 3.75606e7 0.245547
219219 8.74478e7 0.562593
220220 −1.51891e8 −0.961728
221221 2.68162e8 1.67119
222222 −9.07325e6 −0.0556580
223223 −1.88593e8 −1.13883 −0.569414 0.822051i 0.692830π-0.692830\pi
−0.569414 + 0.822051i 0.692830π0.692830\pi
224224 2.92417e7 0.173834
225225 −2.97543e8 −1.74145
226226 1.26324e8 0.727959
227227 3.12875e8 1.77533 0.887667 0.460486i 0.152325π-0.152325\pi
0.887667 + 0.460486i 0.152325π0.152325\pi
228228 −7.39442e7 −0.413173
229229 −2.14457e8 −1.18009 −0.590046 0.807370i 0.700890π-0.700890\pi
−0.590046 + 0.807370i 0.700890π0.700890\pi
230230 2.93906e8 1.59280
231231 9.39742e7 0.501610
232232 8.33898e7 0.438435
233233 7.68437e7 0.397981 0.198991 0.980001i 0.436234π-0.436234\pi
0.198991 + 0.980001i 0.436234π0.436234\pi
234234 1.59710e8 0.814849
235235 −2.37277e8 −1.19266
236236 8.54878e7 0.423362
237237 9.52758e7 0.464904
238238 −1.61646e8 −0.777225
239239 −1.96745e8 −0.932206 −0.466103 0.884730i 0.654342π-0.654342\pi
−0.466103 + 0.884730i 0.654342π0.654342\pi
240240 −4.62798e7 −0.216099
241241 1.30039e8 0.598430 0.299215 0.954186i 0.403275π-0.403275\pi
0.299215 + 0.954186i 0.403275π0.403275\pi
242242 2.10591e7 0.0955181
243243 2.28710e8 1.02250
244244 −1.97226e8 −0.869159
245245 1.37214e7 0.0596098
246246 −9.67332e7 −0.414288
247247 6.11125e8 2.58042
248248 −1.04213e7 −0.0433853
249249 6.03000e7 0.247525
250250 −3.97195e8 −1.60773
251251 −4.56690e8 −1.82290 −0.911452 0.411406i 0.865038π-0.865038\pi
−0.911452 + 0.411406i 0.865038π0.865038\pi
252252 −9.62723e7 −0.378965
253253 −3.42408e8 −1.32930
254254 −1.65544e8 −0.633861
255255 2.55832e8 0.966194
256256 1.67772e7 0.0625000
257257 9.55782e7 0.351231 0.175616 0.984459i 0.443808π-0.443808\pi
0.175616 + 0.984459i 0.443808π0.443808\pi
258258 2.84197e7 0.103027
259259 −4.52020e7 −0.161662
260260 3.82487e8 1.34962
261261 −2.74544e8 −0.955807
262262 1.28245e8 0.440539
263263 −3.48809e8 −1.18234 −0.591170 0.806547i 0.701334π-0.701334\pi
−0.591170 + 0.806547i 0.701334π0.701334\pi
264264 5.39170e7 0.180348
265265 −7.68204e8 −2.53581
266266 −3.68382e8 −1.20009
267267 1.45620e8 0.468200
268268 1.29831e7 0.0412008
269269 5.90362e7 0.184921 0.0924604 0.995716i 0.470527π-0.470527\pi
0.0924604 + 0.995716i 0.470527π0.470527\pi
270270 3.50050e8 1.08232
271271 2.36805e8 0.722767 0.361384 0.932417i 0.382304π-0.382304\pi
0.361384 + 0.932417i 0.382304π0.382304\pi
272272 −9.27436e7 −0.279443
273273 −2.36643e8 −0.703922
274274 −3.05999e8 −0.898656
275275 8.30175e8 2.40716
276276 −1.04329e8 −0.298690
277277 8.74196e7 0.247132 0.123566 0.992336i 0.460567π-0.460567\pi
0.123566 + 0.992336i 0.460567π0.460567\pi
278278 2.07711e8 0.579834
279279 3.43101e7 0.0945818
280280 −2.30561e8 −0.627672
281281 6.81033e6 0.0183103 0.00915516 0.999958i 0.497086π-0.497086\pi
0.00915516 + 0.999958i 0.497086π0.497086\pi
282282 8.42268e7 0.223655
283283 3.29675e8 0.864636 0.432318 0.901721i 0.357696π-0.357696\pi
0.432318 + 0.901721i 0.357696π0.357696\pi
284284 −1.07959e8 −0.279669
285285 5.83025e8 1.49187
286286 −4.45607e8 −1.12634
287287 −4.81914e8 −1.20333
288288 −5.52356e7 −0.136253
289289 1.02343e8 0.249411
290290 −6.57501e8 −1.58308
291291 −1.62143e8 −0.385721
292292 2.49955e8 0.587518
293293 −5.11505e6 −0.0118799 −0.00593995 0.999982i 0.501891π-0.501891\pi
−0.00593995 + 0.999982i 0.501891π0.501891\pi
294294 −4.87072e6 −0.0111784
295295 −6.74043e8 −1.52866
296296 −2.59343e7 −0.0581238
297297 −4.07817e8 −0.903270
298298 1.71583e8 0.375592
299299 8.62241e8 1.86543
300300 2.52947e8 0.540885
301301 1.41584e8 0.299248
302302 −6.09489e8 −1.27333
303303 −3.25885e8 −0.672999
304304 −2.11357e8 −0.431478
305305 1.55506e9 3.13832
306306 3.05339e8 0.609197
307307 4.03860e7 0.0796611 0.0398305 0.999206i 0.487318π-0.487318\pi
0.0398305 + 0.999206i 0.487318π0.487318\pi
308308 2.68609e8 0.523833
309309 −4.24587e8 −0.818676
310310 8.21687e7 0.156654
311311 −2.00657e8 −0.378262 −0.189131 0.981952i 0.560567π-0.560567\pi
−0.189131 + 0.981952i 0.560567π0.560567\pi
312312 −1.35772e8 −0.253087
313313 −5.11656e8 −0.943133 −0.471566 0.881831i 0.656311π-0.656311\pi
−0.471566 + 0.881831i 0.656311π0.656311\pi
314314 3.99460e7 0.0728148
315315 7.59075e8 1.36835
316316 2.72329e8 0.485501
317317 −9.61366e8 −1.69504 −0.847522 0.530760i 0.821907π-0.821907\pi
−0.847522 + 0.530760i 0.821907π0.821907\pi
318318 2.72691e8 0.475528
319319 7.66004e8 1.32119
320320 −1.32283e8 −0.225672
321321 2.50643e7 0.0422949
322322 −5.19754e8 −0.867565
323323 1.16837e9 1.92917
324324 1.11680e8 0.182418
325325 −2.09052e9 −3.37803
326326 −6.02938e8 −0.963854
327327 1.05126e8 0.166262
328328 −2.76495e8 −0.432642
329329 4.19609e8 0.649619
330330 −4.25118e8 −0.651194
331331 −4.03400e8 −0.611417 −0.305709 0.952125i 0.598893π-0.598893\pi
−0.305709 + 0.952125i 0.598893π0.598893\pi
332332 1.72357e8 0.258491
333333 8.53835e7 0.126712
334334 1.41273e8 0.207466
335335 −1.02367e8 −0.148766
336336 8.18428e7 0.117704
337337 −3.99976e8 −0.569285 −0.284643 0.958634i 0.591875π-0.591875\pi
−0.284643 + 0.958634i 0.591875π0.591875\pi
338338 6.20126e8 0.873518
339339 3.53561e8 0.492908
340340 7.31252e8 1.00900
341341 −9.57285e7 −0.130738
342342 6.95849e8 0.940641
343343 −7.59183e8 −1.01582
344344 8.12328e7 0.107591
345345 8.22596e8 1.07850
346346 4.14163e8 0.537533
347347 7.68302e8 0.987140 0.493570 0.869706i 0.335692π-0.335692\pi
0.493570 + 0.869706i 0.335692π0.335692\pi
348348 2.33395e8 0.296868
349349 1.39255e8 0.175357 0.0876783 0.996149i 0.472055π-0.472055\pi
0.0876783 + 0.996149i 0.472055π0.472055\pi
350350 1.26015e9 1.57103
351351 1.02695e9 1.26758
352352 1.54113e8 0.188338
353353 3.62036e8 0.438067 0.219034 0.975717i 0.429710π-0.429710\pi
0.219034 + 0.975717i 0.429710π0.429710\pi
354354 2.39267e8 0.286662
355355 8.51220e8 1.00982
356356 4.16230e8 0.488943
357357 −4.52422e8 −0.526266
358358 2.72468e8 0.313852
359359 −6.39521e8 −0.729498 −0.364749 0.931106i 0.618845π-0.618845\pi
−0.364749 + 0.931106i 0.618845π0.618845\pi
360360 4.35514e8 0.491975
361361 1.76877e9 1.97877
362362 7.51906e8 0.833074
363363 5.89410e7 0.0646761
364364 −6.76404e8 −0.735108
365365 −1.97081e9 −2.12138
366366 −5.52003e8 −0.588516
367367 −1.56742e9 −1.65521 −0.827605 0.561311i 0.810297π-0.810297\pi
−0.827605 + 0.561311i 0.810297π0.810297\pi
368368 −2.98205e8 −0.311923
369369 9.10304e8 0.943179
370370 2.04484e8 0.209871
371371 1.35852e9 1.38120
372372 −2.91676e7 −0.0293765
373373 −6.28913e8 −0.627494 −0.313747 0.949507i 0.601584π-0.601584\pi
−0.313747 + 0.949507i 0.601584π0.601584\pi
374374 −8.51926e8 −0.842076
375375 −1.11169e9 −1.08861
376376 2.40748e8 0.233563
377377 −1.92893e9 −1.85405
378378 −6.19041e8 −0.589519
379379 −4.65760e8 −0.439466 −0.219733 0.975560i 0.570519π-0.570519\pi
−0.219733 + 0.975560i 0.570519π0.570519\pi
380380 1.66648e9 1.55796
381381 −4.63330e8 −0.429193
382382 −6.00074e8 −0.550787
383383 1.35682e9 1.23403 0.617014 0.786952i 0.288342π-0.288342\pi
0.617014 + 0.786952i 0.288342π0.288342\pi
384384 4.69567e7 0.0423193
385385 −2.11789e9 −1.89143
386386 −3.93178e8 −0.347963
387387 −2.67442e8 −0.234553
388388 −4.63459e8 −0.402810
389389 9.47602e8 0.816211 0.408105 0.912935i 0.366190π-0.366190\pi
0.408105 + 0.912935i 0.366190π0.366190\pi
390390 1.07052e9 0.913837
391391 1.64846e9 1.39463
392392 −1.39221e7 −0.0116736
393393 3.58936e8 0.298293
394394 −1.06679e9 −0.878706
395395 −2.14723e9 −1.75302
396396 −5.07384e8 −0.410586
397397 1.61811e9 1.29790 0.648951 0.760830i 0.275208π-0.275208\pi
0.648951 + 0.760830i 0.275208π0.275208\pi
398398 −6.67965e8 −0.531084
399399 −1.03104e9 −0.812590
400400 7.23005e8 0.564848
401401 1.47928e9 1.14563 0.572816 0.819684i 0.305851π-0.305851\pi
0.572816 + 0.819684i 0.305851π0.305851\pi
402402 3.63375e7 0.0278974
403403 2.41061e8 0.183467
404404 −9.31485e8 −0.702815
405405 −8.80558e8 −0.658666
406406 1.16275e9 0.862272
407407 −2.38228e8 −0.175151
408408 −2.59574e8 −0.189213
409409 1.53241e9 1.10750 0.553750 0.832683i 0.313196π-0.313196\pi
0.553750 + 0.832683i 0.313196π0.313196\pi
410410 2.18007e9 1.56217
411411 −8.56443e8 −0.608488
412412 −1.21361e9 −0.854946
413413 1.19200e9 0.832629
414414 9.81780e8 0.680006
415415 −1.35898e9 −0.933349
416416 −3.88082e8 −0.264300
417417 5.81351e8 0.392611
418418 −1.94149e9 −1.30022
419419 5.61884e8 0.373162 0.186581 0.982440i 0.440259π-0.440259\pi
0.186581 + 0.982440i 0.440259π0.440259\pi
420420 −6.45303e8 −0.425002
421421 −8.61751e6 −0.00562853 −0.00281426 0.999996i 0.500896π-0.500896\pi
−0.00281426 + 0.999996i 0.500896π0.500896\pi
422422 −4.13791e8 −0.268033
423423 −7.92613e8 −0.509178
424424 7.79441e8 0.496596
425425 −3.99674e9 −2.52548
426426 −3.02160e8 −0.189366
427427 −2.75002e9 −1.70938
428428 7.16420e7 0.0441687
429429 −1.24718e9 −0.762657
430430 −6.40493e8 −0.388486
431431 −4.27833e8 −0.257397 −0.128699 0.991684i 0.541080π-0.541080\pi
−0.128699 + 0.991684i 0.541080π0.541080\pi
432432 −3.55170e8 −0.211955
433433 1.56113e9 0.924127 0.462064 0.886847i 0.347109π-0.347109\pi
0.462064 + 0.886847i 0.347109π0.347109\pi
434434 −1.45310e8 −0.0853260
435435 −1.84024e9 −1.07192
436436 3.00485e8 0.173628
437437 3.75674e9 2.15341
438438 6.99582e8 0.397814
439439 1.63407e9 0.921817 0.460908 0.887448i 0.347524π-0.347524\pi
0.460908 + 0.887448i 0.347524π0.347524\pi
440440 −1.21513e9 −0.680044
441441 4.58358e7 0.0254489
442442 2.14530e9 1.18171
443443 −6.21106e8 −0.339432 −0.169716 0.985493i 0.554285π-0.554285\pi
−0.169716 + 0.985493i 0.554285π0.554285\pi
444444 −7.25860e7 −0.0393562
445445 −3.28183e9 −1.76545
446446 −1.50874e9 −0.805273
447447 4.80233e8 0.254317
448448 2.33933e8 0.122919
449449 2.16788e8 0.113024 0.0565122 0.998402i 0.482002π-0.482002\pi
0.0565122 + 0.998402i 0.482002π0.482002\pi
450450 −2.38035e9 −1.23139
451451 −2.53984e9 −1.30373
452452 1.01059e9 0.514745
453453 −1.70586e9 −0.862184
454454 2.50300e9 1.25535
455455 5.33322e9 2.65430
456456 −5.91554e8 −0.292158
457457 −3.59868e9 −1.76375 −0.881874 0.471485i 0.843718π-0.843718\pi
−0.881874 + 0.471485i 0.843718π0.843718\pi
458458 −1.71565e9 −0.834451
459459 1.96336e9 0.947668
460460 2.35125e9 1.12628
461461 −4.44676e8 −0.211393 −0.105696 0.994398i 0.533707π-0.533707\pi
−0.105696 + 0.994398i 0.533707π0.533707\pi
462462 7.51793e8 0.354692
463463 −1.08602e9 −0.508517 −0.254258 0.967136i 0.581831π-0.581831\pi
−0.254258 + 0.967136i 0.581831π0.581831\pi
464464 6.67119e8 0.310020
465465 2.29977e8 0.106072
466466 6.14750e8 0.281415
467467 3.61227e9 1.64124 0.820619 0.571476i 0.193629π-0.193629\pi
0.820619 + 0.571476i 0.193629π0.193629\pi
468468 1.27768e9 0.576185
469469 1.81030e8 0.0810298
470470 −1.89822e9 −0.843340
471471 1.11802e8 0.0493036
472472 6.83903e8 0.299362
473473 7.46190e8 0.324217
474474 7.62206e8 0.328737
475475 −9.10831e9 −3.89951
476476 −1.29317e9 −0.549581
477477 −2.56615e9 −1.08260
478478 −1.57396e9 −0.659169
479479 3.95907e9 1.64596 0.822978 0.568073i 0.192311π-0.192311\pi
0.822978 + 0.568073i 0.192311π0.192311\pi
480480 −3.70238e8 −0.152805
481481 5.99900e8 0.245794
482482 1.04031e9 0.423154
483483 −1.45471e9 −0.587436
484484 1.68473e8 0.0675415
485485 3.65422e9 1.45445
486486 1.82968e9 0.723016
487487 4.30023e9 1.68710 0.843549 0.537052i 0.180462π-0.180462\pi
0.843549 + 0.537052i 0.180462π0.180462\pi
488488 −1.57781e9 −0.614588
489489 −1.68753e9 −0.652634
490490 1.09771e8 0.0421505
491491 −2.54704e9 −0.971072 −0.485536 0.874217i 0.661375π-0.661375\pi
−0.485536 + 0.874217i 0.661375π0.661375\pi
492492 −7.73865e8 −0.292946
493493 −3.68780e9 −1.38613
494494 4.88900e9 1.82463
495495 4.00056e9 1.48253
496496 −8.33706e7 −0.0306780
497497 −1.50533e9 −0.550027
498498 4.82400e8 0.175027
499499 −3.13518e9 −1.12956 −0.564782 0.825240i 0.691040π-0.691040\pi
−0.564782 + 0.825240i 0.691040π0.691040\pi
500500 −3.17756e9 −1.13684
501501 3.95401e8 0.140477
502502 −3.65352e9 −1.28899
503503 8.10436e7 0.0283943 0.0141971 0.999899i 0.495481π-0.495481\pi
0.0141971 + 0.999899i 0.495481π0.495481\pi
504504 −7.70178e8 −0.267969
505505 7.34445e9 2.53769
506506 −2.73926e9 −0.939954
507507 1.73563e9 0.591467
508508 −1.32435e9 −0.448208
509509 1.83771e9 0.617683 0.308841 0.951114i 0.400059π-0.400059\pi
0.308841 + 0.951114i 0.400059π0.400059\pi
510510 2.04666e9 0.683202
511511 3.48525e9 1.15547
512512 1.34218e8 0.0441942
513513 4.47438e9 1.46326
514514 7.64626e8 0.248358
515515 9.56891e9 3.08700
516516 2.27357e8 0.0728510
517517 2.21147e9 0.703823
518518 −3.61616e8 −0.114312
519519 1.15918e9 0.363968
520520 3.05990e9 0.954322
521521 −3.26147e9 −1.01037 −0.505186 0.863011i 0.668576π-0.668576\pi
−0.505186 + 0.863011i 0.668576π0.668576\pi
522522 −2.19635e9 −0.675858
523523 1.51622e9 0.463454 0.231727 0.972781i 0.425562π-0.425562\pi
0.231727 + 0.972781i 0.425562π0.425562\pi
524524 1.02596e9 0.311508
525525 3.52697e9 1.06376
526526 −2.79047e9 −0.836041
527527 4.60868e8 0.137164
528528 4.31336e8 0.127526
529529 1.89560e9 0.556738
530530 −6.14563e9 −1.79309
531531 −2.25161e9 −0.652623
532532 −2.94706e9 −0.848590
533533 6.39575e9 1.82956
534534 1.16496e9 0.331067
535535 −5.64873e8 −0.159482
536536 1.03864e8 0.0291333
537537 7.62593e8 0.212512
538538 4.72290e8 0.130759
539539 −1.27886e8 −0.0351774
540540 2.80040e9 0.765318
541541 −8.73876e8 −0.237279 −0.118640 0.992937i 0.537853π-0.537853\pi
−0.118640 + 0.992937i 0.537853π0.537853\pi
542542 1.89444e9 0.511074
543543 2.10446e9 0.564082
544544 −7.41949e8 −0.197596
545545 −2.36922e9 −0.626929
546546 −1.89314e9 −0.497748
547547 −1.08535e9 −0.283541 −0.141770 0.989900i 0.545279π-0.545279\pi
−0.141770 + 0.989900i 0.545279π0.545279\pi
548548 −2.44800e9 −0.635446
549549 5.19461e9 1.33983
550550 6.64140e9 1.70212
551551 −8.40426e9 −2.14027
552552 −8.34628e8 −0.211206
553553 3.79723e9 0.954837
554554 6.99356e8 0.174749
555555 5.72317e8 0.142106
556556 1.66169e9 0.410004
557557 −6.40646e9 −1.57081 −0.785407 0.618980i 0.787546π-0.787546\pi
−0.785407 + 0.618980i 0.787546π0.787546\pi
558558 2.74481e8 0.0668794
559559 −1.87904e9 −0.454981
560560 −1.84449e9 −0.443831
561561 −2.38440e9 −0.570177
562562 5.44826e7 0.0129473
563563 −7.36885e8 −0.174028 −0.0870142 0.996207i 0.527733π-0.527733\pi
−0.0870142 + 0.996207i 0.527733π0.527733\pi
564564 6.73814e8 0.158148
565565 −7.96820e9 −1.85862
566566 2.63740e9 0.611390
567567 1.55721e9 0.358762
568568 −8.63672e8 −0.197756
569569 2.26466e9 0.515360 0.257680 0.966230i 0.417042π-0.417042\pi
0.257680 + 0.966230i 0.417042π0.417042\pi
570570 4.66420e9 1.05491
571571 1.77146e9 0.398202 0.199101 0.979979i 0.436198π-0.436198\pi
0.199101 + 0.979979i 0.436198π0.436198\pi
572572 −3.56485e9 −0.796445
573573 −1.67951e9 −0.372942
574574 −3.85532e9 −0.850880
575575 −1.28510e10 −2.81903
576576 −4.41885e8 −0.0963452
577577 4.19705e9 0.909554 0.454777 0.890605i 0.349719π-0.349719\pi
0.454777 + 0.890605i 0.349719π0.349719\pi
578578 8.18744e8 0.176360
579579 −1.10044e9 −0.235609
580580 −5.26001e9 −1.11941
581581 2.40326e9 0.508376
582582 −1.29715e9 −0.272746
583583 7.15981e9 1.49645
584584 1.99964e9 0.415438
585585 −1.00741e10 −2.08046
586586 −4.09204e7 −0.00840036
587587 6.47404e9 1.32112 0.660560 0.750773i 0.270319π-0.270319\pi
0.660560 + 0.750773i 0.270319π0.270319\pi
588588 −3.89658e7 −0.00790429
589589 1.05029e9 0.211790
590590 −5.39234e9 −1.08092
591591 −2.98578e9 −0.594979
592592 −2.07475e8 −0.0410997
593593 −9.00131e9 −1.77261 −0.886307 0.463098i 0.846738π-0.846738\pi
−0.886307 + 0.463098i 0.846738π0.846738\pi
594594 −3.26253e9 −0.638708
595595 1.01962e10 1.98440
596596 1.37266e9 0.265584
597597 −1.86953e9 −0.359602
598598 6.89793e9 1.31906
599599 2.07040e9 0.393604 0.196802 0.980443i 0.436944π-0.436944\pi
0.196802 + 0.980443i 0.436944π0.436944\pi
600600 2.02358e9 0.382463
601601 −4.27425e9 −0.803155 −0.401577 0.915825i 0.631538π-0.631538\pi
−0.401577 + 0.915825i 0.631538π0.631538\pi
602602 1.13267e9 0.211600
603603 −3.41953e8 −0.0635120
604604 −4.87591e9 −0.900382
605605 −1.32835e9 −0.243876
606606 −2.60708e9 −0.475882
607607 −9.36384e9 −1.69939 −0.849696 0.527272i 0.823215π-0.823215\pi
−0.849696 + 0.527272i 0.823215π0.823215\pi
608608 −1.69085e9 −0.305101
609609 3.25434e9 0.583852
610610 1.24405e10 2.21913
611611 −5.56885e9 −0.987692
612612 2.44272e9 0.430767
613613 −6.35668e8 −0.111460 −0.0557299 0.998446i 0.517749π-0.517749\pi
−0.0557299 + 0.998446i 0.517749π0.517749\pi
614614 3.23088e8 0.0563289
615615 6.10167e9 1.05776
616616 2.14887e9 0.370406
617617 −3.37951e9 −0.579237 −0.289618 0.957142i 0.593528π-0.593528\pi
−0.289618 + 0.957142i 0.593528π0.593528\pi
618618 −3.39670e9 −0.578892
619619 −7.37657e9 −1.25008 −0.625039 0.780593i 0.714917π-0.714917\pi
−0.625039 + 0.780593i 0.714917π0.714917\pi
620620 6.57350e8 0.110771
621621 6.31295e9 1.05782
622622 −1.60526e9 −0.267472
623623 5.80370e9 0.961606
624624 −1.08618e9 −0.178960
625625 1.12638e10 1.84546
626626 −4.09325e9 −0.666896
627627 −5.43391e9 −0.880392
628628 3.19568e8 0.0514878
629629 1.14691e9 0.183760
630630 6.07260e9 0.967571
631631 −8.76066e9 −1.38814 −0.694071 0.719906i 0.744185π-0.744185\pi
−0.694071 + 0.719906i 0.744185π0.744185\pi
632632 2.17864e9 0.343301
633633 −1.15814e9 −0.181487
634634 −7.69092e9 −1.19858
635635 1.04420e10 1.61837
636636 2.18153e9 0.336249
637637 3.22040e8 0.0493652
638638 6.12804e9 0.934219
639639 2.84346e9 0.431117
640640 −1.05826e9 −0.159574
641641 −5.91406e9 −0.886916 −0.443458 0.896295i 0.646248π-0.646248\pi
−0.443458 + 0.896295i 0.646248π0.646248\pi
642642 2.00514e8 0.0299070
643643 1.21681e9 0.180504 0.0902518 0.995919i 0.471233π-0.471233\pi
0.0902518 + 0.995919i 0.471233π0.471233\pi
644644 −4.15803e9 −0.613461
645645 −1.79264e9 −0.263047
646646 9.34695e9 1.36413
647647 −4.35488e9 −0.632137 −0.316068 0.948736i 0.602363π-0.602363\pi
−0.316068 + 0.948736i 0.602363π0.602363\pi
648648 8.93438e8 0.128989
649649 6.28221e9 0.902103
650650 −1.67242e10 −2.38863
651651 −4.06699e8 −0.0577750
652652 −4.82351e9 −0.681548
653653 −2.37363e9 −0.333594 −0.166797 0.985991i 0.553342π-0.553342\pi
−0.166797 + 0.985991i 0.553342π0.553342\pi
654654 8.41009e8 0.117565
655655 −8.08933e9 −1.12478
656656 −2.21196e9 −0.305924
657657 −6.58340e9 −0.905672
658658 3.35687e9 0.459350
659659 −3.03953e9 −0.413721 −0.206861 0.978370i 0.566325π-0.566325\pi
−0.206861 + 0.978370i 0.566325π0.566325\pi
660660 −3.40094e9 −0.460464
661661 −1.60589e9 −0.216277 −0.108138 0.994136i 0.534489π-0.534489\pi
−0.108138 + 0.994136i 0.534489π0.534489\pi
662662 −3.22720e9 −0.432337
663663 6.00434e9 0.800144
664664 1.37886e9 0.182781
665665 2.32366e10 3.06405
666666 6.83068e8 0.0895992
667667 −1.18576e10 −1.54724
668668 1.13019e9 0.146701
669669 −4.22273e9 −0.545257
670670 −8.18937e8 −0.105193
671671 −1.44935e10 −1.85201
672672 6.54742e8 0.0832296
673673 1.06339e10 1.34474 0.672371 0.740214i 0.265276π-0.265276\pi
0.672371 + 0.740214i 0.265276π0.265276\pi
674674 −3.19981e9 −0.402545
675675 −1.53059e10 −1.91556
676676 4.96101e9 0.617670
677677 1.12699e10 1.39591 0.697957 0.716139i 0.254093π-0.254093\pi
0.697957 + 0.716139i 0.254093π0.254093\pi
678678 2.82849e9 0.348538
679679 −6.46225e9 −0.792208
680680 5.85002e9 0.713470
681681 7.00549e9 0.850009
682682 −7.65828e8 −0.0924455
683683 −7.09950e9 −0.852619 −0.426310 0.904577i 0.640187π-0.640187\pi
−0.426310 + 0.904577i 0.640187π0.640187\pi
684684 5.56679e9 0.665133
685685 1.93016e10 2.29444
686686 −6.07346e9 −0.718294
687687 −4.80184e9 −0.565014
688688 6.49862e8 0.0760785
689689 −1.80296e10 −2.10000
690690 6.58076e9 0.762614
691691 −8.79291e9 −1.01382 −0.506909 0.862000i 0.669212π-0.669212\pi
−0.506909 + 0.862000i 0.669212π0.669212\pi
692692 3.31331e9 0.380093
693693 −7.07472e9 −0.807501
694694 6.14641e9 0.698013
695695 −1.31019e10 −1.48043
696696 1.86716e9 0.209917
697697 1.22276e10 1.36781
698698 1.11404e9 0.123996
699699 1.72059e9 0.190549
700700 1.00812e10 1.11089
701701 −2.64063e9 −0.289530 −0.144765 0.989466i 0.546243π-0.546243\pi
−0.144765 + 0.989466i 0.546243π0.546243\pi
702702 8.21562e9 0.896315
703703 2.61373e9 0.283738
704704 1.23290e9 0.133175
705705 −5.31280e9 −0.571033
706706 2.89629e9 0.309760
707707 −1.29882e10 −1.38223
708708 1.91413e9 0.202701
709709 9.19450e9 0.968872 0.484436 0.874827i 0.339025π-0.339025\pi
0.484436 + 0.874827i 0.339025π0.339025\pi
710710 6.80976e9 0.714049
711711 −7.17272e9 −0.748411
712712 3.32984e9 0.345735
713713 1.48186e9 0.153107
714714 −3.61938e9 −0.372126
715715 2.81077e10 2.87577
716716 2.17974e9 0.221927
717717 −4.40527e9 −0.446329
718718 −5.11617e9 −0.515833
719719 2.41418e9 0.242225 0.121112 0.992639i 0.461354π-0.461354\pi
0.121112 + 0.992639i 0.461354π0.461354\pi
720720 3.48411e9 0.347879
721721 −1.69220e10 −1.68143
722722 1.41501e10 1.39920
723723 2.91166e9 0.286521
724724 6.01525e9 0.589072
725725 2.87491e10 2.80183
726726 4.71528e8 0.0457329
727727 7.98519e9 0.770753 0.385376 0.922760i 0.374072π-0.374072\pi
0.385376 + 0.922760i 0.374072π0.374072\pi
728728 −5.41123e9 −0.519800
729729 1.30467e9 0.124725
730730 −1.57665e10 −1.50004
731731 −3.59240e9 −0.340153
732732 −4.41603e9 −0.416143
733733 6.97965e9 0.654591 0.327295 0.944922i 0.393863π-0.393863\pi
0.327295 + 0.944922i 0.393863π0.393863\pi
734734 −1.25393e10 −1.17041
735735 3.07232e8 0.0285405
736736 −2.38564e9 −0.220563
737737 9.54081e8 0.0877908
738738 7.28243e9 0.666928
739739 2.04231e9 0.186151 0.0930757 0.995659i 0.470330π-0.470330\pi
0.0930757 + 0.995659i 0.470330π0.470330\pi
740740 1.63587e9 0.148401
741741 1.36835e10 1.23548
742742 1.08682e10 0.976657
743743 −1.55097e10 −1.38721 −0.693604 0.720357i 0.743978π-0.743978\pi
−0.693604 + 0.720357i 0.743978π0.743978\pi
744744 −2.33341e8 −0.0207724
745745 −1.08230e10 −0.958959
746746 −5.03131e9 −0.443706
747747 −4.53960e9 −0.398470
748748 −6.81541e9 −0.595438
749749 9.98942e8 0.0868668
750750 −8.89348e9 −0.769764
751751 −7.67830e9 −0.661493 −0.330746 0.943720i 0.607300π-0.607300\pi
−0.330746 + 0.943720i 0.607300π0.607300\pi
752752 1.92598e9 0.165154
753753 −1.02256e10 −0.872785
754754 −1.54314e10 −1.31101
755755 3.84449e10 3.25106
756756 −4.95233e9 −0.416853
757757 1.30345e9 0.109209 0.0546047 0.998508i 0.482610π-0.482610\pi
0.0546047 + 0.998508i 0.482610π0.482610\pi
758758 −3.72608e9 −0.310749
759759 −7.66675e9 −0.636451
760760 1.33318e10 1.10165
761761 −1.93614e9 −0.159254 −0.0796269 0.996825i 0.525373π-0.525373\pi
−0.0796269 + 0.996825i 0.525373π0.525373\pi
762762 −3.70664e9 −0.303485
763763 4.18982e9 0.341475
764764 −4.80060e9 −0.389465
765765 −1.92600e10 −1.55540
766766 1.08545e10 0.872590
767767 −1.58197e10 −1.26594
768768 3.75654e8 0.0299243
769769 1.86998e9 0.148284 0.0741422 0.997248i 0.476378π-0.476378\pi
0.0741422 + 0.997248i 0.476378π0.476378\pi
770770 −1.69431e10 −1.33745
771771 2.14006e9 0.168165
772772 −3.14542e9 −0.246047
773773 1.89091e10 1.47246 0.736228 0.676734i 0.236605π-0.236605\pi
0.736228 + 0.676734i 0.236605π0.236605\pi
774774 −2.13954e9 −0.165854
775775 −3.59281e9 −0.277255
776776 −3.70767e9 −0.284830
777777 −1.01210e9 −0.0774019
778778 7.58082e9 0.577148
779779 2.78659e10 2.11199
780780 8.56416e9 0.646180
781781 −7.93354e9 −0.595921
782782 1.31877e10 0.986156
783783 −1.41228e10 −1.05137
784784 −1.11377e8 −0.00825447
785785 −2.51969e9 −0.185910
786786 2.87149e9 0.210925
787787 −6.44240e9 −0.471125 −0.235563 0.971859i 0.575693π-0.575693\pi
−0.235563 + 0.971859i 0.575693π0.575693\pi
788788 −8.53434e9 −0.621339
789789 −7.81008e9 −0.566091
790790 −1.71778e10 −1.23958
791791 1.40912e10 1.01235
792792 −4.05908e9 −0.290328
793793 3.64970e10 2.59897
794794 1.29449e10 0.917755
795795 −1.72006e10 −1.21411
796796 −5.34372e9 −0.375533
797797 −6.22130e9 −0.435288 −0.217644 0.976028i 0.569837π-0.569837\pi
−0.217644 + 0.976028i 0.569837π0.569837\pi
798798 −8.24834e9 −0.574588
799799 −1.06467e10 −0.738418
800800 5.78404e9 0.399408
801801 −1.09628e10 −0.753717
802802 1.18342e10 0.810084
803803 1.83683e10 1.25189
804804 2.90700e8 0.0197264
805805 3.27847e10 2.21506
806806 1.92849e9 0.129731
807807 1.32186e9 0.0885379
808808 −7.45188e9 −0.496965
809809 −5.70480e6 −0.000378809 0 −0.000189404 1.00000i 0.500060π-0.500060\pi
−0.000189404 1.00000i 0.500060π0.500060\pi
810810 −7.04446e9 −0.465747
811811 1.35122e10 0.889514 0.444757 0.895651i 0.353290π-0.353290\pi
0.444757 + 0.895651i 0.353290π0.353290\pi
812812 9.30198e9 0.609718
813813 5.30224e9 0.346053
814814 −1.90583e9 −0.123851
815815 3.80317e10 2.46090
816816 −2.07659e9 −0.133794
817817 −8.18686e9 −0.525219
818818 1.22593e10 0.783120
819819 1.78154e10 1.13319
820820 1.74406e10 1.10462
821821 −2.04061e10 −1.28694 −0.643472 0.765470i 0.722507π-0.722507\pi
−0.643472 + 0.765470i 0.722507π0.722507\pi
822822 −6.85155e9 −0.430266
823823 1.31164e10 0.820191 0.410095 0.912043i 0.365495π-0.365495\pi
0.410095 + 0.912043i 0.365495π0.365495\pi
824824 −9.70888e9 −0.604538
825825 1.85882e10 1.15252
826826 9.53601e9 0.588758
827827 1.00525e10 0.618021 0.309010 0.951059i 0.400002π-0.400002\pi
0.309010 + 0.951059i 0.400002π0.400002\pi
828828 7.85424e9 0.480837
829829 −2.39621e10 −1.46078 −0.730389 0.683031i 0.760661π-0.760661\pi
−0.730389 + 0.683031i 0.760661π0.760661\pi
830830 −1.08718e10 −0.659977
831831 1.95739e9 0.118324
832832 −3.10466e9 −0.186888
833833 6.15686e8 0.0369064
834834 4.65081e9 0.277618
835835 −8.91113e9 −0.529700
836836 −1.55319e10 −0.919396
837837 1.76494e9 0.104038
838838 4.49507e9 0.263865
839839 2.73604e9 0.159939 0.0799697 0.996797i 0.474518π-0.474518\pi
0.0799697 + 0.996797i 0.474518π0.474518\pi
840840 −5.16242e9 −0.300522
841841 9.27700e9 0.537801
842842 −6.89401e7 −0.00397997
843843 1.52488e8 0.00876676
844844 −3.31033e9 −0.189528
845845 −3.91159e10 −2.23026
846846 −6.34090e9 −0.360043
847847 2.34910e9 0.132834
848848 6.23553e9 0.351146
849849 7.38166e9 0.413978
850850 −3.19739e10 −1.78578
851851 3.68774e9 0.205119
852852 −2.41728e9 −0.133902
853853 −1.75500e10 −0.968181 −0.484090 0.875018i 0.660849π-0.660849\pi
−0.484090 + 0.875018i 0.660849π0.660849\pi
854854 −2.20002e10 −1.20871
855855 −4.38923e10 −2.40164
856856 5.73136e8 0.0312320
857857 1.35123e9 0.0733327 0.0366663 0.999328i 0.488326π-0.488326\pi
0.0366663 + 0.999328i 0.488326π0.488326\pi
858858 −9.97745e9 −0.539280
859859 1.07334e10 0.577777 0.288888 0.957363i 0.406714π-0.406714\pi
0.288888 + 0.957363i 0.406714π0.406714\pi
860860 −5.12395e9 −0.274701
861861 −1.07904e10 −0.576138
862862 −3.42267e9 −0.182007
863863 −1.85843e10 −0.984257 −0.492129 0.870523i 0.663781π-0.663781\pi
−0.492129 + 0.870523i 0.663781π0.663781\pi
864864 −2.84136e9 −0.149875
865865 −2.61243e10 −1.37242
866866 1.24891e10 0.653457
867867 2.29153e9 0.119415
868868 −1.16248e9 −0.0603346
869869 2.00126e10 1.03451
870870 −1.47219e10 −0.757961
871871 −2.40254e9 −0.123199
872872 2.40388e9 0.122774
873873 1.22068e10 0.620941
874874 3.00539e10 1.52269
875875 −4.43064e10 −2.23583
876876 5.59666e9 0.281297
877877 −1.63802e10 −0.820012 −0.410006 0.912083i 0.634473π-0.634473\pi
−0.410006 + 0.912083i 0.634473π0.634473\pi
878878 1.30726e10 0.651823
879879 −1.14530e8 −0.00568796
880880 −9.72101e9 −0.480864
881881 2.64570e10 1.30354 0.651771 0.758416i 0.274026π-0.274026\pi
0.651771 + 0.758416i 0.274026π0.274026\pi
882882 3.66686e8 0.0179951
883883 1.20676e10 0.589874 0.294937 0.955517i 0.404701π-0.404701\pi
0.294937 + 0.955517i 0.404701π0.404701\pi
884884 1.71624e10 0.835593
885885 −1.50923e10 −0.731904
886886 −4.96885e9 −0.240015
887887 5.29007e9 0.254524 0.127262 0.991869i 0.459381π-0.459381\pi
0.127262 + 0.991869i 0.459381π0.459381\pi
888888 −5.80688e8 −0.0278290
889889 −1.84661e10 −0.881492
890890 −2.62546e10 −1.24836
891891 8.20697e9 0.388697
892892 −1.20699e10 −0.569414
893893 −2.42632e10 −1.14017
894894 3.84186e9 0.179829
895895 −1.71865e10 −0.801323
896896 1.87147e9 0.0869169
897897 1.93062e10 0.893147
898898 1.73430e9 0.0799204
899899 −3.31510e9 −0.152173
900900 −1.90428e10 −0.870726
901901 −3.44697e10 −1.57000
902902 −2.03187e10 −0.921877
903903 3.17016e9 0.143276
904904 8.08475e9 0.363980
905905 −4.74282e10 −2.12700
906906 −1.36469e10 −0.609656
907907 4.35182e9 0.193663 0.0968313 0.995301i 0.469129π-0.469129\pi
0.0968313 + 0.995301i 0.469129π0.469129\pi
908908 2.00240e10 0.887667
909909 2.45338e10 1.08341
910910 4.26657e10 1.87687
911911 −8.14092e9 −0.356746 −0.178373 0.983963i 0.557083π-0.557083\pi
−0.178373 + 0.983963i 0.557083π0.557083\pi
912912 −4.73243e9 −0.206587
913913 1.26659e10 0.550794
914914 −2.87894e10 −1.24716
915915 3.48189e10 1.50259
916916 −1.37252e10 −0.590046
917917 1.43055e10 0.612645
918918 1.57069e10 0.670103
919919 −4.36837e10 −1.85659 −0.928293 0.371850i 0.878723π-0.878723\pi
−0.928293 + 0.371850i 0.878723π0.878723\pi
920920 1.88100e10 0.796400
921921 9.04271e8 0.0381408
922922 −3.55741e9 −0.149477
923923 1.99780e10 0.836270
924924 6.01435e9 0.250805
925925 −8.94101e9 −0.371442
926926 −8.68818e9 −0.359576
927927 3.19645e10 1.31792
928928 5.33695e9 0.219217
929929 −7.35357e9 −0.300915 −0.150457 0.988617i 0.548075π-0.548075\pi
−0.150457 + 0.988617i 0.548075π0.548075\pi
930930 1.83982e9 0.0750039
931931 1.40311e9 0.0569860
932932 4.91800e9 0.198991
933933 −4.49285e9 −0.181107
934934 2.88982e10 1.16053
935935 5.37372e10 2.14998
936936 1.02214e10 0.407424
937937 −1.44717e10 −0.574688 −0.287344 0.957827i 0.592772π-0.592772\pi
−0.287344 + 0.957827i 0.592772π0.592772\pi
938938 1.44824e9 0.0572967
939939 −1.14563e10 −0.451561
940940 −1.51857e10 −0.596332
941941 1.33141e9 0.0520894 0.0260447 0.999661i 0.491709π-0.491709\pi
0.0260447 + 0.999661i 0.491709π0.491709\pi
942942 8.94420e8 0.0348629
943943 3.93163e10 1.52680
944944 5.47122e9 0.211681
945945 3.90474e10 1.50515
946946 5.96952e9 0.229256
947947 1.16271e10 0.444882 0.222441 0.974946i 0.428598π-0.428598\pi
0.222441 + 0.974946i 0.428598π0.428598\pi
948948 6.09765e9 0.232452
949949 −4.62546e10 −1.75680
950950 −7.28665e10 −2.75737
951951 −2.15257e10 −0.811568
952952 −1.03454e10 −0.388613
953953 9.52377e7 0.00356438 0.00178219 0.999998i 0.499433π-0.499433\pi
0.00178219 + 0.999998i 0.499433π0.499433\pi
954954 −2.05292e10 −0.765514
955955 3.78511e10 1.40626
956956 −1.25917e10 −0.466103
957957 1.71514e10 0.632568
958958 3.16725e10 1.16387
959959 −3.41337e10 −1.24973
960960 −2.96190e9 −0.108049
961961 −2.70983e10 −0.984942
962962 4.79920e9 0.173802
963963 −1.88693e9 −0.0680871
964964 8.32249e9 0.299215
965965 2.48006e10 0.888417
966966 −1.16377e10 −0.415380
967967 4.10715e10 1.46066 0.730328 0.683096i 0.239367π-0.239367\pi
0.730328 + 0.683096i 0.239367π0.239367\pi
968968 1.34778e9 0.0477590
969969 2.61606e10 0.923666
970970 2.92338e10 1.02845
971971 1.43880e10 0.504350 0.252175 0.967682i 0.418854π-0.418854\pi
0.252175 + 0.967682i 0.418854π0.418854\pi
972972 1.46374e10 0.511249
973973 2.31698e10 0.806358
974974 3.44019e10 1.19296
975975 −4.68083e10 −1.61736
976976 −1.26225e10 −0.434580
977977 6.76985e9 0.232246 0.116123 0.993235i 0.462953π-0.462953\pi
0.116123 + 0.993235i 0.462953π0.462953\pi
978978 −1.35002e10 −0.461482
979979 3.05873e10 1.04184
980980 8.78170e8 0.0298049
981981 −7.91428e9 −0.267652
982982 −2.03764e10 −0.686651
983983 4.81556e10 1.61700 0.808498 0.588498i 0.200281π-0.200281\pi
0.808498 + 0.588498i 0.200281π0.200281\pi
984984 −6.19092e9 −0.207144
985985 6.72905e10 2.24350
986986 −2.95024e10 −0.980139
987987 9.39534e9 0.311030
988988 3.91120e10 1.29021
989989 −1.15509e10 −0.379690
990990 3.20045e10 1.04830
991991 1.81773e10 0.593296 0.296648 0.954987i 0.404131π-0.404131\pi
0.296648 + 0.954987i 0.404131π0.404131\pi
992992 −6.66965e8 −0.0216926
993993 −9.03241e9 −0.292740
994994 −1.20426e10 −0.388928
995995 4.21335e10 1.35596
996996 3.85920e9 0.123763
997997 3.32870e10 1.06376 0.531878 0.846821i 0.321487π-0.321487\pi
0.531878 + 0.846821i 0.321487π0.321487\pi
998998 −2.50815e10 −0.798723
999999 4.39220e9 0.139381
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.a.b.1.4 4
4.3 odd 2 592.8.a.a.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.b.1.4 4 1.1 even 1 trivial
592.8.a.a.1.1 4 4.3 odd 2