Properties

Label 74.8.a.b.1.4
Level $74$
Weight $8$
Character 74.1
Self dual yes
Analytic conductor $23.116$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(1,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1164918858\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 2177x^{2} - 14018x + 634476 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(47.8378\) of defining polynomial
Character \(\chi\) \(=\) 74.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} +22.3907 q^{3} +64.0000 q^{4} -504.619 q^{5} +179.126 q^{6} +892.385 q^{7} +512.000 q^{8} -1685.66 q^{9} -4036.95 q^{10} +4703.14 q^{11} +1433.01 q^{12} -11843.3 q^{13} +7139.08 q^{14} -11298.8 q^{15} +4096.00 q^{16} -22642.5 q^{17} -13485.2 q^{18} -51600.8 q^{19} -32295.6 q^{20} +19981.1 q^{21} +37625.1 q^{22} -72804.0 q^{23} +11464.0 q^{24} +176515. q^{25} -94746.6 q^{26} -86711.5 q^{27} +57112.7 q^{28} +162871. q^{29} -90390.2 q^{30} -20354.2 q^{31} +32768.0 q^{32} +105307. q^{33} -181140. q^{34} -450314. q^{35} -107882. q^{36} -50653.0 q^{37} -412806. q^{38} -265180. q^{39} -258365. q^{40} -540030. q^{41} +159849. q^{42} +158658. q^{43} +301001. q^{44} +850613. q^{45} -582432. q^{46} +470210. q^{47} +91712.4 q^{48} -27191.7 q^{49} +1.41212e6 q^{50} -506981. q^{51} -757973. q^{52} +1.52235e6 q^{53} -693692. q^{54} -2.37329e6 q^{55} +456901. q^{56} -1.15538e6 q^{57} +1.30297e6 q^{58} +1.33575e6 q^{59} -723121. q^{60} -3.08165e6 q^{61} -162833. q^{62} -1.50425e6 q^{63} +262144. q^{64} +5.97636e6 q^{65} +842454. q^{66} +202860. q^{67} -1.44912e6 q^{68} -1.63013e6 q^{69} -3.60251e6 q^{70} -1.68686e6 q^{71} -863056. q^{72} +3.90554e6 q^{73} -405224. q^{74} +3.95230e6 q^{75} -3.30245e6 q^{76} +4.19702e6 q^{77} -2.12144e6 q^{78} +4.25515e6 q^{79} -2.06692e6 q^{80} +1.74500e6 q^{81} -4.32024e6 q^{82} +2.69308e6 q^{83} +1.27879e6 q^{84} +1.14258e7 q^{85} +1.26926e6 q^{86} +3.64679e6 q^{87} +2.40801e6 q^{88} +6.50359e6 q^{89} +6.80491e6 q^{90} -1.05688e7 q^{91} -4.65946e6 q^{92} -455744. q^{93} +3.76168e6 q^{94} +2.60387e7 q^{95} +733699. q^{96} -7.24155e6 q^{97} -217533. q^{98} -7.92788e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} - 41 q^{3} + 256 q^{4} - 363 q^{5} - 328 q^{6} - 774 q^{7} + 2048 q^{8} - 1079 q^{9} - 2904 q^{10} - 309 q^{11} - 2624 q^{12} - 20827 q^{13} - 6192 q^{14} - 22940 q^{15} + 16384 q^{16} - 48756 q^{17}+ \cdots + 16949258 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) 22.3907 0.478788 0.239394 0.970922i \(-0.423051\pi\)
0.239394 + 0.970922i \(0.423051\pi\)
\(4\) 64.0000 0.500000
\(5\) −504.619 −1.80538 −0.902689 0.430293i \(-0.858410\pi\)
−0.902689 + 0.430293i \(0.858410\pi\)
\(6\) 179.126 0.338554
\(7\) 892.385 0.983352 0.491676 0.870778i \(-0.336384\pi\)
0.491676 + 0.870778i \(0.336384\pi\)
\(8\) 512.000 0.353553
\(9\) −1685.66 −0.770762
\(10\) −4036.95 −1.27660
\(11\) 4703.14 1.06540 0.532701 0.846303i \(-0.321177\pi\)
0.532701 + 0.846303i \(0.321177\pi\)
\(12\) 1433.01 0.239394
\(13\) −11843.3 −1.49511 −0.747553 0.664202i \(-0.768771\pi\)
−0.747553 + 0.664202i \(0.768771\pi\)
\(14\) 7139.08 0.695335
\(15\) −11298.8 −0.864394
\(16\) 4096.00 0.250000
\(17\) −22642.5 −1.11777 −0.558885 0.829245i \(-0.688771\pi\)
−0.558885 + 0.829245i \(0.688771\pi\)
\(18\) −13485.2 −0.545011
\(19\) −51600.8 −1.72591 −0.862956 0.505279i \(-0.831390\pi\)
−0.862956 + 0.505279i \(0.831390\pi\)
\(20\) −32295.6 −0.902689
\(21\) 19981.1 0.470818
\(22\) 37625.1 0.753353
\(23\) −72804.0 −1.24769 −0.623847 0.781547i \(-0.714431\pi\)
−0.623847 + 0.781547i \(0.714431\pi\)
\(24\) 11464.0 0.169277
\(25\) 176515. 2.25939
\(26\) −94746.6 −1.05720
\(27\) −86711.5 −0.847820
\(28\) 57112.7 0.491676
\(29\) 162871. 1.24008 0.620041 0.784570i \(-0.287116\pi\)
0.620041 + 0.784570i \(0.287116\pi\)
\(30\) −90390.2 −0.611219
\(31\) −20354.2 −0.122712 −0.0613560 0.998116i \(-0.519543\pi\)
−0.0613560 + 0.998116i \(0.519543\pi\)
\(32\) 32768.0 0.176777
\(33\) 105307. 0.510102
\(34\) −181140. −0.790383
\(35\) −450314. −1.77532
\(36\) −107882. −0.385381
\(37\) −50653.0 −0.164399
\(38\) −412806. −1.22040
\(39\) −265180. −0.715839
\(40\) −258365. −0.638298
\(41\) −540030. −1.22370 −0.611849 0.790975i \(-0.709574\pi\)
−0.611849 + 0.790975i \(0.709574\pi\)
\(42\) 159849. 0.332918
\(43\) 158658. 0.304314 0.152157 0.988356i \(-0.451378\pi\)
0.152157 + 0.988356i \(0.451378\pi\)
\(44\) 301001. 0.532701
\(45\) 850613. 1.39152
\(46\) −582432. −0.882252
\(47\) 470210. 0.660617 0.330308 0.943873i \(-0.392847\pi\)
0.330308 + 0.943873i \(0.392847\pi\)
\(48\) 91712.4 0.119697
\(49\) −27191.7 −0.0330179
\(50\) 1.41212e6 1.59763
\(51\) −506981. −0.535175
\(52\) −757973. −0.747553
\(53\) 1.52235e6 1.40458 0.702292 0.711889i \(-0.252160\pi\)
0.702292 + 0.711889i \(0.252160\pi\)
\(54\) −693692. −0.599499
\(55\) −2.37329e6 −1.92346
\(56\) 456901. 0.347668
\(57\) −1.15538e6 −0.826346
\(58\) 1.30297e6 0.876870
\(59\) 1.33575e6 0.846725 0.423362 0.905960i \(-0.360850\pi\)
0.423362 + 0.905960i \(0.360850\pi\)
\(60\) −723121. −0.432197
\(61\) −3.08165e6 −1.73832 −0.869159 0.494532i \(-0.835339\pi\)
−0.869159 + 0.494532i \(0.835339\pi\)
\(62\) −162833. −0.0867705
\(63\) −1.50425e6 −0.757930
\(64\) 262144. 0.125000
\(65\) 5.97636e6 2.69923
\(66\) 842454. 0.360697
\(67\) 202860. 0.0824015 0.0412008 0.999151i \(-0.486882\pi\)
0.0412008 + 0.999151i \(0.486882\pi\)
\(68\) −1.44912e6 −0.558885
\(69\) −1.63013e6 −0.597381
\(70\) −3.60251e6 −1.25534
\(71\) −1.68686e6 −0.559338 −0.279669 0.960096i \(-0.590225\pi\)
−0.279669 + 0.960096i \(0.590225\pi\)
\(72\) −863056. −0.272505
\(73\) 3.90554e6 1.17504 0.587518 0.809211i \(-0.300105\pi\)
0.587518 + 0.809211i \(0.300105\pi\)
\(74\) −405224. −0.116248
\(75\) 3.95230e6 1.08177
\(76\) −3.30245e6 −0.862956
\(77\) 4.19702e6 1.04767
\(78\) −2.12144e6 −0.506175
\(79\) 4.25515e6 0.971001 0.485501 0.874236i \(-0.338637\pi\)
0.485501 + 0.874236i \(0.338637\pi\)
\(80\) −2.06692e6 −0.451345
\(81\) 1.74500e6 0.364835
\(82\) −4.32024e6 −0.865285
\(83\) 2.69308e6 0.516982 0.258491 0.966014i \(-0.416775\pi\)
0.258491 + 0.966014i \(0.416775\pi\)
\(84\) 1.27879e6 0.235409
\(85\) 1.14258e7 2.01800
\(86\) 1.26926e6 0.215182
\(87\) 3.64679e6 0.593736
\(88\) 2.40801e6 0.376677
\(89\) 6.50359e6 0.977885 0.488943 0.872316i \(-0.337383\pi\)
0.488943 + 0.872316i \(0.337383\pi\)
\(90\) 6.80491e6 0.983951
\(91\) −1.05688e7 −1.47022
\(92\) −4.65946e6 −0.623847
\(93\) −455744. −0.0587531
\(94\) 3.76168e6 0.467127
\(95\) 2.60387e7 3.11592
\(96\) 733699. 0.0846386
\(97\) −7.24155e6 −0.805620 −0.402810 0.915284i \(-0.631966\pi\)
−0.402810 + 0.915284i \(0.631966\pi\)
\(98\) −217533. −0.0233472
\(99\) −7.92788e6 −0.821172
\(100\) 1.12970e7 1.12970
\(101\) −1.45545e7 −1.40563 −0.702815 0.711372i \(-0.748074\pi\)
−0.702815 + 0.711372i \(0.748074\pi\)
\(102\) −4.05585e6 −0.378426
\(103\) −1.89626e7 −1.70989 −0.854946 0.518717i \(-0.826410\pi\)
−0.854946 + 0.518717i \(0.826410\pi\)
\(104\) −6.06378e6 −0.528600
\(105\) −1.00829e7 −0.850004
\(106\) 1.21788e7 0.993191
\(107\) 1.11941e6 0.0883374 0.0441687 0.999024i \(-0.485936\pi\)
0.0441687 + 0.999024i \(0.485936\pi\)
\(108\) −5.54954e6 −0.423910
\(109\) 4.69508e6 0.347256 0.173628 0.984811i \(-0.444451\pi\)
0.173628 + 0.984811i \(0.444451\pi\)
\(110\) −1.89863e7 −1.36009
\(111\) −1.13416e6 −0.0787123
\(112\) 3.65521e6 0.245838
\(113\) 1.57905e7 1.02949 0.514745 0.857343i \(-0.327887\pi\)
0.514745 + 0.857343i \(0.327887\pi\)
\(114\) −9.24303e6 −0.584315
\(115\) 3.67383e7 2.25256
\(116\) 1.04237e7 0.620041
\(117\) 1.99638e7 1.15237
\(118\) 1.06860e7 0.598725
\(119\) −2.02058e7 −1.09916
\(120\) −5.78497e6 −0.305609
\(121\) 2.63238e6 0.135083
\(122\) −2.46532e7 −1.22918
\(123\) −1.20916e7 −0.585892
\(124\) −1.30267e6 −0.0613560
\(125\) −4.96494e7 −2.27368
\(126\) −1.20340e7 −0.535938
\(127\) −2.06929e7 −0.896415 −0.448208 0.893930i \(-0.647937\pi\)
−0.448208 + 0.893930i \(0.647937\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) 3.55246e6 0.145702
\(130\) 4.78109e7 1.90864
\(131\) 1.60306e7 0.623017 0.311508 0.950243i \(-0.399166\pi\)
0.311508 + 0.950243i \(0.399166\pi\)
\(132\) 6.73963e6 0.255051
\(133\) −4.60478e7 −1.69718
\(134\) 1.62288e6 0.0582667
\(135\) 4.37563e7 1.53064
\(136\) −1.15929e7 −0.395192
\(137\) −3.82499e7 −1.27089 −0.635446 0.772145i \(-0.719184\pi\)
−0.635446 + 0.772145i \(0.719184\pi\)
\(138\) −1.30411e7 −0.422412
\(139\) 2.59639e7 0.820009 0.410004 0.912084i \(-0.365527\pi\)
0.410004 + 0.912084i \(0.365527\pi\)
\(140\) −2.88201e7 −0.887662
\(141\) 1.05283e7 0.316296
\(142\) −1.34949e7 −0.395512
\(143\) −5.57008e7 −1.59289
\(144\) −6.90445e6 −0.192690
\(145\) −8.21876e7 −2.23882
\(146\) 3.12443e7 0.830876
\(147\) −608840. −0.0158086
\(148\) −3.24179e6 −0.0821995
\(149\) 2.14478e7 0.531168 0.265584 0.964088i \(-0.414435\pi\)
0.265584 + 0.964088i \(0.414435\pi\)
\(150\) 3.16184e7 0.764927
\(151\) −7.61861e7 −1.80076 −0.900382 0.435101i \(-0.856713\pi\)
−0.900382 + 0.435101i \(0.856713\pi\)
\(152\) −2.64196e7 −0.610202
\(153\) 3.81674e7 0.861535
\(154\) 3.35761e7 0.740812
\(155\) 1.02711e7 0.221542
\(156\) −1.69715e7 −0.357920
\(157\) 4.99325e6 0.102976 0.0514878 0.998674i \(-0.483604\pi\)
0.0514878 + 0.998674i \(0.483604\pi\)
\(158\) 3.40412e7 0.686602
\(159\) 3.40864e7 0.672499
\(160\) −1.65353e7 −0.319149
\(161\) −6.49692e7 −1.22692
\(162\) 1.39600e7 0.257978
\(163\) −7.53673e7 −1.36310 −0.681548 0.731774i \(-0.738693\pi\)
−0.681548 + 0.731774i \(0.738693\pi\)
\(164\) −3.45619e7 −0.611849
\(165\) −5.31397e7 −0.920928
\(166\) 2.15446e7 0.365562
\(167\) 1.76591e7 0.293401 0.146701 0.989181i \(-0.453135\pi\)
0.146701 + 0.989181i \(0.453135\pi\)
\(168\) 1.02303e7 0.166459
\(169\) 7.75158e7 1.23534
\(170\) 9.14065e7 1.42694
\(171\) 8.69812e7 1.33027
\(172\) 1.01541e7 0.152157
\(173\) 5.17704e7 0.760187 0.380093 0.924948i \(-0.375892\pi\)
0.380093 + 0.924948i \(0.375892\pi\)
\(174\) 2.91743e7 0.419835
\(175\) 1.57519e8 2.22178
\(176\) 1.92641e7 0.266351
\(177\) 2.99083e7 0.405402
\(178\) 5.20287e7 0.691469
\(179\) 3.40585e7 0.443853 0.221927 0.975063i \(-0.428765\pi\)
0.221927 + 0.975063i \(0.428765\pi\)
\(180\) 5.44393e7 0.695758
\(181\) 9.39883e7 1.17814 0.589072 0.808080i \(-0.299493\pi\)
0.589072 + 0.808080i \(0.299493\pi\)
\(182\) −8.45505e7 −1.03960
\(183\) −6.90004e7 −0.832287
\(184\) −3.72756e7 −0.441126
\(185\) 2.55604e7 0.296802
\(186\) −3.64595e6 −0.0415447
\(187\) −1.06491e8 −1.19088
\(188\) 3.00935e7 0.330308
\(189\) −7.73801e7 −0.833706
\(190\) 2.08310e8 2.20329
\(191\) −7.50093e7 −0.778930 −0.389465 0.921041i \(-0.627340\pi\)
−0.389465 + 0.921041i \(0.627340\pi\)
\(192\) 5.86959e6 0.0598485
\(193\) −4.91473e7 −0.492095 −0.246047 0.969258i \(-0.579132\pi\)
−0.246047 + 0.969258i \(0.579132\pi\)
\(194\) −5.79324e7 −0.569659
\(195\) 1.33815e8 1.29236
\(196\) −1.74027e6 −0.0165089
\(197\) −1.33349e8 −1.24268 −0.621339 0.783542i \(-0.713411\pi\)
−0.621339 + 0.783542i \(0.713411\pi\)
\(198\) −6.34231e7 −0.580656
\(199\) −8.34957e7 −0.751066 −0.375533 0.926809i \(-0.622540\pi\)
−0.375533 + 0.926809i \(0.622540\pi\)
\(200\) 9.03756e7 0.798815
\(201\) 4.54219e6 0.0394529
\(202\) −1.16436e8 −0.993931
\(203\) 1.45343e8 1.21944
\(204\) −3.24468e7 −0.267588
\(205\) 2.72509e8 2.20924
\(206\) −1.51701e8 −1.20908
\(207\) 1.22722e8 0.961674
\(208\) −4.85103e7 −0.373776
\(209\) −2.42686e8 −1.83879
\(210\) −8.06628e7 −0.601044
\(211\) −5.17239e7 −0.379056 −0.189528 0.981875i \(-0.560696\pi\)
−0.189528 + 0.981875i \(0.560696\pi\)
\(212\) 9.74302e7 0.702292
\(213\) −3.77700e7 −0.267805
\(214\) 8.95525e6 0.0624640
\(215\) −8.00617e7 −0.549402
\(216\) −4.43963e7 −0.299750
\(217\) −1.81637e7 −0.120669
\(218\) 3.75606e7 0.245547
\(219\) 8.74478e7 0.562593
\(220\) −1.51891e8 −0.961728
\(221\) 2.68162e8 1.67119
\(222\) −9.07325e6 −0.0556580
\(223\) −1.88593e8 −1.13883 −0.569414 0.822051i \(-0.692830\pi\)
−0.569414 + 0.822051i \(0.692830\pi\)
\(224\) 2.92417e7 0.173834
\(225\) −2.97543e8 −1.74145
\(226\) 1.26324e8 0.727959
\(227\) 3.12875e8 1.77533 0.887667 0.460486i \(-0.152325\pi\)
0.887667 + 0.460486i \(0.152325\pi\)
\(228\) −7.39442e7 −0.413173
\(229\) −2.14457e8 −1.18009 −0.590046 0.807370i \(-0.700890\pi\)
−0.590046 + 0.807370i \(0.700890\pi\)
\(230\) 2.93906e8 1.59280
\(231\) 9.39742e7 0.501610
\(232\) 8.33898e7 0.438435
\(233\) 7.68437e7 0.397981 0.198991 0.980001i \(-0.436234\pi\)
0.198991 + 0.980001i \(0.436234\pi\)
\(234\) 1.59710e8 0.814849
\(235\) −2.37277e8 −1.19266
\(236\) 8.54878e7 0.423362
\(237\) 9.52758e7 0.464904
\(238\) −1.61646e8 −0.777225
\(239\) −1.96745e8 −0.932206 −0.466103 0.884730i \(-0.654342\pi\)
−0.466103 + 0.884730i \(0.654342\pi\)
\(240\) −4.62798e7 −0.216099
\(241\) 1.30039e8 0.598430 0.299215 0.954186i \(-0.403275\pi\)
0.299215 + 0.954186i \(0.403275\pi\)
\(242\) 2.10591e7 0.0955181
\(243\) 2.28710e8 1.02250
\(244\) −1.97226e8 −0.869159
\(245\) 1.37214e7 0.0596098
\(246\) −9.67332e7 −0.414288
\(247\) 6.11125e8 2.58042
\(248\) −1.04213e7 −0.0433853
\(249\) 6.03000e7 0.247525
\(250\) −3.97195e8 −1.60773
\(251\) −4.56690e8 −1.82290 −0.911452 0.411406i \(-0.865038\pi\)
−0.911452 + 0.411406i \(0.865038\pi\)
\(252\) −9.62723e7 −0.378965
\(253\) −3.42408e8 −1.32930
\(254\) −1.65544e8 −0.633861
\(255\) 2.55832e8 0.966194
\(256\) 1.67772e7 0.0625000
\(257\) 9.55782e7 0.351231 0.175616 0.984459i \(-0.443808\pi\)
0.175616 + 0.984459i \(0.443808\pi\)
\(258\) 2.84197e7 0.103027
\(259\) −4.52020e7 −0.161662
\(260\) 3.82487e8 1.34962
\(261\) −2.74544e8 −0.955807
\(262\) 1.28245e8 0.440539
\(263\) −3.48809e8 −1.18234 −0.591170 0.806547i \(-0.701334\pi\)
−0.591170 + 0.806547i \(0.701334\pi\)
\(264\) 5.39170e7 0.180348
\(265\) −7.68204e8 −2.53581
\(266\) −3.68382e8 −1.20009
\(267\) 1.45620e8 0.468200
\(268\) 1.29831e7 0.0412008
\(269\) 5.90362e7 0.184921 0.0924604 0.995716i \(-0.470527\pi\)
0.0924604 + 0.995716i \(0.470527\pi\)
\(270\) 3.50050e8 1.08232
\(271\) 2.36805e8 0.722767 0.361384 0.932417i \(-0.382304\pi\)
0.361384 + 0.932417i \(0.382304\pi\)
\(272\) −9.27436e7 −0.279443
\(273\) −2.36643e8 −0.703922
\(274\) −3.05999e8 −0.898656
\(275\) 8.30175e8 2.40716
\(276\) −1.04329e8 −0.298690
\(277\) 8.74196e7 0.247132 0.123566 0.992336i \(-0.460567\pi\)
0.123566 + 0.992336i \(0.460567\pi\)
\(278\) 2.07711e8 0.579834
\(279\) 3.43101e7 0.0945818
\(280\) −2.30561e8 −0.627672
\(281\) 6.81033e6 0.0183103 0.00915516 0.999958i \(-0.497086\pi\)
0.00915516 + 0.999958i \(0.497086\pi\)
\(282\) 8.42268e7 0.223655
\(283\) 3.29675e8 0.864636 0.432318 0.901721i \(-0.357696\pi\)
0.432318 + 0.901721i \(0.357696\pi\)
\(284\) −1.07959e8 −0.279669
\(285\) 5.83025e8 1.49187
\(286\) −4.45607e8 −1.12634
\(287\) −4.81914e8 −1.20333
\(288\) −5.52356e7 −0.136253
\(289\) 1.02343e8 0.249411
\(290\) −6.57501e8 −1.58308
\(291\) −1.62143e8 −0.385721
\(292\) 2.49955e8 0.587518
\(293\) −5.11505e6 −0.0118799 −0.00593995 0.999982i \(-0.501891\pi\)
−0.00593995 + 0.999982i \(0.501891\pi\)
\(294\) −4.87072e6 −0.0111784
\(295\) −6.74043e8 −1.52866
\(296\) −2.59343e7 −0.0581238
\(297\) −4.07817e8 −0.903270
\(298\) 1.71583e8 0.375592
\(299\) 8.62241e8 1.86543
\(300\) 2.52947e8 0.540885
\(301\) 1.41584e8 0.299248
\(302\) −6.09489e8 −1.27333
\(303\) −3.25885e8 −0.672999
\(304\) −2.11357e8 −0.431478
\(305\) 1.55506e9 3.13832
\(306\) 3.05339e8 0.609197
\(307\) 4.03860e7 0.0796611 0.0398305 0.999206i \(-0.487318\pi\)
0.0398305 + 0.999206i \(0.487318\pi\)
\(308\) 2.68609e8 0.523833
\(309\) −4.24587e8 −0.818676
\(310\) 8.21687e7 0.156654
\(311\) −2.00657e8 −0.378262 −0.189131 0.981952i \(-0.560567\pi\)
−0.189131 + 0.981952i \(0.560567\pi\)
\(312\) −1.35772e8 −0.253087
\(313\) −5.11656e8 −0.943133 −0.471566 0.881831i \(-0.656311\pi\)
−0.471566 + 0.881831i \(0.656311\pi\)
\(314\) 3.99460e7 0.0728148
\(315\) 7.59075e8 1.36835
\(316\) 2.72329e8 0.485501
\(317\) −9.61366e8 −1.69504 −0.847522 0.530760i \(-0.821907\pi\)
−0.847522 + 0.530760i \(0.821907\pi\)
\(318\) 2.72691e8 0.475528
\(319\) 7.66004e8 1.32119
\(320\) −1.32283e8 −0.225672
\(321\) 2.50643e7 0.0422949
\(322\) −5.19754e8 −0.867565
\(323\) 1.16837e9 1.92917
\(324\) 1.11680e8 0.182418
\(325\) −2.09052e9 −3.37803
\(326\) −6.02938e8 −0.963854
\(327\) 1.05126e8 0.166262
\(328\) −2.76495e8 −0.432642
\(329\) 4.19609e8 0.649619
\(330\) −4.25118e8 −0.651194
\(331\) −4.03400e8 −0.611417 −0.305709 0.952125i \(-0.598893\pi\)
−0.305709 + 0.952125i \(0.598893\pi\)
\(332\) 1.72357e8 0.258491
\(333\) 8.53835e7 0.126712
\(334\) 1.41273e8 0.207466
\(335\) −1.02367e8 −0.148766
\(336\) 8.18428e7 0.117704
\(337\) −3.99976e8 −0.569285 −0.284643 0.958634i \(-0.591875\pi\)
−0.284643 + 0.958634i \(0.591875\pi\)
\(338\) 6.20126e8 0.873518
\(339\) 3.53561e8 0.492908
\(340\) 7.31252e8 1.00900
\(341\) −9.57285e7 −0.130738
\(342\) 6.95849e8 0.940641
\(343\) −7.59183e8 −1.01582
\(344\) 8.12328e7 0.107591
\(345\) 8.22596e8 1.07850
\(346\) 4.14163e8 0.537533
\(347\) 7.68302e8 0.987140 0.493570 0.869706i \(-0.335692\pi\)
0.493570 + 0.869706i \(0.335692\pi\)
\(348\) 2.33395e8 0.296868
\(349\) 1.39255e8 0.175357 0.0876783 0.996149i \(-0.472055\pi\)
0.0876783 + 0.996149i \(0.472055\pi\)
\(350\) 1.26015e9 1.57103
\(351\) 1.02695e9 1.26758
\(352\) 1.54113e8 0.188338
\(353\) 3.62036e8 0.438067 0.219034 0.975717i \(-0.429710\pi\)
0.219034 + 0.975717i \(0.429710\pi\)
\(354\) 2.39267e8 0.286662
\(355\) 8.51220e8 1.00982
\(356\) 4.16230e8 0.488943
\(357\) −4.52422e8 −0.526266
\(358\) 2.72468e8 0.313852
\(359\) −6.39521e8 −0.729498 −0.364749 0.931106i \(-0.618845\pi\)
−0.364749 + 0.931106i \(0.618845\pi\)
\(360\) 4.35514e8 0.491975
\(361\) 1.76877e9 1.97877
\(362\) 7.51906e8 0.833074
\(363\) 5.89410e7 0.0646761
\(364\) −6.76404e8 −0.735108
\(365\) −1.97081e9 −2.12138
\(366\) −5.52003e8 −0.588516
\(367\) −1.56742e9 −1.65521 −0.827605 0.561311i \(-0.810297\pi\)
−0.827605 + 0.561311i \(0.810297\pi\)
\(368\) −2.98205e8 −0.311923
\(369\) 9.10304e8 0.943179
\(370\) 2.04484e8 0.209871
\(371\) 1.35852e9 1.38120
\(372\) −2.91676e7 −0.0293765
\(373\) −6.28913e8 −0.627494 −0.313747 0.949507i \(-0.601584\pi\)
−0.313747 + 0.949507i \(0.601584\pi\)
\(374\) −8.51926e8 −0.842076
\(375\) −1.11169e9 −1.08861
\(376\) 2.40748e8 0.233563
\(377\) −1.92893e9 −1.85405
\(378\) −6.19041e8 −0.589519
\(379\) −4.65760e8 −0.439466 −0.219733 0.975560i \(-0.570519\pi\)
−0.219733 + 0.975560i \(0.570519\pi\)
\(380\) 1.66648e9 1.55796
\(381\) −4.63330e8 −0.429193
\(382\) −6.00074e8 −0.550787
\(383\) 1.35682e9 1.23403 0.617014 0.786952i \(-0.288342\pi\)
0.617014 + 0.786952i \(0.288342\pi\)
\(384\) 4.69567e7 0.0423193
\(385\) −2.11789e9 −1.89143
\(386\) −3.93178e8 −0.347963
\(387\) −2.67442e8 −0.234553
\(388\) −4.63459e8 −0.402810
\(389\) 9.47602e8 0.816211 0.408105 0.912935i \(-0.366190\pi\)
0.408105 + 0.912935i \(0.366190\pi\)
\(390\) 1.07052e9 0.913837
\(391\) 1.64846e9 1.39463
\(392\) −1.39221e7 −0.0116736
\(393\) 3.58936e8 0.298293
\(394\) −1.06679e9 −0.878706
\(395\) −2.14723e9 −1.75302
\(396\) −5.07384e8 −0.410586
\(397\) 1.61811e9 1.29790 0.648951 0.760830i \(-0.275208\pi\)
0.648951 + 0.760830i \(0.275208\pi\)
\(398\) −6.67965e8 −0.531084
\(399\) −1.03104e9 −0.812590
\(400\) 7.23005e8 0.564848
\(401\) 1.47928e9 1.14563 0.572816 0.819684i \(-0.305851\pi\)
0.572816 + 0.819684i \(0.305851\pi\)
\(402\) 3.63375e7 0.0278974
\(403\) 2.41061e8 0.183467
\(404\) −9.31485e8 −0.702815
\(405\) −8.80558e8 −0.658666
\(406\) 1.16275e9 0.862272
\(407\) −2.38228e8 −0.175151
\(408\) −2.59574e8 −0.189213
\(409\) 1.53241e9 1.10750 0.553750 0.832683i \(-0.313196\pi\)
0.553750 + 0.832683i \(0.313196\pi\)
\(410\) 2.18007e9 1.56217
\(411\) −8.56443e8 −0.608488
\(412\) −1.21361e9 −0.854946
\(413\) 1.19200e9 0.832629
\(414\) 9.81780e8 0.680006
\(415\) −1.35898e9 −0.933349
\(416\) −3.88082e8 −0.264300
\(417\) 5.81351e8 0.392611
\(418\) −1.94149e9 −1.30022
\(419\) 5.61884e8 0.373162 0.186581 0.982440i \(-0.440259\pi\)
0.186581 + 0.982440i \(0.440259\pi\)
\(420\) −6.45303e8 −0.425002
\(421\) −8.61751e6 −0.00562853 −0.00281426 0.999996i \(-0.500896\pi\)
−0.00281426 + 0.999996i \(0.500896\pi\)
\(422\) −4.13791e8 −0.268033
\(423\) −7.92613e8 −0.509178
\(424\) 7.79441e8 0.496596
\(425\) −3.99674e9 −2.52548
\(426\) −3.02160e8 −0.189366
\(427\) −2.75002e9 −1.70938
\(428\) 7.16420e7 0.0441687
\(429\) −1.24718e9 −0.762657
\(430\) −6.40493e8 −0.388486
\(431\) −4.27833e8 −0.257397 −0.128699 0.991684i \(-0.541080\pi\)
−0.128699 + 0.991684i \(0.541080\pi\)
\(432\) −3.55170e8 −0.211955
\(433\) 1.56113e9 0.924127 0.462064 0.886847i \(-0.347109\pi\)
0.462064 + 0.886847i \(0.347109\pi\)
\(434\) −1.45310e8 −0.0853260
\(435\) −1.84024e9 −1.07192
\(436\) 3.00485e8 0.173628
\(437\) 3.75674e9 2.15341
\(438\) 6.99582e8 0.397814
\(439\) 1.63407e9 0.921817 0.460908 0.887448i \(-0.347524\pi\)
0.460908 + 0.887448i \(0.347524\pi\)
\(440\) −1.21513e9 −0.680044
\(441\) 4.58358e7 0.0254489
\(442\) 2.14530e9 1.18171
\(443\) −6.21106e8 −0.339432 −0.169716 0.985493i \(-0.554285\pi\)
−0.169716 + 0.985493i \(0.554285\pi\)
\(444\) −7.25860e7 −0.0393562
\(445\) −3.28183e9 −1.76545
\(446\) −1.50874e9 −0.805273
\(447\) 4.80233e8 0.254317
\(448\) 2.33933e8 0.122919
\(449\) 2.16788e8 0.113024 0.0565122 0.998402i \(-0.482002\pi\)
0.0565122 + 0.998402i \(0.482002\pi\)
\(450\) −2.38035e9 −1.23139
\(451\) −2.53984e9 −1.30373
\(452\) 1.01059e9 0.514745
\(453\) −1.70586e9 −0.862184
\(454\) 2.50300e9 1.25535
\(455\) 5.33322e9 2.65430
\(456\) −5.91554e8 −0.292158
\(457\) −3.59868e9 −1.76375 −0.881874 0.471485i \(-0.843718\pi\)
−0.881874 + 0.471485i \(0.843718\pi\)
\(458\) −1.71565e9 −0.834451
\(459\) 1.96336e9 0.947668
\(460\) 2.35125e9 1.12628
\(461\) −4.44676e8 −0.211393 −0.105696 0.994398i \(-0.533707\pi\)
−0.105696 + 0.994398i \(0.533707\pi\)
\(462\) 7.51793e8 0.354692
\(463\) −1.08602e9 −0.508517 −0.254258 0.967136i \(-0.581831\pi\)
−0.254258 + 0.967136i \(0.581831\pi\)
\(464\) 6.67119e8 0.310020
\(465\) 2.29977e8 0.106072
\(466\) 6.14750e8 0.281415
\(467\) 3.61227e9 1.64124 0.820619 0.571476i \(-0.193629\pi\)
0.820619 + 0.571476i \(0.193629\pi\)
\(468\) 1.27768e9 0.576185
\(469\) 1.81030e8 0.0810298
\(470\) −1.89822e9 −0.843340
\(471\) 1.11802e8 0.0493036
\(472\) 6.83903e8 0.299362
\(473\) 7.46190e8 0.324217
\(474\) 7.62206e8 0.328737
\(475\) −9.10831e9 −3.89951
\(476\) −1.29317e9 −0.549581
\(477\) −2.56615e9 −1.08260
\(478\) −1.57396e9 −0.659169
\(479\) 3.95907e9 1.64596 0.822978 0.568073i \(-0.192311\pi\)
0.822978 + 0.568073i \(0.192311\pi\)
\(480\) −3.70238e8 −0.152805
\(481\) 5.99900e8 0.245794
\(482\) 1.04031e9 0.423154
\(483\) −1.45471e9 −0.587436
\(484\) 1.68473e8 0.0675415
\(485\) 3.65422e9 1.45445
\(486\) 1.82968e9 0.723016
\(487\) 4.30023e9 1.68710 0.843549 0.537052i \(-0.180462\pi\)
0.843549 + 0.537052i \(0.180462\pi\)
\(488\) −1.57781e9 −0.614588
\(489\) −1.68753e9 −0.652634
\(490\) 1.09771e8 0.0421505
\(491\) −2.54704e9 −0.971072 −0.485536 0.874217i \(-0.661375\pi\)
−0.485536 + 0.874217i \(0.661375\pi\)
\(492\) −7.73865e8 −0.292946
\(493\) −3.68780e9 −1.38613
\(494\) 4.88900e9 1.82463
\(495\) 4.00056e9 1.48253
\(496\) −8.33706e7 −0.0306780
\(497\) −1.50533e9 −0.550027
\(498\) 4.82400e8 0.175027
\(499\) −3.13518e9 −1.12956 −0.564782 0.825240i \(-0.691040\pi\)
−0.564782 + 0.825240i \(0.691040\pi\)
\(500\) −3.17756e9 −1.13684
\(501\) 3.95401e8 0.140477
\(502\) −3.65352e9 −1.28899
\(503\) 8.10436e7 0.0283943 0.0141971 0.999899i \(-0.495481\pi\)
0.0141971 + 0.999899i \(0.495481\pi\)
\(504\) −7.70178e8 −0.267969
\(505\) 7.34445e9 2.53769
\(506\) −2.73926e9 −0.939954
\(507\) 1.73563e9 0.591467
\(508\) −1.32435e9 −0.448208
\(509\) 1.83771e9 0.617683 0.308841 0.951114i \(-0.400059\pi\)
0.308841 + 0.951114i \(0.400059\pi\)
\(510\) 2.04666e9 0.683202
\(511\) 3.48525e9 1.15547
\(512\) 1.34218e8 0.0441942
\(513\) 4.47438e9 1.46326
\(514\) 7.64626e8 0.248358
\(515\) 9.56891e9 3.08700
\(516\) 2.27357e8 0.0728510
\(517\) 2.21147e9 0.703823
\(518\) −3.61616e8 −0.114312
\(519\) 1.15918e9 0.363968
\(520\) 3.05990e9 0.954322
\(521\) −3.26147e9 −1.01037 −0.505186 0.863011i \(-0.668576\pi\)
−0.505186 + 0.863011i \(0.668576\pi\)
\(522\) −2.19635e9 −0.675858
\(523\) 1.51622e9 0.463454 0.231727 0.972781i \(-0.425562\pi\)
0.231727 + 0.972781i \(0.425562\pi\)
\(524\) 1.02596e9 0.311508
\(525\) 3.52697e9 1.06376
\(526\) −2.79047e9 −0.836041
\(527\) 4.60868e8 0.137164
\(528\) 4.31336e8 0.127526
\(529\) 1.89560e9 0.556738
\(530\) −6.14563e9 −1.79309
\(531\) −2.25161e9 −0.652623
\(532\) −2.94706e9 −0.848590
\(533\) 6.39575e9 1.82956
\(534\) 1.16496e9 0.331067
\(535\) −5.64873e8 −0.159482
\(536\) 1.03864e8 0.0291333
\(537\) 7.62593e8 0.212512
\(538\) 4.72290e8 0.130759
\(539\) −1.27886e8 −0.0351774
\(540\) 2.80040e9 0.765318
\(541\) −8.73876e8 −0.237279 −0.118640 0.992937i \(-0.537853\pi\)
−0.118640 + 0.992937i \(0.537853\pi\)
\(542\) 1.89444e9 0.511074
\(543\) 2.10446e9 0.564082
\(544\) −7.41949e8 −0.197596
\(545\) −2.36922e9 −0.626929
\(546\) −1.89314e9 −0.497748
\(547\) −1.08535e9 −0.283541 −0.141770 0.989900i \(-0.545279\pi\)
−0.141770 + 0.989900i \(0.545279\pi\)
\(548\) −2.44800e9 −0.635446
\(549\) 5.19461e9 1.33983
\(550\) 6.64140e9 1.70212
\(551\) −8.40426e9 −2.14027
\(552\) −8.34628e8 −0.211206
\(553\) 3.79723e9 0.954837
\(554\) 6.99356e8 0.174749
\(555\) 5.72317e8 0.142106
\(556\) 1.66169e9 0.410004
\(557\) −6.40646e9 −1.57081 −0.785407 0.618980i \(-0.787546\pi\)
−0.785407 + 0.618980i \(0.787546\pi\)
\(558\) 2.74481e8 0.0668794
\(559\) −1.87904e9 −0.454981
\(560\) −1.84449e9 −0.443831
\(561\) −2.38440e9 −0.570177
\(562\) 5.44826e7 0.0129473
\(563\) −7.36885e8 −0.174028 −0.0870142 0.996207i \(-0.527733\pi\)
−0.0870142 + 0.996207i \(0.527733\pi\)
\(564\) 6.73814e8 0.158148
\(565\) −7.96820e9 −1.85862
\(566\) 2.63740e9 0.611390
\(567\) 1.55721e9 0.358762
\(568\) −8.63672e8 −0.197756
\(569\) 2.26466e9 0.515360 0.257680 0.966230i \(-0.417042\pi\)
0.257680 + 0.966230i \(0.417042\pi\)
\(570\) 4.66420e9 1.05491
\(571\) 1.77146e9 0.398202 0.199101 0.979979i \(-0.436198\pi\)
0.199101 + 0.979979i \(0.436198\pi\)
\(572\) −3.56485e9 −0.796445
\(573\) −1.67951e9 −0.372942
\(574\) −3.85532e9 −0.850880
\(575\) −1.28510e10 −2.81903
\(576\) −4.41885e8 −0.0963452
\(577\) 4.19705e9 0.909554 0.454777 0.890605i \(-0.349719\pi\)
0.454777 + 0.890605i \(0.349719\pi\)
\(578\) 8.18744e8 0.176360
\(579\) −1.10044e9 −0.235609
\(580\) −5.26001e9 −1.11941
\(581\) 2.40326e9 0.508376
\(582\) −1.29715e9 −0.272746
\(583\) 7.15981e9 1.49645
\(584\) 1.99964e9 0.415438
\(585\) −1.00741e10 −2.08046
\(586\) −4.09204e7 −0.00840036
\(587\) 6.47404e9 1.32112 0.660560 0.750773i \(-0.270319\pi\)
0.660560 + 0.750773i \(0.270319\pi\)
\(588\) −3.89658e7 −0.00790429
\(589\) 1.05029e9 0.211790
\(590\) −5.39234e9 −1.08092
\(591\) −2.98578e9 −0.594979
\(592\) −2.07475e8 −0.0410997
\(593\) −9.00131e9 −1.77261 −0.886307 0.463098i \(-0.846738\pi\)
−0.886307 + 0.463098i \(0.846738\pi\)
\(594\) −3.26253e9 −0.638708
\(595\) 1.01962e10 1.98440
\(596\) 1.37266e9 0.265584
\(597\) −1.86953e9 −0.359602
\(598\) 6.89793e9 1.31906
\(599\) 2.07040e9 0.393604 0.196802 0.980443i \(-0.436944\pi\)
0.196802 + 0.980443i \(0.436944\pi\)
\(600\) 2.02358e9 0.382463
\(601\) −4.27425e9 −0.803155 −0.401577 0.915825i \(-0.631538\pi\)
−0.401577 + 0.915825i \(0.631538\pi\)
\(602\) 1.13267e9 0.211600
\(603\) −3.41953e8 −0.0635120
\(604\) −4.87591e9 −0.900382
\(605\) −1.32835e9 −0.243876
\(606\) −2.60708e9 −0.475882
\(607\) −9.36384e9 −1.69939 −0.849696 0.527272i \(-0.823215\pi\)
−0.849696 + 0.527272i \(0.823215\pi\)
\(608\) −1.69085e9 −0.305101
\(609\) 3.25434e9 0.583852
\(610\) 1.24405e10 2.21913
\(611\) −5.56885e9 −0.987692
\(612\) 2.44272e9 0.430767
\(613\) −6.35668e8 −0.111460 −0.0557299 0.998446i \(-0.517749\pi\)
−0.0557299 + 0.998446i \(0.517749\pi\)
\(614\) 3.23088e8 0.0563289
\(615\) 6.10167e9 1.05776
\(616\) 2.14887e9 0.370406
\(617\) −3.37951e9 −0.579237 −0.289618 0.957142i \(-0.593528\pi\)
−0.289618 + 0.957142i \(0.593528\pi\)
\(618\) −3.39670e9 −0.578892
\(619\) −7.37657e9 −1.25008 −0.625039 0.780593i \(-0.714917\pi\)
−0.625039 + 0.780593i \(0.714917\pi\)
\(620\) 6.57350e8 0.110771
\(621\) 6.31295e9 1.05782
\(622\) −1.60526e9 −0.267472
\(623\) 5.80370e9 0.961606
\(624\) −1.08618e9 −0.178960
\(625\) 1.12638e10 1.84546
\(626\) −4.09325e9 −0.666896
\(627\) −5.43391e9 −0.880392
\(628\) 3.19568e8 0.0514878
\(629\) 1.14691e9 0.183760
\(630\) 6.07260e9 0.967571
\(631\) −8.76066e9 −1.38814 −0.694071 0.719906i \(-0.744185\pi\)
−0.694071 + 0.719906i \(0.744185\pi\)
\(632\) 2.17864e9 0.343301
\(633\) −1.15814e9 −0.181487
\(634\) −7.69092e9 −1.19858
\(635\) 1.04420e10 1.61837
\(636\) 2.18153e9 0.336249
\(637\) 3.22040e8 0.0493652
\(638\) 6.12804e9 0.934219
\(639\) 2.84346e9 0.431117
\(640\) −1.05826e9 −0.159574
\(641\) −5.91406e9 −0.886916 −0.443458 0.896295i \(-0.646248\pi\)
−0.443458 + 0.896295i \(0.646248\pi\)
\(642\) 2.00514e8 0.0299070
\(643\) 1.21681e9 0.180504 0.0902518 0.995919i \(-0.471233\pi\)
0.0902518 + 0.995919i \(0.471233\pi\)
\(644\) −4.15803e9 −0.613461
\(645\) −1.79264e9 −0.263047
\(646\) 9.34695e9 1.36413
\(647\) −4.35488e9 −0.632137 −0.316068 0.948736i \(-0.602363\pi\)
−0.316068 + 0.948736i \(0.602363\pi\)
\(648\) 8.93438e8 0.128989
\(649\) 6.28221e9 0.902103
\(650\) −1.67242e10 −2.38863
\(651\) −4.06699e8 −0.0577750
\(652\) −4.82351e9 −0.681548
\(653\) −2.37363e9 −0.333594 −0.166797 0.985991i \(-0.553342\pi\)
−0.166797 + 0.985991i \(0.553342\pi\)
\(654\) 8.41009e8 0.117565
\(655\) −8.08933e9 −1.12478
\(656\) −2.21196e9 −0.305924
\(657\) −6.58340e9 −0.905672
\(658\) 3.35687e9 0.459350
\(659\) −3.03953e9 −0.413721 −0.206861 0.978370i \(-0.566325\pi\)
−0.206861 + 0.978370i \(0.566325\pi\)
\(660\) −3.40094e9 −0.460464
\(661\) −1.60589e9 −0.216277 −0.108138 0.994136i \(-0.534489\pi\)
−0.108138 + 0.994136i \(0.534489\pi\)
\(662\) −3.22720e9 −0.432337
\(663\) 6.00434e9 0.800144
\(664\) 1.37886e9 0.182781
\(665\) 2.32366e10 3.06405
\(666\) 6.83068e8 0.0895992
\(667\) −1.18576e10 −1.54724
\(668\) 1.13019e9 0.146701
\(669\) −4.22273e9 −0.545257
\(670\) −8.18937e8 −0.105193
\(671\) −1.44935e10 −1.85201
\(672\) 6.54742e8 0.0832296
\(673\) 1.06339e10 1.34474 0.672371 0.740214i \(-0.265276\pi\)
0.672371 + 0.740214i \(0.265276\pi\)
\(674\) −3.19981e9 −0.402545
\(675\) −1.53059e10 −1.91556
\(676\) 4.96101e9 0.617670
\(677\) 1.12699e10 1.39591 0.697957 0.716139i \(-0.254093\pi\)
0.697957 + 0.716139i \(0.254093\pi\)
\(678\) 2.82849e9 0.348538
\(679\) −6.46225e9 −0.792208
\(680\) 5.85002e9 0.713470
\(681\) 7.00549e9 0.850009
\(682\) −7.65828e8 −0.0924455
\(683\) −7.09950e9 −0.852619 −0.426310 0.904577i \(-0.640187\pi\)
−0.426310 + 0.904577i \(0.640187\pi\)
\(684\) 5.56679e9 0.665133
\(685\) 1.93016e10 2.29444
\(686\) −6.07346e9 −0.718294
\(687\) −4.80184e9 −0.565014
\(688\) 6.49862e8 0.0760785
\(689\) −1.80296e10 −2.10000
\(690\) 6.58076e9 0.762614
\(691\) −8.79291e9 −1.01382 −0.506909 0.862000i \(-0.669212\pi\)
−0.506909 + 0.862000i \(0.669212\pi\)
\(692\) 3.31331e9 0.380093
\(693\) −7.07472e9 −0.807501
\(694\) 6.14641e9 0.698013
\(695\) −1.31019e10 −1.48043
\(696\) 1.86716e9 0.209917
\(697\) 1.22276e10 1.36781
\(698\) 1.11404e9 0.123996
\(699\) 1.72059e9 0.190549
\(700\) 1.00812e10 1.11089
\(701\) −2.64063e9 −0.289530 −0.144765 0.989466i \(-0.546243\pi\)
−0.144765 + 0.989466i \(0.546243\pi\)
\(702\) 8.21562e9 0.896315
\(703\) 2.61373e9 0.283738
\(704\) 1.23290e9 0.133175
\(705\) −5.31280e9 −0.571033
\(706\) 2.89629e9 0.309760
\(707\) −1.29882e10 −1.38223
\(708\) 1.91413e9 0.202701
\(709\) 9.19450e9 0.968872 0.484436 0.874827i \(-0.339025\pi\)
0.484436 + 0.874827i \(0.339025\pi\)
\(710\) 6.80976e9 0.714049
\(711\) −7.17272e9 −0.748411
\(712\) 3.32984e9 0.345735
\(713\) 1.48186e9 0.153107
\(714\) −3.61938e9 −0.372126
\(715\) 2.81077e10 2.87577
\(716\) 2.17974e9 0.221927
\(717\) −4.40527e9 −0.446329
\(718\) −5.11617e9 −0.515833
\(719\) 2.41418e9 0.242225 0.121112 0.992639i \(-0.461354\pi\)
0.121112 + 0.992639i \(0.461354\pi\)
\(720\) 3.48411e9 0.347879
\(721\) −1.69220e10 −1.68143
\(722\) 1.41501e10 1.39920
\(723\) 2.91166e9 0.286521
\(724\) 6.01525e9 0.589072
\(725\) 2.87491e10 2.80183
\(726\) 4.71528e8 0.0457329
\(727\) 7.98519e9 0.770753 0.385376 0.922760i \(-0.374072\pi\)
0.385376 + 0.922760i \(0.374072\pi\)
\(728\) −5.41123e9 −0.519800
\(729\) 1.30467e9 0.124725
\(730\) −1.57665e10 −1.50004
\(731\) −3.59240e9 −0.340153
\(732\) −4.41603e9 −0.416143
\(733\) 6.97965e9 0.654591 0.327295 0.944922i \(-0.393863\pi\)
0.327295 + 0.944922i \(0.393863\pi\)
\(734\) −1.25393e10 −1.17041
\(735\) 3.07232e8 0.0285405
\(736\) −2.38564e9 −0.220563
\(737\) 9.54081e8 0.0877908
\(738\) 7.28243e9 0.666928
\(739\) 2.04231e9 0.186151 0.0930757 0.995659i \(-0.470330\pi\)
0.0930757 + 0.995659i \(0.470330\pi\)
\(740\) 1.63587e9 0.148401
\(741\) 1.36835e10 1.23548
\(742\) 1.08682e10 0.976657
\(743\) −1.55097e10 −1.38721 −0.693604 0.720357i \(-0.743978\pi\)
−0.693604 + 0.720357i \(0.743978\pi\)
\(744\) −2.33341e8 −0.0207724
\(745\) −1.08230e10 −0.958959
\(746\) −5.03131e9 −0.443706
\(747\) −4.53960e9 −0.398470
\(748\) −6.81541e9 −0.595438
\(749\) 9.98942e8 0.0868668
\(750\) −8.89348e9 −0.769764
\(751\) −7.67830e9 −0.661493 −0.330746 0.943720i \(-0.607300\pi\)
−0.330746 + 0.943720i \(0.607300\pi\)
\(752\) 1.92598e9 0.165154
\(753\) −1.02256e10 −0.872785
\(754\) −1.54314e10 −1.31101
\(755\) 3.84449e10 3.25106
\(756\) −4.95233e9 −0.416853
\(757\) 1.30345e9 0.109209 0.0546047 0.998508i \(-0.482610\pi\)
0.0546047 + 0.998508i \(0.482610\pi\)
\(758\) −3.72608e9 −0.310749
\(759\) −7.66675e9 −0.636451
\(760\) 1.33318e10 1.10165
\(761\) −1.93614e9 −0.159254 −0.0796269 0.996825i \(-0.525373\pi\)
−0.0796269 + 0.996825i \(0.525373\pi\)
\(762\) −3.70664e9 −0.303485
\(763\) 4.18982e9 0.341475
\(764\) −4.80060e9 −0.389465
\(765\) −1.92600e10 −1.55540
\(766\) 1.08545e10 0.872590
\(767\) −1.58197e10 −1.26594
\(768\) 3.75654e8 0.0299243
\(769\) 1.86998e9 0.148284 0.0741422 0.997248i \(-0.476378\pi\)
0.0741422 + 0.997248i \(0.476378\pi\)
\(770\) −1.69431e10 −1.33745
\(771\) 2.14006e9 0.168165
\(772\) −3.14542e9 −0.246047
\(773\) 1.89091e10 1.47246 0.736228 0.676734i \(-0.236605\pi\)
0.736228 + 0.676734i \(0.236605\pi\)
\(774\) −2.13954e9 −0.165854
\(775\) −3.59281e9 −0.277255
\(776\) −3.70767e9 −0.284830
\(777\) −1.01210e9 −0.0774019
\(778\) 7.58082e9 0.577148
\(779\) 2.78659e10 2.11199
\(780\) 8.56416e9 0.646180
\(781\) −7.93354e9 −0.595921
\(782\) 1.31877e10 0.986156
\(783\) −1.41228e10 −1.05137
\(784\) −1.11377e8 −0.00825447
\(785\) −2.51969e9 −0.185910
\(786\) 2.87149e9 0.210925
\(787\) −6.44240e9 −0.471125 −0.235563 0.971859i \(-0.575693\pi\)
−0.235563 + 0.971859i \(0.575693\pi\)
\(788\) −8.53434e9 −0.621339
\(789\) −7.81008e9 −0.566091
\(790\) −1.71778e10 −1.23958
\(791\) 1.40912e10 1.01235
\(792\) −4.05908e9 −0.290328
\(793\) 3.64970e10 2.59897
\(794\) 1.29449e10 0.917755
\(795\) −1.72006e10 −1.21411
\(796\) −5.34372e9 −0.375533
\(797\) −6.22130e9 −0.435288 −0.217644 0.976028i \(-0.569837\pi\)
−0.217644 + 0.976028i \(0.569837\pi\)
\(798\) −8.24834e9 −0.574588
\(799\) −1.06467e10 −0.738418
\(800\) 5.78404e9 0.399408
\(801\) −1.09628e10 −0.753717
\(802\) 1.18342e10 0.810084
\(803\) 1.83683e10 1.25189
\(804\) 2.90700e8 0.0197264
\(805\) 3.27847e10 2.21506
\(806\) 1.92849e9 0.129731
\(807\) 1.32186e9 0.0885379
\(808\) −7.45188e9 −0.496965
\(809\) −5.70480e6 −0.000378809 0 −0.000189404 1.00000i \(-0.500060\pi\)
−0.000189404 1.00000i \(0.500060\pi\)
\(810\) −7.04446e9 −0.465747
\(811\) 1.35122e10 0.889514 0.444757 0.895651i \(-0.353290\pi\)
0.444757 + 0.895651i \(0.353290\pi\)
\(812\) 9.30198e9 0.609718
\(813\) 5.30224e9 0.346053
\(814\) −1.90583e9 −0.123851
\(815\) 3.80317e10 2.46090
\(816\) −2.07659e9 −0.133794
\(817\) −8.18686e9 −0.525219
\(818\) 1.22593e10 0.783120
\(819\) 1.78154e10 1.13319
\(820\) 1.74406e10 1.10462
\(821\) −2.04061e10 −1.28694 −0.643472 0.765470i \(-0.722507\pi\)
−0.643472 + 0.765470i \(0.722507\pi\)
\(822\) −6.85155e9 −0.430266
\(823\) 1.31164e10 0.820191 0.410095 0.912043i \(-0.365495\pi\)
0.410095 + 0.912043i \(0.365495\pi\)
\(824\) −9.70888e9 −0.604538
\(825\) 1.85882e10 1.15252
\(826\) 9.53601e9 0.588758
\(827\) 1.00525e10 0.618021 0.309010 0.951059i \(-0.400002\pi\)
0.309010 + 0.951059i \(0.400002\pi\)
\(828\) 7.85424e9 0.480837
\(829\) −2.39621e10 −1.46078 −0.730389 0.683031i \(-0.760661\pi\)
−0.730389 + 0.683031i \(0.760661\pi\)
\(830\) −1.08718e10 −0.659977
\(831\) 1.95739e9 0.118324
\(832\) −3.10466e9 −0.186888
\(833\) 6.15686e8 0.0369064
\(834\) 4.65081e9 0.277618
\(835\) −8.91113e9 −0.529700
\(836\) −1.55319e10 −0.919396
\(837\) 1.76494e9 0.104038
\(838\) 4.49507e9 0.263865
\(839\) 2.73604e9 0.159939 0.0799697 0.996797i \(-0.474518\pi\)
0.0799697 + 0.996797i \(0.474518\pi\)
\(840\) −5.16242e9 −0.300522
\(841\) 9.27700e9 0.537801
\(842\) −6.89401e7 −0.00397997
\(843\) 1.52488e8 0.00876676
\(844\) −3.31033e9 −0.189528
\(845\) −3.91159e10 −2.23026
\(846\) −6.34090e9 −0.360043
\(847\) 2.34910e9 0.132834
\(848\) 6.23553e9 0.351146
\(849\) 7.38166e9 0.413978
\(850\) −3.19739e10 −1.78578
\(851\) 3.68774e9 0.205119
\(852\) −2.41728e9 −0.133902
\(853\) −1.75500e10 −0.968181 −0.484090 0.875018i \(-0.660849\pi\)
−0.484090 + 0.875018i \(0.660849\pi\)
\(854\) −2.20002e10 −1.20871
\(855\) −4.38923e10 −2.40164
\(856\) 5.73136e8 0.0312320
\(857\) 1.35123e9 0.0733327 0.0366663 0.999328i \(-0.488326\pi\)
0.0366663 + 0.999328i \(0.488326\pi\)
\(858\) −9.97745e9 −0.539280
\(859\) 1.07334e10 0.577777 0.288888 0.957363i \(-0.406714\pi\)
0.288888 + 0.957363i \(0.406714\pi\)
\(860\) −5.12395e9 −0.274701
\(861\) −1.07904e10 −0.576138
\(862\) −3.42267e9 −0.182007
\(863\) −1.85843e10 −0.984257 −0.492129 0.870523i \(-0.663781\pi\)
−0.492129 + 0.870523i \(0.663781\pi\)
\(864\) −2.84136e9 −0.149875
\(865\) −2.61243e10 −1.37242
\(866\) 1.24891e10 0.653457
\(867\) 2.29153e9 0.119415
\(868\) −1.16248e9 −0.0603346
\(869\) 2.00126e10 1.03451
\(870\) −1.47219e10 −0.757961
\(871\) −2.40254e9 −0.123199
\(872\) 2.40388e9 0.122774
\(873\) 1.22068e10 0.620941
\(874\) 3.00539e10 1.52269
\(875\) −4.43064e10 −2.23583
\(876\) 5.59666e9 0.281297
\(877\) −1.63802e10 −0.820012 −0.410006 0.912083i \(-0.634473\pi\)
−0.410006 + 0.912083i \(0.634473\pi\)
\(878\) 1.30726e10 0.651823
\(879\) −1.14530e8 −0.00568796
\(880\) −9.72101e9 −0.480864
\(881\) 2.64570e10 1.30354 0.651771 0.758416i \(-0.274026\pi\)
0.651771 + 0.758416i \(0.274026\pi\)
\(882\) 3.66686e8 0.0179951
\(883\) 1.20676e10 0.589874 0.294937 0.955517i \(-0.404701\pi\)
0.294937 + 0.955517i \(0.404701\pi\)
\(884\) 1.71624e10 0.835593
\(885\) −1.50923e10 −0.731904
\(886\) −4.96885e9 −0.240015
\(887\) 5.29007e9 0.254524 0.127262 0.991869i \(-0.459381\pi\)
0.127262 + 0.991869i \(0.459381\pi\)
\(888\) −5.80688e8 −0.0278290
\(889\) −1.84661e10 −0.881492
\(890\) −2.62546e10 −1.24836
\(891\) 8.20697e9 0.388697
\(892\) −1.20699e10 −0.569414
\(893\) −2.42632e10 −1.14017
\(894\) 3.84186e9 0.179829
\(895\) −1.71865e10 −0.801323
\(896\) 1.87147e9 0.0869169
\(897\) 1.93062e10 0.893147
\(898\) 1.73430e9 0.0799204
\(899\) −3.31510e9 −0.152173
\(900\) −1.90428e10 −0.870726
\(901\) −3.44697e10 −1.57000
\(902\) −2.03187e10 −0.921877
\(903\) 3.17016e9 0.143276
\(904\) 8.08475e9 0.363980
\(905\) −4.74282e10 −2.12700
\(906\) −1.36469e10 −0.609656
\(907\) 4.35182e9 0.193663 0.0968313 0.995301i \(-0.469129\pi\)
0.0968313 + 0.995301i \(0.469129\pi\)
\(908\) 2.00240e10 0.887667
\(909\) 2.45338e10 1.08341
\(910\) 4.26657e10 1.87687
\(911\) −8.14092e9 −0.356746 −0.178373 0.983963i \(-0.557083\pi\)
−0.178373 + 0.983963i \(0.557083\pi\)
\(912\) −4.73243e9 −0.206587
\(913\) 1.26659e10 0.550794
\(914\) −2.87894e10 −1.24716
\(915\) 3.48189e10 1.50259
\(916\) −1.37252e10 −0.590046
\(917\) 1.43055e10 0.612645
\(918\) 1.57069e10 0.670103
\(919\) −4.36837e10 −1.85659 −0.928293 0.371850i \(-0.878723\pi\)
−0.928293 + 0.371850i \(0.878723\pi\)
\(920\) 1.88100e10 0.796400
\(921\) 9.04271e8 0.0381408
\(922\) −3.55741e9 −0.149477
\(923\) 1.99780e10 0.836270
\(924\) 6.01435e9 0.250805
\(925\) −8.94101e9 −0.371442
\(926\) −8.68818e9 −0.359576
\(927\) 3.19645e10 1.31792
\(928\) 5.33695e9 0.219217
\(929\) −7.35357e9 −0.300915 −0.150457 0.988617i \(-0.548075\pi\)
−0.150457 + 0.988617i \(0.548075\pi\)
\(930\) 1.83982e9 0.0750039
\(931\) 1.40311e9 0.0569860
\(932\) 4.91800e9 0.198991
\(933\) −4.49285e9 −0.181107
\(934\) 2.88982e10 1.16053
\(935\) 5.37372e10 2.14998
\(936\) 1.02214e10 0.407424
\(937\) −1.44717e10 −0.574688 −0.287344 0.957827i \(-0.592772\pi\)
−0.287344 + 0.957827i \(0.592772\pi\)
\(938\) 1.44824e9 0.0572967
\(939\) −1.14563e10 −0.451561
\(940\) −1.51857e10 −0.596332
\(941\) 1.33141e9 0.0520894 0.0260447 0.999661i \(-0.491709\pi\)
0.0260447 + 0.999661i \(0.491709\pi\)
\(942\) 8.94420e8 0.0348629
\(943\) 3.93163e10 1.52680
\(944\) 5.47122e9 0.211681
\(945\) 3.90474e10 1.50515
\(946\) 5.96952e9 0.229256
\(947\) 1.16271e10 0.444882 0.222441 0.974946i \(-0.428598\pi\)
0.222441 + 0.974946i \(0.428598\pi\)
\(948\) 6.09765e9 0.232452
\(949\) −4.62546e10 −1.75680
\(950\) −7.28665e10 −2.75737
\(951\) −2.15257e10 −0.811568
\(952\) −1.03454e10 −0.388613
\(953\) 9.52377e7 0.00356438 0.00178219 0.999998i \(-0.499433\pi\)
0.00178219 + 0.999998i \(0.499433\pi\)
\(954\) −2.05292e10 −0.765514
\(955\) 3.78511e10 1.40626
\(956\) −1.25917e10 −0.466103
\(957\) 1.71514e10 0.632568
\(958\) 3.16725e10 1.16387
\(959\) −3.41337e10 −1.24973
\(960\) −2.96190e9 −0.108049
\(961\) −2.70983e10 −0.984942
\(962\) 4.79920e9 0.173802
\(963\) −1.88693e9 −0.0680871
\(964\) 8.32249e9 0.299215
\(965\) 2.48006e10 0.888417
\(966\) −1.16377e10 −0.415380
\(967\) 4.10715e10 1.46066 0.730328 0.683096i \(-0.239367\pi\)
0.730328 + 0.683096i \(0.239367\pi\)
\(968\) 1.34778e9 0.0477590
\(969\) 2.61606e10 0.923666
\(970\) 2.92338e10 1.02845
\(971\) 1.43880e10 0.504350 0.252175 0.967682i \(-0.418854\pi\)
0.252175 + 0.967682i \(0.418854\pi\)
\(972\) 1.46374e10 0.511249
\(973\) 2.31698e10 0.806358
\(974\) 3.44019e10 1.19296
\(975\) −4.68083e10 −1.61736
\(976\) −1.26225e10 −0.434580
\(977\) 6.76985e9 0.232246 0.116123 0.993235i \(-0.462953\pi\)
0.116123 + 0.993235i \(0.462953\pi\)
\(978\) −1.35002e10 −0.461482
\(979\) 3.05873e10 1.04184
\(980\) 8.78170e8 0.0298049
\(981\) −7.91428e9 −0.267652
\(982\) −2.03764e10 −0.686651
\(983\) 4.81556e10 1.61700 0.808498 0.588498i \(-0.200281\pi\)
0.808498 + 0.588498i \(0.200281\pi\)
\(984\) −6.19092e9 −0.207144
\(985\) 6.72905e10 2.24350
\(986\) −2.95024e10 −0.980139
\(987\) 9.39534e9 0.311030
\(988\) 3.91120e10 1.29021
\(989\) −1.15509e10 −0.379690
\(990\) 3.20045e10 1.04830
\(991\) 1.81773e10 0.593296 0.296648 0.954987i \(-0.404131\pi\)
0.296648 + 0.954987i \(0.404131\pi\)
\(992\) −6.66965e8 −0.0216926
\(993\) −9.03241e9 −0.292740
\(994\) −1.20426e10 −0.388928
\(995\) 4.21335e10 1.35596
\(996\) 3.85920e9 0.123763
\(997\) 3.32870e10 1.06376 0.531878 0.846821i \(-0.321487\pi\)
0.531878 + 0.846821i \(0.321487\pi\)
\(998\) −2.50815e10 −0.798723
\(999\) 4.39220e9 0.139381
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.a.b.1.4 4
4.3 odd 2 592.8.a.a.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.b.1.4 4 1.1 even 1 trivial
592.8.a.a.1.1 4 4.3 odd 2