Properties

Label 74.8.a.c.1.6
Level $74$
Weight $8$
Character 74.1
Self dual yes
Analytic conductor $23.116$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(1,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1164918858\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10621x^{4} + 102052x^{3} + 31004503x^{2} - 305547358x - 22608804936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-85.7890\) of defining polynomial
Character \(\chi\) \(=\) 74.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +90.7890 q^{3} +64.0000 q^{4} +133.163 q^{5} -726.312 q^{6} -948.062 q^{7} -512.000 q^{8} +6055.64 q^{9} -1065.31 q^{10} +4655.78 q^{11} +5810.49 q^{12} -1049.71 q^{13} +7584.49 q^{14} +12089.8 q^{15} +4096.00 q^{16} +37870.8 q^{17} -48445.1 q^{18} -37462.0 q^{19} +8522.46 q^{20} -86073.6 q^{21} -37246.3 q^{22} +40596.4 q^{23} -46483.9 q^{24} -60392.5 q^{25} +8397.65 q^{26} +351229. q^{27} -60676.0 q^{28} -66725.4 q^{29} -96718.2 q^{30} +220090. q^{31} -32768.0 q^{32} +422694. q^{33} -302966. q^{34} -126247. q^{35} +387561. q^{36} -50653.0 q^{37} +299696. q^{38} -95301.7 q^{39} -68179.7 q^{40} -101084. q^{41} +688588. q^{42} +816690. q^{43} +297970. q^{44} +806389. q^{45} -324771. q^{46} -1.00197e6 q^{47} +371872. q^{48} +75278.3 q^{49} +483140. q^{50} +3.43825e6 q^{51} -67181.2 q^{52} +1.40417e6 q^{53} -2.80984e6 q^{54} +619980. q^{55} +485408. q^{56} -3.40113e6 q^{57} +533804. q^{58} +686480. q^{59} +773745. q^{60} -2.33880e6 q^{61} -1.76072e6 q^{62} -5.74112e6 q^{63} +262144. q^{64} -139782. q^{65} -3.38155e6 q^{66} -8039.60 q^{67} +2.42373e6 q^{68} +3.68571e6 q^{69} +1.00998e6 q^{70} -1.08288e6 q^{71} -3.10049e6 q^{72} +142983. q^{73} +405224. q^{74} -5.48297e6 q^{75} -2.39757e6 q^{76} -4.41397e6 q^{77} +762414. q^{78} -844178. q^{79} +545437. q^{80} +1.86441e7 q^{81} +808676. q^{82} -8.33149e6 q^{83} -5.50871e6 q^{84} +5.04300e6 q^{85} -6.53352e6 q^{86} -6.05793e6 q^{87} -2.38376e6 q^{88} +8.29467e6 q^{89} -6.45112e6 q^{90} +995186. q^{91} +2.59817e6 q^{92} +1.99818e7 q^{93} +8.01580e6 q^{94} -4.98857e6 q^{95} -2.97497e6 q^{96} +4.06489e6 q^{97} -602226. q^{98} +2.81937e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 48 q^{2} + 28 q^{3} + 384 q^{4} - 14 q^{5} - 224 q^{6} - 980 q^{7} - 3072 q^{8} + 8254 q^{9} + 112 q^{10} + 2956 q^{11} + 1792 q^{12} + 2394 q^{13} + 7840 q^{14} - 28820 q^{15} + 24576 q^{16} - 45108 q^{17}+ \cdots + 25990712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 90.7890 1.94137 0.970686 0.240352i \(-0.0772629\pi\)
0.970686 + 0.240352i \(0.0772629\pi\)
\(4\) 64.0000 0.500000
\(5\) 133.163 0.476420 0.238210 0.971214i \(-0.423439\pi\)
0.238210 + 0.971214i \(0.423439\pi\)
\(6\) −726.312 −1.37276
\(7\) −948.062 −1.04470 −0.522352 0.852730i \(-0.674945\pi\)
−0.522352 + 0.852730i \(0.674945\pi\)
\(8\) −512.000 −0.353553
\(9\) 6055.64 2.76892
\(10\) −1065.31 −0.336880
\(11\) 4655.78 1.05467 0.527337 0.849656i \(-0.323190\pi\)
0.527337 + 0.849656i \(0.323190\pi\)
\(12\) 5810.49 0.970686
\(13\) −1049.71 −0.132515 −0.0662576 0.997803i \(-0.521106\pi\)
−0.0662576 + 0.997803i \(0.521106\pi\)
\(14\) 7584.49 0.738718
\(15\) 12089.8 0.924908
\(16\) 4096.00 0.250000
\(17\) 37870.8 1.86953 0.934766 0.355264i \(-0.115609\pi\)
0.934766 + 0.355264i \(0.115609\pi\)
\(18\) −48445.1 −1.95792
\(19\) −37462.0 −1.25301 −0.626503 0.779419i \(-0.715514\pi\)
−0.626503 + 0.779419i \(0.715514\pi\)
\(20\) 8522.46 0.238210
\(21\) −86073.6 −2.02816
\(22\) −37246.3 −0.745767
\(23\) 40596.4 0.695729 0.347865 0.937545i \(-0.386907\pi\)
0.347865 + 0.937545i \(0.386907\pi\)
\(24\) −46483.9 −0.686379
\(25\) −60392.5 −0.773024
\(26\) 8397.65 0.0937025
\(27\) 351229. 3.43414
\(28\) −60676.0 −0.522352
\(29\) −66725.4 −0.508041 −0.254020 0.967199i \(-0.581753\pi\)
−0.254020 + 0.967199i \(0.581753\pi\)
\(30\) −96718.2 −0.654009
\(31\) 220090. 1.32689 0.663446 0.748224i \(-0.269093\pi\)
0.663446 + 0.748224i \(0.269093\pi\)
\(32\) −32768.0 −0.176777
\(33\) 422694. 2.04752
\(34\) −302966. −1.32196
\(35\) −126247. −0.497718
\(36\) 387561. 1.38446
\(37\) −50653.0 −0.164399
\(38\) 299696. 0.886009
\(39\) −95301.7 −0.257261
\(40\) −68179.7 −0.168440
\(41\) −101084. −0.229056 −0.114528 0.993420i \(-0.536536\pi\)
−0.114528 + 0.993420i \(0.536536\pi\)
\(42\) 688588. 1.43413
\(43\) 816690. 1.56645 0.783227 0.621736i \(-0.213572\pi\)
0.783227 + 0.621736i \(0.213572\pi\)
\(44\) 297970. 0.527337
\(45\) 806389. 1.31917
\(46\) −324771. −0.491955
\(47\) −1.00197e6 −1.40771 −0.703857 0.710342i \(-0.748540\pi\)
−0.703857 + 0.710342i \(0.748540\pi\)
\(48\) 371872. 0.485343
\(49\) 75278.3 0.0914078
\(50\) 483140. 0.546610
\(51\) 3.43825e6 3.62946
\(52\) −67181.2 −0.0662576
\(53\) 1.40417e6 1.29555 0.647776 0.761830i \(-0.275699\pi\)
0.647776 + 0.761830i \(0.275699\pi\)
\(54\) −2.80984e6 −2.42830
\(55\) 619980. 0.502468
\(56\) 485408. 0.369359
\(57\) −3.40113e6 −2.43255
\(58\) 533804. 0.359239
\(59\) 686480. 0.435157 0.217578 0.976043i \(-0.430184\pi\)
0.217578 + 0.976043i \(0.430184\pi\)
\(60\) 773745. 0.462454
\(61\) −2.33880e6 −1.31929 −0.659644 0.751578i \(-0.729293\pi\)
−0.659644 + 0.751578i \(0.729293\pi\)
\(62\) −1.76072e6 −0.938254
\(63\) −5.74112e6 −2.89271
\(64\) 262144. 0.125000
\(65\) −139782. −0.0631329
\(66\) −3.38155e6 −1.44781
\(67\) −8039.60 −0.00326567 −0.00163284 0.999999i \(-0.500520\pi\)
−0.00163284 + 0.999999i \(0.500520\pi\)
\(68\) 2.42373e6 0.934766
\(69\) 3.68571e6 1.35067
\(70\) 1.00998e6 0.351940
\(71\) −1.08288e6 −0.359066 −0.179533 0.983752i \(-0.557459\pi\)
−0.179533 + 0.983752i \(0.557459\pi\)
\(72\) −3.10049e6 −0.978962
\(73\) 142983. 0.0430184 0.0215092 0.999769i \(-0.493153\pi\)
0.0215092 + 0.999769i \(0.493153\pi\)
\(74\) 405224. 0.116248
\(75\) −5.48297e6 −1.50073
\(76\) −2.39757e6 −0.626503
\(77\) −4.41397e6 −1.10182
\(78\) 762414. 0.181911
\(79\) −844178. −0.192637 −0.0963183 0.995351i \(-0.530707\pi\)
−0.0963183 + 0.995351i \(0.530707\pi\)
\(80\) 545437. 0.119105
\(81\) 1.86441e7 3.89801
\(82\) 808676. 0.161967
\(83\) −8.33149e6 −1.59937 −0.799685 0.600419i \(-0.795000\pi\)
−0.799685 + 0.600419i \(0.795000\pi\)
\(84\) −5.50871e6 −1.01408
\(85\) 5.04300e6 0.890683
\(86\) −6.53352e6 −1.10765
\(87\) −6.05793e6 −0.986296
\(88\) −2.38376e6 −0.372884
\(89\) 8.29467e6 1.24719 0.623597 0.781746i \(-0.285671\pi\)
0.623597 + 0.781746i \(0.285671\pi\)
\(90\) −6.45112e6 −0.932795
\(91\) 995186. 0.138439
\(92\) 2.59817e6 0.347865
\(93\) 1.99818e7 2.57599
\(94\) 8.01580e6 0.995404
\(95\) −4.98857e6 −0.596957
\(96\) −2.97497e6 −0.343189
\(97\) 4.06489e6 0.452218 0.226109 0.974102i \(-0.427399\pi\)
0.226109 + 0.974102i \(0.427399\pi\)
\(98\) −602226. −0.0646351
\(99\) 2.81937e7 2.92031
\(100\) −3.86512e6 −0.386512
\(101\) 51781.2 0.00500089 0.00250045 0.999997i \(-0.499204\pi\)
0.00250045 + 0.999997i \(0.499204\pi\)
\(102\) −2.75060e7 −2.56641
\(103\) −8.90574e6 −0.803045 −0.401522 0.915849i \(-0.631519\pi\)
−0.401522 + 0.915849i \(0.631519\pi\)
\(104\) 537449. 0.0468512
\(105\) −1.14619e7 −0.966256
\(106\) −1.12334e7 −0.916094
\(107\) 23216.9 0.00183215 0.000916075 1.00000i \(-0.499708\pi\)
0.000916075 1.00000i \(0.499708\pi\)
\(108\) 2.24787e7 1.71707
\(109\) −8.81772e6 −0.652174 −0.326087 0.945340i \(-0.605730\pi\)
−0.326087 + 0.945340i \(0.605730\pi\)
\(110\) −4.95984e6 −0.355299
\(111\) −4.59873e6 −0.319160
\(112\) −3.88326e6 −0.261176
\(113\) −2.36821e7 −1.54399 −0.771997 0.635626i \(-0.780742\pi\)
−0.771997 + 0.635626i \(0.780742\pi\)
\(114\) 2.72091e7 1.72007
\(115\) 5.40596e6 0.331459
\(116\) −4.27043e6 −0.254020
\(117\) −6.35664e6 −0.366925
\(118\) −5.49184e6 −0.307702
\(119\) −3.59038e7 −1.95311
\(120\) −6.18996e6 −0.327004
\(121\) 2.18916e6 0.112338
\(122\) 1.87104e7 0.932877
\(123\) −9.17735e6 −0.444682
\(124\) 1.40858e7 0.663446
\(125\) −1.84455e7 −0.844704
\(126\) 4.59289e7 2.04545
\(127\) −30304.1 −0.00131277 −0.000656384 1.00000i \(-0.500209\pi\)
−0.000656384 1.00000i \(0.500209\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 7.41464e7 3.04107
\(130\) 1.11826e6 0.0446417
\(131\) 1.27920e7 0.497150 0.248575 0.968613i \(-0.420038\pi\)
0.248575 + 0.968613i \(0.420038\pi\)
\(132\) 2.70524e7 1.02376
\(133\) 3.55163e7 1.30902
\(134\) 64316.8 0.00230918
\(135\) 4.67709e7 1.63609
\(136\) −1.93898e7 −0.660980
\(137\) −4.45086e7 −1.47884 −0.739422 0.673242i \(-0.764901\pi\)
−0.739422 + 0.673242i \(0.764901\pi\)
\(138\) −2.94856e7 −0.955067
\(139\) 3.36501e6 0.106276 0.0531379 0.998587i \(-0.483078\pi\)
0.0531379 + 0.998587i \(0.483078\pi\)
\(140\) −8.07982e6 −0.248859
\(141\) −9.09682e7 −2.73289
\(142\) 8.66300e6 0.253898
\(143\) −4.88720e6 −0.139760
\(144\) 2.48039e7 0.692231
\(145\) −8.88539e6 −0.242041
\(146\) −1.14386e6 −0.0304186
\(147\) 6.83444e6 0.177457
\(148\) −3.24179e6 −0.0821995
\(149\) −3.75616e7 −0.930234 −0.465117 0.885249i \(-0.653988\pi\)
−0.465117 + 0.885249i \(0.653988\pi\)
\(150\) 4.38638e7 1.06117
\(151\) −7.66361e7 −1.81140 −0.905699 0.423922i \(-0.860653\pi\)
−0.905699 + 0.423922i \(0.860653\pi\)
\(152\) 1.91805e7 0.443004
\(153\) 2.29332e8 5.17659
\(154\) 3.53118e7 0.779107
\(155\) 2.93080e7 0.632158
\(156\) −6.09931e6 −0.128631
\(157\) −3.83181e7 −0.790233 −0.395116 0.918631i \(-0.629296\pi\)
−0.395116 + 0.918631i \(0.629296\pi\)
\(158\) 6.75342e6 0.136215
\(159\) 1.27483e8 2.51515
\(160\) −4.36350e6 −0.0842200
\(161\) −3.84879e7 −0.726831
\(162\) −1.49153e8 −2.75631
\(163\) 4.20835e7 0.761123 0.380562 0.924756i \(-0.375731\pi\)
0.380562 + 0.924756i \(0.375731\pi\)
\(164\) −6.46941e6 −0.114528
\(165\) 5.62874e7 0.975477
\(166\) 6.66519e7 1.13093
\(167\) −1.08504e8 −1.80276 −0.901378 0.433033i \(-0.857443\pi\)
−0.901378 + 0.433033i \(0.857443\pi\)
\(168\) 4.40697e7 0.717063
\(169\) −6.16466e7 −0.982440
\(170\) −4.03440e7 −0.629808
\(171\) −2.26856e8 −3.46948
\(172\) 5.22681e7 0.783227
\(173\) −3.54173e7 −0.520060 −0.260030 0.965601i \(-0.583732\pi\)
−0.260030 + 0.965601i \(0.583732\pi\)
\(174\) 4.84635e7 0.697416
\(175\) 5.72558e7 0.807582
\(176\) 1.90701e7 0.263669
\(177\) 6.23248e7 0.844801
\(178\) −6.63573e7 −0.881899
\(179\) 4.27586e7 0.557235 0.278617 0.960402i \(-0.410124\pi\)
0.278617 + 0.960402i \(0.410124\pi\)
\(180\) 5.16089e7 0.659585
\(181\) −7.04378e7 −0.882940 −0.441470 0.897276i \(-0.645543\pi\)
−0.441470 + 0.897276i \(0.645543\pi\)
\(182\) −7.96149e6 −0.0978914
\(183\) −2.12338e8 −2.56123
\(184\) −2.07854e7 −0.245977
\(185\) −6.74513e6 −0.0783230
\(186\) −1.59854e8 −1.82150
\(187\) 1.76318e8 1.97175
\(188\) −6.41264e7 −0.703857
\(189\) −3.32987e8 −3.58766
\(190\) 3.99085e7 0.422112
\(191\) 1.29769e8 1.34758 0.673788 0.738925i \(-0.264666\pi\)
0.673788 + 0.738925i \(0.264666\pi\)
\(192\) 2.37998e7 0.242671
\(193\) 5.09514e7 0.510159 0.255079 0.966920i \(-0.417898\pi\)
0.255079 + 0.966920i \(0.417898\pi\)
\(194\) −3.25191e7 −0.319766
\(195\) −1.26907e7 −0.122564
\(196\) 4.81781e6 0.0457039
\(197\) −1.80715e6 −0.0168408 −0.00842039 0.999965i \(-0.502680\pi\)
−0.00842039 + 0.999965i \(0.502680\pi\)
\(198\) −2.25550e8 −2.06497
\(199\) 4.75898e7 0.428083 0.214041 0.976825i \(-0.431337\pi\)
0.214041 + 0.976825i \(0.431337\pi\)
\(200\) 3.09210e7 0.273305
\(201\) −729907. −0.00633989
\(202\) −414250. −0.00353617
\(203\) 6.32598e7 0.530752
\(204\) 2.20048e8 1.81473
\(205\) −1.34608e7 −0.109127
\(206\) 7.12459e7 0.567838
\(207\) 2.45837e8 1.92642
\(208\) −4.29960e6 −0.0331288
\(209\) −1.74415e8 −1.32151
\(210\) 9.16948e7 0.683246
\(211\) −5.04805e7 −0.369943 −0.184972 0.982744i \(-0.559219\pi\)
−0.184972 + 0.982744i \(0.559219\pi\)
\(212\) 8.98671e7 0.647776
\(213\) −9.83131e7 −0.697080
\(214\) −185735. −0.00129553
\(215\) 1.08753e8 0.746290
\(216\) −1.79829e8 −1.21415
\(217\) −2.08659e8 −1.38621
\(218\) 7.05417e7 0.461157
\(219\) 1.29813e7 0.0835146
\(220\) 3.96787e7 0.251234
\(221\) −3.97532e7 −0.247742
\(222\) 3.67899e7 0.225680
\(223\) 1.34484e8 0.812089 0.406044 0.913853i \(-0.366908\pi\)
0.406044 + 0.913853i \(0.366908\pi\)
\(224\) 3.10661e7 0.184679
\(225\) −3.65715e8 −2.14044
\(226\) 1.89457e8 1.09177
\(227\) 1.82525e8 1.03569 0.517847 0.855473i \(-0.326734\pi\)
0.517847 + 0.855473i \(0.326734\pi\)
\(228\) −2.17673e8 −1.21627
\(229\) 1.55708e8 0.856816 0.428408 0.903585i \(-0.359075\pi\)
0.428408 + 0.903585i \(0.359075\pi\)
\(230\) −4.32477e7 −0.234377
\(231\) −4.00740e8 −2.13905
\(232\) 3.41634e7 0.179619
\(233\) 6.82458e7 0.353452 0.176726 0.984260i \(-0.443449\pi\)
0.176726 + 0.984260i \(0.443449\pi\)
\(234\) 5.08531e7 0.259455
\(235\) −1.33426e8 −0.670663
\(236\) 4.39347e7 0.217578
\(237\) −7.66420e7 −0.373979
\(238\) 2.87231e8 1.38106
\(239\) −1.59910e8 −0.757677 −0.378838 0.925463i \(-0.623676\pi\)
−0.378838 + 0.925463i \(0.623676\pi\)
\(240\) 4.95197e7 0.231227
\(241\) 2.46558e8 1.13465 0.567323 0.823496i \(-0.307979\pi\)
0.567323 + 0.823496i \(0.307979\pi\)
\(242\) −1.75132e7 −0.0794352
\(243\) 9.24538e8 4.13336
\(244\) −1.49683e8 −0.659644
\(245\) 1.00243e7 0.0435485
\(246\) 7.34188e7 0.314438
\(247\) 3.93241e7 0.166042
\(248\) −1.12686e8 −0.469127
\(249\) −7.56407e8 −3.10497
\(250\) 1.47564e8 0.597296
\(251\) −3.82771e8 −1.52785 −0.763926 0.645304i \(-0.776731\pi\)
−0.763926 + 0.645304i \(0.776731\pi\)
\(252\) −3.67432e8 −1.44635
\(253\) 1.89008e8 0.733768
\(254\) 242433. 0.000928267 0
\(255\) 4.57849e8 1.72915
\(256\) 1.67772e7 0.0625000
\(257\) 1.28126e8 0.470837 0.235419 0.971894i \(-0.424354\pi\)
0.235419 + 0.971894i \(0.424354\pi\)
\(258\) −5.93171e8 −2.15036
\(259\) 4.80222e7 0.171748
\(260\) −8.94608e6 −0.0315665
\(261\) −4.04065e8 −1.40673
\(262\) −1.02336e8 −0.351538
\(263\) 1.53745e8 0.521142 0.260571 0.965455i \(-0.416089\pi\)
0.260571 + 0.965455i \(0.416089\pi\)
\(264\) −2.16419e8 −0.723906
\(265\) 1.86985e8 0.617227
\(266\) −2.84130e8 −0.925618
\(267\) 7.53064e8 2.42127
\(268\) −514535. −0.00163284
\(269\) 4.21270e8 1.31956 0.659778 0.751461i \(-0.270650\pi\)
0.659778 + 0.751461i \(0.270650\pi\)
\(270\) −3.74167e8 −1.15689
\(271\) 5.02799e8 1.53462 0.767312 0.641274i \(-0.221594\pi\)
0.767312 + 0.641274i \(0.221594\pi\)
\(272\) 1.55119e8 0.467383
\(273\) 9.03519e7 0.268762
\(274\) 3.56069e8 1.04570
\(275\) −2.81174e8 −0.815289
\(276\) 2.35885e8 0.675334
\(277\) 3.20002e8 0.904636 0.452318 0.891857i \(-0.350597\pi\)
0.452318 + 0.891857i \(0.350597\pi\)
\(278\) −2.69201e7 −0.0751483
\(279\) 1.33279e9 3.67406
\(280\) 6.46386e7 0.175970
\(281\) −4.74241e8 −1.27505 −0.637524 0.770430i \(-0.720042\pi\)
−0.637524 + 0.770430i \(0.720042\pi\)
\(282\) 7.27746e8 1.93245
\(283\) −5.32308e8 −1.39608 −0.698040 0.716058i \(-0.745944\pi\)
−0.698040 + 0.716058i \(0.745944\pi\)
\(284\) −6.93040e7 −0.179533
\(285\) −4.52907e8 −1.15892
\(286\) 3.90976e7 0.0988256
\(287\) 9.58343e7 0.239295
\(288\) −1.98431e8 −0.489481
\(289\) 1.02386e9 2.49515
\(290\) 7.10831e7 0.171149
\(291\) 3.69047e8 0.877923
\(292\) 9.15090e6 0.0215092
\(293\) −2.15803e8 −0.501211 −0.250606 0.968089i \(-0.580630\pi\)
−0.250606 + 0.968089i \(0.580630\pi\)
\(294\) −5.46755e7 −0.125481
\(295\) 9.14140e7 0.207317
\(296\) 2.59343e7 0.0581238
\(297\) 1.63525e9 3.62190
\(298\) 3.00493e8 0.657775
\(299\) −4.26143e7 −0.0921947
\(300\) −3.50910e8 −0.750363
\(301\) −7.74272e8 −1.63648
\(302\) 6.13088e8 1.28085
\(303\) 4.70116e6 0.00970859
\(304\) −1.53444e8 −0.313251
\(305\) −3.11443e8 −0.628535
\(306\) −1.83465e9 −3.66040
\(307\) −5.97092e8 −1.17776 −0.588881 0.808220i \(-0.700431\pi\)
−0.588881 + 0.808220i \(0.700431\pi\)
\(308\) −2.82494e8 −0.550912
\(309\) −8.08543e8 −1.55901
\(310\) −2.34464e8 −0.447003
\(311\) 2.38042e8 0.448738 0.224369 0.974504i \(-0.427968\pi\)
0.224369 + 0.974504i \(0.427968\pi\)
\(312\) 4.87945e7 0.0909556
\(313\) 3.27112e8 0.602964 0.301482 0.953472i \(-0.402519\pi\)
0.301482 + 0.953472i \(0.402519\pi\)
\(314\) 3.06545e8 0.558779
\(315\) −7.64507e8 −1.37814
\(316\) −5.40274e7 −0.0963183
\(317\) −8.33077e8 −1.46885 −0.734426 0.678689i \(-0.762548\pi\)
−0.734426 + 0.678689i \(0.762548\pi\)
\(318\) −1.01987e9 −1.77848
\(319\) −3.10659e8 −0.535817
\(320\) 3.49080e7 0.0595525
\(321\) 2.10784e6 0.00355688
\(322\) 3.07903e8 0.513947
\(323\) −1.41871e9 −2.34253
\(324\) 1.19322e9 1.94901
\(325\) 6.33944e7 0.102437
\(326\) −3.36668e8 −0.538196
\(327\) −8.00551e8 −1.26611
\(328\) 5.17552e7 0.0809834
\(329\) 9.49934e8 1.47064
\(330\) −4.50299e8 −0.689767
\(331\) −4.86383e8 −0.737192 −0.368596 0.929590i \(-0.620161\pi\)
−0.368596 + 0.929590i \(0.620161\pi\)
\(332\) −5.33215e8 −0.799685
\(333\) −3.06736e8 −0.455208
\(334\) 8.68030e8 1.27474
\(335\) −1.07058e6 −0.00155583
\(336\) −3.52557e8 −0.507040
\(337\) −9.74289e8 −1.38670 −0.693351 0.720600i \(-0.743867\pi\)
−0.693351 + 0.720600i \(0.743867\pi\)
\(338\) 4.93173e8 0.694690
\(339\) −2.15007e9 −2.99747
\(340\) 3.22752e8 0.445341
\(341\) 1.02469e9 1.39944
\(342\) 1.81485e9 2.45329
\(343\) 7.09401e8 0.949210
\(344\) −4.18145e8 −0.553825
\(345\) 4.90801e8 0.643486
\(346\) 2.83338e8 0.367738
\(347\) 8.61556e8 1.10696 0.553478 0.832864i \(-0.313300\pi\)
0.553478 + 0.832864i \(0.313300\pi\)
\(348\) −3.87708e8 −0.493148
\(349\) 1.30969e9 1.64923 0.824613 0.565697i \(-0.191393\pi\)
0.824613 + 0.565697i \(0.191393\pi\)
\(350\) −4.58047e8 −0.571047
\(351\) −3.68688e8 −0.455076
\(352\) −1.52561e8 −0.186442
\(353\) −8.77420e8 −1.06169 −0.530843 0.847470i \(-0.678125\pi\)
−0.530843 + 0.847470i \(0.678125\pi\)
\(354\) −4.98598e8 −0.597365
\(355\) −1.44199e8 −0.171066
\(356\) 5.30859e8 0.623597
\(357\) −3.25967e9 −3.79171
\(358\) −3.42069e8 −0.394025
\(359\) 1.49791e9 1.70866 0.854331 0.519729i \(-0.173967\pi\)
0.854331 + 0.519729i \(0.173967\pi\)
\(360\) −4.12871e8 −0.466397
\(361\) 5.09528e8 0.570023
\(362\) 5.63503e8 0.624333
\(363\) 1.98751e8 0.218090
\(364\) 6.36919e7 0.0692197
\(365\) 1.90401e7 0.0204948
\(366\) 1.69870e9 1.81106
\(367\) −1.40720e9 −1.48602 −0.743008 0.669283i \(-0.766602\pi\)
−0.743008 + 0.669283i \(0.766602\pi\)
\(368\) 1.66283e8 0.173932
\(369\) −6.12131e8 −0.634237
\(370\) 5.39610e7 0.0553827
\(371\) −1.33124e9 −1.35347
\(372\) 1.27883e9 1.28799
\(373\) −6.79783e8 −0.678249 −0.339125 0.940741i \(-0.610131\pi\)
−0.339125 + 0.940741i \(0.610131\pi\)
\(374\) −1.41055e9 −1.39424
\(375\) −1.67464e9 −1.63988
\(376\) 5.13011e8 0.497702
\(377\) 7.00421e7 0.0673231
\(378\) 2.66390e9 2.53686
\(379\) 1.91260e9 1.80462 0.902310 0.431087i \(-0.141870\pi\)
0.902310 + 0.431087i \(0.141870\pi\)
\(380\) −3.19268e8 −0.298479
\(381\) −2.75127e6 −0.00254857
\(382\) −1.03815e9 −0.952879
\(383\) 1.45283e9 1.32135 0.660676 0.750671i \(-0.270270\pi\)
0.660676 + 0.750671i \(0.270270\pi\)
\(384\) −1.90398e8 −0.171595
\(385\) −5.87780e8 −0.524931
\(386\) −4.07611e8 −0.360737
\(387\) 4.94558e9 4.33739
\(388\) 2.60153e8 0.226109
\(389\) −9.78824e8 −0.843104 −0.421552 0.906804i \(-0.638514\pi\)
−0.421552 + 0.906804i \(0.638514\pi\)
\(390\) 1.01526e8 0.0866662
\(391\) 1.53742e9 1.30069
\(392\) −3.85425e7 −0.0323176
\(393\) 1.16137e9 0.965154
\(394\) 1.44572e7 0.0119082
\(395\) −1.12414e8 −0.0917760
\(396\) 1.80440e9 1.46016
\(397\) −1.37188e9 −1.10039 −0.550197 0.835035i \(-0.685447\pi\)
−0.550197 + 0.835035i \(0.685447\pi\)
\(398\) −3.80718e8 −0.302700
\(399\) 3.22449e9 2.54130
\(400\) −2.47368e8 −0.193256
\(401\) 3.44789e8 0.267022 0.133511 0.991047i \(-0.457375\pi\)
0.133511 + 0.991047i \(0.457375\pi\)
\(402\) 5.83926e6 0.00448298
\(403\) −2.31030e8 −0.175833
\(404\) 3.31400e6 0.00250045
\(405\) 2.48271e9 1.85709
\(406\) −5.06079e8 −0.375299
\(407\) −2.35829e8 −0.173387
\(408\) −1.76038e9 −1.28321
\(409\) 5.43183e8 0.392568 0.196284 0.980547i \(-0.437113\pi\)
0.196284 + 0.980547i \(0.437113\pi\)
\(410\) 1.07686e8 0.0771642
\(411\) −4.04089e9 −2.87099
\(412\) −5.69967e8 −0.401522
\(413\) −6.50825e8 −0.454610
\(414\) −1.96670e9 −1.36219
\(415\) −1.10945e9 −0.761972
\(416\) 3.43968e7 0.0234256
\(417\) 3.05506e8 0.206321
\(418\) 1.39532e9 0.934451
\(419\) 2.19669e9 1.45888 0.729439 0.684046i \(-0.239781\pi\)
0.729439 + 0.684046i \(0.239781\pi\)
\(420\) −7.33559e8 −0.483128
\(421\) 1.69532e9 1.10730 0.553650 0.832749i \(-0.313234\pi\)
0.553650 + 0.832749i \(0.313234\pi\)
\(422\) 4.03844e8 0.261589
\(423\) −6.06759e9 −3.89785
\(424\) −7.18937e8 −0.458047
\(425\) −2.28711e9 −1.44519
\(426\) 7.86505e8 0.492910
\(427\) 2.21733e9 1.37827
\(428\) 1.48588e6 0.000916075 0
\(429\) −4.43704e8 −0.271327
\(430\) −8.70026e8 −0.527707
\(431\) −6.19918e8 −0.372962 −0.186481 0.982459i \(-0.559708\pi\)
−0.186481 + 0.982459i \(0.559708\pi\)
\(432\) 1.43864e9 0.858535
\(433\) 2.69875e9 1.59755 0.798777 0.601627i \(-0.205481\pi\)
0.798777 + 0.601627i \(0.205481\pi\)
\(434\) 1.66928e9 0.980198
\(435\) −8.06695e8 −0.469891
\(436\) −5.64334e8 −0.326087
\(437\) −1.52082e9 −0.871752
\(438\) −1.03850e8 −0.0590537
\(439\) −1.55515e9 −0.877297 −0.438648 0.898659i \(-0.644543\pi\)
−0.438648 + 0.898659i \(0.644543\pi\)
\(440\) −3.17430e8 −0.177649
\(441\) 4.55858e8 0.253101
\(442\) 3.18025e8 0.175180
\(443\) 9.06288e8 0.495283 0.247641 0.968852i \(-0.420345\pi\)
0.247641 + 0.968852i \(0.420345\pi\)
\(444\) −2.94319e8 −0.159580
\(445\) 1.10455e9 0.594188
\(446\) −1.07587e9 −0.574233
\(447\) −3.41018e9 −1.80593
\(448\) −2.48529e8 −0.130588
\(449\) 4.68202e8 0.244102 0.122051 0.992524i \(-0.461053\pi\)
0.122051 + 0.992524i \(0.461053\pi\)
\(450\) 2.92572e9 1.51352
\(451\) −4.70627e8 −0.241579
\(452\) −1.51565e9 −0.771997
\(453\) −6.95771e9 −3.51660
\(454\) −1.46020e9 −0.732346
\(455\) 1.32522e8 0.0659553
\(456\) 1.74138e9 0.860036
\(457\) −6.95216e8 −0.340732 −0.170366 0.985381i \(-0.554495\pi\)
−0.170366 + 0.985381i \(0.554495\pi\)
\(458\) −1.24567e9 −0.605861
\(459\) 1.33013e10 6.42023
\(460\) 3.45981e8 0.165730
\(461\) 4.09996e8 0.194906 0.0974532 0.995240i \(-0.468930\pi\)
0.0974532 + 0.995240i \(0.468930\pi\)
\(462\) 3.20592e9 1.51254
\(463\) −1.35529e9 −0.634600 −0.317300 0.948325i \(-0.602776\pi\)
−0.317300 + 0.948325i \(0.602776\pi\)
\(464\) −2.73307e8 −0.127010
\(465\) 2.66084e9 1.22725
\(466\) −5.45966e8 −0.249928
\(467\) −7.26978e8 −0.330303 −0.165151 0.986268i \(-0.552811\pi\)
−0.165151 + 0.986268i \(0.552811\pi\)
\(468\) −4.06825e8 −0.183462
\(469\) 7.62204e6 0.00341167
\(470\) 1.06741e9 0.474230
\(471\) −3.47886e9 −1.53414
\(472\) −3.51478e8 −0.153851
\(473\) 3.80233e9 1.65210
\(474\) 6.13136e8 0.264443
\(475\) 2.26242e9 0.968603
\(476\) −2.29785e9 −0.976555
\(477\) 8.50316e9 3.58729
\(478\) 1.27928e9 0.535759
\(479\) 2.16041e9 0.898175 0.449087 0.893488i \(-0.351749\pi\)
0.449087 + 0.893488i \(0.351749\pi\)
\(480\) −3.96158e8 −0.163502
\(481\) 5.31708e7 0.0217854
\(482\) −1.97247e9 −0.802315
\(483\) −3.49428e9 −1.41105
\(484\) 1.40106e8 0.0561691
\(485\) 5.41295e8 0.215446
\(486\) −7.39631e9 −2.92272
\(487\) −9.09190e7 −0.0356700 −0.0178350 0.999841i \(-0.505677\pi\)
−0.0178350 + 0.999841i \(0.505677\pi\)
\(488\) 1.19747e9 0.466439
\(489\) 3.82072e9 1.47762
\(490\) −8.01945e7 −0.0307935
\(491\) −4.35917e9 −1.66195 −0.830976 0.556308i \(-0.812218\pi\)
−0.830976 + 0.556308i \(0.812218\pi\)
\(492\) −5.87351e8 −0.222341
\(493\) −2.52694e9 −0.949798
\(494\) −3.14592e8 −0.117410
\(495\) 3.75437e9 1.39130
\(496\) 9.01491e8 0.331723
\(497\) 1.02663e9 0.375118
\(498\) 6.05126e9 2.19555
\(499\) 3.39355e9 1.22265 0.611326 0.791379i \(-0.290636\pi\)
0.611326 + 0.791379i \(0.290636\pi\)
\(500\) −1.18051e9 −0.422352
\(501\) −9.85094e9 −3.49982
\(502\) 3.06217e9 1.08035
\(503\) 4.26413e9 1.49397 0.746986 0.664840i \(-0.231500\pi\)
0.746986 + 0.664840i \(0.231500\pi\)
\(504\) 2.93945e9 1.02273
\(505\) 6.89537e6 0.00238253
\(506\) −1.51206e9 −0.518852
\(507\) −5.59683e9 −1.90728
\(508\) −1.93946e6 −0.000656384 0
\(509\) −4.85962e9 −1.63339 −0.816695 0.577070i \(-0.804196\pi\)
−0.816695 + 0.577070i \(0.804196\pi\)
\(510\) −3.66279e9 −1.22269
\(511\) −1.35557e8 −0.0449415
\(512\) −1.34218e8 −0.0441942
\(513\) −1.31577e10 −4.30299
\(514\) −1.02501e9 −0.332932
\(515\) −1.18592e9 −0.382587
\(516\) 4.74537e9 1.52053
\(517\) −4.66498e9 −1.48468
\(518\) −3.84177e8 −0.121444
\(519\) −3.21550e9 −1.00963
\(520\) 7.15686e7 0.0223209
\(521\) 4.97824e8 0.154221 0.0771106 0.997023i \(-0.475431\pi\)
0.0771106 + 0.997023i \(0.475431\pi\)
\(522\) 3.23252e9 0.994705
\(523\) 3.00519e9 0.918579 0.459289 0.888287i \(-0.348104\pi\)
0.459289 + 0.888287i \(0.348104\pi\)
\(524\) 8.18686e8 0.248575
\(525\) 5.19820e9 1.56782
\(526\) −1.22996e9 −0.368503
\(527\) 8.33500e9 2.48067
\(528\) 1.73135e9 0.511879
\(529\) −1.75676e9 −0.515961
\(530\) −1.49588e9 −0.436446
\(531\) 4.15707e9 1.20492
\(532\) 2.27304e9 0.654510
\(533\) 1.06109e8 0.0303534
\(534\) −6.02451e9 −1.71209
\(535\) 3.09164e6 0.000872873 0
\(536\) 4.11628e6 0.00115459
\(537\) 3.88201e9 1.08180
\(538\) −3.37016e9 −0.933066
\(539\) 3.50479e8 0.0964055
\(540\) 2.99334e9 0.818046
\(541\) −2.61020e9 −0.708734 −0.354367 0.935106i \(-0.615304\pi\)
−0.354367 + 0.935106i \(0.615304\pi\)
\(542\) −4.02239e9 −1.08514
\(543\) −6.39498e9 −1.71411
\(544\) −1.24095e9 −0.330490
\(545\) −1.17420e9 −0.310709
\(546\) −7.22815e8 −0.190044
\(547\) 6.31955e8 0.165094 0.0825468 0.996587i \(-0.473695\pi\)
0.0825468 + 0.996587i \(0.473695\pi\)
\(548\) −2.84855e9 −0.739422
\(549\) −1.41629e10 −3.65301
\(550\) 2.24940e9 0.576496
\(551\) 2.49967e9 0.636578
\(552\) −1.88708e9 −0.477533
\(553\) 8.00333e8 0.201248
\(554\) −2.56002e9 −0.639674
\(555\) −6.12383e8 −0.152054
\(556\) 2.15361e8 0.0531379
\(557\) 3.22387e9 0.790468 0.395234 0.918580i \(-0.370663\pi\)
0.395234 + 0.918580i \(0.370663\pi\)
\(558\) −1.06623e10 −2.59795
\(559\) −8.57284e8 −0.207579
\(560\) −5.17108e8 −0.124430
\(561\) 1.60077e10 3.82790
\(562\) 3.79393e9 0.901596
\(563\) 3.75859e9 0.887658 0.443829 0.896112i \(-0.353620\pi\)
0.443829 + 0.896112i \(0.353620\pi\)
\(564\) −5.82197e9 −1.36645
\(565\) −3.15359e9 −0.735589
\(566\) 4.25847e9 0.987178
\(567\) −1.76757e10 −4.07227
\(568\) 5.54432e8 0.126949
\(569\) 3.16154e8 0.0719459 0.0359730 0.999353i \(-0.488547\pi\)
0.0359730 + 0.999353i \(0.488547\pi\)
\(570\) 3.62325e9 0.819477
\(571\) 5.14375e9 1.15625 0.578127 0.815947i \(-0.303784\pi\)
0.578127 + 0.815947i \(0.303784\pi\)
\(572\) −3.12781e8 −0.0698802
\(573\) 1.17816e10 2.61614
\(574\) −7.66675e8 −0.169207
\(575\) −2.45172e9 −0.537815
\(576\) 1.58745e9 0.346115
\(577\) 2.95737e8 0.0640900 0.0320450 0.999486i \(-0.489798\pi\)
0.0320450 + 0.999486i \(0.489798\pi\)
\(578\) −8.19086e9 −1.76434
\(579\) 4.62582e9 0.990408
\(580\) −5.68665e8 −0.121020
\(581\) 7.89876e9 1.67087
\(582\) −2.95238e9 −0.620785
\(583\) 6.53753e9 1.36639
\(584\) −7.32072e7 −0.0152093
\(585\) −8.46472e8 −0.174810
\(586\) 1.72642e9 0.354410
\(587\) 1.01541e9 0.207209 0.103604 0.994619i \(-0.466962\pi\)
0.103604 + 0.994619i \(0.466962\pi\)
\(588\) 4.37404e8 0.0887283
\(589\) −8.24502e9 −1.66260
\(590\) −7.31312e8 −0.146596
\(591\) −1.64069e8 −0.0326942
\(592\) −2.07475e8 −0.0410997
\(593\) −3.96291e9 −0.780409 −0.390205 0.920728i \(-0.627596\pi\)
−0.390205 + 0.920728i \(0.627596\pi\)
\(594\) −1.30820e10 −2.56107
\(595\) −4.78108e9 −0.930500
\(596\) −2.40394e9 −0.465117
\(597\) 4.32063e9 0.831068
\(598\) 3.40914e8 0.0651915
\(599\) 9.42097e9 1.79103 0.895513 0.445036i \(-0.146809\pi\)
0.895513 + 0.445036i \(0.146809\pi\)
\(600\) 2.80728e9 0.530587
\(601\) 3.58702e8 0.0674021 0.0337010 0.999432i \(-0.489271\pi\)
0.0337010 + 0.999432i \(0.489271\pi\)
\(602\) 6.19418e9 1.15717
\(603\) −4.86849e7 −0.00904240
\(604\) −4.90471e9 −0.905699
\(605\) 2.91515e8 0.0535202
\(606\) −3.76093e7 −0.00686501
\(607\) 6.29066e9 1.14166 0.570829 0.821069i \(-0.306622\pi\)
0.570829 + 0.821069i \(0.306622\pi\)
\(608\) 1.22755e9 0.221502
\(609\) 5.74330e9 1.03039
\(610\) 2.49155e9 0.444441
\(611\) 1.05178e9 0.186544
\(612\) 1.46772e10 2.58830
\(613\) 3.78212e9 0.663168 0.331584 0.943426i \(-0.392417\pi\)
0.331584 + 0.943426i \(0.392417\pi\)
\(614\) 4.77674e9 0.832803
\(615\) −1.22209e9 −0.211855
\(616\) 2.25995e9 0.389553
\(617\) −2.05900e9 −0.352905 −0.176452 0.984309i \(-0.556462\pi\)
−0.176452 + 0.984309i \(0.556462\pi\)
\(618\) 6.46834e9 1.10239
\(619\) 1.93114e9 0.327263 0.163632 0.986522i \(-0.447679\pi\)
0.163632 + 0.986522i \(0.447679\pi\)
\(620\) 1.87571e9 0.316079
\(621\) 1.42587e10 2.38923
\(622\) −1.90434e9 −0.317306
\(623\) −7.86386e9 −1.30295
\(624\) −3.90356e8 −0.0643153
\(625\) 2.26190e9 0.370590
\(626\) −2.61690e9 −0.426360
\(627\) −1.58349e10 −2.56555
\(628\) −2.45236e9 −0.395116
\(629\) −1.91827e9 −0.307349
\(630\) 6.11606e9 0.974495
\(631\) 1.64426e9 0.260537 0.130268 0.991479i \(-0.458416\pi\)
0.130268 + 0.991479i \(0.458416\pi\)
\(632\) 4.32219e8 0.0681074
\(633\) −4.58307e9 −0.718197
\(634\) 6.66462e9 1.03864
\(635\) −4.03539e6 −0.000625429 0
\(636\) 8.15894e9 1.25757
\(637\) −7.90201e7 −0.0121129
\(638\) 2.48527e9 0.378880
\(639\) −6.55750e9 −0.994226
\(640\) −2.79264e8 −0.0421100
\(641\) −1.79601e9 −0.269344 −0.134672 0.990890i \(-0.542998\pi\)
−0.134672 + 0.990890i \(0.542998\pi\)
\(642\) −1.68627e7 −0.00251510
\(643\) 6.06484e9 0.899666 0.449833 0.893113i \(-0.351484\pi\)
0.449833 + 0.893113i \(0.351484\pi\)
\(644\) −2.46323e9 −0.363416
\(645\) 9.87359e9 1.44883
\(646\) 1.13497e10 1.65642
\(647\) −8.83053e9 −1.28180 −0.640902 0.767622i \(-0.721440\pi\)
−0.640902 + 0.767622i \(0.721440\pi\)
\(648\) −9.54577e9 −1.37816
\(649\) 3.19610e9 0.458949
\(650\) −5.07155e8 −0.0724342
\(651\) −1.89440e10 −2.69115
\(652\) 2.69334e9 0.380562
\(653\) 1.00013e10 1.40560 0.702800 0.711388i \(-0.251933\pi\)
0.702800 + 0.711388i \(0.251933\pi\)
\(654\) 6.40441e9 0.895276
\(655\) 1.70342e9 0.236852
\(656\) −4.14042e8 −0.0572639
\(657\) 8.65852e8 0.119115
\(658\) −7.59947e9 −1.03990
\(659\) −4.00313e9 −0.544880 −0.272440 0.962173i \(-0.587831\pi\)
−0.272440 + 0.962173i \(0.587831\pi\)
\(660\) 3.60239e9 0.487739
\(661\) 1.12552e10 1.51582 0.757910 0.652359i \(-0.226221\pi\)
0.757910 + 0.652359i \(0.226221\pi\)
\(662\) 3.89107e9 0.521274
\(663\) −3.60915e9 −0.480958
\(664\) 4.26572e9 0.565463
\(665\) 4.72947e9 0.623644
\(666\) 2.45389e9 0.321881
\(667\) −2.70881e9 −0.353459
\(668\) −6.94424e9 −0.901378
\(669\) 1.22097e10 1.57657
\(670\) 8.56465e6 0.00110014
\(671\) −1.08890e10 −1.39142
\(672\) 2.82046e9 0.358531
\(673\) −1.10405e10 −1.39616 −0.698080 0.716020i \(-0.745962\pi\)
−0.698080 + 0.716020i \(0.745962\pi\)
\(674\) 7.79431e9 0.980547
\(675\) −2.12116e10 −2.65467
\(676\) −3.94538e9 −0.491220
\(677\) −5.08333e9 −0.629634 −0.314817 0.949152i \(-0.601943\pi\)
−0.314817 + 0.949152i \(0.601943\pi\)
\(678\) 1.72006e10 2.11953
\(679\) −3.85377e9 −0.472434
\(680\) −2.58202e9 −0.314904
\(681\) 1.65712e10 2.01067
\(682\) −8.19755e9 −0.989552
\(683\) −4.62507e9 −0.555451 −0.277725 0.960661i \(-0.589581\pi\)
−0.277725 + 0.960661i \(0.589581\pi\)
\(684\) −1.45188e10 −1.73474
\(685\) −5.92692e9 −0.704551
\(686\) −5.67521e9 −0.671193
\(687\) 1.41366e10 1.66340
\(688\) 3.34516e9 0.391613
\(689\) −1.47397e9 −0.171681
\(690\) −3.92641e9 −0.455013
\(691\) −1.38457e10 −1.59640 −0.798200 0.602393i \(-0.794214\pi\)
−0.798200 + 0.602393i \(0.794214\pi\)
\(692\) −2.26670e9 −0.260030
\(693\) −2.67294e10 −3.05086
\(694\) −6.89245e9 −0.782736
\(695\) 4.48096e8 0.0506319
\(696\) 3.10166e9 0.348708
\(697\) −3.82815e9 −0.428227
\(698\) −1.04775e10 −1.16618
\(699\) 6.19597e9 0.686181
\(700\) 3.66437e9 0.403791
\(701\) 1.30053e10 1.42596 0.712980 0.701184i \(-0.247345\pi\)
0.712980 + 0.701184i \(0.247345\pi\)
\(702\) 2.94950e9 0.321787
\(703\) 1.89756e9 0.205993
\(704\) 1.22049e9 0.131834
\(705\) −1.21136e10 −1.30201
\(706\) 7.01936e9 0.750725
\(707\) −4.90918e7 −0.00522446
\(708\) 3.98879e9 0.422401
\(709\) −1.83890e10 −1.93774 −0.968872 0.247564i \(-0.920370\pi\)
−0.968872 + 0.247564i \(0.920370\pi\)
\(710\) 1.15360e9 0.120962
\(711\) −5.11203e9 −0.533396
\(712\) −4.24687e9 −0.440950
\(713\) 8.93488e9 0.923157
\(714\) 2.60774e10 2.68114
\(715\) −6.50797e8 −0.0665847
\(716\) 2.73655e9 0.278617
\(717\) −1.45181e10 −1.47093
\(718\) −1.19833e10 −1.20821
\(719\) 1.56639e9 0.157162 0.0785811 0.996908i \(-0.474961\pi\)
0.0785811 + 0.996908i \(0.474961\pi\)
\(720\) 3.30297e9 0.329793
\(721\) 8.44319e9 0.838945
\(722\) −4.07622e9 −0.403067
\(723\) 2.23848e10 2.20277
\(724\) −4.50802e9 −0.441470
\(725\) 4.02972e9 0.392728
\(726\) −1.59001e9 −0.154213
\(727\) −1.22967e10 −1.18691 −0.593456 0.804867i \(-0.702237\pi\)
−0.593456 + 0.804867i \(0.702237\pi\)
\(728\) −5.09535e8 −0.0489457
\(729\) 4.31633e10 4.12637
\(730\) −1.52321e8 −0.0144920
\(731\) 3.09287e10 2.92854
\(732\) −1.35896e10 −1.28061
\(733\) −8.41188e9 −0.788913 −0.394456 0.918915i \(-0.629067\pi\)
−0.394456 + 0.918915i \(0.629067\pi\)
\(734\) 1.12576e10 1.05077
\(735\) 9.10097e8 0.0845439
\(736\) −1.33026e9 −0.122989
\(737\) −3.74307e7 −0.00344422
\(738\) 4.89705e9 0.448474
\(739\) 4.83992e9 0.441147 0.220573 0.975370i \(-0.429207\pi\)
0.220573 + 0.975370i \(0.429207\pi\)
\(740\) −4.31688e8 −0.0391615
\(741\) 3.57019e9 0.322350
\(742\) 1.06499e10 0.957048
\(743\) 5.87021e8 0.0525040 0.0262520 0.999655i \(-0.491643\pi\)
0.0262520 + 0.999655i \(0.491643\pi\)
\(744\) −1.02307e10 −0.910750
\(745\) −5.00184e9 −0.443182
\(746\) 5.43826e9 0.479595
\(747\) −5.04524e10 −4.42854
\(748\) 1.12844e10 0.985874
\(749\) −2.20111e7 −0.00191406
\(750\) 1.33972e10 1.15957
\(751\) −2.24897e9 −0.193751 −0.0968753 0.995297i \(-0.530885\pi\)
−0.0968753 + 0.995297i \(0.530885\pi\)
\(752\) −4.10409e9 −0.351928
\(753\) −3.47514e10 −2.96613
\(754\) −5.60337e8 −0.0476047
\(755\) −1.02051e10 −0.862986
\(756\) −2.13112e10 −1.79383
\(757\) −1.99556e10 −1.67197 −0.835985 0.548752i \(-0.815103\pi\)
−0.835985 + 0.548752i \(0.815103\pi\)
\(758\) −1.53008e10 −1.27606
\(759\) 1.71598e10 1.42452
\(760\) 2.55415e9 0.211056
\(761\) −5.23703e9 −0.430764 −0.215382 0.976530i \(-0.569100\pi\)
−0.215382 + 0.976530i \(0.569100\pi\)
\(762\) 2.20102e7 0.00180211
\(763\) 8.35974e9 0.681329
\(764\) 8.30519e9 0.673788
\(765\) 3.05386e10 2.46623
\(766\) −1.16226e10 −0.934337
\(767\) −7.20602e8 −0.0576649
\(768\) 1.52319e9 0.121336
\(769\) −7.11248e9 −0.564000 −0.282000 0.959414i \(-0.590998\pi\)
−0.282000 + 0.959414i \(0.590998\pi\)
\(770\) 4.70224e9 0.371182
\(771\) 1.16324e10 0.914070
\(772\) 3.26089e9 0.255079
\(773\) 5.47777e9 0.426556 0.213278 0.976992i \(-0.431586\pi\)
0.213278 + 0.976992i \(0.431586\pi\)
\(774\) −3.95646e10 −3.06700
\(775\) −1.32918e10 −1.02572
\(776\) −2.08122e9 −0.159883
\(777\) 4.35988e9 0.333427
\(778\) 7.83059e9 0.596164
\(779\) 3.78682e9 0.287008
\(780\) −8.12205e8 −0.0612822
\(781\) −5.04163e9 −0.378698
\(782\) −1.22993e10 −0.919725
\(783\) −2.34359e10 −1.74468
\(784\) 3.08340e8 0.0228520
\(785\) −5.10257e9 −0.376483
\(786\) −9.29096e9 −0.682467
\(787\) −1.97867e10 −1.44698 −0.723488 0.690337i \(-0.757462\pi\)
−0.723488 + 0.690337i \(0.757462\pi\)
\(788\) −1.15658e8 −0.00842039
\(789\) 1.39584e10 1.01173
\(790\) 8.99309e8 0.0648954
\(791\) 2.24521e10 1.61302
\(792\) −1.44352e10 −1.03249
\(793\) 2.45506e9 0.174826
\(794\) 1.09750e10 0.778096
\(795\) 1.69761e10 1.19827
\(796\) 3.04575e9 0.214041
\(797\) −1.91992e10 −1.34332 −0.671661 0.740859i \(-0.734419\pi\)
−0.671661 + 0.740859i \(0.734419\pi\)
\(798\) −2.57959e10 −1.79697
\(799\) −3.79456e10 −2.63177
\(800\) 1.97894e9 0.136653
\(801\) 5.02295e10 3.45338
\(802\) −2.75831e9 −0.188813
\(803\) 6.65697e8 0.0453704
\(804\) −4.67141e7 −0.00316994
\(805\) −5.12518e9 −0.346277
\(806\) 1.84824e9 0.124333
\(807\) 3.82467e10 2.56175
\(808\) −2.65120e7 −0.00176808
\(809\) 9.47189e8 0.0628951 0.0314476 0.999505i \(-0.489988\pi\)
0.0314476 + 0.999505i \(0.489988\pi\)
\(810\) −1.98617e10 −1.31316
\(811\) −1.41110e9 −0.0928931 −0.0464466 0.998921i \(-0.514790\pi\)
−0.0464466 + 0.998921i \(0.514790\pi\)
\(812\) 4.04863e9 0.265376
\(813\) 4.56486e10 2.97928
\(814\) 1.88664e9 0.122603
\(815\) 5.60398e9 0.362614
\(816\) 1.40831e10 0.907364
\(817\) −3.05948e10 −1.96278
\(818\) −4.34546e9 −0.277587
\(819\) 6.02649e9 0.383328
\(820\) −8.61488e8 −0.0545633
\(821\) 2.01870e7 0.00127313 0.000636563 1.00000i \(-0.499797\pi\)
0.000636563 1.00000i \(0.499797\pi\)
\(822\) 3.23271e10 2.03009
\(823\) −2.14990e9 −0.134437 −0.0672185 0.997738i \(-0.521412\pi\)
−0.0672185 + 0.997738i \(0.521412\pi\)
\(824\) 4.55974e9 0.283919
\(825\) −2.55275e10 −1.58278
\(826\) 5.20660e9 0.321458
\(827\) 1.71093e10 1.05187 0.525937 0.850524i \(-0.323715\pi\)
0.525937 + 0.850524i \(0.323715\pi\)
\(828\) 1.57336e10 0.963210
\(829\) −7.25127e8 −0.0442052 −0.0221026 0.999756i \(-0.507036\pi\)
−0.0221026 + 0.999756i \(0.507036\pi\)
\(830\) 8.87560e9 0.538796
\(831\) 2.90527e10 1.75623
\(832\) −2.75174e8 −0.0165644
\(833\) 2.85085e9 0.170890
\(834\) −2.44405e9 −0.145891
\(835\) −1.44487e10 −0.858869
\(836\) −1.11626e10 −0.660757
\(837\) 7.73023e10 4.55673
\(838\) −1.75735e10 −1.03158
\(839\) 1.09113e9 0.0637839 0.0318920 0.999491i \(-0.489847\pi\)
0.0318920 + 0.999491i \(0.489847\pi\)
\(840\) 5.86847e9 0.341623
\(841\) −1.27976e10 −0.741895
\(842\) −1.35626e10 −0.782980
\(843\) −4.30558e10 −2.47534
\(844\) −3.23075e9 −0.184972
\(845\) −8.20908e9 −0.468054
\(846\) 4.85408e10 2.75620
\(847\) −2.07545e9 −0.117360
\(848\) 5.75149e9 0.323888
\(849\) −4.83277e10 −2.71031
\(850\) 1.82969e10 1.02191
\(851\) −2.05633e9 −0.114377
\(852\) −6.29204e9 −0.348540
\(853\) 1.53367e10 0.846076 0.423038 0.906112i \(-0.360964\pi\)
0.423038 + 0.906112i \(0.360964\pi\)
\(854\) −1.77386e10 −0.974581
\(855\) −3.02089e10 −1.65293
\(856\) −1.18871e7 −0.000647763 0
\(857\) −1.85211e10 −1.00516 −0.502578 0.864532i \(-0.667615\pi\)
−0.502578 + 0.864532i \(0.667615\pi\)
\(858\) 3.54963e9 0.191857
\(859\) −8.76910e6 −0.000472040 0 −0.000236020 1.00000i \(-0.500075\pi\)
−0.000236020 1.00000i \(0.500075\pi\)
\(860\) 6.96021e9 0.373145
\(861\) 8.70070e9 0.464561
\(862\) 4.95935e9 0.263724
\(863\) −1.82668e10 −0.967443 −0.483721 0.875222i \(-0.660715\pi\)
−0.483721 + 0.875222i \(0.660715\pi\)
\(864\) −1.15091e10 −0.607076
\(865\) −4.71628e9 −0.247767
\(866\) −2.15900e10 −1.12964
\(867\) 9.29549e10 4.84402
\(868\) −1.33542e10 −0.693105
\(869\) −3.93031e9 −0.203169
\(870\) 6.45356e9 0.332263
\(871\) 8.43922e6 0.000432752 0
\(872\) 4.51467e9 0.230578
\(873\) 2.46155e10 1.25216
\(874\) 1.21666e10 0.616422
\(875\) 1.74874e10 0.882466
\(876\) 8.30801e8 0.0417573
\(877\) −2.99806e10 −1.50086 −0.750432 0.660948i \(-0.770154\pi\)
−0.750432 + 0.660948i \(0.770154\pi\)
\(878\) 1.24412e10 0.620342
\(879\) −1.95925e10 −0.973037
\(880\) 2.53944e9 0.125617
\(881\) 3.82446e8 0.0188432 0.00942160 0.999956i \(-0.497001\pi\)
0.00942160 + 0.999956i \(0.497001\pi\)
\(882\) −3.64686e9 −0.178970
\(883\) −5.12232e9 −0.250382 −0.125191 0.992133i \(-0.539954\pi\)
−0.125191 + 0.992133i \(0.539954\pi\)
\(884\) −2.54420e9 −0.123871
\(885\) 8.29939e9 0.402480
\(886\) −7.25030e9 −0.350218
\(887\) 2.34581e10 1.12865 0.564326 0.825552i \(-0.309136\pi\)
0.564326 + 0.825552i \(0.309136\pi\)
\(888\) 2.35455e9 0.112840
\(889\) 2.87301e7 0.00137145
\(890\) −8.83637e9 −0.420154
\(891\) 8.68028e10 4.11114
\(892\) 8.60697e9 0.406044
\(893\) 3.75360e10 1.76387
\(894\) 2.72814e10 1.27699
\(895\) 5.69389e9 0.265478
\(896\) 1.98823e9 0.0923397
\(897\) −3.86891e9 −0.178984
\(898\) −3.74561e9 −0.172606
\(899\) −1.46856e10 −0.674115
\(900\) −2.34058e10 −1.07022
\(901\) 5.31771e10 2.42208
\(902\) 3.76502e9 0.170822
\(903\) −7.02954e10 −3.17702
\(904\) 1.21252e10 0.545884
\(905\) −9.37975e9 −0.420650
\(906\) 5.56617e10 2.48661
\(907\) 2.54092e10 1.13075 0.565373 0.824835i \(-0.308732\pi\)
0.565373 + 0.824835i \(0.308732\pi\)
\(908\) 1.16816e10 0.517847
\(909\) 3.13568e8 0.0138471
\(910\) −1.06018e9 −0.0466374
\(911\) 7.96177e9 0.348895 0.174448 0.984666i \(-0.444186\pi\)
0.174448 + 0.984666i \(0.444186\pi\)
\(912\) −1.39310e10 −0.608137
\(913\) −3.87896e10 −1.68682
\(914\) 5.56173e9 0.240934
\(915\) −2.82756e10 −1.22022
\(916\) 9.96533e9 0.428408
\(917\) −1.21276e10 −0.519375
\(918\) −1.06411e11 −4.53979
\(919\) 2.30253e10 0.978588 0.489294 0.872119i \(-0.337254\pi\)
0.489294 + 0.872119i \(0.337254\pi\)
\(920\) −2.76785e9 −0.117189
\(921\) −5.42094e10 −2.28647
\(922\) −3.27997e9 −0.137820
\(923\) 1.13670e9 0.0475817
\(924\) −2.56474e10 −1.06952
\(925\) 3.05906e9 0.127084
\(926\) 1.08424e10 0.448730
\(927\) −5.39299e10 −2.22357
\(928\) 2.18646e9 0.0898097
\(929\) 3.32878e10 1.36217 0.681083 0.732206i \(-0.261509\pi\)
0.681083 + 0.732206i \(0.261509\pi\)
\(930\) −2.12867e10 −0.867799
\(931\) −2.82007e9 −0.114535
\(932\) 4.36773e9 0.176726
\(933\) 2.16116e10 0.871167
\(934\) 5.81582e9 0.233559
\(935\) 2.34791e10 0.939380
\(936\) 3.25460e9 0.129727
\(937\) 1.77970e10 0.706737 0.353369 0.935484i \(-0.385036\pi\)
0.353369 + 0.935484i \(0.385036\pi\)
\(938\) −6.09763e7 −0.00241241
\(939\) 2.96982e10 1.17058
\(940\) −8.53929e9 −0.335331
\(941\) −3.32182e10 −1.29961 −0.649803 0.760102i \(-0.725149\pi\)
−0.649803 + 0.760102i \(0.725149\pi\)
\(942\) 2.78309e10 1.08480
\(943\) −4.10367e9 −0.159361
\(944\) 2.81182e9 0.108789
\(945\) −4.43417e10 −1.70923
\(946\) −3.04186e10 −1.16821
\(947\) 1.50372e10 0.575364 0.287682 0.957726i \(-0.407115\pi\)
0.287682 + 0.957726i \(0.407115\pi\)
\(948\) −4.90509e9 −0.186990
\(949\) −1.50090e8 −0.00570059
\(950\) −1.80994e10 −0.684906
\(951\) −7.56342e10 −2.85159
\(952\) 1.83828e10 0.690528
\(953\) −1.27447e10 −0.476983 −0.238492 0.971145i \(-0.576653\pi\)
−0.238492 + 0.971145i \(0.576653\pi\)
\(954\) −6.80253e10 −2.53659
\(955\) 1.72804e10 0.642012
\(956\) −1.02343e10 −0.378838
\(957\) −2.82044e10 −1.04022
\(958\) −1.72832e10 −0.635106
\(959\) 4.21969e10 1.54496
\(960\) 3.16926e9 0.115614
\(961\) 2.09272e10 0.760640
\(962\) −4.25366e8 −0.0154046
\(963\) 1.40593e8 0.00507308
\(964\) 1.57797e10 0.567323
\(965\) 6.78486e9 0.243050
\(966\) 2.79542e10 0.997763
\(967\) 2.50300e10 0.890161 0.445080 0.895491i \(-0.353175\pi\)
0.445080 + 0.895491i \(0.353175\pi\)
\(968\) −1.12085e9 −0.0397176
\(969\) −1.28804e11 −4.54773
\(970\) −4.33036e9 −0.152343
\(971\) 1.01634e10 0.356265 0.178132 0.984007i \(-0.442994\pi\)
0.178132 + 0.984007i \(0.442994\pi\)
\(972\) 5.91704e10 2.06668
\(973\) −3.19024e9 −0.111027
\(974\) 7.27352e8 0.0252225
\(975\) 5.75551e9 0.198869
\(976\) −9.57974e9 −0.329822
\(977\) 3.59483e10 1.23324 0.616620 0.787261i \(-0.288502\pi\)
0.616620 + 0.787261i \(0.288502\pi\)
\(978\) −3.05657e10 −1.04484
\(979\) 3.86182e10 1.31538
\(980\) 6.41556e8 0.0217743
\(981\) −5.33969e10 −1.80582
\(982\) 3.48734e10 1.17518
\(983\) 2.69073e10 0.903510 0.451755 0.892142i \(-0.350798\pi\)
0.451755 + 0.892142i \(0.350798\pi\)
\(984\) 4.69881e9 0.157219
\(985\) −2.40646e8 −0.00802328
\(986\) 2.02156e10 0.671609
\(987\) 8.62435e10 2.85507
\(988\) 2.51674e9 0.0830212
\(989\) 3.31547e10 1.08983
\(990\) −3.00350e10 −0.983795
\(991\) −1.91531e10 −0.625147 −0.312573 0.949894i \(-0.601191\pi\)
−0.312573 + 0.949894i \(0.601191\pi\)
\(992\) −7.21192e9 −0.234563
\(993\) −4.41582e10 −1.43116
\(994\) −8.21306e9 −0.265248
\(995\) 6.33722e9 0.203947
\(996\) −4.84100e10 −1.55249
\(997\) −2.26750e10 −0.724625 −0.362313 0.932057i \(-0.618013\pi\)
−0.362313 + 0.932057i \(0.618013\pi\)
\(998\) −2.71484e10 −0.864545
\(999\) −1.77908e10 −0.564569
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.a.c.1.6 6
4.3 odd 2 592.8.a.c.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.c.1.6 6 1.1 even 1 trivial
592.8.a.c.1.1 6 4.3 odd 2