Properties

Label 74.8.b.a.73.12
Level $74$
Weight $8$
Character 74.73
Analytic conductor $23.116$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(73,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.73");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.1164918858\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 73.12
Character \(\chi\) \(=\) 74.73
Dual form 74.8.b.a.73.24

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000i q^{2} +86.4953 q^{3} -64.0000 q^{4} +509.039i q^{5} -691.963i q^{6} -1106.69 q^{7} +512.000i q^{8} +5294.44 q^{9} +4072.31 q^{10} -6321.65 q^{11} -5535.70 q^{12} +5645.60i q^{13} +8853.49i q^{14} +44029.5i q^{15} +4096.00 q^{16} +20217.2i q^{17} -42355.5i q^{18} -2675.00i q^{19} -32578.5i q^{20} -95723.2 q^{21} +50573.2i q^{22} -61864.7i q^{23} +44285.6i q^{24} -180996. q^{25} +45164.8 q^{26} +268779. q^{27} +70827.9 q^{28} +113185. i q^{29} +352236. q^{30} +171767. i q^{31} -32768.0i q^{32} -546794. q^{33} +161737. q^{34} -563347. i q^{35} -338844. q^{36} +(298951. + 74568.2i) q^{37} -21400.0 q^{38} +488318. i q^{39} -260628. q^{40} +392684. q^{41} +765785. i q^{42} -322691. i q^{43} +404586. q^{44} +2.69508e6i q^{45} -494918. q^{46} +661976. q^{47} +354285. q^{48} +401211. q^{49} +1.44797e6i q^{50} +1.74869e6i q^{51} -361318. i q^{52} +1.18393e6 q^{53} -2.15023e6i q^{54} -3.21797e6i q^{55} -566623. i q^{56} -231375. i q^{57} +905482. q^{58} +284535. i q^{59} -2.81789e6i q^{60} +220678. i q^{61} +1.37413e6 q^{62} -5.85928e6 q^{63} -262144. q^{64} -2.87383e6 q^{65} +4.37435e6i q^{66} -1.34002e6 q^{67} -1.29390e6i q^{68} -5.35101e6i q^{69} -4.50677e6 q^{70} +4.05819e6 q^{71} +2.71075e6i q^{72} +1.17183e6 q^{73} +(596545. - 2.39160e6i) q^{74} -1.56553e7 q^{75} +171200. i q^{76} +6.99609e6 q^{77} +3.90654e6 q^{78} -5.12044e6i q^{79} +2.08502e6i q^{80} +1.16692e7 q^{81} -3.14148e6i q^{82} -208229. q^{83} +6.12628e6 q^{84} -1.02913e7 q^{85} -2.58152e6 q^{86} +9.78999e6i q^{87} -3.23669e6i q^{88} -9.07881e6i q^{89} +2.15606e7 q^{90} -6.24791e6i q^{91} +3.95934e6i q^{92} +1.48570e7i q^{93} -5.29581e6i q^{94} +1.36168e6 q^{95} -2.83428e6i q^{96} +1.55814e7i q^{97} -3.20969e6i q^{98} -3.34696e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 106 q^{3} - 1536 q^{4} + 104 q^{7} + 17554 q^{9} + 1136 q^{10} + 366 q^{11} + 6784 q^{12} + 98304 q^{16} - 239820 q^{21} - 675570 q^{25} + 97008 q^{26} + 338780 q^{27} - 6656 q^{28} + 350400 q^{30}+ \cdots - 53279900 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/74\mathbb{Z}\right)^\times\).

\(n\) \(39\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000i 0.707107i
\(3\) 86.4953 1.84956 0.924780 0.380503i \(-0.124249\pi\)
0.924780 + 0.380503i \(0.124249\pi\)
\(4\) −64.0000 −0.500000
\(5\) 509.039i 1.82119i 0.413296 + 0.910597i \(0.364378\pi\)
−0.413296 + 0.910597i \(0.635622\pi\)
\(6\) 691.963i 1.30784i
\(7\) −1106.69 −1.21950 −0.609749 0.792594i \(-0.708730\pi\)
−0.609749 + 0.792594i \(0.708730\pi\)
\(8\) 512.000i 0.353553i
\(9\) 5294.44 2.42087
\(10\) 4072.31 1.28778
\(11\) −6321.65 −1.43204 −0.716022 0.698078i \(-0.754039\pi\)
−0.716022 + 0.698078i \(0.754039\pi\)
\(12\) −5535.70 −0.924780
\(13\) 5645.60i 0.712703i 0.934352 + 0.356351i \(0.115979\pi\)
−0.934352 + 0.356351i \(0.884021\pi\)
\(14\) 8853.49i 0.862316i
\(15\) 44029.5i 3.36841i
\(16\) 4096.00 0.250000
\(17\) 20217.2i 0.998042i 0.866590 + 0.499021i \(0.166307\pi\)
−0.866590 + 0.499021i \(0.833693\pi\)
\(18\) 42355.5i 1.71181i
\(19\) 2675.00i 0.0894717i −0.998999 0.0447358i \(-0.985755\pi\)
0.998999 0.0447358i \(-0.0142446\pi\)
\(20\) 32578.5i 0.910597i
\(21\) −95723.2 −2.25553
\(22\) 50573.2i 1.01261i
\(23\) 61864.7i 1.06022i −0.847929 0.530110i \(-0.822151\pi\)
0.847929 0.530110i \(-0.177849\pi\)
\(24\) 44285.6i 0.653918i
\(25\) −180996. −2.31675
\(26\) 45164.8 0.503957
\(27\) 268779. 2.62798
\(28\) 70827.9 0.609749
\(29\) 113185.i 0.861781i 0.902404 + 0.430890i \(0.141800\pi\)
−0.902404 + 0.430890i \(0.858200\pi\)
\(30\) 352236. 2.38182
\(31\) 171767.i 1.03555i 0.855515 + 0.517777i \(0.173240\pi\)
−0.855515 + 0.517777i \(0.826760\pi\)
\(32\) 32768.0i 0.176777i
\(33\) −546794. −2.64865
\(34\) 161737. 0.705722
\(35\) 563347.i 2.22094i
\(36\) −338844. −1.21043
\(37\) 298951. + 74568.2i 0.970272 + 0.242018i
\(38\) −21400.0 −0.0632660
\(39\) 488318.i 1.31819i
\(40\) −260628. −0.643889
\(41\) 392684. 0.889816 0.444908 0.895576i \(-0.353236\pi\)
0.444908 + 0.895576i \(0.353236\pi\)
\(42\) 765785.i 1.59490i
\(43\) 322691.i 0.618937i −0.950910 0.309469i \(-0.899849\pi\)
0.950910 0.309469i \(-0.100151\pi\)
\(44\) 404586. 0.716022
\(45\) 2.69508e6i 4.40887i
\(46\) −494918. −0.749688
\(47\) 661976. 0.930036 0.465018 0.885301i \(-0.346048\pi\)
0.465018 + 0.885301i \(0.346048\pi\)
\(48\) 354285. 0.462390
\(49\) 401211. 0.487177
\(50\) 1.44797e6i 1.63819i
\(51\) 1.74869e6i 1.84594i
\(52\) 361318.i 0.356351i
\(53\) 1.18393e6 1.09235 0.546173 0.837672i \(-0.316084\pi\)
0.546173 + 0.837672i \(0.316084\pi\)
\(54\) 2.15023e6i 1.85826i
\(55\) 3.21797e6i 2.60803i
\(56\) 566623.i 0.431158i
\(57\) 231375.i 0.165483i
\(58\) 905482. 0.609371
\(59\) 284535.i 0.180366i 0.995925 + 0.0901829i \(0.0287452\pi\)
−0.995925 + 0.0901829i \(0.971255\pi\)
\(60\) 2.81789e6i 1.68420i
\(61\) 220678.i 0.124482i 0.998061 + 0.0622408i \(0.0198247\pi\)
−0.998061 + 0.0622408i \(0.980175\pi\)
\(62\) 1.37413e6 0.732248
\(63\) −5.85928e6 −2.95225
\(64\) −262144. −0.125000
\(65\) −2.87383e6 −1.29797
\(66\) 4.37435e6i 1.87288i
\(67\) −1.34002e6 −0.544313 −0.272156 0.962253i \(-0.587737\pi\)
−0.272156 + 0.962253i \(0.587737\pi\)
\(68\) 1.29390e6i 0.499021i
\(69\) 5.35101e6i 1.96094i
\(70\) −4.50677e6 −1.57044
\(71\) 4.05819e6 1.34564 0.672820 0.739807i \(-0.265083\pi\)
0.672820 + 0.739807i \(0.265083\pi\)
\(72\) 2.71075e6i 0.855907i
\(73\) 1.17183e6 0.352561 0.176281 0.984340i \(-0.443593\pi\)
0.176281 + 0.984340i \(0.443593\pi\)
\(74\) 596545. 2.39160e6i 0.171133 0.686086i
\(75\) −1.56553e7 −4.28496
\(76\) 171200.i 0.0447358i
\(77\) 6.99609e6 1.74638
\(78\) 3.90654e6 0.932098
\(79\) 5.12044e6i 1.16846i −0.811589 0.584228i \(-0.801397\pi\)
0.811589 0.584228i \(-0.198603\pi\)
\(80\) 2.08502e6i 0.455298i
\(81\) 1.16692e7 2.43974
\(82\) 3.14148e6i 0.629195i
\(83\) −208229. −0.0399731 −0.0199866 0.999800i \(-0.506362\pi\)
−0.0199866 + 0.999800i \(0.506362\pi\)
\(84\) 6.12628e6 1.12777
\(85\) −1.02913e7 −1.81763
\(86\) −2.58152e6 −0.437655
\(87\) 9.78999e6i 1.59391i
\(88\) 3.23669e6i 0.506304i
\(89\) 9.07881e6i 1.36510i −0.730839 0.682549i \(-0.760871\pi\)
0.730839 0.682549i \(-0.239129\pi\)
\(90\) 2.15606e7 3.11754
\(91\) 6.24791e6i 0.869140i
\(92\) 3.95934e6i 0.530110i
\(93\) 1.48570e7i 1.91532i
\(94\) 5.29581e6i 0.657635i
\(95\) 1.36168e6 0.162945
\(96\) 2.83428e6i 0.326959i
\(97\) 1.55814e7i 1.73343i 0.498808 + 0.866713i \(0.333771\pi\)
−0.498808 + 0.866713i \(0.666229\pi\)
\(98\) 3.20969e6i 0.344486i
\(99\) −3.34696e7 −3.46679
\(100\) 1.15837e7 1.15837
\(101\) 1.06003e6 0.102375 0.0511873 0.998689i \(-0.483699\pi\)
0.0511873 + 0.998689i \(0.483699\pi\)
\(102\) 1.39895e7 1.30527
\(103\) 1.49250e6i 0.134581i −0.997733 0.0672907i \(-0.978565\pi\)
0.997733 0.0672907i \(-0.0214355\pi\)
\(104\) −2.89055e6 −0.251978
\(105\) 4.87268e7i 4.10777i
\(106\) 9.47144e6i 0.772406i
\(107\) −2.23088e7 −1.76049 −0.880244 0.474522i \(-0.842621\pi\)
−0.880244 + 0.474522i \(0.842621\pi\)
\(108\) −1.72019e7 −1.31399
\(109\) 2.52596e7i 1.86825i 0.356952 + 0.934123i \(0.383816\pi\)
−0.356952 + 0.934123i \(0.616184\pi\)
\(110\) −2.57438e7 −1.84416
\(111\) 2.58578e7 + 6.44980e6i 1.79458 + 0.447626i
\(112\) −4.53299e6 −0.304875
\(113\) 787004.i 0.0513101i −0.999671 0.0256550i \(-0.991833\pi\)
0.999671 0.0256550i \(-0.00816715\pi\)
\(114\) −1.85100e6 −0.117014
\(115\) 3.14916e7 1.93086
\(116\) 7.24385e6i 0.430890i
\(117\) 2.98903e7i 1.72536i
\(118\) 2.27628e6 0.127538
\(119\) 2.23740e7i 1.21711i
\(120\) −2.25431e7 −1.19091
\(121\) 2.04761e7 1.05075
\(122\) 1.76543e6 0.0880218
\(123\) 3.39654e7 1.64577
\(124\) 1.09931e7i 0.517777i
\(125\) 5.23653e7i 2.39805i
\(126\) 4.68743e7i 2.08755i
\(127\) −1.48462e7 −0.643134 −0.321567 0.946887i \(-0.604210\pi\)
−0.321567 + 0.946887i \(0.604210\pi\)
\(128\) 2.09715e6i 0.0883883i
\(129\) 2.79112e7i 1.14476i
\(130\) 2.29907e7i 0.917803i
\(131\) 3.31929e7i 1.29002i 0.764175 + 0.645008i \(0.223146\pi\)
−0.764175 + 0.645008i \(0.776854\pi\)
\(132\) 3.49948e7 1.32432
\(133\) 2.96038e6i 0.109111i
\(134\) 1.07201e7i 0.384887i
\(135\) 1.36819e8i 4.78607i
\(136\) −1.03512e7 −0.352861
\(137\) −3.05428e7 −1.01482 −0.507408 0.861706i \(-0.669396\pi\)
−0.507408 + 0.861706i \(0.669396\pi\)
\(138\) −4.28081e7 −1.38659
\(139\) −9.75469e6 −0.308079 −0.154039 0.988065i \(-0.549228\pi\)
−0.154039 + 0.988065i \(0.549228\pi\)
\(140\) 3.60542e7i 1.11047i
\(141\) 5.72578e7 1.72016
\(142\) 3.24656e7i 0.951511i
\(143\) 3.56895e7i 1.02062i
\(144\) 2.16860e7 0.605217
\(145\) −5.76157e7 −1.56947
\(146\) 9.37464e6i 0.249298i
\(147\) 3.47029e7 0.901062
\(148\) −1.91328e7 4.77236e6i −0.485136 0.121009i
\(149\) −6.86988e6 −0.170136 −0.0850682 0.996375i \(-0.527111\pi\)
−0.0850682 + 0.996375i \(0.527111\pi\)
\(150\) 1.25242e8i 3.02992i
\(151\) −3.09039e7 −0.730455 −0.365227 0.930918i \(-0.619009\pi\)
−0.365227 + 0.930918i \(0.619009\pi\)
\(152\) 1.36960e6 0.0316330
\(153\) 1.07039e8i 2.41613i
\(154\) 5.59687e7i 1.23487i
\(155\) −8.74360e7 −1.88595
\(156\) 3.12524e7i 0.659093i
\(157\) 7.14654e7 1.47383 0.736914 0.675987i \(-0.236282\pi\)
0.736914 + 0.675987i \(0.236282\pi\)
\(158\) −4.09635e7 −0.826224
\(159\) 1.02404e8 2.02036
\(160\) 1.66802e7 0.321945
\(161\) 6.84648e7i 1.29294i
\(162\) 9.33536e7i 1.72516i
\(163\) 3.69665e7i 0.668577i −0.942471 0.334288i \(-0.891504\pi\)
0.942471 0.334288i \(-0.108496\pi\)
\(164\) −2.51318e7 −0.444908
\(165\) 2.78339e8i 4.82370i
\(166\) 1.66583e6i 0.0282653i
\(167\) 2.60407e6i 0.0432658i 0.999766 + 0.0216329i \(0.00688650\pi\)
−0.999766 + 0.0216329i \(0.993113\pi\)
\(168\) 4.90103e7i 0.797452i
\(169\) 3.08757e7 0.492055
\(170\) 8.23306e7i 1.28526i
\(171\) 1.41626e7i 0.216599i
\(172\) 2.06522e7i 0.309469i
\(173\) 1.26966e7 0.186434 0.0932170 0.995646i \(-0.470285\pi\)
0.0932170 + 0.995646i \(0.470285\pi\)
\(174\) 7.83199e7 1.12707
\(175\) 2.00306e8 2.82527
\(176\) −2.58935e7 −0.358011
\(177\) 2.46110e7i 0.333597i
\(178\) −7.26305e7 −0.965271
\(179\) 1.22581e8i 1.59748i −0.601675 0.798741i \(-0.705500\pi\)
0.601675 0.798741i \(-0.294500\pi\)
\(180\) 1.72485e8i 2.20444i
\(181\) 14169.2 0.000177611 8.88056e−5 1.00000i \(-0.499972\pi\)
8.88056e−5 1.00000i \(0.499972\pi\)
\(182\) −4.99833e7 −0.614575
\(183\) 1.90877e7i 0.230236i
\(184\) 3.16747e7 0.374844
\(185\) −3.79581e7 + 1.52178e8i −0.440762 + 1.76705i
\(186\) 1.18856e8 1.35434
\(187\) 1.27806e8i 1.42924i
\(188\) −4.23665e7 −0.465018
\(189\) −2.97454e8 −3.20482
\(190\) 1.08934e7i 0.115220i
\(191\) 6.31477e7i 0.655753i −0.944721 0.327877i \(-0.893667\pi\)
0.944721 0.327877i \(-0.106333\pi\)
\(192\) −2.26742e7 −0.231195
\(193\) 5.98484e7i 0.599241i 0.954058 + 0.299621i \(0.0968601\pi\)
−0.954058 + 0.299621i \(0.903140\pi\)
\(194\) 1.24651e8 1.22572
\(195\) −2.48573e8 −2.40067
\(196\) −2.56775e7 −0.243588
\(197\) 6.91995e7 0.644868 0.322434 0.946592i \(-0.395499\pi\)
0.322434 + 0.946592i \(0.395499\pi\)
\(198\) 2.67757e8i 2.45139i
\(199\) 1.63722e8i 1.47273i 0.676586 + 0.736364i \(0.263459\pi\)
−0.676586 + 0.736364i \(0.736541\pi\)
\(200\) 9.26699e7i 0.819094i
\(201\) −1.15905e8 −1.00674
\(202\) 8.48022e6i 0.0723898i
\(203\) 1.25260e8i 1.05094i
\(204\) 1.11916e8i 0.922969i
\(205\) 1.99892e8i 1.62053i
\(206\) −1.19400e7 −0.0951634
\(207\) 3.27539e8i 2.56665i
\(208\) 2.31244e7i 0.178176i
\(209\) 1.69104e7i 0.128127i
\(210\) −3.89815e8 −2.90463
\(211\) 2.46475e8 1.80627 0.903137 0.429352i \(-0.141258\pi\)
0.903137 + 0.429352i \(0.141258\pi\)
\(212\) −7.57715e7 −0.546173
\(213\) 3.51015e8 2.48884
\(214\) 1.78470e8i 1.24485i
\(215\) 1.64262e8 1.12720
\(216\) 1.37615e8i 0.929132i
\(217\) 1.90092e8i 1.26286i
\(218\) 2.02077e8 1.32105
\(219\) 1.01358e8 0.652083
\(220\) 2.05950e8i 1.30401i
\(221\) −1.14138e8 −0.711307
\(222\) 5.15984e7 2.06863e8i 0.316520 1.26896i
\(223\) 914059. 0.00551959 0.00275980 0.999996i \(-0.499122\pi\)
0.00275980 + 0.999996i \(0.499122\pi\)
\(224\) 3.62639e7i 0.215579i
\(225\) −9.58272e8 −5.60854
\(226\) −6.29603e6 −0.0362817
\(227\) 4.60910e7i 0.261533i 0.991413 + 0.130766i \(0.0417438\pi\)
−0.991413 + 0.130766i \(0.958256\pi\)
\(228\) 1.48080e7i 0.0827416i
\(229\) 1.44463e8 0.794936 0.397468 0.917616i \(-0.369889\pi\)
0.397468 + 0.917616i \(0.369889\pi\)
\(230\) 2.51933e8i 1.36533i
\(231\) 6.05129e8 3.23002
\(232\) −5.79508e7 −0.304685
\(233\) 1.14251e6 0.00591718 0.00295859 0.999996i \(-0.499058\pi\)
0.00295859 + 0.999996i \(0.499058\pi\)
\(234\) 2.39122e8 1.22001
\(235\) 3.36972e8i 1.69378i
\(236\) 1.82103e7i 0.0901829i
\(237\) 4.42894e8i 2.16113i
\(238\) −1.78992e8 −0.860627
\(239\) 2.39631e8i 1.13540i 0.823234 + 0.567702i \(0.192167\pi\)
−0.823234 + 0.567702i \(0.807833\pi\)
\(240\) 1.80345e8i 0.842101i
\(241\) 1.93481e8i 0.890386i 0.895435 + 0.445193i \(0.146865\pi\)
−0.895435 + 0.445193i \(0.853135\pi\)
\(242\) 1.63809e8i 0.742992i
\(243\) 4.21511e8 1.88446
\(244\) 1.41234e7i 0.0622408i
\(245\) 2.04232e8i 0.887243i
\(246\) 2.71723e8i 1.16373i
\(247\) 1.51020e7 0.0637667
\(248\) −8.79445e7 −0.366124
\(249\) −1.80109e7 −0.0739327
\(250\) −4.18922e8 −1.69568
\(251\) 3.24978e8i 1.29717i −0.761143 0.648585i \(-0.775361\pi\)
0.761143 0.648585i \(-0.224639\pi\)
\(252\) 3.74994e8 1.47612
\(253\) 3.91087e8i 1.51828i
\(254\) 1.18769e8i 0.454764i
\(255\) −8.90151e8 −3.36181
\(256\) 1.67772e7 0.0625000
\(257\) 1.82037e8i 0.668951i −0.942404 0.334475i \(-0.891441\pi\)
0.942404 0.334475i \(-0.108559\pi\)
\(258\) −2.23290e8 −0.809468
\(259\) −3.30844e8 8.25236e7i −1.18325 0.295140i
\(260\) 1.83925e8 0.648985
\(261\) 5.99252e8i 2.08626i
\(262\) 2.65543e8 0.912180
\(263\) −2.22855e8 −0.755399 −0.377699 0.925928i \(-0.623285\pi\)
−0.377699 + 0.925928i \(0.623285\pi\)
\(264\) 2.79958e8i 0.936439i
\(265\) 6.02667e8i 1.98937i
\(266\) 2.36830e7 0.0771528
\(267\) 7.85275e8i 2.52483i
\(268\) 8.57611e7 0.272156
\(269\) −4.20621e8 −1.31752 −0.658761 0.752352i \(-0.728919\pi\)
−0.658761 + 0.752352i \(0.728919\pi\)
\(270\) 1.09455e9 3.38426
\(271\) 4.37173e8 1.33432 0.667161 0.744913i \(-0.267509\pi\)
0.667161 + 0.744913i \(0.267509\pi\)
\(272\) 8.28095e7i 0.249510i
\(273\) 5.40415e8i 1.60753i
\(274\) 2.44343e8i 0.717583i
\(275\) 1.14419e9 3.31768
\(276\) 3.42465e8i 0.980469i
\(277\) 5.94338e7i 0.168018i 0.996465 + 0.0840088i \(0.0267724\pi\)
−0.996465 + 0.0840088i \(0.973228\pi\)
\(278\) 7.80375e7i 0.217845i
\(279\) 9.09409e8i 2.50694i
\(280\) 2.88433e8 0.785222
\(281\) 3.66736e7i 0.0986010i 0.998784 + 0.0493005i \(0.0156992\pi\)
−0.998784 + 0.0493005i \(0.984301\pi\)
\(282\) 4.58063e8i 1.21633i
\(283\) 1.96753e8i 0.516024i −0.966142 0.258012i \(-0.916933\pi\)
0.966142 0.258012i \(-0.0830674\pi\)
\(284\) −2.59724e8 −0.672820
\(285\) 1.17779e8 0.301377
\(286\) −2.85516e8 −0.721688
\(287\) −4.34578e8 −1.08513
\(288\) 1.73488e8i 0.427953i
\(289\) 1.60542e6 0.00391243
\(290\) 4.60926e8i 1.10978i
\(291\) 1.34772e9i 3.20607i
\(292\) −7.49971e7 −0.176281
\(293\) 2.35350e8 0.546610 0.273305 0.961927i \(-0.411883\pi\)
0.273305 + 0.961927i \(0.411883\pi\)
\(294\) 2.77623e8i 0.637147i
\(295\) −1.44840e8 −0.328481
\(296\) −3.81789e7 + 1.53063e8i −0.0855663 + 0.343043i
\(297\) −1.69913e9 −3.76339
\(298\) 5.49591e7i 0.120305i
\(299\) 3.49264e8 0.755621
\(300\) 1.00194e9 2.14248
\(301\) 3.57117e8i 0.754793i
\(302\) 2.47231e8i 0.516509i
\(303\) 9.16874e7 0.189348
\(304\) 1.09568e7i 0.0223679i
\(305\) −1.12334e8 −0.226705
\(306\) 8.56308e8 1.70846
\(307\) −4.48461e8 −0.884587 −0.442293 0.896870i \(-0.645835\pi\)
−0.442293 + 0.896870i \(0.645835\pi\)
\(308\) −4.47749e8 −0.873188
\(309\) 1.29094e8i 0.248916i
\(310\) 6.99488e8i 1.33356i
\(311\) 8.61677e8i 1.62436i 0.583405 + 0.812182i \(0.301720\pi\)
−0.583405 + 0.812182i \(0.698280\pi\)
\(312\) −2.50019e8 −0.466049
\(313\) 1.00288e9i 1.84861i −0.381657 0.924304i \(-0.624646\pi\)
0.381657 0.924304i \(-0.375354\pi\)
\(314\) 5.71723e8i 1.04215i
\(315\) 2.98261e9i 5.37661i
\(316\) 3.27708e8i 0.584228i
\(317\) 7.93266e8 1.39866 0.699329 0.714800i \(-0.253482\pi\)
0.699329 + 0.714800i \(0.253482\pi\)
\(318\) 8.19235e8i 1.42861i
\(319\) 7.15518e8i 1.23411i
\(320\) 1.33442e8i 0.227649i
\(321\) −1.92961e9 −3.25613
\(322\) 5.47719e8 0.914244
\(323\) 5.40808e7 0.0892965
\(324\) −7.46829e8 −1.21987
\(325\) 1.02183e9i 1.65115i
\(326\) −2.95732e8 −0.472755
\(327\) 2.18484e9i 3.45543i
\(328\) 2.01054e8i 0.314597i
\(329\) −7.32600e8 −1.13418
\(330\) −2.22671e9 −3.41087
\(331\) 2.68525e8i 0.406993i −0.979076 0.203496i \(-0.934769\pi\)
0.979076 0.203496i \(-0.0652305\pi\)
\(332\) 1.33267e7 0.0199866
\(333\) 1.58278e9 + 3.94797e8i 2.34890 + 0.585894i
\(334\) 2.08325e7 0.0305935
\(335\) 6.82121e8i 0.991299i
\(336\) −3.92082e8 −0.563884
\(337\) −6.44046e7 −0.0916669 −0.0458334 0.998949i \(-0.514594\pi\)
−0.0458334 + 0.998949i \(0.514594\pi\)
\(338\) 2.47006e8i 0.347935i
\(339\) 6.80722e7i 0.0949010i
\(340\) 6.58645e8 0.908814
\(341\) 1.08585e9i 1.48296i
\(342\) −1.13301e8 −0.153159
\(343\) 4.67389e8 0.625387
\(344\) 1.65218e8 0.218827
\(345\) 2.72387e9 3.57125
\(346\) 1.01573e8i 0.131829i
\(347\) 3.89685e8i 0.500681i 0.968158 + 0.250340i \(0.0805425\pi\)
−0.968158 + 0.250340i \(0.919457\pi\)
\(348\) 6.26559e8i 0.796957i
\(349\) −5.64662e8 −0.711050 −0.355525 0.934667i \(-0.615698\pi\)
−0.355525 + 0.934667i \(0.615698\pi\)
\(350\) 1.60244e9i 1.99777i
\(351\) 1.51742e9i 1.87297i
\(352\) 2.07148e8i 0.253152i
\(353\) 1.18515e9i 1.43404i −0.697052 0.717020i \(-0.745505\pi\)
0.697052 0.717020i \(-0.254495\pi\)
\(354\) 1.96888e8 0.235889
\(355\) 2.06578e9i 2.45067i
\(356\) 5.81044e8i 0.682549i
\(357\) 1.93525e9i 2.25112i
\(358\) −9.80644e8 −1.12959
\(359\) −6.40809e8 −0.730968 −0.365484 0.930818i \(-0.619096\pi\)
−0.365484 + 0.930818i \(0.619096\pi\)
\(360\) −1.37988e9 −1.55877
\(361\) 8.86716e8 0.991995
\(362\) 113354.i 0.000125590i
\(363\) 1.77109e9 1.94342
\(364\) 3.99866e8i 0.434570i
\(365\) 5.96507e8i 0.642082i
\(366\) 1.52701e8 0.162802
\(367\) 3.02555e8 0.319502 0.159751 0.987157i \(-0.448931\pi\)
0.159751 + 0.987157i \(0.448931\pi\)
\(368\) 2.53398e8i 0.265055i
\(369\) 2.07904e9 2.15413
\(370\) 1.21742e9 + 3.03665e8i 1.24950 + 0.311665i
\(371\) −1.31024e9 −1.33212
\(372\) 9.50849e8i 0.957660i
\(373\) −1.43704e9 −1.43380 −0.716900 0.697176i \(-0.754440\pi\)
−0.716900 + 0.697176i \(0.754440\pi\)
\(374\) −1.02245e9 −1.01063
\(375\) 4.52935e9i 4.43534i
\(376\) 3.38932e8i 0.328817i
\(377\) −6.38998e8 −0.614193
\(378\) 2.37963e9i 2.26615i
\(379\) 4.27432e8 0.403302 0.201651 0.979457i \(-0.435369\pi\)
0.201651 + 0.979457i \(0.435369\pi\)
\(380\) −8.71474e7 −0.0814726
\(381\) −1.28412e9 −1.18951
\(382\) −5.05181e8 −0.463688
\(383\) 2.08447e8i 0.189583i −0.995497 0.0947915i \(-0.969782\pi\)
0.995497 0.0947915i \(-0.0302184\pi\)
\(384\) 1.81394e8i 0.163479i
\(385\) 3.56128e9i 3.18049i
\(386\) 4.78787e8 0.423727
\(387\) 1.70847e9i 1.49837i
\(388\) 9.97209e8i 0.866713i
\(389\) 1.20130e9i 1.03473i −0.855765 0.517365i \(-0.826913\pi\)
0.855765 0.517365i \(-0.173087\pi\)
\(390\) 1.98858e9i 1.69753i
\(391\) 1.25073e9 1.05814
\(392\) 2.05420e8i 0.172243i
\(393\) 2.87103e9i 2.38596i
\(394\) 5.53596e8i 0.455991i
\(395\) 2.60651e9 2.12799
\(396\) 2.14206e9 1.73340
\(397\) 1.33907e9 1.07408 0.537040 0.843557i \(-0.319542\pi\)
0.537040 + 0.843557i \(0.319542\pi\)
\(398\) 1.30978e9 1.04138
\(399\) 2.56059e8i 0.201806i
\(400\) −7.41359e8 −0.579187
\(401\) 1.69970e9i 1.31634i 0.752870 + 0.658169i \(0.228669\pi\)
−0.752870 + 0.658169i \(0.771331\pi\)
\(402\) 9.27241e8i 0.711872i
\(403\) −9.69726e8 −0.738042
\(404\) −6.78417e7 −0.0511873
\(405\) 5.94008e9i 4.44324i
\(406\) −1.00208e9 −0.743127
\(407\) −1.88986e9 4.71394e8i −1.38947 0.346580i
\(408\) −8.95329e8 −0.652637
\(409\) 3.92630e8i 0.283760i −0.989884 0.141880i \(-0.954685\pi\)
0.989884 0.141880i \(-0.0453148\pi\)
\(410\) 1.59913e9 1.14589
\(411\) −2.64181e9 −1.87696
\(412\) 9.55202e7i 0.0672907i
\(413\) 3.14891e8i 0.219956i
\(414\) −2.62031e9 −1.81490
\(415\) 1.05997e8i 0.0727988i
\(416\) 1.84995e8 0.125989
\(417\) −8.43735e8 −0.569810
\(418\) 1.35283e8 0.0905997
\(419\) −1.13765e9 −0.755546 −0.377773 0.925898i \(-0.623310\pi\)
−0.377773 + 0.925898i \(0.623310\pi\)
\(420\) 3.11852e9i 2.05388i
\(421\) 9.38142e7i 0.0612747i −0.999531 0.0306374i \(-0.990246\pi\)
0.999531 0.0306374i \(-0.00975370\pi\)
\(422\) 1.97180e9i 1.27723i
\(423\) 3.50479e9 2.25150
\(424\) 6.06172e8i 0.386203i
\(425\) 3.65922e9i 2.31221i
\(426\) 2.80812e9i 1.75988i
\(427\) 2.44222e8i 0.151805i
\(428\) 1.42776e9 0.880244
\(429\) 3.08698e9i 1.88770i
\(430\) 1.31410e9i 0.797054i
\(431\) 2.22183e8i 0.133672i 0.997764 + 0.0668359i \(0.0212904\pi\)
−0.997764 + 0.0668359i \(0.978710\pi\)
\(432\) 1.10092e9 0.656996
\(433\) −1.04808e9 −0.620423 −0.310211 0.950668i \(-0.600400\pi\)
−0.310211 + 0.950668i \(0.600400\pi\)
\(434\) −1.52073e9 −0.892975
\(435\) −4.98349e9 −2.90283
\(436\) 1.61661e9i 0.934123i
\(437\) −1.65488e8 −0.0948596
\(438\) 8.10863e8i 0.461092i
\(439\) 9.02209e8i 0.508957i −0.967078 0.254479i \(-0.918096\pi\)
0.967078 0.254479i \(-0.0819038\pi\)
\(440\) 1.64760e9 0.922078
\(441\) 2.12419e9 1.17939
\(442\) 9.13104e8i 0.502970i
\(443\) 1.88343e9 1.02929 0.514644 0.857404i \(-0.327924\pi\)
0.514644 + 0.857404i \(0.327924\pi\)
\(444\) −1.65490e9 4.12787e8i −0.897288 0.223813i
\(445\) 4.62147e9 2.48611
\(446\) 7.31247e6i 0.00390294i
\(447\) −5.94213e8 −0.314678
\(448\) 2.90111e8 0.152437
\(449\) 8.86247e8i 0.462054i −0.972947 0.231027i \(-0.925791\pi\)
0.972947 0.231027i \(-0.0742085\pi\)
\(450\) 7.66618e9i 3.96584i
\(451\) −2.48241e9 −1.27426
\(452\) 5.03683e7i 0.0256550i
\(453\) −2.67304e9 −1.35102
\(454\) 3.68728e8 0.184932
\(455\) 3.18043e9 1.58287
\(456\) 1.18464e8 0.0585071
\(457\) 3.74122e9i 1.83361i 0.399335 + 0.916805i \(0.369241\pi\)
−0.399335 + 0.916805i \(0.630759\pi\)
\(458\) 1.15570e9i 0.562105i
\(459\) 5.43395e9i 2.62284i
\(460\) −2.01546e9 −0.965432
\(461\) 2.26010e9i 1.07442i −0.843449 0.537209i \(-0.819479\pi\)
0.843449 0.537209i \(-0.180521\pi\)
\(462\) 4.84103e9i 2.28397i
\(463\) 2.96960e9i 1.39048i 0.718777 + 0.695240i \(0.244702\pi\)
−0.718777 + 0.695240i \(0.755298\pi\)
\(464\) 4.63607e8i 0.215445i
\(465\) −7.56280e9 −3.48817
\(466\) 9.14010e6i 0.00418408i
\(467\) 2.77850e7i 0.0126241i 0.999980 + 0.00631205i \(0.00200920\pi\)
−0.999980 + 0.00631205i \(0.997991\pi\)
\(468\) 1.91298e9i 0.862680i
\(469\) 1.48298e9 0.663788
\(470\) 2.69577e9 1.19768
\(471\) 6.18142e9 2.72593
\(472\) −1.45682e8 −0.0637689
\(473\) 2.03994e9i 0.886345i
\(474\) −3.54315e9 −1.52815
\(475\) 4.84163e8i 0.207283i
\(476\) 1.43194e9i 0.608555i
\(477\) 6.26825e9 2.64443
\(478\) 1.91705e9 0.802852
\(479\) 4.02671e8i 0.167408i −0.996491 0.0837039i \(-0.973325\pi\)
0.996491 0.0837039i \(-0.0266750\pi\)
\(480\) 1.44276e9 0.595456
\(481\) −4.20982e8 + 1.68776e9i −0.172487 + 0.691515i
\(482\) 1.54785e9 0.629598
\(483\) 5.92189e9i 2.39136i
\(484\) −1.31047e9 −0.525375
\(485\) −7.93154e9 −3.15690
\(486\) 3.37209e9i 1.33252i
\(487\) 4.70840e9i 1.84724i 0.383315 + 0.923618i \(0.374782\pi\)
−0.383315 + 0.923618i \(0.625218\pi\)
\(488\) −1.12987e8 −0.0440109
\(489\) 3.19743e9i 1.23657i
\(490\) 1.63386e9 0.627376
\(491\) 4.56487e9 1.74038 0.870189 0.492718i \(-0.163997\pi\)
0.870189 + 0.492718i \(0.163997\pi\)
\(492\) −2.17378e9 −0.822884
\(493\) −2.28828e9 −0.860093
\(494\) 1.20816e8i 0.0450899i
\(495\) 1.70374e10i 6.31370i
\(496\) 7.03556e8i 0.258889i
\(497\) −4.49115e9 −1.64101
\(498\) 1.44087e8i 0.0522783i
\(499\) 2.35941e9i 0.850063i −0.905178 0.425032i \(-0.860263\pi\)
0.905178 0.425032i \(-0.139737\pi\)
\(500\) 3.35138e9i 1.19903i
\(501\) 2.25240e8i 0.0800226i
\(502\) −2.59983e9 −0.917237
\(503\) 4.88647e8i 0.171201i 0.996330 + 0.0856007i \(0.0272809\pi\)
−0.996330 + 0.0856007i \(0.972719\pi\)
\(504\) 2.99995e9i 1.04378i
\(505\) 5.39595e8i 0.186444i
\(506\) 3.12870e9 1.07359
\(507\) 2.67061e9 0.910085
\(508\) 9.50155e8 0.321567
\(509\) 2.01370e9 0.676834 0.338417 0.940996i \(-0.390109\pi\)
0.338417 + 0.940996i \(0.390109\pi\)
\(510\) 7.12121e9i 2.37716i
\(511\) −1.29685e9 −0.429948
\(512\) 1.34218e8i 0.0441942i
\(513\) 7.18983e8i 0.235130i
\(514\) −1.45630e9 −0.473020
\(515\) 7.59742e8 0.245099
\(516\) 1.78632e9i 0.572381i
\(517\) −4.18478e9 −1.33185
\(518\) −6.60189e8 + 2.64676e9i −0.208696 + 0.836681i
\(519\) 1.09819e9 0.344821
\(520\) 1.47140e9i 0.458902i
\(521\) −2.55729e9 −0.792224 −0.396112 0.918202i \(-0.629641\pi\)
−0.396112 + 0.918202i \(0.629641\pi\)
\(522\) 4.79402e9 1.47521
\(523\) 3.10477e9i 0.949015i −0.880251 0.474508i \(-0.842626\pi\)
0.880251 0.474508i \(-0.157374\pi\)
\(524\) 2.12434e9i 0.645008i
\(525\) 1.73255e10 5.22550
\(526\) 1.78284e9i 0.534148i
\(527\) −3.47263e9 −1.03353
\(528\) −2.23967e9 −0.662162
\(529\) −4.22419e8 −0.124065
\(530\) 4.82133e9 1.40670
\(531\) 1.50646e9i 0.436642i
\(532\) 1.89464e8i 0.0545553i
\(533\) 2.21694e9i 0.634174i
\(534\) −6.28220e9 −1.78533
\(535\) 1.13560e10i 3.20619i
\(536\) 6.86088e8i 0.192444i
\(537\) 1.06026e10i 2.95464i
\(538\) 3.36497e9i 0.931629i
\(539\) −2.53632e9 −0.697658
\(540\) 8.75642e9i 2.39303i
\(541\) 1.28625e9i 0.349249i 0.984635 + 0.174625i \(0.0558712\pi\)
−0.984635 + 0.174625i \(0.944129\pi\)
\(542\) 3.49738e9i 0.943508i
\(543\) 1.22557e6 0.000328503
\(544\) 6.62476e8 0.176431
\(545\) −1.28581e10 −3.40244
\(546\) −4.32332e9 −1.13669
\(547\) 2.39589e8i 0.0625908i 0.999510 + 0.0312954i \(0.00996326\pi\)
−0.999510 + 0.0312954i \(0.990037\pi\)
\(548\) 1.95474e9 0.507408
\(549\) 1.16837e9i 0.301354i
\(550\) 9.15354e9i 2.34596i
\(551\) 3.02770e8 0.0771049
\(552\) 2.73972e9 0.693296
\(553\) 5.66672e9i 1.42493i
\(554\) 4.75471e8 0.118806
\(555\) −3.28320e9 + 1.31626e10i −0.815215 + 3.26827i
\(556\) 6.24300e8 0.154039
\(557\) 6.89749e9i 1.69121i −0.533808 0.845606i \(-0.679239\pi\)
0.533808 0.845606i \(-0.320761\pi\)
\(558\) 7.27527e9 1.77268
\(559\) 1.82178e9 0.441118
\(560\) 2.30747e9i 0.555236i
\(561\) 1.10546e10i 2.64346i
\(562\) 2.93389e8 0.0697215
\(563\) 5.84475e9i 1.38034i −0.723647 0.690171i \(-0.757535\pi\)
0.723647 0.690171i \(-0.242465\pi\)
\(564\) −3.66450e9 −0.860079
\(565\) 4.00616e8 0.0934456
\(566\) −1.57403e9 −0.364884
\(567\) −1.29141e10 −2.97526
\(568\) 2.07780e9i 0.475755i
\(569\) 8.17699e9i 1.86080i 0.366542 + 0.930401i \(0.380542\pi\)
−0.366542 + 0.930401i \(0.619458\pi\)
\(570\) 9.42230e8i 0.213106i
\(571\) 1.60114e9 0.359917 0.179958 0.983674i \(-0.442404\pi\)
0.179958 + 0.983674i \(0.442404\pi\)
\(572\) 2.28413e9i 0.510311i
\(573\) 5.46198e9i 1.21285i
\(574\) 3.47663e9i 0.767302i
\(575\) 1.11973e10i 2.45626i
\(576\) −1.38791e9 −0.302609
\(577\) 5.93214e9i 1.28557i 0.766046 + 0.642786i \(0.222221\pi\)
−0.766046 + 0.642786i \(0.777779\pi\)
\(578\) 1.28434e7i 0.00276651i
\(579\) 5.17660e9i 1.10833i
\(580\) 3.68740e9 0.784735
\(581\) 2.30444e8 0.0487472
\(582\) 1.07817e10 2.26704
\(583\) −7.48439e9 −1.56429
\(584\) 5.99977e8i 0.124649i
\(585\) −1.52153e10 −3.14222
\(586\) 1.88280e9i 0.386512i
\(587\) 3.75795e9i 0.766862i 0.923570 + 0.383431i \(0.125258\pi\)
−0.923570 + 0.383431i \(0.874742\pi\)
\(588\) −2.22098e9 −0.450531
\(589\) 4.59475e8 0.0926528
\(590\) 1.15872e9i 0.232271i
\(591\) 5.98543e9 1.19272
\(592\) 1.22450e9 + 3.05431e8i 0.242568 + 0.0605045i
\(593\) −2.57978e9 −0.508032 −0.254016 0.967200i \(-0.581752\pi\)
−0.254016 + 0.967200i \(0.581752\pi\)
\(594\) 1.35930e10i 2.66112i
\(595\) 1.13893e10 2.21659
\(596\) 4.39673e8 0.0850682
\(597\) 1.41612e10i 2.72390i
\(598\) 2.79411e9i 0.534305i
\(599\) 7.72604e8 0.146880 0.0734401 0.997300i \(-0.476602\pi\)
0.0734401 + 0.997300i \(0.476602\pi\)
\(600\) 8.01551e9i 1.51496i
\(601\) 3.33777e9 0.627186 0.313593 0.949558i \(-0.398467\pi\)
0.313593 + 0.949558i \(0.398467\pi\)
\(602\) 2.85694e9 0.533719
\(603\) −7.09464e9 −1.31771
\(604\) 1.97785e9 0.365227
\(605\) 1.04232e10i 1.91362i
\(606\) 7.33499e8i 0.133889i
\(607\) 6.72918e9i 1.22124i −0.791923 0.610621i \(-0.790920\pi\)
0.791923 0.610621i \(-0.209080\pi\)
\(608\) −8.76543e7 −0.0158165
\(609\) 1.08344e10i 1.94378i
\(610\) 8.98672e8i 0.160305i
\(611\) 3.73725e9i 0.662839i
\(612\) 6.85047e9i 1.20806i
\(613\) 7.52818e9 1.32001 0.660006 0.751260i \(-0.270554\pi\)
0.660006 + 0.751260i \(0.270554\pi\)
\(614\) 3.58769e9i 0.625497i
\(615\) 1.72897e10i 2.99726i
\(616\) 3.58200e9i 0.617437i
\(617\) 3.37298e9 0.578117 0.289058 0.957311i \(-0.406658\pi\)
0.289058 + 0.957311i \(0.406658\pi\)
\(618\) −1.03276e9 −0.176010
\(619\) −4.27712e9 −0.724827 −0.362413 0.932017i \(-0.618047\pi\)
−0.362413 + 0.932017i \(0.618047\pi\)
\(620\) 5.59590e9 0.942973
\(621\) 1.66280e10i 2.78624i
\(622\) 6.89342e9 1.14860
\(623\) 1.00474e10i 1.66474i
\(624\) 2.00015e9i 0.329546i
\(625\) 1.25157e10 2.05057
\(626\) −8.02306e9 −1.30716
\(627\) 1.46267e9i 0.236979i
\(628\) −4.57378e9 −0.736914
\(629\) −1.50756e9 + 6.04393e9i −0.241544 + 0.968372i
\(630\) −2.38608e10 −3.80184
\(631\) 2.58317e9i 0.409308i −0.978834 0.204654i \(-0.934393\pi\)
0.978834 0.204654i \(-0.0656069\pi\)
\(632\) 2.62167e9 0.413112
\(633\) 2.13189e10 3.34081
\(634\) 6.34613e9i 0.989000i
\(635\) 7.55728e9i 1.17127i
\(636\) −6.55388e9 −1.01018
\(637\) 2.26508e9i 0.347212i
\(638\) −5.72414e9 −0.872646
\(639\) 2.14859e10 3.25762
\(640\) −1.06753e9 −0.160972
\(641\) 1.55018e9 0.232476 0.116238 0.993221i \(-0.462916\pi\)
0.116238 + 0.993221i \(0.462916\pi\)
\(642\) 1.54369e10i 2.30243i
\(643\) 3.45874e9i 0.513074i −0.966534 0.256537i \(-0.917418\pi\)
0.966534 0.256537i \(-0.0825815\pi\)
\(644\) 4.38175e9i 0.646468i
\(645\) 1.42079e10 2.08483
\(646\) 4.32646e8i 0.0631421i
\(647\) 1.76132e8i 0.0255666i −0.999918 0.0127833i \(-0.995931\pi\)
0.999918 0.0127833i \(-0.00406915\pi\)
\(648\) 5.97463e9i 0.862578i
\(649\) 1.79873e9i 0.258292i
\(650\) −8.17464e9 −1.16754
\(651\) 1.64421e10i 2.33573i
\(652\) 2.36585e9i 0.334288i
\(653\) 1.53927e9i 0.216331i −0.994133 0.108166i \(-0.965502\pi\)
0.994133 0.108166i \(-0.0344977\pi\)
\(654\) 1.74787e10 2.44336
\(655\) −1.68965e10 −2.34937
\(656\) 1.60844e9 0.222454
\(657\) 6.20419e9 0.853505
\(658\) 5.86080e9i 0.801985i
\(659\) −3.11702e9 −0.424268 −0.212134 0.977241i \(-0.568041\pi\)
−0.212134 + 0.977241i \(0.568041\pi\)
\(660\) 1.78137e10i 2.41185i
\(661\) 7.82563e9i 1.05394i −0.849885 0.526968i \(-0.823329\pi\)
0.849885 0.526968i \(-0.176671\pi\)
\(662\) −2.14820e9 −0.287787
\(663\) −9.87240e9 −1.31560
\(664\) 1.06613e8i 0.0141326i
\(665\) −1.50695e9 −0.198711
\(666\) 3.15838e9 1.26622e10i 0.414289 1.66092i
\(667\) 7.00217e9 0.913676
\(668\) 1.66660e8i 0.0216329i
\(669\) 7.90618e7 0.0102088
\(670\) −5.45697e9 −0.700954
\(671\) 1.39505e9i 0.178263i
\(672\) 3.13666e9i 0.398726i
\(673\) 7.99847e9 1.01147 0.505736 0.862688i \(-0.331221\pi\)
0.505736 + 0.862688i \(0.331221\pi\)
\(674\) 5.15237e8i 0.0648183i
\(675\) −4.86479e10 −6.08837
\(676\) −1.97605e9 −0.246027
\(677\) −1.06929e10 −1.32445 −0.662227 0.749303i \(-0.730389\pi\)
−0.662227 + 0.749303i \(0.730389\pi\)
\(678\) −5.44578e8 −0.0671051
\(679\) 1.72437e10i 2.11391i
\(680\) 5.26916e9i 0.642628i
\(681\) 3.98666e9i 0.483720i
\(682\) −8.68680e9 −1.04861
\(683\) 8.53778e9i 1.02535i 0.858583 + 0.512675i \(0.171346\pi\)
−0.858583 + 0.512675i \(0.828654\pi\)
\(684\) 9.06407e8i 0.108300i
\(685\) 1.55475e10i 1.84818i
\(686\) 3.73911e9i 0.442216i
\(687\) 1.24954e10 1.47028
\(688\) 1.32174e9i 0.154734i
\(689\) 6.68399e9i 0.778518i
\(690\) 2.17910e10i 2.52525i
\(691\) −5.88446e9 −0.678475 −0.339237 0.940701i \(-0.610169\pi\)
−0.339237 + 0.940701i \(0.610169\pi\)
\(692\) −8.12581e8 −0.0932170
\(693\) 3.70404e10 4.22775
\(694\) 3.11748e9 0.354035
\(695\) 4.96552e9i 0.561071i
\(696\) −5.01248e9 −0.563534
\(697\) 7.93896e9i 0.888074i
\(698\) 4.51730e9i 0.502788i
\(699\) 9.88220e7 0.0109442
\(700\) −1.28196e10 −1.41263
\(701\) 6.66380e9i 0.730649i −0.930880 0.365325i \(-0.880958\pi\)
0.930880 0.365325i \(-0.119042\pi\)
\(702\) 1.21394e10 1.32439
\(703\) 1.99470e8 7.99692e8i 0.0216537 0.0868118i
\(704\) 1.65718e9 0.179005
\(705\) 2.91465e10i 3.13274i
\(706\) −9.48119e9 −1.01402
\(707\) −1.17312e9 −0.124846
\(708\) 1.57510e9i 0.166799i
\(709\) 1.49120e10i 1.57136i 0.618635 + 0.785679i \(0.287686\pi\)
−0.618635 + 0.785679i \(0.712314\pi\)
\(710\) 1.65262e10 1.73289
\(711\) 2.71099e10i 2.82868i
\(712\) 4.64835e9 0.482635
\(713\) 1.06263e10 1.09791
\(714\) −1.54820e10 −1.59178
\(715\) 1.81674e10 1.85875
\(716\) 7.84516e9i 0.798741i
\(717\) 2.07270e10i 2.10000i
\(718\) 5.12647e9i 0.516872i
\(719\) −1.94302e10 −1.94952 −0.974758 0.223264i \(-0.928329\pi\)
−0.974758 + 0.223264i \(0.928329\pi\)
\(720\) 1.10390e10i 1.10222i
\(721\) 1.65173e9i 0.164122i
\(722\) 7.09373e9i 0.701446i
\(723\) 1.67352e10i 1.64682i
\(724\) −906829. −8.88056e−5
\(725\) 2.04861e10i 1.99653i
\(726\) 1.41687e10i 1.37421i
\(727\) 9.32238e9i 0.899822i 0.893073 + 0.449911i \(0.148544\pi\)
−0.893073 + 0.449911i \(0.851456\pi\)
\(728\) 3.19893e9 0.307287
\(729\) 1.09382e10 1.04568
\(730\) 4.77206e9 0.454021
\(731\) 6.52388e9 0.617725
\(732\) 1.22161e9i 0.115118i
\(733\) −1.90022e10 −1.78213 −0.891067 0.453873i \(-0.850042\pi\)
−0.891067 + 0.453873i \(0.850042\pi\)
\(734\) 2.42044e9i 0.225922i
\(735\) 1.76651e10i 1.64101i
\(736\) −2.02718e9 −0.187422
\(737\) 8.47112e9 0.779479
\(738\) 1.66324e10i 1.52320i
\(739\) −6.18911e9 −0.564121 −0.282061 0.959397i \(-0.591018\pi\)
−0.282061 + 0.959397i \(0.591018\pi\)
\(740\) 2.42932e9 9.73936e9i 0.220381 0.883526i
\(741\) 1.30625e9 0.117940
\(742\) 1.04819e10i 0.941948i
\(743\) −1.21001e10 −1.08225 −0.541127 0.840941i \(-0.682002\pi\)
−0.541127 + 0.840941i \(0.682002\pi\)
\(744\) −7.60679e9 −0.677168
\(745\) 3.49704e9i 0.309852i
\(746\) 1.14963e10i 1.01385i
\(747\) −1.10246e9 −0.0967698
\(748\) 8.17957e9i 0.714620i
\(749\) 2.46888e10 2.14691
\(750\) −3.62348e10 −3.13626
\(751\) 5.46345e9 0.470682 0.235341 0.971913i \(-0.424379\pi\)
0.235341 + 0.971913i \(0.424379\pi\)
\(752\) 2.71145e9 0.232509
\(753\) 2.81091e10i 2.39919i
\(754\) 5.11199e9i 0.434300i
\(755\) 1.57313e10i 1.33030i
\(756\) 1.90371e10 1.60241
\(757\) 1.56833e10i 1.31402i −0.753883 0.657009i \(-0.771821\pi\)
0.753883 0.657009i \(-0.228179\pi\)
\(758\) 3.41946e9i 0.285177i
\(759\) 3.38272e10i 2.80815i
\(760\) 6.97179e8i 0.0576098i
\(761\) 2.91220e9 0.239538 0.119769 0.992802i \(-0.461785\pi\)
0.119769 + 0.992802i \(0.461785\pi\)
\(762\) 1.02730e10i 0.841114i
\(763\) 2.79545e10i 2.27832i
\(764\) 4.04145e9i 0.327877i
\(765\) −5.44868e10 −4.40024
\(766\) −1.66757e9 −0.134055
\(767\) −1.60637e9 −0.128547
\(768\) 1.45115e9 0.115597
\(769\) 2.25058e10i 1.78465i −0.451398 0.892323i \(-0.649074\pi\)
0.451398 0.892323i \(-0.350926\pi\)
\(770\) 2.84903e10 2.24894
\(771\) 1.57454e10i 1.23726i
\(772\) 3.83029e9i 0.299621i
\(773\) 9.32957e9 0.726496 0.363248 0.931692i \(-0.381668\pi\)
0.363248 + 0.931692i \(0.381668\pi\)
\(774\) −1.36677e10 −1.05951
\(775\) 3.10891e10i 2.39912i
\(776\) −7.97767e9 −0.612858
\(777\) −2.86165e10 7.13790e9i −2.18848 0.545880i
\(778\) −9.61037e9 −0.731664
\(779\) 1.05043e9i 0.0796133i
\(780\) 1.59087e10 1.20034
\(781\) −2.56545e10 −1.92701
\(782\) 1.00058e10i 0.748220i
\(783\) 3.04218e10i 2.26474i
\(784\) 1.64336e9 0.121794
\(785\) 3.63787e10i 2.68413i
\(786\) 2.29682e10 1.68713
\(787\) 1.54820e10 1.13218 0.566090 0.824344i \(-0.308456\pi\)
0.566090 + 0.824344i \(0.308456\pi\)
\(788\) −4.42877e9 −0.322434
\(789\) −1.92759e10 −1.39716
\(790\) 2.08520e10i 1.50471i
\(791\) 8.70967e8i 0.0625726i
\(792\) 1.71364e10i 1.22570i
\(793\) −1.24586e9 −0.0887184
\(794\) 1.07126e10i 0.759490i
\(795\) 5.21278e10i 3.67947i
\(796\) 1.04782e10i 0.736364i
\(797\) 1.75062e10i 1.22487i −0.790523 0.612433i \(-0.790191\pi\)
0.790523 0.612433i \(-0.209809\pi\)
\(798\) 2.04847e9 0.142699
\(799\) 1.33833e10i 0.928215i
\(800\) 5.93087e9i 0.409547i
\(801\) 4.80672e10i 3.30473i
\(802\) 1.35976e10 0.930791
\(803\) −7.40790e9 −0.504883
\(804\) 7.41793e9 0.503369
\(805\) −3.48513e10 −2.35469
\(806\) 7.75781e9i 0.521875i
\(807\) −3.63818e10 −2.43684
\(808\) 5.42734e8i 0.0361949i
\(809\) 2.28769e9i 0.151907i −0.997111 0.0759533i \(-0.975800\pi\)
0.997111 0.0759533i \(-0.0242000\pi\)
\(810\) 4.75206e10 3.14184
\(811\) 6.64278e9 0.437298 0.218649 0.975804i \(-0.429835\pi\)
0.218649 + 0.975804i \(0.429835\pi\)
\(812\) 8.01667e9i 0.525470i
\(813\) 3.78134e10 2.46791
\(814\) −3.77115e9 + 1.51189e10i −0.245069 + 0.982505i
\(815\) 1.88174e10 1.21761
\(816\) 7.16263e9i 0.461484i
\(817\) −8.63196e8 −0.0553773
\(818\) −3.14104e9 −0.200649
\(819\) 3.30792e10i 2.10407i
\(820\) 1.27931e10i 0.810264i
\(821\) −1.98367e10 −1.25103 −0.625515 0.780212i \(-0.715111\pi\)
−0.625515 + 0.780212i \(0.715111\pi\)
\(822\) 2.11345e10i 1.32721i
\(823\) 2.91932e10 1.82550 0.912750 0.408519i \(-0.133955\pi\)
0.912750 + 0.408519i \(0.133955\pi\)
\(824\) 7.64161e8 0.0475817
\(825\) 9.89674e10 6.13625
\(826\) −2.51913e9 −0.155532
\(827\) 2.37846e9i 0.146227i −0.997324 0.0731134i \(-0.976706\pi\)
0.997324 0.0731134i \(-0.0232935\pi\)
\(828\) 2.09625e10i 1.28333i
\(829\) 3.51164e9i 0.214077i −0.994255 0.107038i \(-0.965863\pi\)
0.994255 0.107038i \(-0.0341367\pi\)
\(830\) −8.47974e8 −0.0514766
\(831\) 5.14075e9i 0.310758i
\(832\) 1.47996e9i 0.0890878i
\(833\) 8.11134e9i 0.486223i
\(834\) 6.74988e9i 0.402916i
\(835\) −1.32557e9 −0.0787954
\(836\) 1.08227e9i 0.0640637i
\(837\) 4.61673e10i 2.72142i
\(838\) 9.10123e9i 0.534252i
\(839\) 1.62760e10 0.951437 0.475719 0.879598i \(-0.342188\pi\)
0.475719 + 0.879598i \(0.342188\pi\)
\(840\) 2.49481e10 1.45231
\(841\) 4.43899e9 0.257334
\(842\) −7.50514e8 −0.0433278
\(843\) 3.17209e9i 0.182368i
\(844\) −1.57744e10 −0.903137
\(845\) 1.57169e10i 0.896127i
\(846\) 2.80384e10i 1.59205i
\(847\) −2.26607e10 −1.28139
\(848\) 4.84938e9 0.273087
\(849\) 1.70183e10i 0.954417i
\(850\) −2.92738e10 −1.63498
\(851\) 4.61314e9 1.84945e10i 0.256592 1.02870i
\(852\) −2.24650e10 −1.24442
\(853\) 9.46428e9i 0.522115i −0.965323 0.261057i \(-0.915929\pi\)
0.965323 0.261057i \(-0.0840712\pi\)
\(854\) −1.95377e9 −0.107343
\(855\) 7.20932e9 0.394469
\(856\) 1.14221e10i 0.622426i
\(857\) 3.12460e10i 1.69575i −0.530198 0.847874i \(-0.677882\pi\)
0.530198 0.847874i \(-0.322118\pi\)
\(858\) −2.46958e10 −1.33481
\(859\) 8.13485e9i 0.437899i 0.975736 + 0.218949i \(0.0702629\pi\)
−0.975736 + 0.218949i \(0.929737\pi\)
\(860\) −1.05128e10 −0.563602
\(861\) −3.75890e10 −2.00701
\(862\) 1.77746e9 0.0945203
\(863\) 6.77890e8 0.0359022 0.0179511 0.999839i \(-0.494286\pi\)
0.0179511 + 0.999839i \(0.494286\pi\)
\(864\) 8.80736e9i 0.464566i
\(865\) 6.46305e9i 0.339533i
\(866\) 8.38466e9i 0.438705i
\(867\) 1.38861e8 0.00723627
\(868\) 1.21659e10i 0.631429i
\(869\) 3.23697e10i 1.67328i
\(870\) 3.98679e10i 2.05261i
\(871\) 7.56520e9i 0.387933i
\(872\) −1.29329e10 −0.660524
\(873\) 8.24948e10i 4.19640i
\(874\) 1.32390e9i 0.0670759i
\(875\) 5.79519e10i 2.92442i
\(876\) −6.48690e9 −0.326041
\(877\) 1.32215e9 0.0661883 0.0330941 0.999452i \(-0.489464\pi\)
0.0330941 + 0.999452i \(0.489464\pi\)
\(878\) −7.21767e9 −0.359887
\(879\) 2.03567e10 1.01099
\(880\) 1.31808e10i 0.652007i
\(881\) −1.58731e10 −0.782070 −0.391035 0.920376i \(-0.627883\pi\)
−0.391035 + 0.920376i \(0.627883\pi\)
\(882\) 1.69935e10i 0.833956i
\(883\) 3.13504e10i 1.53243i 0.642585 + 0.766214i \(0.277862\pi\)
−0.642585 + 0.766214i \(0.722138\pi\)
\(884\) 7.30483e9 0.355654
\(885\) −1.25279e10 −0.607545
\(886\) 1.50675e10i 0.727817i
\(887\) −1.31138e10 −0.630951 −0.315476 0.948934i \(-0.602164\pi\)
−0.315476 + 0.948934i \(0.602164\pi\)
\(888\) −3.30230e9 + 1.32392e10i −0.158260 + 0.634478i
\(889\) 1.64300e10 0.784301
\(890\) 3.69718e10i 1.75794i
\(891\) −7.37686e10 −3.49381
\(892\) −5.84997e7 −0.00275980
\(893\) 1.77078e9i 0.0832119i
\(894\) 4.75370e9i 0.222511i
\(895\) 6.23983e10 2.90932
\(896\) 2.32089e9i 0.107789i
\(897\) 3.02097e10 1.39757
\(898\) −7.08997e9 −0.326721
\(899\) −1.94414e10 −0.892421
\(900\) 6.13294e10 2.80427
\(901\) 2.39357e10i 1.09021i
\(902\) 1.98593e10i 0.901035i
\(903\) 3.08890e10i 1.39603i
\(904\) 4.02946e8 0.0181408
\(905\) 7.21268e6i 0.000323465i
\(906\) 2.13843e10i 0.955315i
\(907\) 2.96277e10i 1.31848i −0.751934 0.659238i \(-0.770879\pi\)
0.751934 0.659238i \(-0.229121\pi\)
\(908\) 2.94983e9i 0.130766i
\(909\) 5.61225e9 0.247836
\(910\) 2.54434e10i 1.11926i
\(911\) 4.62330e7i 0.00202599i 0.999999 + 0.00101300i \(0.000322446\pi\)
−0.999999 + 0.00101300i \(0.999678\pi\)
\(912\) 9.47711e8i 0.0413708i
\(913\) 1.31635e9 0.0572433
\(914\) 2.99298e10 1.29656
\(915\) −9.71636e9 −0.419305
\(916\) −9.24563e9 −0.397468
\(917\) 3.67341e10i 1.57317i
\(918\) 4.34716e10 1.85463
\(919\) 1.43473e10i 0.609771i −0.952389 0.304885i \(-0.901382\pi\)
0.952389 0.304885i \(-0.0986182\pi\)
\(920\) 1.61237e10i 0.682664i
\(921\) −3.87898e10 −1.63610
\(922\) −1.80808e10 −0.759729
\(923\) 2.29109e10i 0.959041i
\(924\) −3.87282e10 −1.61501
\(925\) −5.41088e10 1.34965e10i −2.24787 0.560694i
\(926\) 2.37568e10 0.983218
\(927\) 7.90197e9i 0.325804i
\(928\) 3.70885e9 0.152343
\(929\) −4.56460e10 −1.86788 −0.933938 0.357435i \(-0.883651\pi\)
−0.933938 + 0.357435i \(0.883651\pi\)
\(930\) 6.05024e10i 2.46651i
\(931\) 1.07324e9i 0.0435885i
\(932\) −7.31208e7 −0.00295859
\(933\) 7.45310e10i 3.00436i
\(934\) 2.22280e8 0.00892659
\(935\) 6.50582e10 2.60292
\(936\) −1.53038e10 −0.610007
\(937\) 1.04750e10 0.415973 0.207987 0.978132i \(-0.433309\pi\)
0.207987 + 0.978132i \(0.433309\pi\)
\(938\) 1.18638e10i 0.469369i
\(939\) 8.67446e10i 3.41911i
\(940\) 2.15662e10i 0.846888i
\(941\) −3.11657e10 −1.21931 −0.609653 0.792669i \(-0.708691\pi\)
−0.609653 + 0.792669i \(0.708691\pi\)
\(942\) 4.94514e10i 1.92753i
\(943\) 2.42933e10i 0.943400i
\(944\) 1.16546e9i 0.0450914i
\(945\) 1.51416e11i 5.83660i
\(946\) 1.63195e10 0.626741
\(947\) 3.55045e10i 1.35850i −0.733909 0.679248i \(-0.762306\pi\)
0.733909 0.679248i \(-0.237694\pi\)
\(948\) 2.83452e10i 1.08056i
\(949\) 6.61568e9i 0.251271i
\(950\) 3.87331e9 0.146571
\(951\) 6.86138e10 2.58690
\(952\) 1.14555e10 0.430314
\(953\) 2.20749e10 0.826177 0.413088 0.910691i \(-0.364450\pi\)
0.413088 + 0.910691i \(0.364450\pi\)
\(954\) 5.01460e10i 1.86989i
\(955\) 3.21446e10 1.19425
\(956\) 1.53364e10i 0.567702i
\(957\) 6.18889e10i 2.28255i
\(958\) −3.22137e9 −0.118375
\(959\) 3.38013e10 1.23757
\(960\) 1.15421e10i 0.421051i
\(961\) −1.99118e9 −0.0723733
\(962\) 1.35020e10 + 3.36786e9i 0.488975 + 0.121967i
\(963\) −1.18113e11 −4.26191
\(964\) 1.23828e10i 0.445193i
\(965\) −3.04652e10 −1.09133
\(966\) 4.73751e10 1.69095
\(967\) 5.07804e10i 1.80594i 0.429704 + 0.902970i \(0.358618\pi\)
−0.429704 + 0.902970i \(0.641382\pi\)
\(968\) 1.04838e10i 0.371496i
\(969\) 4.67774e9 0.165159
\(970\) 6.34523e10i 2.23227i
\(971\) 1.46222e10 0.512561 0.256281 0.966602i \(-0.417503\pi\)
0.256281 + 0.966602i \(0.417503\pi\)
\(972\) −2.69767e10 −0.942230
\(973\) 1.07954e10 0.375702
\(974\) 3.76672e10 1.30619
\(975\) 8.83835e10i 3.05390i
\(976\) 9.03899e8i 0.0311204i
\(977\) 7.79041e9i 0.267257i −0.991031 0.133629i \(-0.957337\pi\)
0.991031 0.133629i \(-0.0426629\pi\)
\(978\) −2.55794e10 −0.874388
\(979\) 5.73931e10i 1.95488i
\(980\) 1.30709e10i 0.443622i
\(981\) 1.33736e11i 4.52278i
\(982\) 3.65190e10i 1.23063i
\(983\) 5.16803e10 1.73535 0.867677 0.497128i \(-0.165612\pi\)
0.867677 + 0.497128i \(0.165612\pi\)
\(984\) 1.73903e10i 0.581867i
\(985\) 3.52252e10i 1.17443i
\(986\) 1.83063e10i 0.608178i
\(987\) −6.33665e10 −2.09773
\(988\) −9.66525e8 −0.0318833
\(989\) −1.99632e10 −0.656209
\(990\) −1.36299e11 −4.46446
\(991\) 4.03250e10i 1.31618i 0.752938 + 0.658091i \(0.228636\pi\)
−0.752938 + 0.658091i \(0.771364\pi\)
\(992\) 5.62845e9 0.183062
\(993\) 2.32262e10i 0.752757i
\(994\) 3.59292e10i 1.16037i
\(995\) −8.33411e10 −2.68212
\(996\) 1.15269e9 0.0369663
\(997\) 4.85850e9i 0.155263i 0.996982 + 0.0776317i \(0.0247358\pi\)
−0.996982 + 0.0776317i \(0.975264\pi\)
\(998\) −1.88753e10 −0.601086
\(999\) 8.03517e10 + 2.00424e10i 2.54986 + 0.636019i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.b.a.73.12 24
37.36 even 2 inner 74.8.b.a.73.24 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.b.a.73.12 24 1.1 even 1 trivial
74.8.b.a.73.24 yes 24 37.36 even 2 inner