Properties

Label 74.8.b.a.73.14
Level $74$
Weight $8$
Character 74.73
Analytic conductor $23.116$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(73,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.73");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.1164918858\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 73.14
Character \(\chi\) \(=\) 74.73
Dual form 74.8.b.a.73.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000i q^{2} -61.7342 q^{3} -64.0000 q^{4} -552.363i q^{5} -493.873i q^{6} +606.238 q^{7} -512.000i q^{8} +1624.11 q^{9} +4418.91 q^{10} -1574.05 q^{11} +3950.99 q^{12} -6183.12i q^{13} +4849.91i q^{14} +34099.7i q^{15} +4096.00 q^{16} +17764.7i q^{17} +12992.9i q^{18} -34251.9i q^{19} +35351.3i q^{20} -37425.6 q^{21} -12592.4i q^{22} -76896.1i q^{23} +31607.9i q^{24} -226980. q^{25} +49465.0 q^{26} +34749.7 q^{27} -38799.3 q^{28} +46583.6i q^{29} -272798. q^{30} -17681.9i q^{31} +32768.0i q^{32} +97173.0 q^{33} -142118. q^{34} -334864. i q^{35} -103943. q^{36} +(-26300.5 + 306986. i) q^{37} +274015. q^{38} +381710. i q^{39} -282810. q^{40} -465753. q^{41} -299405. i q^{42} +594996. i q^{43} +100740. q^{44} -897097. i q^{45} +615169. q^{46} -470646. q^{47} -252863. q^{48} -456018. q^{49} -1.81584e6i q^{50} -1.09669e6i q^{51} +395720. i q^{52} -7937.52 q^{53} +277998. i q^{54} +869450. i q^{55} -310394. i q^{56} +2.11451e6i q^{57} -372669. q^{58} +1.46340e6i q^{59} -2.18238e6i q^{60} +1.76239e6i q^{61} +141456. q^{62} +984596. q^{63} -262144. q^{64} -3.41533e6 q^{65} +777384. i q^{66} -2.34359e6 q^{67} -1.13694e6i q^{68} +4.74712e6i q^{69} +2.67891e6 q^{70} +2.45676e6 q^{71} -831543. i q^{72} +437865. q^{73} +(-2.45588e6 - 210404. i) q^{74} +1.40124e7 q^{75} +2.19212e6i q^{76} -954252. q^{77} -3.05368e6 q^{78} -2.26054e6i q^{79} -2.26248e6i q^{80} -5.69717e6 q^{81} -3.72603e6i q^{82} +9.71016e6 q^{83} +2.39524e6 q^{84} +9.81257e6 q^{85} -4.75997e6 q^{86} -2.87580e6i q^{87} +805916. i q^{88} -8.74504e6i q^{89} +7.17678e6 q^{90} -3.74845e6i q^{91} +4.92135e6i q^{92} +1.09158e6i q^{93} -3.76517e6i q^{94} -1.89195e7 q^{95} -2.02291e6i q^{96} +1.59186e7i q^{97} -3.64815e6i q^{98} -2.55643e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 106 q^{3} - 1536 q^{4} + 104 q^{7} + 17554 q^{9} + 1136 q^{10} + 366 q^{11} + 6784 q^{12} + 98304 q^{16} - 239820 q^{21} - 675570 q^{25} + 97008 q^{26} + 338780 q^{27} - 6656 q^{28} + 350400 q^{30}+ \cdots - 53279900 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/74\mathbb{Z}\right)^\times\).

\(n\) \(39\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000i 0.707107i
\(3\) −61.7342 −1.32008 −0.660041 0.751229i \(-0.729461\pi\)
−0.660041 + 0.751229i \(0.729461\pi\)
\(4\) −64.0000 −0.500000
\(5\) 552.363i 1.97620i −0.153827 0.988098i \(-0.549160\pi\)
0.153827 0.988098i \(-0.450840\pi\)
\(6\) 493.873i 0.933440i
\(7\) 606.238 0.668037 0.334018 0.942567i \(-0.391595\pi\)
0.334018 + 0.942567i \(0.391595\pi\)
\(8\) 512.000i 0.353553i
\(9\) 1624.11 0.742619
\(10\) 4418.91 1.39738
\(11\) −1574.05 −0.356571 −0.178285 0.983979i \(-0.557055\pi\)
−0.178285 + 0.983979i \(0.557055\pi\)
\(12\) 3950.99 0.660041
\(13\) 6183.12i 0.780560i −0.920696 0.390280i \(-0.872378\pi\)
0.920696 0.390280i \(-0.127622\pi\)
\(14\) 4849.91i 0.472373i
\(15\) 34099.7i 2.60874i
\(16\) 4096.00 0.250000
\(17\) 17764.7i 0.876974i 0.898738 + 0.438487i \(0.144485\pi\)
−0.898738 + 0.438487i \(0.855515\pi\)
\(18\) 12992.9i 0.525111i
\(19\) 34251.9i 1.14564i −0.819682 0.572819i \(-0.805850\pi\)
0.819682 0.572819i \(-0.194150\pi\)
\(20\) 35351.3i 0.988098i
\(21\) −37425.6 −0.881864
\(22\) 12592.4i 0.252133i
\(23\) 76896.1i 1.31782i −0.752220 0.658911i \(-0.771017\pi\)
0.752220 0.658911i \(-0.228983\pi\)
\(24\) 31607.9i 0.466720i
\(25\) −226980. −2.90535
\(26\) 49465.0 0.551939
\(27\) 34749.7 0.339765
\(28\) −38799.3 −0.334018
\(29\) 46583.6i 0.354683i 0.984149 + 0.177341i \(0.0567497\pi\)
−0.984149 + 0.177341i \(0.943250\pi\)
\(30\) −272798. −1.84466
\(31\) 17681.9i 0.106602i −0.998579 0.0533008i \(-0.983026\pi\)
0.998579 0.0533008i \(-0.0169742\pi\)
\(32\) 32768.0i 0.176777i
\(33\) 97173.0 0.470703
\(34\) −142118. −0.620114
\(35\) 334864.i 1.32017i
\(36\) −103943. −0.371309
\(37\) −26300.5 + 306986.i −0.0853608 + 0.996350i
\(38\) 274015. 0.810088
\(39\) 381710.i 1.03040i
\(40\) −282810. −0.698691
\(41\) −465753. −1.05539 −0.527694 0.849434i \(-0.676943\pi\)
−0.527694 + 0.849434i \(0.676943\pi\)
\(42\) 299405.i 0.623572i
\(43\) 594996.i 1.14123i 0.821216 + 0.570617i \(0.193296\pi\)
−0.821216 + 0.570617i \(0.806704\pi\)
\(44\) 100740. 0.178285
\(45\) 897097.i 1.46756i
\(46\) 615169. 0.931842
\(47\) −470646. −0.661228 −0.330614 0.943766i \(-0.607256\pi\)
−0.330614 + 0.943766i \(0.607256\pi\)
\(48\) −252863. −0.330021
\(49\) −456018. −0.553727
\(50\) 1.81584e6i 2.05439i
\(51\) 1.09669e6i 1.15768i
\(52\) 395720.i 0.390280i
\(53\) −7937.52 −0.00732351 −0.00366176 0.999993i \(-0.501166\pi\)
−0.00366176 + 0.999993i \(0.501166\pi\)
\(54\) 277998.i 0.240250i
\(55\) 869450.i 0.704653i
\(56\) 310394.i 0.236187i
\(57\) 2.11451e6i 1.51234i
\(58\) −372669. −0.250799
\(59\) 1.46340e6i 0.927644i 0.885928 + 0.463822i \(0.153522\pi\)
−0.885928 + 0.463822i \(0.846478\pi\)
\(60\) 2.18238e6i 1.30437i
\(61\) 1.76239e6i 0.994141i 0.867710 + 0.497071i \(0.165591\pi\)
−0.867710 + 0.497071i \(0.834409\pi\)
\(62\) 141456. 0.0753788
\(63\) 984596. 0.496096
\(64\) −262144. −0.125000
\(65\) −3.41533e6 −1.54254
\(66\) 777384.i 0.332837i
\(67\) −2.34359e6 −0.951964 −0.475982 0.879455i \(-0.657907\pi\)
−0.475982 + 0.879455i \(0.657907\pi\)
\(68\) 1.13694e6i 0.438487i
\(69\) 4.74712e6i 1.73964i
\(70\) 2.67891e6 0.933502
\(71\) 2.45676e6 0.814627 0.407314 0.913288i \(-0.366466\pi\)
0.407314 + 0.913288i \(0.366466\pi\)
\(72\) 831543.i 0.262555i
\(73\) 437865. 0.131738 0.0658689 0.997828i \(-0.479018\pi\)
0.0658689 + 0.997828i \(0.479018\pi\)
\(74\) −2.45588e6 210404.i −0.704526 0.0603592i
\(75\) 1.40124e7 3.83530
\(76\) 2.19212e6i 0.572819i
\(77\) −954252. −0.238202
\(78\) −3.05368e6 −0.728605
\(79\) 2.26054e6i 0.515842i −0.966166 0.257921i \(-0.916963\pi\)
0.966166 0.257921i \(-0.0830374\pi\)
\(80\) 2.26248e6i 0.494049i
\(81\) −5.69717e6 −1.19114
\(82\) 3.72603e6i 0.746272i
\(83\) 9.71016e6 1.86403 0.932015 0.362419i \(-0.118049\pi\)
0.932015 + 0.362419i \(0.118049\pi\)
\(84\) 2.39524e6 0.440932
\(85\) 9.81257e6 1.73307
\(86\) −4.75997e6 −0.806974
\(87\) 2.87580e6i 0.468211i
\(88\) 805916.i 0.126067i
\(89\) 8.74504e6i 1.31491i −0.753493 0.657456i \(-0.771633\pi\)
0.753493 0.657456i \(-0.228367\pi\)
\(90\) 7.17678e6 1.03772
\(91\) 3.74845e6i 0.521443i
\(92\) 4.92135e6i 0.658911i
\(93\) 1.09158e6i 0.140723i
\(94\) 3.76517e6i 0.467559i
\(95\) −1.89195e7 −2.26400
\(96\) 2.02291e6i 0.233360i
\(97\) 1.59186e7i 1.77095i 0.464691 + 0.885473i \(0.346165\pi\)
−0.464691 + 0.885473i \(0.653835\pi\)
\(98\) 3.64815e6i 0.391544i
\(99\) −2.55643e6 −0.264796
\(100\) 1.45267e7 1.45267
\(101\) 1.91415e7 1.84863 0.924317 0.381625i \(-0.124635\pi\)
0.924317 + 0.381625i \(0.124635\pi\)
\(102\) 8.77351e6 0.818602
\(103\) 1.57904e7i 1.42384i −0.702258 0.711922i \(-0.747825\pi\)
0.702258 0.711922i \(-0.252175\pi\)
\(104\) −3.16576e6 −0.275970
\(105\) 2.06725e7i 1.74273i
\(106\) 63500.2i 0.00517850i
\(107\) −5.51837e6 −0.435479 −0.217740 0.976007i \(-0.569868\pi\)
−0.217740 + 0.976007i \(0.569868\pi\)
\(108\) −2.22398e6 −0.169882
\(109\) 1.02306e7i 0.756676i 0.925668 + 0.378338i \(0.123504\pi\)
−0.925668 + 0.378338i \(0.876496\pi\)
\(110\) −6.95560e6 −0.498265
\(111\) 1.62364e6 1.89515e7i 0.112683 1.31526i
\(112\) 2.48315e6 0.167009
\(113\) 6.79737e6i 0.443166i −0.975142 0.221583i \(-0.928878\pi\)
0.975142 0.221583i \(-0.0711224\pi\)
\(114\) −1.69161e7 −1.06938
\(115\) −4.24746e7 −2.60428
\(116\) 2.98135e6i 0.177341i
\(117\) 1.00421e7i 0.579658i
\(118\) −1.17072e7 −0.655943
\(119\) 1.07696e7i 0.585851i
\(120\) 1.74590e7 0.922330
\(121\) −1.70095e7 −0.872857
\(122\) −1.40991e7 −0.702964
\(123\) 2.87529e7 1.39320
\(124\) 1.13164e6i 0.0533008i
\(125\) 8.22223e7i 3.76534i
\(126\) 7.87677e6i 0.350793i
\(127\) −4.08913e7 −1.77140 −0.885702 0.464255i \(-0.846322\pi\)
−0.885702 + 0.464255i \(0.846322\pi\)
\(128\) 2.09715e6i 0.0883883i
\(129\) 3.67316e7i 1.50652i
\(130\) 2.73227e7i 1.09074i
\(131\) 1.72757e7i 0.671408i 0.941968 + 0.335704i \(0.108974\pi\)
−0.941968 + 0.335704i \(0.891026\pi\)
\(132\) −6.21907e6 −0.235351
\(133\) 2.07648e7i 0.765328i
\(134\) 1.87487e7i 0.673140i
\(135\) 1.91945e7i 0.671441i
\(136\) 9.09553e6 0.310057
\(137\) 2.64899e7 0.880153 0.440076 0.897960i \(-0.354951\pi\)
0.440076 + 0.897960i \(0.354951\pi\)
\(138\) −3.79769e7 −1.23011
\(139\) −8.09392e6 −0.255627 −0.127814 0.991798i \(-0.540796\pi\)
−0.127814 + 0.991798i \(0.540796\pi\)
\(140\) 2.14313e7i 0.660085i
\(141\) 2.90549e7 0.872876
\(142\) 1.96541e7i 0.576029i
\(143\) 9.73258e6i 0.278325i
\(144\) 6.65234e6 0.185655
\(145\) 2.57311e7 0.700922
\(146\) 3.50292e6i 0.0931526i
\(147\) 2.81519e7 0.730966
\(148\) 1.68323e6 1.96471e7i 0.0426804 0.498175i
\(149\) −5.49381e7 −1.36057 −0.680286 0.732947i \(-0.738144\pi\)
−0.680286 + 0.732947i \(0.738144\pi\)
\(150\) 1.12100e8i 2.71197i
\(151\) 1.48904e7 0.351955 0.175978 0.984394i \(-0.443691\pi\)
0.175978 + 0.984394i \(0.443691\pi\)
\(152\) −1.75370e7 −0.405044
\(153\) 2.88518e7i 0.651257i
\(154\) 7.63402e6i 0.168434i
\(155\) −9.76686e6 −0.210666
\(156\) 2.44294e7i 0.515202i
\(157\) −4.18076e7 −0.862197 −0.431098 0.902305i \(-0.641874\pi\)
−0.431098 + 0.902305i \(0.641874\pi\)
\(158\) 1.80843e7 0.364755
\(159\) 490016. 0.00966764
\(160\) 1.80998e7 0.349345
\(161\) 4.66174e7i 0.880354i
\(162\) 4.55773e7i 0.842260i
\(163\) 9.23734e7i 1.67067i −0.549743 0.835334i \(-0.685274\pi\)
0.549743 0.835334i \(-0.314726\pi\)
\(164\) 2.98082e7 0.527694
\(165\) 5.36748e7i 0.930201i
\(166\) 7.76813e7i 1.31807i
\(167\) 7.61039e6i 0.126444i −0.997999 0.0632222i \(-0.979862\pi\)
0.997999 0.0632222i \(-0.0201377\pi\)
\(168\) 1.91619e7i 0.311786i
\(169\) 2.45175e7 0.390726
\(170\) 7.85006e7i 1.22547i
\(171\) 5.56288e7i 0.850772i
\(172\) 3.80798e7i 0.570617i
\(173\) −3.47700e7 −0.510556 −0.255278 0.966868i \(-0.582167\pi\)
−0.255278 + 0.966868i \(0.582167\pi\)
\(174\) 2.30064e7 0.331075
\(175\) −1.37604e8 −1.94088
\(176\) −6.44733e6 −0.0891426
\(177\) 9.03418e7i 1.22457i
\(178\) 6.99603e7 0.929783
\(179\) 4.27579e7i 0.557225i 0.960404 + 0.278612i \(0.0898745\pi\)
−0.960404 + 0.278612i \(0.910126\pi\)
\(180\) 5.74142e7i 0.733780i
\(181\) −1.23217e8 −1.54453 −0.772263 0.635303i \(-0.780875\pi\)
−0.772263 + 0.635303i \(0.780875\pi\)
\(182\) 2.99876e7 0.368716
\(183\) 1.08800e8i 1.31235i
\(184\) −3.93708e7 −0.465921
\(185\) 1.69568e8 + 1.45274e7i 1.96898 + 0.168690i
\(186\) −8.73264e6 −0.0995062
\(187\) 2.79626e7i 0.312703i
\(188\) 3.01213e7 0.330614
\(189\) 2.10666e7 0.226975
\(190\) 1.51356e8i 1.60089i
\(191\) 1.31163e8i 1.36205i 0.732260 + 0.681025i \(0.238465\pi\)
−0.732260 + 0.681025i \(0.761535\pi\)
\(192\) 1.61832e7 0.165010
\(193\) 8.55596e7i 0.856679i −0.903618 0.428339i \(-0.859099\pi\)
0.903618 0.428339i \(-0.140901\pi\)
\(194\) −1.27349e8 −1.25225
\(195\) 2.10843e8 2.03628
\(196\) 2.91852e7 0.276864
\(197\) 8.65321e7 0.806390 0.403195 0.915114i \(-0.367900\pi\)
0.403195 + 0.915114i \(0.367900\pi\)
\(198\) 2.04515e7i 0.187239i
\(199\) 8.49061e7i 0.763754i 0.924213 + 0.381877i \(0.124722\pi\)
−0.924213 + 0.381877i \(0.875278\pi\)
\(200\) 1.16214e8i 1.02720i
\(201\) 1.44680e8 1.25667
\(202\) 1.53132e8i 1.30718i
\(203\) 2.82408e7i 0.236941i
\(204\) 7.01881e7i 0.578839i
\(205\) 2.57265e8i 2.08565i
\(206\) 1.26323e8 1.00681
\(207\) 1.24888e8i 0.978640i
\(208\) 2.53261e7i 0.195140i
\(209\) 5.39144e7i 0.408501i
\(210\) −1.65380e8 −1.23230
\(211\) 2.25603e8 1.65332 0.826660 0.562701i \(-0.190238\pi\)
0.826660 + 0.562701i \(0.190238\pi\)
\(212\) 508001. 0.00366176
\(213\) −1.51666e8 −1.07538
\(214\) 4.41470e7i 0.307930i
\(215\) 3.28654e8 2.25530
\(216\) 1.77919e7i 0.120125i
\(217\) 1.07195e7i 0.0712138i
\(218\) −8.18451e7 −0.535051
\(219\) −2.70312e7 −0.173905
\(220\) 5.56448e7i 0.352327i
\(221\) 1.09841e8 0.684531
\(222\) 1.51612e8 + 1.29891e7i 0.930033 + 0.0796791i
\(223\) −1.53872e8 −0.929165 −0.464583 0.885530i \(-0.653796\pi\)
−0.464583 + 0.885530i \(0.653796\pi\)
\(224\) 1.98652e7i 0.118093i
\(225\) −3.68640e8 −2.15757
\(226\) 5.43790e7 0.313366
\(227\) 5.56054e7i 0.315520i −0.987477 0.157760i \(-0.949573\pi\)
0.987477 0.157760i \(-0.0504272\pi\)
\(228\) 1.35329e8i 0.756168i
\(229\) 7.53531e7 0.414645 0.207323 0.978273i \(-0.433525\pi\)
0.207323 + 0.978273i \(0.433525\pi\)
\(230\) 3.39797e8i 1.84150i
\(231\) 5.89100e7 0.314447
\(232\) 2.38508e7 0.125399
\(233\) −1.89539e8 −0.981642 −0.490821 0.871260i \(-0.663303\pi\)
−0.490821 + 0.871260i \(0.663303\pi\)
\(234\) 8.03364e7 0.409880
\(235\) 2.59967e8i 1.30672i
\(236\) 9.36576e7i 0.463822i
\(237\) 1.39552e8i 0.680954i
\(238\) −8.61571e7 −0.414259
\(239\) 2.47866e8i 1.17442i −0.809433 0.587212i \(-0.800226\pi\)
0.809433 0.587212i \(-0.199774\pi\)
\(240\) 1.39672e8i 0.652185i
\(241\) 3.52141e7i 0.162053i −0.996712 0.0810266i \(-0.974180\pi\)
0.996712 0.0810266i \(-0.0258199\pi\)
\(242\) 1.36076e8i 0.617203i
\(243\) 2.75712e8 1.23263
\(244\) 1.12793e8i 0.497071i
\(245\) 2.51888e8i 1.09427i
\(246\) 2.30023e8i 0.985141i
\(247\) −2.11784e8 −0.894239
\(248\) −9.05315e6 −0.0376894
\(249\) −5.99448e8 −2.46067
\(250\) −6.57778e8 −2.66250
\(251\) 2.88357e8i 1.15099i −0.817804 0.575497i \(-0.804809\pi\)
0.817804 0.575497i \(-0.195191\pi\)
\(252\) −6.30141e7 −0.248048
\(253\) 1.21039e8i 0.469897i
\(254\) 3.27130e8i 1.25257i
\(255\) −6.05771e8 −2.28780
\(256\) 1.67772e7 0.0625000
\(257\) 2.29423e8i 0.843085i 0.906809 + 0.421543i \(0.138511\pi\)
−0.906809 + 0.421543i \(0.861489\pi\)
\(258\) 2.93853e8 1.06527
\(259\) −1.59444e7 + 1.86106e8i −0.0570241 + 0.665598i
\(260\) 2.18581e8 0.771270
\(261\) 7.56567e7i 0.263394i
\(262\) −1.38206e8 −0.474757
\(263\) −4.68491e8 −1.58802 −0.794010 0.607905i \(-0.792010\pi\)
−0.794010 + 0.607905i \(0.792010\pi\)
\(264\) 4.97526e7i 0.166419i
\(265\) 4.38440e6i 0.0144727i
\(266\) 1.66119e8 0.541168
\(267\) 5.39868e8i 1.73579i
\(268\) 1.49990e8 0.475982
\(269\) −5.58160e7 −0.174834 −0.0874170 0.996172i \(-0.527861\pi\)
−0.0874170 + 0.996172i \(0.527861\pi\)
\(270\) 1.53556e8 0.474781
\(271\) −8.92064e7 −0.272272 −0.136136 0.990690i \(-0.543468\pi\)
−0.136136 + 0.990690i \(0.543468\pi\)
\(272\) 7.27642e7i 0.219243i
\(273\) 2.31407e8i 0.688347i
\(274\) 2.11919e8i 0.622362i
\(275\) 3.57280e8 1.03596
\(276\) 3.03816e8i 0.869818i
\(277\) 6.08294e8i 1.71963i −0.510608 0.859814i \(-0.670580\pi\)
0.510608 0.859814i \(-0.329420\pi\)
\(278\) 6.47514e7i 0.180756i
\(279\) 2.87174e7i 0.0791644i
\(280\) −1.71450e8 −0.466751
\(281\) 4.18125e8i 1.12418i −0.827077 0.562088i \(-0.809998\pi\)
0.827077 0.562088i \(-0.190002\pi\)
\(282\) 2.32439e8i 0.617217i
\(283\) 3.14375e8i 0.824508i −0.911069 0.412254i \(-0.864742\pi\)
0.911069 0.412254i \(-0.135258\pi\)
\(284\) −1.57233e8 −0.407314
\(285\) 1.16798e9 2.98867
\(286\) −7.78606e7 −0.196805
\(287\) −2.82357e8 −0.705038
\(288\) 5.32187e7i 0.131278i
\(289\) 9.47542e7 0.230917
\(290\) 2.05849e8i 0.495627i
\(291\) 9.82725e8i 2.33779i
\(292\) −2.80234e7 −0.0658689
\(293\) 4.84775e8 1.12591 0.562955 0.826487i \(-0.309664\pi\)
0.562955 + 0.826487i \(0.309664\pi\)
\(294\) 2.25215e8i 0.516871i
\(295\) 8.08329e8 1.83321
\(296\) 1.57177e8 + 1.34659e7i 0.352263 + 0.0301796i
\(297\) −5.46980e7 −0.121150
\(298\) 4.39505e8i 0.962070i
\(299\) −4.75458e8 −1.02864
\(300\) −8.96796e8 −1.91765
\(301\) 3.60709e8i 0.762386i
\(302\) 1.19123e8i 0.248870i
\(303\) −1.18168e9 −2.44035
\(304\) 1.40296e8i 0.286409i
\(305\) 9.73481e8 1.96462
\(306\) −2.30814e8 −0.460508
\(307\) 2.64014e8 0.520765 0.260383 0.965505i \(-0.416151\pi\)
0.260383 + 0.965505i \(0.416151\pi\)
\(308\) 6.10722e7 0.119101
\(309\) 9.74807e8i 1.87959i
\(310\) 7.81349e7i 0.148963i
\(311\) 7.65348e8i 1.44277i 0.692533 + 0.721386i \(0.256495\pi\)
−0.692533 + 0.721386i \(0.743505\pi\)
\(312\) 1.95436e8 0.364303
\(313\) 2.05467e8i 0.378736i 0.981906 + 0.189368i \(0.0606439\pi\)
−0.981906 + 0.189368i \(0.939356\pi\)
\(314\) 3.34461e8i 0.609665i
\(315\) 5.43855e8i 0.980384i
\(316\) 1.44674e8i 0.257921i
\(317\) −7.59668e8 −1.33942 −0.669710 0.742623i \(-0.733581\pi\)
−0.669710 + 0.742623i \(0.733581\pi\)
\(318\) 3.92013e6i 0.00683605i
\(319\) 7.33251e7i 0.126469i
\(320\) 1.44799e8i 0.247024i
\(321\) 3.40672e8 0.574869
\(322\) 3.72939e8 0.622504
\(323\) 6.08475e8 1.00469
\(324\) 3.64619e8 0.595568
\(325\) 1.40345e9i 2.26780i
\(326\) 7.38987e8 1.18134
\(327\) 6.31580e8i 0.998875i
\(328\) 2.38466e8i 0.373136i
\(329\) −2.85323e8 −0.441725
\(330\) 4.29398e8 0.657751
\(331\) 5.97140e8i 0.905062i −0.891749 0.452531i \(-0.850521\pi\)
0.891749 0.452531i \(-0.149479\pi\)
\(332\) −6.21450e8 −0.932015
\(333\) −4.27149e7 + 4.98577e8i −0.0633905 + 0.739908i
\(334\) 6.08831e7 0.0894096
\(335\) 1.29451e9i 1.88127i
\(336\) −1.53295e8 −0.220466
\(337\) −1.32617e9 −1.88753 −0.943764 0.330621i \(-0.892742\pi\)
−0.943764 + 0.330621i \(0.892742\pi\)
\(338\) 1.96140e8i 0.276285i
\(339\) 4.19630e8i 0.585016i
\(340\) −6.28005e8 −0.866536
\(341\) 2.78323e7i 0.0380110i
\(342\) 4.45030e8 0.601586
\(343\) −7.75719e8 −1.03795
\(344\) 3.04638e8 0.403487
\(345\) 2.62213e9 3.43786
\(346\) 2.78160e8i 0.361017i
\(347\) 1.28030e9i 1.64497i −0.568783 0.822487i \(-0.692586\pi\)
0.568783 0.822487i \(-0.307414\pi\)
\(348\) 1.84051e8i 0.234105i
\(349\) −9.62403e8 −1.21190 −0.605952 0.795501i \(-0.707208\pi\)
−0.605952 + 0.795501i \(0.707208\pi\)
\(350\) 1.10083e9i 1.37241i
\(351\) 2.14862e8i 0.265207i
\(352\) 5.15786e7i 0.0630334i
\(353\) 4.17838e8i 0.505587i 0.967520 + 0.252794i \(0.0813494\pi\)
−0.967520 + 0.252794i \(0.918651\pi\)
\(354\) 7.22735e8 0.865899
\(355\) 1.35703e9i 1.60986i
\(356\) 5.59682e8i 0.657456i
\(357\) 6.64855e8i 0.773371i
\(358\) −3.42063e8 −0.394017
\(359\) 1.53297e9 1.74865 0.874325 0.485341i \(-0.161304\pi\)
0.874325 + 0.485341i \(0.161304\pi\)
\(360\) −4.59314e8 −0.518861
\(361\) −2.79321e8 −0.312485
\(362\) 9.85735e8i 1.09214i
\(363\) 1.05007e9 1.15224
\(364\) 2.39901e8i 0.260721i
\(365\) 2.41861e8i 0.260340i
\(366\) 8.70398e8 0.927971
\(367\) −6.50437e8 −0.686869 −0.343435 0.939177i \(-0.611590\pi\)
−0.343435 + 0.939177i \(0.611590\pi\)
\(368\) 3.14967e8i 0.329456i
\(369\) −7.56433e8 −0.783751
\(370\) −1.16220e8 + 1.35654e9i −0.119282 + 1.39228i
\(371\) −4.81203e6 −0.00489237
\(372\) 6.98611e7i 0.0703615i
\(373\) −3.42004e8 −0.341232 −0.170616 0.985338i \(-0.554576\pi\)
−0.170616 + 0.985338i \(0.554576\pi\)
\(374\) 2.23701e8 0.221114
\(375\) 5.07592e9i 4.97056i
\(376\) 2.40971e8i 0.233780i
\(377\) 2.88032e8 0.276851
\(378\) 1.68533e8i 0.160496i
\(379\) −3.68055e8 −0.347276 −0.173638 0.984810i \(-0.555552\pi\)
−0.173638 + 0.984810i \(0.555552\pi\)
\(380\) 1.21085e9 1.13200
\(381\) 2.52439e9 2.33840
\(382\) −1.04930e9 −0.963115
\(383\) 4.90723e8i 0.446315i 0.974782 + 0.223157i \(0.0716364\pi\)
−0.974782 + 0.223157i \(0.928364\pi\)
\(384\) 1.29466e8i 0.116680i
\(385\) 5.27094e8i 0.470734i
\(386\) 6.84477e8 0.605763
\(387\) 9.66337e8i 0.847501i
\(388\) 1.01879e9i 0.885473i
\(389\) 1.23564e9i 1.06431i 0.846647 + 0.532154i \(0.178617\pi\)
−0.846647 + 0.532154i \(0.821383\pi\)
\(390\) 1.68674e9i 1.43987i
\(391\) 1.36604e9 1.15570
\(392\) 2.33481e8i 0.195772i
\(393\) 1.06650e9i 0.886314i
\(394\) 6.92256e8i 0.570204i
\(395\) −1.24864e9 −1.01940
\(396\) 1.63612e8 0.132398
\(397\) −1.39163e9 −1.11624 −0.558118 0.829762i \(-0.688476\pi\)
−0.558118 + 0.829762i \(0.688476\pi\)
\(398\) −6.79249e8 −0.540055
\(399\) 1.28190e9i 1.01030i
\(400\) −9.29712e8 −0.726337
\(401\) 7.98885e8i 0.618698i 0.950949 + 0.309349i \(0.100111\pi\)
−0.950949 + 0.309349i \(0.899889\pi\)
\(402\) 1.15744e9i 0.888600i
\(403\) −1.09330e8 −0.0832090
\(404\) −1.22506e9 −0.924317
\(405\) 3.14691e9i 2.35392i
\(406\) −2.25926e8 −0.167543
\(407\) 4.13985e7 4.83212e8i 0.0304371 0.355269i
\(408\) −5.61505e8 −0.409301
\(409\) 1.35467e8i 0.0979040i 0.998801 + 0.0489520i \(0.0155881\pi\)
−0.998801 + 0.0489520i \(0.984412\pi\)
\(410\) −2.05812e9 −1.47478
\(411\) −1.63533e9 −1.16187
\(412\) 1.01059e9i 0.711922i
\(413\) 8.87170e8i 0.619700i
\(414\) 9.99100e8 0.692003
\(415\) 5.36354e9i 3.68369i
\(416\) 2.02609e8 0.137985
\(417\) 4.99671e8 0.337449
\(418\) −4.31315e8 −0.288853
\(419\) 5.81687e8 0.386314 0.193157 0.981168i \(-0.438127\pi\)
0.193157 + 0.981168i \(0.438127\pi\)
\(420\) 1.32304e9i 0.871367i
\(421\) 8.06048e8i 0.526470i 0.964732 + 0.263235i \(0.0847894\pi\)
−0.964732 + 0.263235i \(0.915211\pi\)
\(422\) 1.80483e9i 1.16907i
\(423\) −7.64379e8 −0.491041
\(424\) 4.06401e6i 0.00258925i
\(425\) 4.03224e9i 2.54791i
\(426\) 1.21333e9i 0.760405i
\(427\) 1.06843e9i 0.664123i
\(428\) 3.53176e8 0.217740
\(429\) 6.00833e8i 0.367412i
\(430\) 2.62923e9i 1.59474i
\(431\) 1.69493e8i 0.101972i 0.998699 + 0.0509860i \(0.0162364\pi\)
−0.998699 + 0.0509860i \(0.983764\pi\)
\(432\) 1.42335e8 0.0849412
\(433\) −2.67735e9 −1.58489 −0.792443 0.609946i \(-0.791191\pi\)
−0.792443 + 0.609946i \(0.791191\pi\)
\(434\) 8.57558e7 0.0503558
\(435\) −1.58849e9 −0.925276
\(436\) 6.54761e8i 0.378338i
\(437\) −2.63384e9 −1.50975
\(438\) 2.16250e8i 0.122969i
\(439\) 2.31970e9i 1.30860i 0.756236 + 0.654299i \(0.227036\pi\)
−0.756236 + 0.654299i \(0.772964\pi\)
\(440\) 4.45159e8 0.249133
\(441\) −7.40622e8 −0.411208
\(442\) 8.78731e8i 0.484036i
\(443\) 1.30496e9 0.713155 0.356578 0.934266i \(-0.383944\pi\)
0.356578 + 0.934266i \(0.383944\pi\)
\(444\) −1.03913e8 + 1.21290e9i −0.0563416 + 0.657632i
\(445\) −4.83044e9 −2.59852
\(446\) 1.23098e9i 0.657019i
\(447\) 3.39156e9 1.79607
\(448\) −1.58922e8 −0.0835046
\(449\) 1.65924e9i 0.865063i −0.901619 0.432531i \(-0.857620\pi\)
0.901619 0.432531i \(-0.142380\pi\)
\(450\) 2.94912e9i 1.52563i
\(451\) 7.33121e8 0.376320
\(452\) 4.35032e8i 0.221583i
\(453\) −9.19247e8 −0.464610
\(454\) 4.44843e8 0.223106
\(455\) −2.07050e9 −1.03047
\(456\) 1.08263e9 0.534692
\(457\) 1.77052e9i 0.867747i 0.900974 + 0.433873i \(0.142853\pi\)
−0.900974 + 0.433873i \(0.857147\pi\)
\(458\) 6.02825e8i 0.293199i
\(459\) 6.17318e8i 0.297965i
\(460\) 2.71838e9 1.30214
\(461\) 2.09728e9i 0.997020i −0.866884 0.498510i \(-0.833881\pi\)
0.866884 0.498510i \(-0.166119\pi\)
\(462\) 4.71280e8i 0.222347i
\(463\) 1.22590e9i 0.574012i −0.957929 0.287006i \(-0.907340\pi\)
0.957929 0.287006i \(-0.0926600\pi\)
\(464\) 1.90806e8i 0.0886707i
\(465\) 6.02949e8 0.278096
\(466\) 1.51631e9i 0.694126i
\(467\) 1.40205e9i 0.637022i −0.947919 0.318511i \(-0.896817\pi\)
0.947919 0.318511i \(-0.103183\pi\)
\(468\) 6.42692e8i 0.289829i
\(469\) −1.42078e9 −0.635946
\(470\) −2.07974e9 −0.923988
\(471\) 2.58096e9 1.13817
\(472\) 7.49261e8 0.327972
\(473\) 9.36557e8i 0.406930i
\(474\) −1.11642e9 −0.481507
\(475\) 7.77451e9i 3.32848i
\(476\) 6.89257e8i 0.292925i
\(477\) −1.28914e7 −0.00543858
\(478\) 1.98293e9 0.830443
\(479\) 8.80464e8i 0.366047i 0.983109 + 0.183024i \(0.0585885\pi\)
−0.983109 + 0.183024i \(0.941411\pi\)
\(480\) −1.11738e9 −0.461165
\(481\) 1.89813e9 + 1.62619e8i 0.777711 + 0.0666292i
\(482\) 2.81713e8 0.114589
\(483\) 2.87789e9i 1.16214i
\(484\) 1.08861e9 0.436429
\(485\) 8.79288e9 3.49973
\(486\) 2.20570e9i 0.871604i
\(487\) 1.15988e9i 0.455052i 0.973772 + 0.227526i \(0.0730637\pi\)
−0.973772 + 0.227526i \(0.926936\pi\)
\(488\) 9.02345e8 0.351482
\(489\) 5.70259e9i 2.20542i
\(490\) −2.01510e9 −0.773768
\(491\) 2.16496e9 0.825402 0.412701 0.910867i \(-0.364585\pi\)
0.412701 + 0.910867i \(0.364585\pi\)
\(492\) −1.84018e9 −0.696600
\(493\) −8.27544e8 −0.311047
\(494\) 1.69427e9i 0.632322i
\(495\) 1.41208e9i 0.523289i
\(496\) 7.24252e7i 0.0266504i
\(497\) 1.48938e9 0.544201
\(498\) 4.79559e9i 1.73996i
\(499\) 2.85484e9i 1.02856i −0.857622 0.514281i \(-0.828059\pi\)
0.857622 0.514281i \(-0.171941\pi\)
\(500\) 5.26223e9i 1.88267i
\(501\) 4.69821e8i 0.166917i
\(502\) 2.30686e9 0.813875
\(503\) 1.03685e9i 0.363268i 0.983366 + 0.181634i \(0.0581385\pi\)
−0.983366 + 0.181634i \(0.941861\pi\)
\(504\) 5.04113e8i 0.175397i
\(505\) 1.05731e10i 3.65326i
\(506\) −9.68310e8 −0.332267
\(507\) −1.51357e9 −0.515791
\(508\) 2.61704e9 0.885702
\(509\) 3.51512e9 1.18148 0.590742 0.806861i \(-0.298835\pi\)
0.590742 + 0.806861i \(0.298835\pi\)
\(510\) 4.84617e9i 1.61772i
\(511\) 2.65450e8 0.0880056
\(512\) 1.34218e8i 0.0441942i
\(513\) 1.19024e9i 0.389247i
\(514\) −1.83539e9 −0.596151
\(515\) −8.72204e9 −2.81380
\(516\) 2.35082e9i 0.753261i
\(517\) 7.40822e8 0.235775
\(518\) −1.48885e9 1.27555e8i −0.470649 0.0403221i
\(519\) 2.14650e9 0.673976
\(520\) 1.74865e9i 0.545370i
\(521\) −3.61049e9 −1.11849 −0.559247 0.829001i \(-0.688910\pi\)
−0.559247 + 0.829001i \(0.688910\pi\)
\(522\) −6.05254e8 −0.186248
\(523\) 2.72940e9i 0.834280i −0.908842 0.417140i \(-0.863032\pi\)
0.908842 0.417140i \(-0.136968\pi\)
\(524\) 1.10565e9i 0.335704i
\(525\) 8.49488e9 2.56212
\(526\) 3.74792e9i 1.12290i
\(527\) 3.14114e8 0.0934869
\(528\) 3.98020e8 0.117676
\(529\) −2.50819e9 −0.736657
\(530\) −3.50752e7 −0.0102337
\(531\) 2.37672e9i 0.688886i
\(532\) 1.32895e9i 0.382664i
\(533\) 2.87981e9i 0.823794i
\(534\) −4.31894e9 −1.22739
\(535\) 3.04815e9i 0.860592i
\(536\) 1.19992e9i 0.336570i
\(537\) 2.63962e9i 0.735583i
\(538\) 4.46528e8i 0.123626i
\(539\) 7.17798e8 0.197443
\(540\) 1.22845e9i 0.335721i
\(541\) 1.07615e9i 0.292203i 0.989270 + 0.146101i \(0.0466726\pi\)
−0.989270 + 0.146101i \(0.953327\pi\)
\(542\) 7.13652e8i 0.192526i
\(543\) 7.60669e9 2.03890
\(544\) −5.82114e8 −0.155029
\(545\) 5.65103e9 1.49534
\(546\) −1.85126e9 −0.486735
\(547\) 4.54937e9i 1.18849i 0.804284 + 0.594245i \(0.202549\pi\)
−0.804284 + 0.594245i \(0.797451\pi\)
\(548\) −1.69535e9 −0.440076
\(549\) 2.86231e9i 0.738268i
\(550\) 2.85824e9i 0.732536i
\(551\) 1.59558e9 0.406338
\(552\) 2.43052e9 0.615054
\(553\) 1.37042e9i 0.344601i
\(554\) 4.86635e9 1.21596
\(555\) −1.04681e10 8.96840e8i −2.59922 0.222684i
\(556\) 5.18011e8 0.127814
\(557\) 5.70048e8i 0.139771i −0.997555 0.0698857i \(-0.977737\pi\)
0.997555 0.0698857i \(-0.0222635\pi\)
\(558\) 2.29739e8 0.0559777
\(559\) 3.67893e9 0.890801
\(560\) 1.37160e9i 0.330043i
\(561\) 1.72625e9i 0.412794i
\(562\) 3.34500e9 0.794913
\(563\) 2.50929e9i 0.592612i −0.955093 0.296306i \(-0.904245\pi\)
0.955093 0.296306i \(-0.0957549\pi\)
\(564\) −1.85951e9 −0.436438
\(565\) −3.75462e9 −0.875783
\(566\) 2.51500e9 0.583015
\(567\) −3.45384e9 −0.795722
\(568\) 1.25786e9i 0.288014i
\(569\) 4.96651e9i 1.13021i 0.825019 + 0.565104i \(0.191164\pi\)
−0.825019 + 0.565104i \(0.808836\pi\)
\(570\) 9.34384e9i 2.11331i
\(571\) −1.22505e9 −0.275378 −0.137689 0.990476i \(-0.543967\pi\)
−0.137689 + 0.990476i \(0.543967\pi\)
\(572\) 6.22885e8i 0.139162i
\(573\) 8.09721e9i 1.79802i
\(574\) 2.25886e9i 0.498537i
\(575\) 1.74539e10i 3.82874i
\(576\) −4.25750e8 −0.0928273
\(577\) 8.35364e9i 1.81034i −0.425048 0.905171i \(-0.639743\pi\)
0.425048 0.905171i \(-0.360257\pi\)
\(578\) 7.58033e8i 0.163283i
\(579\) 5.28195e9i 1.13089i
\(580\) −1.64679e9 −0.350461
\(581\) 5.88667e9 1.24524
\(582\) 7.86180e9 1.65307
\(583\) 1.24941e7 0.00261135
\(584\) 2.24187e8i 0.0465763i
\(585\) −5.54686e9 −1.14552
\(586\) 3.87820e9i 0.796139i
\(587\) 4.56164e9i 0.930867i −0.885083 0.465433i \(-0.845899\pi\)
0.885083 0.465433i \(-0.154101\pi\)
\(588\) −1.80172e9 −0.365483
\(589\) −6.05640e8 −0.122127
\(590\) 6.46663e9i 1.29627i
\(591\) −5.34198e9 −1.06450
\(592\) −1.07727e8 + 1.25741e9i −0.0213402 + 0.249088i
\(593\) −6.46155e9 −1.27246 −0.636232 0.771498i \(-0.719508\pi\)
−0.636232 + 0.771498i \(0.719508\pi\)
\(594\) 4.37584e8i 0.0856660i
\(595\) 5.94876e9 1.15776
\(596\) 3.51604e9 0.680286
\(597\) 5.24161e9i 1.00822i
\(598\) 3.80367e9i 0.727358i
\(599\) −4.31265e9 −0.819880 −0.409940 0.912112i \(-0.634450\pi\)
−0.409940 + 0.912112i \(0.634450\pi\)
\(600\) 7.17437e9i 1.35598i
\(601\) −4.13016e9 −0.776079 −0.388039 0.921643i \(-0.626848\pi\)
−0.388039 + 0.921643i \(0.626848\pi\)
\(602\) −2.88568e9 −0.539088
\(603\) −3.80625e9 −0.706946
\(604\) −9.52986e8 −0.175978
\(605\) 9.39544e9i 1.72494i
\(606\) 9.45347e9i 1.72559i
\(607\) 8.72886e9i 1.58415i −0.610421 0.792077i \(-0.709000\pi\)
0.610421 0.792077i \(-0.291000\pi\)
\(608\) 1.12237e9 0.202522
\(609\) 1.74342e9i 0.312782i
\(610\) 7.78785e9i 1.38919i
\(611\) 2.91006e9i 0.516128i
\(612\) 1.84651e9i 0.325629i
\(613\) −6.95813e9 −1.22006 −0.610030 0.792378i \(-0.708843\pi\)
−0.610030 + 0.792378i \(0.708843\pi\)
\(614\) 2.11211e9i 0.368237i
\(615\) 1.58820e10i 2.75324i
\(616\) 4.88577e8i 0.0842172i
\(617\) 7.38172e9 1.26520 0.632601 0.774478i \(-0.281987\pi\)
0.632601 + 0.774478i \(0.281987\pi\)
\(618\) −7.79845e9 −1.32907
\(619\) 8.15556e9 1.38209 0.691045 0.722811i \(-0.257150\pi\)
0.691045 + 0.722811i \(0.257150\pi\)
\(620\) 6.25079e8 0.105333
\(621\) 2.67212e9i 0.447750i
\(622\) −6.12278e9 −1.02019
\(623\) 5.30158e9i 0.878409i
\(624\) 1.56348e9i 0.257601i
\(625\) 2.76837e10 4.53570
\(626\) −1.64374e9 −0.267807
\(627\) 3.32836e9i 0.539255i
\(628\) 2.67569e9 0.431098
\(629\) −5.45351e9 4.67221e8i −0.873773 0.0748591i
\(630\) 4.35084e9 0.693236
\(631\) 5.34604e9i 0.847090i −0.905875 0.423545i \(-0.860785\pi\)
0.905875 0.423545i \(-0.139215\pi\)
\(632\) −1.15739e9 −0.182378
\(633\) −1.39274e10 −2.18252
\(634\) 6.07735e9i 0.947112i
\(635\) 2.25868e10i 3.50064i
\(636\) −3.13610e7 −0.00483382
\(637\) 2.81962e9i 0.432217i
\(638\) 5.86601e8 0.0894274
\(639\) 3.99005e9 0.604958
\(640\) −1.15839e9 −0.174673
\(641\) −4.54936e9 −0.682256 −0.341128 0.940017i \(-0.610809\pi\)
−0.341128 + 0.940017i \(0.610809\pi\)
\(642\) 2.72538e9i 0.406494i
\(643\) 3.88181e9i 0.575833i −0.957656 0.287916i \(-0.907038\pi\)
0.957656 0.287916i \(-0.0929625\pi\)
\(644\) 2.98351e9i 0.440177i
\(645\) −2.02892e10 −2.97718
\(646\) 4.86780e9i 0.710426i
\(647\) 1.86109e9i 0.270149i 0.990835 + 0.135075i \(0.0431274\pi\)
−0.990835 + 0.135075i \(0.956873\pi\)
\(648\) 2.91695e9i 0.421130i
\(649\) 2.30347e9i 0.330770i
\(650\) −1.12276e10 −1.60358
\(651\) 6.61757e8i 0.0940081i
\(652\) 5.91190e9i 0.835334i
\(653\) 3.38262e9i 0.475398i −0.971339 0.237699i \(-0.923607\pi\)
0.971339 0.237699i \(-0.0763931\pi\)
\(654\) 5.05264e9 0.706311
\(655\) 9.54247e9 1.32683
\(656\) −1.90773e9 −0.263847
\(657\) 7.11140e8 0.0978309
\(658\) 2.28259e9i 0.312347i
\(659\) −8.75702e9 −1.19195 −0.595974 0.803004i \(-0.703234\pi\)
−0.595974 + 0.803004i \(0.703234\pi\)
\(660\) 3.43519e9i 0.465100i
\(661\) 4.74653e9i 0.639250i 0.947544 + 0.319625i \(0.103557\pi\)
−0.947544 + 0.319625i \(0.896443\pi\)
\(662\) 4.77712e9 0.639975
\(663\) −6.78096e9 −0.903637
\(664\) 4.97160e9i 0.659034i
\(665\) −1.14697e10 −1.51244
\(666\) −3.98862e9 3.41719e8i −0.523194 0.0448238i
\(667\) 3.58210e9 0.467409
\(668\) 4.87065e8i 0.0632222i
\(669\) 9.49917e9 1.22657
\(670\) −1.03561e10 −1.33026
\(671\) 2.77410e9i 0.354482i
\(672\) 1.22636e9i 0.155893i
\(673\) 1.91258e9 0.241862 0.120931 0.992661i \(-0.461412\pi\)
0.120931 + 0.992661i \(0.461412\pi\)
\(674\) 1.06093e10i 1.33468i
\(675\) −7.88751e9 −0.987135
\(676\) −1.56912e9 −0.195363
\(677\) 3.73391e9 0.462491 0.231245 0.972895i \(-0.425720\pi\)
0.231245 + 0.972895i \(0.425720\pi\)
\(678\) −3.35704e9 −0.413669
\(679\) 9.65049e9i 1.18306i
\(680\) 5.02404e9i 0.612733i
\(681\) 3.43275e9i 0.416512i
\(682\) −2.22659e8 −0.0268778
\(683\) 5.24953e8i 0.0630446i 0.999503 + 0.0315223i \(0.0100355\pi\)
−0.999503 + 0.0315223i \(0.989964\pi\)
\(684\) 3.56024e9i 0.425386i
\(685\) 1.46320e10i 1.73935i
\(686\) 6.20575e9i 0.733939i
\(687\) −4.65186e9 −0.547366
\(688\) 2.43710e9i 0.285308i
\(689\) 4.90787e7i 0.00571644i
\(690\) 2.09771e10i 2.43093i
\(691\) −5.79537e8 −0.0668202 −0.0334101 0.999442i \(-0.510637\pi\)
−0.0334101 + 0.999442i \(0.510637\pi\)
\(692\) 2.22528e9 0.255278
\(693\) −1.54981e9 −0.176893
\(694\) 1.02424e10 1.16317
\(695\) 4.47079e9i 0.505169i
\(696\) −1.47241e9 −0.165537
\(697\) 8.27396e9i 0.925548i
\(698\) 7.69922e9i 0.856945i
\(699\) 1.17010e10 1.29585
\(700\) 8.80667e9 0.970440
\(701\) 5.58220e9i 0.612058i 0.952022 + 0.306029i \(0.0990004\pi\)
−0.952022 + 0.306029i \(0.901000\pi\)
\(702\) 1.71889e9 0.187529
\(703\) 1.05148e10 + 9.00843e8i 1.14146 + 0.0977925i
\(704\) 4.12629e8 0.0445713
\(705\) 1.60489e10i 1.72497i
\(706\) −3.34270e9 −0.357504
\(707\) 1.16043e10 1.23496
\(708\) 5.78188e9i 0.612283i
\(709\) 5.62005e9i 0.592214i −0.955155 0.296107i \(-0.904312\pi\)
0.955155 0.296107i \(-0.0956885\pi\)
\(710\) 1.08562e10 1.13835
\(711\) 3.67135e9i 0.383074i
\(712\) −4.47746e9 −0.464891
\(713\) −1.35967e9 −0.140482
\(714\) 5.31884e9 0.546856
\(715\) 5.37592e9 0.550024
\(716\) 2.73650e9i 0.278612i
\(717\) 1.53018e10i 1.55034i
\(718\) 1.22638e10i 1.23648i
\(719\) 4.72956e8 0.0474536 0.0237268 0.999718i \(-0.492447\pi\)
0.0237268 + 0.999718i \(0.492447\pi\)
\(720\) 3.67451e9i 0.366890i
\(721\) 9.57274e9i 0.951180i
\(722\) 2.23457e9i 0.220960i
\(723\) 2.17392e9i 0.213924i
\(724\) 7.88588e9 0.772263
\(725\) 1.05736e10i 1.03048i
\(726\) 8.40055e9i 0.814760i
\(727\) 9.56076e9i 0.922830i 0.887184 + 0.461415i \(0.152658\pi\)
−0.887184 + 0.461415i \(0.847342\pi\)
\(728\) −1.91920e9 −0.184358
\(729\) −4.56116e9 −0.436043
\(730\) 1.93488e9 0.184088
\(731\) −1.05699e10 −1.00083
\(732\) 6.96319e9i 0.656174i
\(733\) −7.81007e9 −0.732472 −0.366236 0.930522i \(-0.619354\pi\)
−0.366236 + 0.930522i \(0.619354\pi\)
\(734\) 5.20350e9i 0.485690i
\(735\) 1.55501e10i 1.44453i
\(736\) 2.51973e9 0.232960
\(737\) 3.68894e9 0.339442
\(738\) 6.05146e9i 0.554196i
\(739\) 1.10335e9 0.100568 0.0502839 0.998735i \(-0.483987\pi\)
0.0502839 + 0.998735i \(0.483987\pi\)
\(740\) −1.08523e10 9.29756e8i −0.984491 0.0843448i
\(741\) 1.30743e10 1.18047
\(742\) 3.84962e7i 0.00345943i
\(743\) −1.08055e9 −0.0966462 −0.0483231 0.998832i \(-0.515388\pi\)
−0.0483231 + 0.998832i \(0.515388\pi\)
\(744\) 5.58889e8 0.0497531
\(745\) 3.03458e10i 2.68876i
\(746\) 2.73603e9i 0.241288i
\(747\) 1.57703e10 1.38426
\(748\) 1.78961e9i 0.156352i
\(749\) −3.34545e9 −0.290916
\(750\) 4.06074e10 3.51472
\(751\) −2.96287e9 −0.255254 −0.127627 0.991822i \(-0.540736\pi\)
−0.127627 + 0.991822i \(0.540736\pi\)
\(752\) −1.92776e9 −0.165307
\(753\) 1.78015e10i 1.51941i
\(754\) 2.30426e9i 0.195763i
\(755\) 8.22492e9i 0.695532i
\(756\) −1.34826e9 −0.113488
\(757\) 2.08894e10i 1.75021i −0.483932 0.875106i \(-0.660792\pi\)
0.483932 0.875106i \(-0.339208\pi\)
\(758\) 2.94444e9i 0.245561i
\(759\) 7.47223e9i 0.620303i
\(760\) 9.68678e9i 0.800446i
\(761\) 8.64924e9 0.711429 0.355715 0.934595i \(-0.384237\pi\)
0.355715 + 0.934595i \(0.384237\pi\)
\(762\) 2.01951e10i 1.65350i
\(763\) 6.20220e9i 0.505487i
\(764\) 8.39440e9i 0.681025i
\(765\) 1.59367e10 1.28701
\(766\) −3.92579e9 −0.315592
\(767\) 9.04839e9 0.724081
\(768\) −1.03573e9 −0.0825052
\(769\) 8.78340e9i 0.696499i 0.937402 + 0.348249i \(0.113224\pi\)
−0.937402 + 0.348249i \(0.886776\pi\)
\(770\) −4.21675e9 −0.332859
\(771\) 1.41633e10i 1.11294i
\(772\) 5.47581e9i 0.428339i
\(773\) −1.50852e10 −1.17469 −0.587343 0.809338i \(-0.699826\pi\)
−0.587343 + 0.809338i \(0.699826\pi\)
\(774\) −7.73070e9 −0.599274
\(775\) 4.01345e9i 0.309715i
\(776\) 8.15035e9 0.626124
\(777\) 9.84313e8 1.14891e10i 0.0752765 0.878645i
\(778\) −9.88510e9 −0.752580
\(779\) 1.59529e10i 1.20909i
\(780\) −1.34939e10 −1.01814
\(781\) −3.86708e9 −0.290472
\(782\) 1.09283e10i 0.817201i
\(783\) 1.61877e9i 0.120509i
\(784\) −1.86785e9 −0.138432
\(785\) 2.30930e10i 1.70387i
\(786\) 8.53201e9 0.626719
\(787\) 6.04283e9 0.441905 0.220953 0.975285i \(-0.429083\pi\)
0.220953 + 0.975285i \(0.429083\pi\)
\(788\) −5.53805e9 −0.403195
\(789\) 2.89219e10 2.09632
\(790\) 9.98910e9i 0.720828i
\(791\) 4.12083e9i 0.296051i
\(792\) 1.30889e9i 0.0936195i
\(793\) 1.08971e10 0.775987
\(794\) 1.11330e10i 0.789298i
\(795\) 2.70667e8i 0.0191051i
\(796\) 5.43399e9i 0.381877i
\(797\) 2.37936e10i 1.66477i −0.554194 0.832387i \(-0.686974\pi\)
0.554194 0.832387i \(-0.313026\pi\)
\(798\) −1.02552e10 −0.714387
\(799\) 8.36088e9i 0.579880i
\(800\) 7.43769e9i 0.513598i
\(801\) 1.42029e10i 0.976478i
\(802\) −6.39108e9 −0.437486
\(803\) −6.89223e8 −0.0469738
\(804\) −9.25950e9 −0.628335
\(805\) −2.57497e10 −1.73975
\(806\) 8.74637e8i 0.0588376i
\(807\) 3.44575e9 0.230795
\(808\) 9.80045e9i 0.653591i
\(809\) 2.96588e9i 0.196940i −0.995140 0.0984699i \(-0.968605\pi\)
0.995140 0.0984699i \(-0.0313948\pi\)
\(810\) −2.51753e10 −1.66447
\(811\) 9.96442e9 0.655963 0.327981 0.944684i \(-0.393632\pi\)
0.327981 + 0.944684i \(0.393632\pi\)
\(812\) 1.80741e9i 0.118470i
\(813\) 5.50709e9 0.359422
\(814\) 3.86570e9 + 3.31188e8i 0.251213 + 0.0215223i
\(815\) −5.10237e10 −3.30157
\(816\) 4.49204e9i 0.289420i
\(817\) 2.03798e10 1.30744
\(818\) −1.08373e9 −0.0692286
\(819\) 6.08788e9i 0.387233i
\(820\) 1.64650e10i 1.04283i
\(821\) −2.00078e10 −1.26182 −0.630910 0.775856i \(-0.717318\pi\)
−0.630910 + 0.775856i \(0.717318\pi\)
\(822\) 1.30826e10i 0.821569i
\(823\) −2.93972e10 −1.83826 −0.919128 0.393960i \(-0.871105\pi\)
−0.919128 + 0.393960i \(0.871105\pi\)
\(824\) −8.08468e9 −0.503405
\(825\) −2.20564e10 −1.36756
\(826\) −7.09736e9 −0.438194
\(827\) 4.87011e9i 0.299412i −0.988731 0.149706i \(-0.952167\pi\)
0.988731 0.149706i \(-0.0478327\pi\)
\(828\) 7.99280e9i 0.489320i
\(829\) 1.38134e10i 0.842091i 0.907040 + 0.421045i \(0.138337\pi\)
−0.907040 + 0.421045i \(0.861663\pi\)
\(830\) 4.29083e10 2.60476
\(831\) 3.75525e10i 2.27005i
\(832\) 1.62087e9i 0.0975700i
\(833\) 8.10102e9i 0.485604i
\(834\) 3.99737e9i 0.238613i
\(835\) −4.20370e9 −0.249879
\(836\) 3.45052e9i 0.204250i
\(837\) 6.14443e8i 0.0362195i
\(838\) 4.65350e9i 0.273165i
\(839\) 7.72042e9 0.451309 0.225654 0.974207i \(-0.427548\pi\)
0.225654 + 0.974207i \(0.427548\pi\)
\(840\) 1.05843e10 0.616150
\(841\) 1.50798e10 0.874200
\(842\) −6.44838e9 −0.372270
\(843\) 2.58126e10i 1.48401i
\(844\) −1.44386e10 −0.826660
\(845\) 1.35426e10i 0.772151i
\(846\) 6.11503e9i 0.347218i
\(847\) −1.03118e10 −0.583101
\(848\) −3.25121e7 −0.00183088
\(849\) 1.94076e10i 1.08842i
\(850\) 3.22579e10 1.80165
\(851\) 2.36060e10 + 2.02241e9i 1.31301 + 0.112490i
\(852\) 9.70664e9 0.537688
\(853\) 3.58209e9i 0.197613i −0.995107 0.0988063i \(-0.968498\pi\)
0.995107 0.0988063i \(-0.0315024\pi\)
\(854\) −8.54744e9 −0.469606
\(855\) −3.07273e10 −1.68129
\(856\) 2.82541e9i 0.153965i
\(857\) 3.33804e10i 1.81158i −0.423723 0.905792i \(-0.639277\pi\)
0.423723 0.905792i \(-0.360723\pi\)
\(858\) 4.80666e9 0.259799
\(859\) 2.49538e10i 1.34326i −0.740886 0.671630i \(-0.765594\pi\)
0.740886 0.671630i \(-0.234406\pi\)
\(860\) −2.10339e10 −1.12765
\(861\) 1.74311e10 0.930709
\(862\) −1.35594e9 −0.0721051
\(863\) 4.38135e9 0.232044 0.116022 0.993247i \(-0.462986\pi\)
0.116022 + 0.993247i \(0.462986\pi\)
\(864\) 1.13868e9i 0.0600625i
\(865\) 1.92057e10i 1.00896i
\(866\) 2.14188e10i 1.12068i
\(867\) −5.84957e9 −0.304829
\(868\) 6.86046e8i 0.0356069i
\(869\) 3.55821e9i 0.183934i
\(870\) 1.27079e10i 0.654269i
\(871\) 1.44907e10i 0.743065i
\(872\) 5.23809e9 0.267525
\(873\) 2.58536e10i 1.31514i
\(874\) 2.10707e10i 1.06755i
\(875\) 4.98463e10i 2.51539i
\(876\) 1.73000e9 0.0869524
\(877\) 3.48494e10 1.74460 0.872302 0.488967i \(-0.162626\pi\)
0.872302 + 0.488967i \(0.162626\pi\)
\(878\) −1.85576e10 −0.925319
\(879\) −2.99272e10 −1.48630
\(880\) 3.56127e9i 0.176163i
\(881\) 1.70363e10 0.839382 0.419691 0.907667i \(-0.362138\pi\)
0.419691 + 0.907667i \(0.362138\pi\)
\(882\) 5.92498e9i 0.290768i
\(883\) 2.78803e10i 1.36281i 0.731907 + 0.681404i \(0.238630\pi\)
−0.731907 + 0.681404i \(0.761370\pi\)
\(884\) −7.02985e9 −0.342265
\(885\) −4.99015e10 −2.41998
\(886\) 1.04397e10i 0.504277i
\(887\) 6.16592e8 0.0296664 0.0148332 0.999890i \(-0.495278\pi\)
0.0148332 + 0.999890i \(0.495278\pi\)
\(888\) −9.70317e9 8.31304e8i −0.465016 0.0398396i
\(889\) −2.47899e10 −1.18336
\(890\) 3.86435e10i 1.83743i
\(891\) 8.96765e9 0.424724
\(892\) 9.84781e9 0.464583
\(893\) 1.61205e10i 0.757528i
\(894\) 2.71325e10i 1.27001i
\(895\) 2.36179e10 1.10119
\(896\) 1.27137e9i 0.0590466i
\(897\) 2.93520e10 1.35789
\(898\) 1.32739e10 0.611692
\(899\) 8.23688e8 0.0378098
\(900\) 2.35930e10 1.07878
\(901\) 1.41008e8i 0.00642253i
\(902\) 5.86497e9i 0.266099i
\(903\) 2.22681e10i 1.00641i
\(904\) −3.48025e9 −0.156683
\(905\) 6.80605e10i 3.05228i
\(906\) 7.35398e9i 0.328529i
\(907\) 3.96059e10i 1.76252i 0.472632 + 0.881260i \(0.343304\pi\)
−0.472632 + 0.881260i \(0.656696\pi\)
\(908\) 3.55875e9i 0.157760i
\(909\) 3.10878e10 1.37283
\(910\) 1.65640e10i 0.728654i
\(911\) 3.43997e10i 1.50744i −0.657195 0.753721i \(-0.728257\pi\)
0.657195 0.753721i \(-0.271743\pi\)
\(912\) 8.66104e9i 0.378084i
\(913\) −1.52843e10 −0.664658
\(914\) −1.41641e10 −0.613590
\(915\) −6.00970e10 −2.59346
\(916\) −4.82260e9 −0.207323
\(917\) 1.04732e10i 0.448525i
\(918\) −4.93855e9 −0.210693
\(919\) 2.27101e10i 0.965193i −0.875843 0.482597i \(-0.839694\pi\)
0.875843 0.482597i \(-0.160306\pi\)
\(920\) 2.17470e10i 0.920751i
\(921\) −1.62987e10 −0.687454
\(922\) 1.67783e10 0.704999
\(923\) 1.51905e10i 0.635865i
\(924\) −3.77024e9 −0.157223
\(925\) 5.96970e9 6.96797e10i 0.248003 2.89474i
\(926\) 9.80719e9 0.405888
\(927\) 2.56453e10i 1.05737i
\(928\) −1.52645e9 −0.0626996
\(929\) 1.05933e9 0.0433486 0.0216743 0.999765i \(-0.493100\pi\)
0.0216743 + 0.999765i \(0.493100\pi\)
\(930\) 4.82359e9i 0.196644i
\(931\) 1.56195e10i 0.634370i
\(932\) 1.21305e10 0.490821
\(933\) 4.72481e10i 1.90458i
\(934\) 1.12164e10 0.450442
\(935\) −1.54455e10 −0.617962
\(936\) −5.14153e9 −0.204940
\(937\) −3.30467e10 −1.31232 −0.656159 0.754623i \(-0.727820\pi\)
−0.656159 + 0.754623i \(0.727820\pi\)
\(938\) 1.13662e10i 0.449682i
\(939\) 1.26843e10i 0.499963i
\(940\) 1.66379e10i 0.653358i
\(941\) −4.15251e9 −0.162460 −0.0812301 0.996695i \(-0.525885\pi\)
−0.0812301 + 0.996695i \(0.525885\pi\)
\(942\) 2.06477e10i 0.804809i
\(943\) 3.58146e10i 1.39082i
\(944\) 5.99409e9i 0.231911i
\(945\) 1.16364e10i 0.448547i
\(946\) 7.49245e9 0.287743
\(947\) 4.40593e10i 1.68583i 0.538049 + 0.842913i \(0.319161\pi\)
−0.538049 + 0.842913i \(0.680839\pi\)
\(948\) 8.93135e9i 0.340477i
\(949\) 2.70737e9i 0.102829i
\(950\) −6.21961e10 −2.35359
\(951\) 4.68975e10 1.76814
\(952\) 5.51406e9 0.207129
\(953\) −1.60804e10 −0.601827 −0.300913 0.953651i \(-0.597292\pi\)
−0.300913 + 0.953651i \(0.597292\pi\)
\(954\) 1.03131e8i 0.00384565i
\(955\) 7.24494e10 2.69168
\(956\) 1.58634e10i 0.587212i
\(957\) 4.52667e9i 0.166950i
\(958\) −7.04371e9 −0.258835
\(959\) 1.60592e10 0.587974
\(960\) 8.93903e9i 0.326093i
\(961\) 2.72000e10 0.988636
\(962\) −1.30095e9 + 1.51850e10i −0.0471139 + 0.549925i
\(963\) −8.96242e9 −0.323395
\(964\) 2.25370e9i 0.0810266i
\(965\) −4.72600e10 −1.69296
\(966\) −2.30231e10 −0.821757
\(967\) 3.17212e10i 1.12813i −0.825732 0.564063i \(-0.809238\pi\)
0.825732 0.564063i \(-0.190762\pi\)
\(968\) 8.70888e9i 0.308602i
\(969\) −3.75637e10 −1.32628
\(970\) 7.03430e10i 2.47469i
\(971\) 3.30660e10 1.15908 0.579540 0.814944i \(-0.303232\pi\)
0.579540 + 0.814944i \(0.303232\pi\)
\(972\) −1.76456e10 −0.616317
\(973\) −4.90685e9 −0.170768
\(974\) −9.27903e9 −0.321770
\(975\) 8.66407e10i 2.99368i
\(976\) 7.21876e9i 0.248535i
\(977\) 1.35605e10i 0.465206i 0.972572 + 0.232603i \(0.0747243\pi\)
−0.972572 + 0.232603i \(0.925276\pi\)
\(978\) −4.56207e10 −1.55947
\(979\) 1.37652e10i 0.468859i
\(980\) 1.61208e10i 0.547137i
\(981\) 1.66157e10i 0.561922i
\(982\) 1.73197e10i 0.583647i
\(983\) 1.33447e10 0.448095 0.224048 0.974578i \(-0.428073\pi\)
0.224048 + 0.974578i \(0.428073\pi\)
\(984\) 1.47215e10i 0.492571i
\(985\) 4.77971e10i 1.59358i
\(986\) 6.62035e9i 0.219944i
\(987\) 1.76142e10 0.583113
\(988\) 1.35542e10 0.447119
\(989\) 4.57529e10 1.50394
\(990\) −1.12966e10 −0.370021
\(991\) 3.89565e10i 1.27152i −0.771888 0.635758i \(-0.780688\pi\)
0.771888 0.635758i \(-0.219312\pi\)
\(992\) 5.79402e8 0.0188447
\(993\) 3.68639e10i 1.19476i
\(994\) 1.19151e10i 0.384808i
\(995\) 4.68990e10 1.50933
\(996\) 3.83647e10 1.23034
\(997\) 6.34894e9i 0.202894i −0.994841 0.101447i \(-0.967653\pi\)
0.994841 0.101447i \(-0.0323472\pi\)
\(998\) 2.28387e10 0.727303
\(999\) −9.13936e8 + 1.06677e10i −0.0290026 + 0.338525i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.b.a.73.14 yes 24
37.36 even 2 inner 74.8.b.a.73.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.b.a.73.2 24 37.36 even 2 inner
74.8.b.a.73.14 yes 24 1.1 even 1 trivial