Properties

Label 74.8.b.a.73.6
Level $74$
Weight $8$
Character 74.73
Analytic conductor $23.116$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(73,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.73");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.1164918858\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 73.6
Character \(\chi\) \(=\) 74.73
Dual form 74.8.b.a.73.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000i q^{2} -28.7630 q^{3} -64.0000 q^{4} -436.339i q^{5} +230.104i q^{6} -218.580 q^{7} +512.000i q^{8} -1359.69 q^{9} -3490.71 q^{10} -1840.96 q^{11} +1840.83 q^{12} -12931.9i q^{13} +1748.64i q^{14} +12550.4i q^{15} +4096.00 q^{16} -30366.5i q^{17} +10877.5i q^{18} +33038.6i q^{19} +27925.7i q^{20} +6287.04 q^{21} +14727.7i q^{22} +64290.0i q^{23} -14726.7i q^{24} -112267. q^{25} -103456. q^{26} +102014. q^{27} +13989.2 q^{28} +174982. i q^{29} +100404. q^{30} +151461. i q^{31} -32768.0i q^{32} +52951.6 q^{33} -242932. q^{34} +95375.3i q^{35} +87020.0 q^{36} +(300206. + 69342.0i) q^{37} +264308. q^{38} +371962. i q^{39} +223406. q^{40} +409900. q^{41} -50296.3i q^{42} -787574. i q^{43} +117821. q^{44} +593285. i q^{45} +514320. q^{46} -295655. q^{47} -117813. q^{48} -775766. q^{49} +898136. i q^{50} +873434. i q^{51} +827645. i q^{52} -1.21561e6 q^{53} -816108. i q^{54} +803282. i q^{55} -111913. i q^{56} -950289. i q^{57} +1.39986e6 q^{58} +1.57556e6i q^{59} -803229. i q^{60} -1.82097e6i q^{61} +1.21169e6 q^{62} +297201. q^{63} -262144. q^{64} -5.64272e6 q^{65} -423612. i q^{66} +1.79212e6 q^{67} +1.94346e6i q^{68} -1.84918e6i q^{69} +763002. q^{70} -4.65562e6 q^{71} -696160. i q^{72} +3.86406e6 q^{73} +(554736. - 2.40165e6i) q^{74} +3.22914e6 q^{75} -2.11447e6i q^{76} +402398. q^{77} +2.97570e6 q^{78} +1.92310e6i q^{79} -1.78725e6i q^{80} +39416.7 q^{81} -3.27920e6i q^{82} -6.01597e6 q^{83} -402371. q^{84} -1.32501e7 q^{85} -6.30059e6 q^{86} -5.03302e6i q^{87} -942571. i q^{88} -3.90896e6i q^{89} +4.74628e6 q^{90} +2.82667e6i q^{91} -4.11456e6i q^{92} -4.35649e6i q^{93} +2.36524e6i q^{94} +1.44160e7 q^{95} +942507. i q^{96} -5.70113e6i q^{97} +6.20612e6i q^{98} +2.50313e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 106 q^{3} - 1536 q^{4} + 104 q^{7} + 17554 q^{9} + 1136 q^{10} + 366 q^{11} + 6784 q^{12} + 98304 q^{16} - 239820 q^{21} - 675570 q^{25} + 97008 q^{26} + 338780 q^{27} - 6656 q^{28} + 350400 q^{30}+ \cdots - 53279900 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/74\mathbb{Z}\right)^\times\).

\(n\) \(39\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000i 0.707107i
\(3\) −28.7630 −0.615050 −0.307525 0.951540i \(-0.599501\pi\)
−0.307525 + 0.951540i \(0.599501\pi\)
\(4\) −64.0000 −0.500000
\(5\) 436.339i 1.56109i −0.625097 0.780547i \(-0.714940\pi\)
0.625097 0.780547i \(-0.285060\pi\)
\(6\) 230.104i 0.434906i
\(7\) −218.580 −0.240862 −0.120431 0.992722i \(-0.538428\pi\)
−0.120431 + 0.992722i \(0.538428\pi\)
\(8\) 512.000i 0.353553i
\(9\) −1359.69 −0.621713
\(10\) −3490.71 −1.10386
\(11\) −1840.96 −0.417032 −0.208516 0.978019i \(-0.566863\pi\)
−0.208516 + 0.978019i \(0.566863\pi\)
\(12\) 1840.83 0.307525
\(13\) 12931.9i 1.63253i −0.577675 0.816267i \(-0.696040\pi\)
0.577675 0.816267i \(-0.303960\pi\)
\(14\) 1748.64i 0.170315i
\(15\) 12550.4i 0.960152i
\(16\) 4096.00 0.250000
\(17\) 30366.5i 1.49908i −0.661961 0.749538i \(-0.730276\pi\)
0.661961 0.749538i \(-0.269724\pi\)
\(18\) 10877.5i 0.439618i
\(19\) 33038.6i 1.10505i 0.833495 + 0.552527i \(0.186336\pi\)
−0.833495 + 0.552527i \(0.813664\pi\)
\(20\) 27925.7i 0.780547i
\(21\) 6287.04 0.148142
\(22\) 14727.7i 0.294886i
\(23\) 64290.0i 1.10178i 0.834577 + 0.550891i \(0.185712\pi\)
−0.834577 + 0.550891i \(0.814288\pi\)
\(24\) 14726.7i 0.217453i
\(25\) −112267. −1.43702
\(26\) −103456. −1.15438
\(27\) 102014. 0.997435
\(28\) 13989.2 0.120431
\(29\) 174982.i 1.33230i 0.745819 + 0.666149i \(0.232058\pi\)
−0.745819 + 0.666149i \(0.767942\pi\)
\(30\) 100404. 0.678930
\(31\) 151461.i 0.913136i 0.889688 + 0.456568i \(0.150922\pi\)
−0.889688 + 0.456568i \(0.849078\pi\)
\(32\) 32768.0i 0.176777i
\(33\) 52951.6 0.256496
\(34\) −242932. −1.06001
\(35\) 95375.3i 0.376008i
\(36\) 87020.0 0.310857
\(37\) 300206. + 69342.0i 0.974346 + 0.225056i
\(38\) 264308. 0.781391
\(39\) 371962.i 1.00409i
\(40\) 223406. 0.551930
\(41\) 409900. 0.928826 0.464413 0.885619i \(-0.346265\pi\)
0.464413 + 0.885619i \(0.346265\pi\)
\(42\) 50296.3i 0.104752i
\(43\) 787574.i 1.51061i −0.655374 0.755304i \(-0.727489\pi\)
0.655374 0.755304i \(-0.272511\pi\)
\(44\) 117821. 0.208516
\(45\) 593285.i 0.970554i
\(46\) 514320. 0.779078
\(47\) −295655. −0.415377 −0.207688 0.978195i \(-0.566594\pi\)
−0.207688 + 0.978195i \(0.566594\pi\)
\(48\) −117813. −0.153763
\(49\) −775766. −0.941986
\(50\) 898136.i 1.01612i
\(51\) 873434.i 0.922007i
\(52\) 827645.i 0.816267i
\(53\) −1.21561e6 −1.12157 −0.560786 0.827961i \(-0.689501\pi\)
−0.560786 + 0.827961i \(0.689501\pi\)
\(54\) 816108.i 0.705293i
\(55\) 803282.i 0.651027i
\(56\) 111913.i 0.0851576i
\(57\) 950289.i 0.679663i
\(58\) 1.39986e6 0.942076
\(59\) 1.57556e6i 0.998740i 0.866389 + 0.499370i \(0.166435\pi\)
−0.866389 + 0.499370i \(0.833565\pi\)
\(60\) 803229.i 0.480076i
\(61\) 1.82097e6i 1.02719i −0.858034 0.513593i \(-0.828314\pi\)
0.858034 0.513593i \(-0.171686\pi\)
\(62\) 1.21169e6 0.645685
\(63\) 297201. 0.149747
\(64\) −262144. −0.125000
\(65\) −5.64272e6 −2.54854
\(66\) 423612.i 0.181370i
\(67\) 1.79212e6 0.727957 0.363978 0.931407i \(-0.381418\pi\)
0.363978 + 0.931407i \(0.381418\pi\)
\(68\) 1.94346e6i 0.749538i
\(69\) 1.84918e6i 0.677651i
\(70\) 763002. 0.265878
\(71\) −4.65562e6 −1.54374 −0.771869 0.635781i \(-0.780678\pi\)
−0.771869 + 0.635781i \(0.780678\pi\)
\(72\) 696160.i 0.219809i
\(73\) 3.86406e6 1.16256 0.581278 0.813705i \(-0.302553\pi\)
0.581278 + 0.813705i \(0.302553\pi\)
\(74\) 554736. 2.40165e6i 0.159138 0.688967i
\(75\) 3.22914e6 0.883838
\(76\) 2.11447e6i 0.552527i
\(77\) 402398. 0.100447
\(78\) 2.97570e6 0.709999
\(79\) 1.92310e6i 0.438841i 0.975630 + 0.219420i \(0.0704166\pi\)
−0.975630 + 0.219420i \(0.929583\pi\)
\(80\) 1.78725e6i 0.390274i
\(81\) 39416.7 0.00824105
\(82\) 3.27920e6i 0.656779i
\(83\) −6.01597e6 −1.15487 −0.577434 0.816438i \(-0.695946\pi\)
−0.577434 + 0.816438i \(0.695946\pi\)
\(84\) −402371. −0.0740711
\(85\) −1.32501e7 −2.34020
\(86\) −6.30059e6 −1.06816
\(87\) 5.03302e6i 0.819429i
\(88\) 942571.i 0.147443i
\(89\) 3.90896e6i 0.587755i −0.955843 0.293878i \(-0.905054\pi\)
0.955843 0.293878i \(-0.0949458\pi\)
\(90\) 4.74628e6 0.686285
\(91\) 2.82667e6i 0.393215i
\(92\) 4.11456e6i 0.550891i
\(93\) 4.35649e6i 0.561625i
\(94\) 2.36524e6i 0.293716i
\(95\) 1.44160e7 1.72509
\(96\) 942507.i 0.108727i
\(97\) 5.70113e6i 0.634249i −0.948384 0.317125i \(-0.897283\pi\)
0.948384 0.317125i \(-0.102717\pi\)
\(98\) 6.20612e6i 0.666084i
\(99\) 2.50313e6 0.259274
\(100\) 7.18509e6 0.718509
\(101\) 3.70887e6 0.358193 0.179096 0.983832i \(-0.442683\pi\)
0.179096 + 0.983832i \(0.442683\pi\)
\(102\) 6.98747e6 0.651958
\(103\) 2.14896e7i 1.93775i −0.247548 0.968876i \(-0.579625\pi\)
0.247548 0.968876i \(-0.420375\pi\)
\(104\) 6.62116e6 0.577188
\(105\) 2.74328e6i 0.231264i
\(106\) 9.72485e6i 0.793071i
\(107\) −9.52504e6 −0.751664 −0.375832 0.926688i \(-0.622643\pi\)
−0.375832 + 0.926688i \(0.622643\pi\)
\(108\) −6.52887e6 −0.498717
\(109\) 1.53128e7i 1.13256i 0.824211 + 0.566282i \(0.191619\pi\)
−0.824211 + 0.566282i \(0.808381\pi\)
\(110\) 6.42626e6 0.460345
\(111\) −8.63483e6 1.99449e6i −0.599271 0.138421i
\(112\) −895306. −0.0602155
\(113\) 1.43479e7i 0.935432i 0.883879 + 0.467716i \(0.154923\pi\)
−0.883879 + 0.467716i \(0.845077\pi\)
\(114\) −7.60232e6 −0.480595
\(115\) 2.80522e7 1.71999
\(116\) 1.11989e7i 0.666149i
\(117\) 1.75834e7i 1.01497i
\(118\) 1.26045e7 0.706216
\(119\) 6.63753e6i 0.361071i
\(120\) −6.42583e6 −0.339465
\(121\) −1.60980e7 −0.826084
\(122\) −1.45678e7 −0.726330
\(123\) −1.17900e7 −0.571275
\(124\) 9.69352e6i 0.456568i
\(125\) 1.48975e7i 0.682226i
\(126\) 2.37761e6i 0.105887i
\(127\) −2.88879e7 −1.25142 −0.625709 0.780057i \(-0.715190\pi\)
−0.625709 + 0.780057i \(0.715190\pi\)
\(128\) 2.09715e6i 0.0883883i
\(129\) 2.26530e7i 0.929100i
\(130\) 4.51417e7i 1.80209i
\(131\) 4.47719e7i 1.74003i 0.493029 + 0.870013i \(0.335890\pi\)
−0.493029 + 0.870013i \(0.664110\pi\)
\(132\) −3.38890e6 −0.128248
\(133\) 7.22158e6i 0.266165i
\(134\) 1.43370e7i 0.514743i
\(135\) 4.45125e7i 1.55709i
\(136\) 1.55477e7 0.530004
\(137\) −1.82661e7 −0.606910 −0.303455 0.952846i \(-0.598140\pi\)
−0.303455 + 0.952846i \(0.598140\pi\)
\(138\) −1.47934e7 −0.479172
\(139\) 1.09171e7 0.344789 0.172395 0.985028i \(-0.444850\pi\)
0.172395 + 0.985028i \(0.444850\pi\)
\(140\) 6.10402e6i 0.188004i
\(141\) 8.50393e6 0.255477
\(142\) 3.72450e7i 1.09159i
\(143\) 2.38072e7i 0.680819i
\(144\) −5.56928e6 −0.155428
\(145\) 7.63516e7 2.07984
\(146\) 3.09125e7i 0.822052i
\(147\) 2.23134e7 0.579368
\(148\) −1.92132e7 4.43789e6i −0.487173 0.112528i
\(149\) −1.26851e6 −0.0314153 −0.0157077 0.999877i \(-0.505000\pi\)
−0.0157077 + 0.999877i \(0.505000\pi\)
\(150\) 2.58331e7i 0.624968i
\(151\) 1.77132e7 0.418675 0.209337 0.977843i \(-0.432869\pi\)
0.209337 + 0.977843i \(0.432869\pi\)
\(152\) −1.69157e7 −0.390696
\(153\) 4.12890e7i 0.931996i
\(154\) 3.21918e6i 0.0710269i
\(155\) 6.60885e7 1.42549
\(156\) 2.38056e7i 0.502045i
\(157\) −5.87990e7 −1.21261 −0.606305 0.795232i \(-0.707349\pi\)
−0.606305 + 0.795232i \(0.707349\pi\)
\(158\) 1.53848e7 0.310307
\(159\) 3.49645e7 0.689823
\(160\) −1.42980e7 −0.275965
\(161\) 1.40525e7i 0.265377i
\(162\) 315333.i 0.00582730i
\(163\) 1.26762e7i 0.229262i −0.993408 0.114631i \(-0.963431\pi\)
0.993408 0.114631i \(-0.0365686\pi\)
\(164\) −2.62336e7 −0.464413
\(165\) 2.31048e7i 0.400414i
\(166\) 4.81277e7i 0.816615i
\(167\) 9.36878e7i 1.55659i −0.627896 0.778297i \(-0.716084\pi\)
0.627896 0.778297i \(-0.283916\pi\)
\(168\) 3.21896e6i 0.0523762i
\(169\) −1.04487e8 −1.66517
\(170\) 1.06001e8i 1.65477i
\(171\) 4.49221e7i 0.687027i
\(172\) 5.04048e7i 0.755304i
\(173\) 4.88075e7 0.716680 0.358340 0.933591i \(-0.383343\pi\)
0.358340 + 0.933591i \(0.383343\pi\)
\(174\) −4.02642e7 −0.579424
\(175\) 2.45394e7 0.346123
\(176\) −7.54056e6 −0.104258
\(177\) 4.53179e7i 0.614275i
\(178\) −3.12717e7 −0.415606
\(179\) 2.42184e7i 0.315617i 0.987470 + 0.157808i \(0.0504429\pi\)
−0.987470 + 0.157808i \(0.949557\pi\)
\(180\) 3.79702e7i 0.485277i
\(181\) 1.16754e8 1.46351 0.731754 0.681569i \(-0.238702\pi\)
0.731754 + 0.681569i \(0.238702\pi\)
\(182\) 2.26134e7 0.278045
\(183\) 5.23767e7i 0.631771i
\(184\) −3.29165e7 −0.389539
\(185\) 3.02566e7 1.30992e8i 0.351333 1.52105i
\(186\) −3.48519e7 −0.397128
\(187\) 5.59035e7i 0.625163i
\(188\) 1.89219e7 0.207688
\(189\) −2.22982e7 −0.240244
\(190\) 1.15328e8i 1.21983i
\(191\) 1.10950e8i 1.15216i −0.817394 0.576079i \(-0.804582\pi\)
0.817394 0.576079i \(-0.195418\pi\)
\(192\) 7.54006e6 0.0768813
\(193\) 1.19713e8i 1.19864i 0.800508 + 0.599321i \(0.204563\pi\)
−0.800508 + 0.599321i \(0.795437\pi\)
\(194\) −4.56091e7 −0.448482
\(195\) 1.62302e8 1.56748
\(196\) 4.96490e7 0.470993
\(197\) −9.15350e7 −0.853013 −0.426506 0.904485i \(-0.640256\pi\)
−0.426506 + 0.904485i \(0.640256\pi\)
\(198\) 2.00250e7i 0.183335i
\(199\) 9.98548e7i 0.898221i 0.893476 + 0.449110i \(0.148259\pi\)
−0.893476 + 0.449110i \(0.851741\pi\)
\(200\) 5.74807e7i 0.508062i
\(201\) −5.15469e7 −0.447730
\(202\) 2.96710e7i 0.253280i
\(203\) 3.82477e7i 0.320900i
\(204\) 5.58998e7i 0.461004i
\(205\) 1.78856e8i 1.44999i
\(206\) −1.71917e8 −1.37020
\(207\) 8.74143e7i 0.684993i
\(208\) 5.29693e7i 0.408134i
\(209\) 6.08226e7i 0.460843i
\(210\) −2.19463e7 −0.163528
\(211\) 3.14648e7 0.230588 0.115294 0.993331i \(-0.463219\pi\)
0.115294 + 0.993331i \(0.463219\pi\)
\(212\) 7.77988e7 0.560786
\(213\) 1.33910e8 0.949476
\(214\) 7.62003e7i 0.531507i
\(215\) −3.43650e8 −2.35820
\(216\) 5.22309e7i 0.352646i
\(217\) 3.31065e7i 0.219940i
\(218\) 1.22503e8 0.800844
\(219\) −1.11142e8 −0.715031
\(220\) 5.14101e7i 0.325513i
\(221\) −3.92698e8 −2.44729
\(222\) −1.59559e7 + 6.90787e7i −0.0978781 + 0.423749i
\(223\) 1.79751e8 1.08544 0.542718 0.839915i \(-0.317395\pi\)
0.542718 + 0.839915i \(0.317395\pi\)
\(224\) 7.16245e6i 0.0425788i
\(225\) 1.52648e8 0.893413
\(226\) 1.14783e8 0.661450
\(227\) 2.38058e8i 1.35080i 0.737451 + 0.675401i \(0.236029\pi\)
−0.737451 + 0.675401i \(0.763971\pi\)
\(228\) 6.08185e7i 0.339832i
\(229\) −8.07491e7 −0.444338 −0.222169 0.975008i \(-0.571314\pi\)
−0.222169 + 0.975008i \(0.571314\pi\)
\(230\) 2.24418e8i 1.21621i
\(231\) −1.15742e7 −0.0617800
\(232\) −8.95909e7 −0.471038
\(233\) −2.38358e8 −1.23448 −0.617241 0.786774i \(-0.711750\pi\)
−0.617241 + 0.786774i \(0.711750\pi\)
\(234\) 1.40667e8 0.717691
\(235\) 1.29006e8i 0.648442i
\(236\) 1.00836e8i 0.499370i
\(237\) 5.53142e7i 0.269909i
\(238\) 5.31002e7 0.255315
\(239\) 5.17075e7i 0.244997i 0.992469 + 0.122499i \(0.0390907\pi\)
−0.992469 + 0.122499i \(0.960909\pi\)
\(240\) 5.14066e7i 0.240038i
\(241\) 1.59716e8i 0.735004i 0.930023 + 0.367502i \(0.119787\pi\)
−0.930023 + 0.367502i \(0.880213\pi\)
\(242\) 1.28784e8i 0.584130i
\(243\) −2.24237e8 −1.00250
\(244\) 1.16542e8i 0.513593i
\(245\) 3.38497e8i 1.47053i
\(246\) 9.43198e7i 0.403952i
\(247\) 4.27253e8 1.80404
\(248\) −7.75482e7 −0.322842
\(249\) 1.73038e8 0.710301
\(250\) 1.19180e8 0.482406
\(251\) 6.61845e7i 0.264179i −0.991238 0.132089i \(-0.957831\pi\)
0.991238 0.132089i \(-0.0421686\pi\)
\(252\) −1.90209e7 −0.0748736
\(253\) 1.18355e8i 0.459479i
\(254\) 2.31103e8i 0.884886i
\(255\) 3.81113e8 1.43934
\(256\) 1.67772e7 0.0625000
\(257\) 7.17539e7i 0.263682i −0.991271 0.131841i \(-0.957911\pi\)
0.991271 0.131841i \(-0.0420888\pi\)
\(258\) 1.81224e8 0.656973
\(259\) −6.56191e7 1.51568e7i −0.234683 0.0542074i
\(260\) 3.61134e8 1.27427
\(261\) 2.37921e8i 0.828307i
\(262\) 3.58175e8 1.23038
\(263\) 7.59401e6 0.0257410 0.0128705 0.999917i \(-0.495903\pi\)
0.0128705 + 0.999917i \(0.495903\pi\)
\(264\) 2.71112e7i 0.0906849i
\(265\) 5.30417e8i 1.75088i
\(266\) −5.77727e7 −0.188207
\(267\) 1.12434e8i 0.361499i
\(268\) −1.14696e8 −0.363978
\(269\) 1.82568e8 0.571862 0.285931 0.958250i \(-0.407697\pi\)
0.285931 + 0.958250i \(0.407697\pi\)
\(270\) −3.56100e8 −1.10103
\(271\) −4.66628e8 −1.42422 −0.712111 0.702067i \(-0.752261\pi\)
−0.712111 + 0.702067i \(0.752261\pi\)
\(272\) 1.24381e8i 0.374769i
\(273\) 8.13037e7i 0.241847i
\(274\) 1.46129e8i 0.429150i
\(275\) 2.06679e8 0.599282
\(276\) 1.18347e8i 0.338826i
\(277\) 2.68840e8i 0.760001i 0.924986 + 0.380000i \(0.124076\pi\)
−0.924986 + 0.380000i \(0.875924\pi\)
\(278\) 8.73364e7i 0.243803i
\(279\) 2.05940e8i 0.567709i
\(280\) −4.88321e7 −0.132939
\(281\) 1.29698e8i 0.348707i −0.984683 0.174354i \(-0.944216\pi\)
0.984683 0.174354i \(-0.0557835\pi\)
\(282\) 6.80314e7i 0.180650i
\(283\) 2.36416e8i 0.620046i 0.950729 + 0.310023i \(0.100337\pi\)
−0.950729 + 0.310023i \(0.899663\pi\)
\(284\) 2.97960e8 0.771869
\(285\) −4.14649e8 −1.06102
\(286\) 1.90457e8 0.481412
\(287\) −8.95962e7 −0.223719
\(288\) 4.45542e7i 0.109904i
\(289\) −5.11787e8 −1.24723
\(290\) 6.10813e8i 1.47067i
\(291\) 1.63982e8i 0.390095i
\(292\) −2.47300e8 −0.581278
\(293\) −3.90253e8 −0.906377 −0.453189 0.891415i \(-0.649714\pi\)
−0.453189 + 0.891415i \(0.649714\pi\)
\(294\) 1.78507e8i 0.409675i
\(295\) 6.87478e8 1.55913
\(296\) −3.55031e7 + 1.53705e8i −0.0795692 + 0.344483i
\(297\) −1.87803e8 −0.415962
\(298\) 1.01481e7i 0.0222140i
\(299\) 8.31395e8 1.79870
\(300\) −2.06665e8 −0.441919
\(301\) 1.72148e8i 0.363848i
\(302\) 1.41705e8i 0.296048i
\(303\) −1.06678e8 −0.220306
\(304\) 1.35326e8i 0.276263i
\(305\) −7.94562e8 −1.60353
\(306\) 3.30312e8 0.659021
\(307\) −6.71676e8 −1.32488 −0.662438 0.749117i \(-0.730478\pi\)
−0.662438 + 0.749117i \(0.730478\pi\)
\(308\) −2.57534e7 −0.0502236
\(309\) 6.18106e8i 1.19181i
\(310\) 5.28708e8i 1.00798i
\(311\) 9.56792e8i 1.80367i −0.432084 0.901833i \(-0.642222\pi\)
0.432084 0.901833i \(-0.357778\pi\)
\(312\) −1.90445e8 −0.354999
\(313\) 1.79700e8i 0.331240i −0.986190 0.165620i \(-0.947038\pi\)
0.986190 0.165620i \(-0.0529625\pi\)
\(314\) 4.70392e8i 0.857445i
\(315\) 1.29681e8i 0.233769i
\(316\) 1.23078e8i 0.219420i
\(317\) −1.12099e8 −0.197648 −0.0988242 0.995105i \(-0.531508\pi\)
−0.0988242 + 0.995105i \(0.531508\pi\)
\(318\) 2.79716e8i 0.487779i
\(319\) 3.22135e8i 0.555611i
\(320\) 1.14384e8i 0.195137i
\(321\) 2.73969e8 0.462311
\(322\) −1.12420e8 −0.187650
\(323\) 1.00327e9 1.65656
\(324\) −2.52267e6 −0.00412052
\(325\) 1.45183e9i 2.34598i
\(326\) −1.01410e8 −0.162113
\(327\) 4.40444e8i 0.696584i
\(328\) 2.09869e8i 0.328390i
\(329\) 6.46243e7 0.100048
\(330\) −1.84839e8 −0.283135
\(331\) 3.25801e8i 0.493804i −0.969040 0.246902i \(-0.920587\pi\)
0.969040 0.246902i \(-0.0794125\pi\)
\(332\) 3.85022e8 0.577434
\(333\) −4.08186e8 9.42834e7i −0.605764 0.139920i
\(334\) −7.49502e8 −1.10068
\(335\) 7.81973e8i 1.13641i
\(336\) 2.57517e7 0.0370355
\(337\) 1.02095e9 1.45311 0.726557 0.687106i \(-0.241119\pi\)
0.726557 + 0.687106i \(0.241119\pi\)
\(338\) 8.35894e8i 1.17745i
\(339\) 4.12688e8i 0.575338i
\(340\) 8.48007e8 1.17010
\(341\) 2.78834e8i 0.380807i
\(342\) −3.59377e8 −0.485801
\(343\) 3.49578e8 0.467750
\(344\) 4.03238e8 0.534081
\(345\) −8.06868e8 −1.05788
\(346\) 3.90460e8i 0.506769i
\(347\) 1.70646e8i 0.219252i −0.993973 0.109626i \(-0.965035\pi\)
0.993973 0.109626i \(-0.0349653\pi\)
\(348\) 3.22113e8i 0.409715i
\(349\) −1.45367e9 −1.83054 −0.915268 0.402846i \(-0.868021\pi\)
−0.915268 + 0.402846i \(0.868021\pi\)
\(350\) 1.96315e8i 0.244746i
\(351\) 1.31923e9i 1.62835i
\(352\) 6.03245e7i 0.0737216i
\(353\) 9.61016e8i 1.16284i −0.813604 0.581419i \(-0.802498\pi\)
0.813604 0.581419i \(-0.197502\pi\)
\(354\) −3.62543e8 −0.434358
\(355\) 2.03143e9i 2.40992i
\(356\) 2.50174e8i 0.293878i
\(357\) 1.90916e8i 0.222076i
\(358\) 1.93747e8 0.223175
\(359\) −9.30279e8 −1.06116 −0.530582 0.847634i \(-0.678027\pi\)
−0.530582 + 0.847634i \(0.678027\pi\)
\(360\) −3.03762e8 −0.343143
\(361\) −1.97675e8 −0.221144
\(362\) 9.34028e8i 1.03486i
\(363\) 4.63029e8 0.508083
\(364\) 1.80907e8i 0.196608i
\(365\) 1.68604e9i 1.81486i
\(366\) 4.19014e8 0.446729
\(367\) 1.15126e9 1.21574 0.607871 0.794036i \(-0.292024\pi\)
0.607871 + 0.794036i \(0.292024\pi\)
\(368\) 2.63332e8i 0.275446i
\(369\) −5.57336e8 −0.577464
\(370\) −1.04793e9 2.42053e8i −1.07554 0.248430i
\(371\) 2.65708e8 0.270144
\(372\) 2.78815e8i 0.280812i
\(373\) −2.06569e8 −0.206103 −0.103052 0.994676i \(-0.532861\pi\)
−0.103052 + 0.994676i \(0.532861\pi\)
\(374\) 4.47228e8 0.442057
\(375\) 4.28497e8i 0.419603i
\(376\) 1.51375e8i 0.146858i
\(377\) 2.26286e9 2.17502
\(378\) 1.78385e8i 0.169878i
\(379\) −4.39269e8 −0.414470 −0.207235 0.978291i \(-0.566446\pi\)
−0.207235 + 0.978291i \(0.566446\pi\)
\(380\) −9.22625e8 −0.862547
\(381\) 8.30903e8 0.769685
\(382\) −8.87604e8 −0.814699
\(383\) 7.09553e8i 0.645341i 0.946511 + 0.322670i \(0.104581\pi\)
−0.946511 + 0.322670i \(0.895419\pi\)
\(384\) 6.03205e7i 0.0543633i
\(385\) 1.75582e8i 0.156808i
\(386\) 9.57702e8 0.847569
\(387\) 1.07085e9i 0.939166i
\(388\) 3.64872e8i 0.317125i
\(389\) 8.64007e8i 0.744207i 0.928191 + 0.372103i \(0.121363\pi\)
−0.928191 + 0.372103i \(0.878637\pi\)
\(390\) 1.29841e9i 1.10838i
\(391\) 1.95226e9 1.65166
\(392\) 3.97192e8i 0.333042i
\(393\) 1.28778e9i 1.07020i
\(394\) 7.32280e8i 0.603171i
\(395\) 8.39124e8 0.685072
\(396\) −1.60200e8 −0.129637
\(397\) −1.34008e9 −1.07489 −0.537446 0.843298i \(-0.680611\pi\)
−0.537446 + 0.843298i \(0.680611\pi\)
\(398\) 7.98838e8 0.635138
\(399\) 2.07715e8i 0.163705i
\(400\) −4.59846e8 −0.359254
\(401\) 1.06440e9i 0.824325i 0.911110 + 0.412163i \(0.135226\pi\)
−0.911110 + 0.412163i \(0.864774\pi\)
\(402\) 4.12375e8i 0.316593i
\(403\) 1.95869e9 1.49073
\(404\) −2.37368e8 −0.179096
\(405\) 1.71990e7i 0.0128651i
\(406\) −3.05982e8 −0.226910
\(407\) −5.52666e8 1.27656e8i −0.406334 0.0938555i
\(408\) −4.47198e8 −0.325979
\(409\) 4.76556e8i 0.344415i 0.985061 + 0.172207i \(0.0550900\pi\)
−0.985061 + 0.172207i \(0.944910\pi\)
\(410\) −1.43084e9 −1.02530
\(411\) 5.25389e8 0.373280
\(412\) 1.37533e9i 0.968876i
\(413\) 3.44386e8i 0.240559i
\(414\) −6.99314e8 −0.484363
\(415\) 2.62500e9i 1.80286i
\(416\) −4.23754e8 −0.288594
\(417\) −3.14008e8 −0.212063
\(418\) −4.86581e8 −0.325865
\(419\) 5.54660e8 0.368365 0.184182 0.982892i \(-0.441036\pi\)
0.184182 + 0.982892i \(0.441036\pi\)
\(420\) 1.75570e8i 0.115632i
\(421\) 9.45381e8i 0.617475i −0.951147 0.308737i \(-0.900094\pi\)
0.951147 0.308737i \(-0.0999065\pi\)
\(422\) 2.51718e8i 0.163050i
\(423\) 4.01998e8 0.258245
\(424\) 6.22390e8i 0.396536i
\(425\) 3.40916e9i 2.15420i
\(426\) 1.07128e9i 0.671381i
\(427\) 3.98029e8i 0.247410i
\(428\) 6.09603e8 0.375832
\(429\) 6.84767e8i 0.418738i
\(430\) 2.74920e9i 1.66750i
\(431\) 3.43105e8i 0.206423i −0.994659 0.103211i \(-0.967088\pi\)
0.994659 0.103211i \(-0.0329118\pi\)
\(432\) 4.17847e8 0.249359
\(433\) 1.81746e9 1.07587 0.537933 0.842988i \(-0.319205\pi\)
0.537933 + 0.842988i \(0.319205\pi\)
\(434\) −2.64852e8 −0.155521
\(435\) −2.19611e9 −1.27921
\(436\) 9.80022e8i 0.566282i
\(437\) −2.12405e9 −1.21753
\(438\) 8.89138e8i 0.505603i
\(439\) 2.60960e9i 1.47214i 0.676907 + 0.736068i \(0.263320\pi\)
−0.676907 + 0.736068i \(0.736680\pi\)
\(440\) −4.11281e8 −0.230173
\(441\) 1.05480e9 0.585645
\(442\) 3.14159e9i 1.73050i
\(443\) −9.37318e8 −0.512241 −0.256120 0.966645i \(-0.582444\pi\)
−0.256120 + 0.966645i \(0.582444\pi\)
\(444\) 5.52629e8 + 1.27647e8i 0.299636 + 0.0692103i
\(445\) −1.70563e9 −0.917541
\(446\) 1.43801e9i 0.767520i
\(447\) 3.64861e7 0.0193220
\(448\) 5.72996e7 0.0301077
\(449\) 7.81078e8i 0.407223i 0.979052 + 0.203611i \(0.0652679\pi\)
−0.979052 + 0.203611i \(0.934732\pi\)
\(450\) 1.22118e9i 0.631738i
\(451\) −7.54609e8 −0.387350
\(452\) 9.18262e8i 0.467716i
\(453\) −5.09484e8 −0.257506
\(454\) 1.90446e9 0.955161
\(455\) 1.23339e9 0.613847
\(456\) 4.86548e8 0.240297
\(457\) 2.36363e9i 1.15844i −0.815172 0.579219i \(-0.803358\pi\)
0.815172 0.579219i \(-0.196642\pi\)
\(458\) 6.45993e8i 0.314194i
\(459\) 3.09780e9i 1.49523i
\(460\) −1.79534e9 −0.859993
\(461\) 9.03045e8i 0.429295i 0.976692 + 0.214648i \(0.0688603\pi\)
−0.976692 + 0.214648i \(0.931140\pi\)
\(462\) 9.25934e7i 0.0436851i
\(463\) 3.74807e9i 1.75499i 0.479587 + 0.877494i \(0.340787\pi\)
−0.479587 + 0.877494i \(0.659213\pi\)
\(464\) 7.16727e8i 0.333074i
\(465\) −1.90091e9 −0.876749
\(466\) 1.90687e9i 0.872911i
\(467\) 3.57109e9i 1.62253i −0.584680 0.811264i \(-0.698780\pi\)
0.584680 0.811264i \(-0.301220\pi\)
\(468\) 1.12534e9i 0.507484i
\(469\) −3.91723e8 −0.175337
\(470\) 1.03205e9 0.458518
\(471\) 1.69124e9 0.745816
\(472\) −8.06686e8 −0.353108
\(473\) 1.44989e9i 0.629972i
\(474\) −4.42514e8 −0.190855
\(475\) 3.70914e9i 1.58798i
\(476\) 4.24802e8i 0.180535i
\(477\) 1.65284e9 0.697296
\(478\) 4.13660e8 0.173239
\(479\) 2.27997e9i 0.947884i −0.880556 0.473942i \(-0.842831\pi\)
0.880556 0.473942i \(-0.157169\pi\)
\(480\) 4.11253e8 0.169732
\(481\) 8.96727e8 3.88225e9i 0.367411 1.59065i
\(482\) 1.27773e9 0.519726
\(483\) 4.04194e8i 0.163220i
\(484\) 1.03027e9 0.413042
\(485\) −2.48763e9 −0.990123
\(486\) 1.79390e9i 0.708877i
\(487\) 4.56730e9i 1.79188i 0.444176 + 0.895939i \(0.353496\pi\)
−0.444176 + 0.895939i \(0.646504\pi\)
\(488\) 9.32338e8 0.363165
\(489\) 3.64606e8i 0.141008i
\(490\) 2.70798e9 1.03982
\(491\) −3.07909e9 −1.17392 −0.586959 0.809617i \(-0.699675\pi\)
−0.586959 + 0.809617i \(0.699675\pi\)
\(492\) 7.54558e8 0.285637
\(493\) 5.31360e9 1.99722
\(494\) 3.41802e9i 1.27565i
\(495\) 1.09221e9i 0.404752i
\(496\) 6.20385e8i 0.228284i
\(497\) 1.01763e9 0.371828
\(498\) 1.38430e9i 0.502259i
\(499\) 1.58219e9i 0.570040i −0.958522 0.285020i \(-0.908000\pi\)
0.958522 0.285020i \(-0.0920003\pi\)
\(500\) 9.53439e8i 0.341113i
\(501\) 2.69475e9i 0.957383i
\(502\) −5.29476e8 −0.186803
\(503\) 1.70666e9i 0.597941i 0.954262 + 0.298971i \(0.0966432\pi\)
−0.954262 + 0.298971i \(0.903357\pi\)
\(504\) 1.52167e8i 0.0529436i
\(505\) 1.61833e9i 0.559173i
\(506\) −9.46841e8 −0.324900
\(507\) 3.00536e9 1.02416
\(508\) 1.84882e9 0.625709
\(509\) −9.57264e8 −0.321751 −0.160875 0.986975i \(-0.551432\pi\)
−0.160875 + 0.986975i \(0.551432\pi\)
\(510\) 3.04891e9i 1.01777i
\(511\) −8.44609e8 −0.280016
\(512\) 1.34218e8i 0.0441942i
\(513\) 3.37038e9i 1.10222i
\(514\) −5.74032e8 −0.186451
\(515\) −9.37676e9 −3.02501
\(516\) 1.44979e9i 0.464550i
\(517\) 5.44288e8 0.173225
\(518\) −1.21254e8 + 5.24953e8i −0.0383304 + 0.165946i
\(519\) −1.40385e9 −0.440794
\(520\) 2.88907e9i 0.901045i
\(521\) −5.57028e9 −1.72562 −0.862809 0.505530i \(-0.831297\pi\)
−0.862809 + 0.505530i \(0.831297\pi\)
\(522\) −1.90337e9 −0.585702
\(523\) 2.23662e9i 0.683652i −0.939763 0.341826i \(-0.888955\pi\)
0.939763 0.341826i \(-0.111045\pi\)
\(524\) 2.86540e9i 0.870013i
\(525\) −7.05827e8 −0.212883
\(526\) 6.07521e7i 0.0182017i
\(527\) 4.59935e9 1.36886
\(528\) 2.16890e8 0.0641239
\(529\) −7.28375e8 −0.213924
\(530\) 4.24333e9 1.23806
\(531\) 2.14227e9i 0.620930i
\(532\) 4.62181e8i 0.133083i
\(533\) 5.30081e9i 1.51634i
\(534\) 8.99469e8 0.255618
\(535\) 4.15615e9i 1.17342i
\(536\) 9.17566e8i 0.257372i
\(537\) 6.96596e8i 0.194120i
\(538\) 1.46054e9i 0.404367i
\(539\) 1.42815e9 0.392838
\(540\) 2.84880e9i 0.778545i
\(541\) 4.43925e9i 1.20537i −0.797980 0.602683i \(-0.794098\pi\)
0.797980 0.602683i \(-0.205902\pi\)
\(542\) 3.73302e9i 1.00708i
\(543\) −3.35819e9 −0.900130
\(544\) −9.95050e8 −0.265002
\(545\) 6.68159e9 1.76804
\(546\) −6.50429e8 −0.171012
\(547\) 4.17743e9i 1.09132i −0.838005 0.545662i \(-0.816278\pi\)
0.838005 0.545662i \(-0.183722\pi\)
\(548\) 1.16903e9 0.303455
\(549\) 2.47595e9i 0.638615i
\(550\) 1.65343e9i 0.423757i
\(551\) −5.78116e9 −1.47226
\(552\) 9.46778e8 0.239586
\(553\) 4.20352e8i 0.105700i
\(554\) 2.15072e9 0.537402
\(555\) −8.70273e8 + 3.76772e9i −0.216088 + 0.935520i
\(556\) −6.98691e8 −0.172395
\(557\) 5.93601e9i 1.45546i 0.685862 + 0.727732i \(0.259426\pi\)
−0.685862 + 0.727732i \(0.740574\pi\)
\(558\) −1.64752e9 −0.401431
\(559\) −1.01849e10 −2.46612
\(560\) 3.90657e8i 0.0940021i
\(561\) 1.60795e9i 0.384507i
\(562\) −1.03758e9 −0.246573
\(563\) 1.57174e9i 0.371193i 0.982626 + 0.185597i \(0.0594218\pi\)
−0.982626 + 0.185597i \(0.940578\pi\)
\(564\) −5.44251e8 −0.127739
\(565\) 6.26053e9 1.46030
\(566\) 1.89133e9 0.438439
\(567\) −8.61571e6 −0.00198495
\(568\) 2.38368e9i 0.545794i
\(569\) 3.01120e9i 0.685246i 0.939473 + 0.342623i \(0.111315\pi\)
−0.939473 + 0.342623i \(0.888685\pi\)
\(570\) 3.31719e9i 0.750254i
\(571\) 7.33216e8 0.164818 0.0824091 0.996599i \(-0.473739\pi\)
0.0824091 + 0.996599i \(0.473739\pi\)
\(572\) 1.52366e9i 0.340410i
\(573\) 3.19127e9i 0.708635i
\(574\) 7.16769e8i 0.158193i
\(575\) 7.21764e9i 1.58328i
\(576\) 3.56434e8 0.0777142
\(577\) 5.37612e9i 1.16507i −0.812804 0.582537i \(-0.802060\pi\)
0.812804 0.582537i \(-0.197940\pi\)
\(578\) 4.09430e9i 0.881926i
\(579\) 3.44330e9i 0.737225i
\(580\) −4.88651e9 −1.03992
\(581\) 1.31497e9 0.278164
\(582\) 1.31186e9 0.275839
\(583\) 2.23788e9 0.467732
\(584\) 1.97840e9i 0.411026i
\(585\) 7.67233e9 1.58446
\(586\) 3.12202e9i 0.640906i
\(587\) 2.99981e8i 0.0612153i −0.999531 0.0306077i \(-0.990256\pi\)
0.999531 0.0306077i \(-0.00974425\pi\)
\(588\) −1.42806e9 −0.289684
\(589\) −5.00406e9 −1.00906
\(590\) 5.49983e9i 1.10247i
\(591\) 2.63283e9 0.524646
\(592\) 1.22964e9 + 2.84025e8i 0.243586 + 0.0562639i
\(593\) −2.79615e9 −0.550642 −0.275321 0.961352i \(-0.588784\pi\)
−0.275321 + 0.961352i \(0.588784\pi\)
\(594\) 1.50242e9i 0.294130i
\(595\) 2.89622e9 0.563665
\(596\) 8.11845e7 0.0157077
\(597\) 2.87213e9i 0.552451i
\(598\) 6.65116e9i 1.27187i
\(599\) −2.36453e9 −0.449521 −0.224761 0.974414i \(-0.572160\pi\)
−0.224761 + 0.974414i \(0.572160\pi\)
\(600\) 1.65332e9i 0.312484i
\(601\) 3.28860e9 0.617946 0.308973 0.951071i \(-0.400015\pi\)
0.308973 + 0.951071i \(0.400015\pi\)
\(602\) 1.37719e9 0.257280
\(603\) −2.43673e9 −0.452581
\(604\) −1.13364e9 −0.209337
\(605\) 7.02421e9i 1.28960i
\(606\) 8.53427e8i 0.155780i
\(607\) 6.04149e8i 0.109644i −0.998496 0.0548218i \(-0.982541\pi\)
0.998496 0.0548218i \(-0.0174591\pi\)
\(608\) 1.08261e9 0.195348
\(609\) 1.10012e9i 0.197369i
\(610\) 6.35649e9i 1.13387i
\(611\) 3.82339e9i 0.678117i
\(612\) 2.64249e9i 0.465998i
\(613\) 4.36468e9 0.765316 0.382658 0.923890i \(-0.375009\pi\)
0.382658 + 0.923890i \(0.375009\pi\)
\(614\) 5.37340e9i 0.936829i
\(615\) 5.14443e9i 0.891814i
\(616\) 2.06028e8i 0.0355134i
\(617\) −6.38337e9 −1.09409 −0.547043 0.837104i \(-0.684247\pi\)
−0.547043 + 0.837104i \(0.684247\pi\)
\(618\) 4.94485e9 0.842740
\(619\) −9.91019e9 −1.67944 −0.839720 0.543019i \(-0.817281\pi\)
−0.839720 + 0.543019i \(0.817281\pi\)
\(620\) −4.22966e9 −0.712746
\(621\) 6.55845e9i 1.09896i
\(622\) −7.65434e9 −1.27538
\(623\) 8.54423e8i 0.141568i
\(624\) 1.52356e9i 0.251023i
\(625\) −2.27050e9 −0.371998
\(626\) −1.43760e9 −0.234222
\(627\) 1.74944e9i 0.283441i
\(628\) 3.76314e9 0.606305
\(629\) 2.10567e9 9.11621e9i 0.337376 1.46062i
\(630\) −1.03744e9 −0.165300
\(631\) 2.21176e9i 0.350457i −0.984528 0.175229i \(-0.943934\pi\)
0.984528 0.175229i \(-0.0560664\pi\)
\(632\) −9.84627e8 −0.155154
\(633\) −9.05023e8 −0.141823
\(634\) 8.96790e8i 0.139759i
\(635\) 1.26049e10i 1.95358i
\(636\) −2.23773e9 −0.344911
\(637\) 1.00322e10i 1.53782i
\(638\) −2.57708e9 −0.392876
\(639\) 6.33019e9 0.959763
\(640\) 9.15070e8 0.137983
\(641\) 1.11059e10 1.66553 0.832765 0.553627i \(-0.186757\pi\)
0.832765 + 0.553627i \(0.186757\pi\)
\(642\) 2.19175e9i 0.326903i
\(643\) 5.30577e9i 0.787064i 0.919311 + 0.393532i \(0.128747\pi\)
−0.919311 + 0.393532i \(0.871253\pi\)
\(644\) 8.99362e8i 0.132689i
\(645\) 9.88441e9 1.45041
\(646\) 8.02613e9i 1.17137i
\(647\) 6.79329e9i 0.986087i −0.870005 0.493044i \(-0.835884\pi\)
0.870005 0.493044i \(-0.164116\pi\)
\(648\) 2.01813e7i 0.00291365i
\(649\) 2.90054e9i 0.416507i
\(650\) 1.16146e10 1.65886
\(651\) 9.52243e8i 0.135274i
\(652\) 8.11277e8i 0.114631i
\(653\) 2.34434e9i 0.329477i −0.986337 0.164739i \(-0.947322\pi\)
0.986337 0.164739i \(-0.0526780\pi\)
\(654\) −3.52355e9 −0.492559
\(655\) 1.95357e10 2.71635
\(656\) 1.67895e9 0.232207
\(657\) −5.25392e9 −0.722777
\(658\) 5.16995e8i 0.0707449i
\(659\) 4.06443e9 0.553224 0.276612 0.960982i \(-0.410788\pi\)
0.276612 + 0.960982i \(0.410788\pi\)
\(660\) 1.47871e9i 0.200207i
\(661\) 9.48531e9i 1.27746i −0.769432 0.638729i \(-0.779461\pi\)
0.769432 0.638729i \(-0.220539\pi\)
\(662\) −2.60641e9 −0.349172
\(663\) 1.12952e10 1.50521
\(664\) 3.08017e9i 0.408307i
\(665\) −3.15106e9 −0.415510
\(666\) −7.54267e8 + 3.26549e9i −0.0989385 + 0.428340i
\(667\) −1.12496e10 −1.46790
\(668\) 5.99602e9i 0.778297i
\(669\) −5.17019e9 −0.667598
\(670\) −6.25579e9 −0.803563
\(671\) 3.35233e9i 0.428369i
\(672\) 2.06014e8i 0.0261881i
\(673\) 1.24228e10 1.57097 0.785484 0.618882i \(-0.212414\pi\)
0.785484 + 0.618882i \(0.212414\pi\)
\(674\) 8.16760e9i 1.02751i
\(675\) −1.14528e10 −1.43333
\(676\) 6.68715e9 0.832584
\(677\) 3.71661e9 0.460349 0.230174 0.973149i \(-0.426070\pi\)
0.230174 + 0.973149i \(0.426070\pi\)
\(678\) −3.30150e9 −0.406825
\(679\) 1.24616e9i 0.152767i
\(680\) 6.78406e9i 0.827386i
\(681\) 6.84726e9i 0.830810i
\(682\) −2.23067e9 −0.269271
\(683\) 1.01237e10i 1.21581i 0.794008 + 0.607907i \(0.207991\pi\)
−0.794008 + 0.607907i \(0.792009\pi\)
\(684\) 2.87501e9i 0.343513i
\(685\) 7.97022e9i 0.947444i
\(686\) 2.79662e9i 0.330750i
\(687\) 2.32259e9 0.273290
\(688\) 3.22590e9i 0.377652i
\(689\) 1.57202e10i 1.83100i
\(690\) 6.45494e9i 0.748033i
\(691\) −4.47449e9 −0.515905 −0.257953 0.966158i \(-0.583048\pi\)
−0.257953 + 0.966158i \(0.583048\pi\)
\(692\) −3.12368e9 −0.358340
\(693\) −5.47135e8 −0.0624494
\(694\) −1.36517e9 −0.155034
\(695\) 4.76354e9i 0.538249i
\(696\) 2.57691e9 0.289712
\(697\) 1.24472e10i 1.39238i
\(698\) 1.16294e10i 1.29438i
\(699\) 6.85591e9 0.759268
\(700\) −1.57052e9 −0.173061
\(701\) 7.55194e9i 0.828029i −0.910270 0.414015i \(-0.864126\pi\)
0.910270 0.414015i \(-0.135874\pi\)
\(702\) −1.05539e10 −1.15141
\(703\) −2.29096e9 + 9.91837e9i −0.248699 + 1.07670i
\(704\) 4.82596e8 0.0521290
\(705\) 3.71060e9i 0.398825i
\(706\) −7.68813e9 −0.822251
\(707\) −8.10687e8 −0.0862750
\(708\) 2.90034e9i 0.307138i
\(709\) 1.16486e10i 1.22747i −0.789511 0.613737i \(-0.789666\pi\)
0.789511 0.613737i \(-0.210334\pi\)
\(710\) 1.62515e10 1.70407
\(711\) 2.61481e9i 0.272833i
\(712\) 2.00139e9 0.207803
\(713\) −9.73744e9 −1.00608
\(714\) −1.52732e9 −0.157032
\(715\) 1.03880e10 1.06282
\(716\) 1.54998e9i 0.157808i
\(717\) 1.48727e9i 0.150686i
\(718\) 7.44223e9i 0.750356i
\(719\) −1.79202e10 −1.79801 −0.899004 0.437940i \(-0.855708\pi\)
−0.899004 + 0.437940i \(0.855708\pi\)
\(720\) 2.43010e9i 0.242638i
\(721\) 4.69721e9i 0.466731i
\(722\) 1.58140e9i 0.156373i
\(723\) 4.59393e9i 0.452064i
\(724\) −7.47222e9 −0.731754
\(725\) 1.96447e10i 1.91453i
\(726\) 3.70423e9i 0.359269i
\(727\) 1.09431e10i 1.05626i −0.849164 0.528130i \(-0.822893\pi\)
0.849164 0.528130i \(-0.177107\pi\)
\(728\) −1.44726e9 −0.139023
\(729\) 6.36354e9 0.608349
\(730\) −1.34883e10 −1.28330
\(731\) −2.39159e10 −2.26452
\(732\) 3.35211e9i 0.315885i
\(733\) −9.29078e8 −0.0871341 −0.0435670 0.999051i \(-0.513872\pi\)
−0.0435670 + 0.999051i \(0.513872\pi\)
\(734\) 9.21006e9i 0.859659i
\(735\) 9.73620e9i 0.904449i
\(736\) 2.10665e9 0.194769
\(737\) −3.29922e9 −0.303581
\(738\) 4.45869e9i 0.408329i
\(739\) 1.02307e10 0.932498 0.466249 0.884653i \(-0.345605\pi\)
0.466249 + 0.884653i \(0.345605\pi\)
\(740\) −1.93642e9 + 8.38346e9i −0.175667 + 0.760523i
\(741\) −1.22891e10 −1.10957
\(742\) 2.12566e9i 0.191021i
\(743\) −1.88814e10 −1.68878 −0.844390 0.535730i \(-0.820037\pi\)
−0.844390 + 0.535730i \(0.820037\pi\)
\(744\) 2.23052e9 0.198564
\(745\) 5.53500e8i 0.0490423i
\(746\) 1.65256e9i 0.145737i
\(747\) 8.17983e9 0.717997
\(748\) 3.57782e9i 0.312582i
\(749\) 2.08199e9 0.181047
\(750\) −3.42798e9 −0.296704
\(751\) 5.17118e9 0.445502 0.222751 0.974875i \(-0.428496\pi\)
0.222751 + 0.974875i \(0.428496\pi\)
\(752\) −1.21100e9 −0.103844
\(753\) 1.90367e9i 0.162483i
\(754\) 1.81029e10i 1.53797i
\(755\) 7.72894e9i 0.653591i
\(756\) 1.42708e9 0.120122
\(757\) 2.05037e10i 1.71790i −0.512061 0.858949i \(-0.671118\pi\)
0.512061 0.858949i \(-0.328882\pi\)
\(758\) 3.51415e9i 0.293074i
\(759\) 3.40425e9i 0.282602i
\(760\) 7.38100e9i 0.609913i
\(761\) 1.60081e10 1.31672 0.658361 0.752703i \(-0.271250\pi\)
0.658361 + 0.752703i \(0.271250\pi\)
\(762\) 6.64722e9i 0.544249i
\(763\) 3.34709e9i 0.272792i
\(764\) 7.10083e9i 0.576079i
\(765\) 1.80160e10 1.45493
\(766\) 5.67642e9 0.456325
\(767\) 2.03750e10 1.63048
\(768\) −4.82564e8 −0.0384406
\(769\) 5.80747e9i 0.460516i 0.973130 + 0.230258i \(0.0739571\pi\)
−0.973130 + 0.230258i \(0.926043\pi\)
\(770\) −1.40465e9 −0.110880
\(771\) 2.06386e9i 0.162177i
\(772\) 7.66162e9i 0.599321i
\(773\) 1.82075e9 0.141783 0.0708913 0.997484i \(-0.477416\pi\)
0.0708913 + 0.997484i \(0.477416\pi\)
\(774\) 8.56684e9 0.664090
\(775\) 1.70041e10i 1.31219i
\(776\) 2.91898e9 0.224241
\(777\) 1.88741e9 + 4.35956e8i 0.144342 + 0.0333402i
\(778\) 6.91206e9 0.526234
\(779\) 1.35425e10i 1.02640i
\(780\) −1.03873e10 −0.783740
\(781\) 8.57081e9 0.643788
\(782\) 1.56181e10i 1.16790i
\(783\) 1.78506e10i 1.32888i
\(784\) −3.17754e9 −0.235496
\(785\) 2.56563e10i 1.89300i
\(786\) −1.03022e10 −0.756748
\(787\) −5.84261e9 −0.427263 −0.213632 0.976914i \(-0.568529\pi\)
−0.213632 + 0.976914i \(0.568529\pi\)
\(788\) 5.85824e9 0.426506
\(789\) −2.18427e8 −0.0158320
\(790\) 6.71299e9i 0.484419i
\(791\) 3.13616e9i 0.225310i
\(792\) 1.28160e9i 0.0916674i
\(793\) −2.35487e10 −1.67692
\(794\) 1.07207e10i 0.760063i
\(795\) 1.52564e10i 1.07688i
\(796\) 6.39071e9i 0.449110i
\(797\) 9.50130e9i 0.664782i 0.943142 + 0.332391i \(0.107855\pi\)
−0.943142 + 0.332391i \(0.892145\pi\)
\(798\) 1.66172e9 0.115757
\(799\) 8.97800e9i 0.622681i
\(800\) 3.67876e9i 0.254031i
\(801\) 5.31497e9i 0.365415i
\(802\) 8.51518e9 0.582886
\(803\) −7.11358e9 −0.484823
\(804\) 3.29900e9 0.223865
\(805\) −6.13167e9 −0.414279
\(806\) 1.56695e10i 1.05410i
\(807\) −5.25120e9 −0.351724
\(808\) 1.89894e9i 0.126640i
\(809\) 1.24098e10i 0.824033i −0.911176 0.412017i \(-0.864825\pi\)
0.911176 0.412017i \(-0.135175\pi\)
\(810\) −1.37592e8 −0.00909697
\(811\) −8.02356e9 −0.528195 −0.264097 0.964496i \(-0.585074\pi\)
−0.264097 + 0.964496i \(0.585074\pi\)
\(812\) 2.44785e9i 0.160450i
\(813\) 1.34216e10 0.875968
\(814\) −1.02125e9 + 4.42133e9i −0.0663658 + 0.287321i
\(815\) −5.53113e9 −0.357900
\(816\) 3.57758e9i 0.230502i
\(817\) 2.60203e10 1.66930
\(818\) 3.81245e9 0.243538
\(819\) 3.84339e9i 0.244467i
\(820\) 1.14468e10i 0.724993i
\(821\) −9.82788e9 −0.619811 −0.309905 0.950767i \(-0.600297\pi\)
−0.309905 + 0.950767i \(0.600297\pi\)
\(822\) 4.20311e9i 0.263949i
\(823\) 9.98150e8 0.0624161 0.0312080 0.999513i \(-0.490065\pi\)
0.0312080 + 0.999513i \(0.490065\pi\)
\(824\) 1.10027e10 0.685099
\(825\) −5.94471e9 −0.368589
\(826\) −2.75509e9 −0.170101
\(827\) 4.41382e9i 0.271359i −0.990753 0.135680i \(-0.956678\pi\)
0.990753 0.135680i \(-0.0433218\pi\)
\(828\) 5.59451e9i 0.342496i
\(829\) 3.57418e9i 0.217889i 0.994048 + 0.108944i \(0.0347471\pi\)
−0.994048 + 0.108944i \(0.965253\pi\)
\(830\) 2.10000e10 1.27481
\(831\) 7.73264e9i 0.467438i
\(832\) 3.39003e9i 0.204067i
\(833\) 2.35573e10i 1.41211i
\(834\) 2.51206e9i 0.149951i
\(835\) −4.08797e10 −2.42999
\(836\) 3.89265e9i 0.230421i
\(837\) 1.54511e10i 0.910794i
\(838\) 4.43728e9i 0.260473i
\(839\) 2.87912e10 1.68304 0.841518 0.540230i \(-0.181663\pi\)
0.841518 + 0.540230i \(0.181663\pi\)
\(840\) 1.40456e9 0.0817642
\(841\) −1.33689e10 −0.775016
\(842\) −7.56304e9 −0.436621
\(843\) 3.73051e9i 0.214472i
\(844\) −2.01375e9 −0.115294
\(845\) 4.55917e10i 2.59948i
\(846\) 3.21598e9i 0.182607i
\(847\) 3.51872e9 0.198972
\(848\) −4.97912e9 −0.280393
\(849\) 6.80004e9i 0.381359i
\(850\) 2.72733e10 1.52325
\(851\) −4.45799e9 + 1.93002e10i −0.247962 + 1.07352i
\(852\) −8.57023e9 −0.474738
\(853\) 1.88255e10i 1.03854i 0.854609 + 0.519272i \(0.173797\pi\)
−0.854609 + 0.519272i \(0.826203\pi\)
\(854\) 3.18423e9 0.174945
\(855\) −1.96013e10 −1.07251
\(856\) 4.87682e9i 0.265753i
\(857\) 1.95251e10i 1.05964i −0.848109 0.529822i \(-0.822259\pi\)
0.848109 0.529822i \(-0.177741\pi\)
\(858\) −5.47813e9 −0.296092
\(859\) 6.73950e9i 0.362787i −0.983411 0.181393i \(-0.941939\pi\)
0.983411 0.181393i \(-0.0580607\pi\)
\(860\) 2.19936e10 1.17910
\(861\) 2.57706e9 0.137598
\(862\) −2.74484e9 −0.145963
\(863\) 3.99553e9 0.211610 0.105805 0.994387i \(-0.466258\pi\)
0.105805 + 0.994387i \(0.466258\pi\)
\(864\) 3.34278e9i 0.176323i
\(865\) 2.12966e10i 1.11881i
\(866\) 1.45397e10i 0.760752i
\(867\) 1.47206e10 0.767110
\(868\) 2.11881e9i 0.109970i
\(869\) 3.54035e9i 0.183011i
\(870\) 1.75688e10i 0.904536i
\(871\) 2.31756e10i 1.18841i
\(872\) −7.84018e9 −0.400422
\(873\) 7.75176e9i 0.394321i
\(874\) 1.69924e10i 0.860923i
\(875\) 3.25630e9i 0.164322i
\(876\) 7.11310e9 0.357515
\(877\) 2.14868e10 1.07566 0.537829 0.843054i \(-0.319245\pi\)
0.537829 + 0.843054i \(0.319245\pi\)
\(878\) 2.08768e10 1.04096
\(879\) 1.12249e10 0.557467
\(880\) 3.29024e9i 0.162757i
\(881\) −1.61700e10 −0.796700 −0.398350 0.917234i \(-0.630417\pi\)
−0.398350 + 0.917234i \(0.630417\pi\)
\(882\) 8.43839e9i 0.414114i
\(883\) 1.22901e10i 0.600747i 0.953822 + 0.300373i \(0.0971113\pi\)
−0.953822 + 0.300373i \(0.902889\pi\)
\(884\) 2.51327e10 1.22365
\(885\) −1.97740e10 −0.958942
\(886\) 7.49854e9i 0.362209i
\(887\) −2.13630e10 −1.02785 −0.513925 0.857835i \(-0.671809\pi\)
−0.513925 + 0.857835i \(0.671809\pi\)
\(888\) 1.02118e9 4.42104e9i 0.0489391 0.211874i
\(889\) 6.31432e9 0.301419
\(890\) 1.36451e10i 0.648800i
\(891\) −7.25644e7 −0.00343678
\(892\) −1.15041e10 −0.542718
\(893\) 9.76800e9i 0.459014i
\(894\) 2.91889e8i 0.0136627i
\(895\) 1.05674e10 0.492708
\(896\) 4.58397e8i 0.0212894i
\(897\) −2.39134e10 −1.10629
\(898\) 6.24862e9 0.287950
\(899\) −2.65030e10 −1.21657
\(900\) −9.76947e9 −0.446707
\(901\) 3.69137e10i 1.68132i
\(902\) 6.03687e9i 0.273898i
\(903\) 4.95151e9i 0.223785i
\(904\) −7.34610e9 −0.330725
\(905\) 5.09441e10i 2.28467i
\(906\) 4.07587e9i 0.182084i
\(907\) 1.30045e10i 0.578721i 0.957220 + 0.289360i \(0.0934426\pi\)
−0.957220 + 0.289360i \(0.906557\pi\)
\(908\) 1.52357e10i 0.675401i
\(909\) −5.04290e9 −0.222693
\(910\) 9.86710e9i 0.434055i
\(911\) 2.85983e10i 1.25322i −0.779334 0.626608i \(-0.784443\pi\)
0.779334 0.626608i \(-0.215557\pi\)
\(912\) 3.89239e9i 0.169916i
\(913\) 1.10751e10 0.481617
\(914\) −1.89090e10 −0.819139
\(915\) 2.28540e10 0.986254
\(916\) 5.16794e9 0.222169
\(917\) 9.78626e9i 0.419106i
\(918\) −2.47824e10 −1.05729
\(919\) 1.77617e10i 0.754883i 0.926033 + 0.377441i \(0.123196\pi\)
−0.926033 + 0.377441i \(0.876804\pi\)
\(920\) 1.43627e10i 0.608107i
\(921\) 1.93194e10 0.814865
\(922\) 7.22436e9 0.303557
\(923\) 6.02063e10i 2.52021i
\(924\) 7.40747e8 0.0308900
\(925\) −3.37032e10 7.78481e9i −1.40015 0.323409i
\(926\) 2.99846e10 1.24096
\(927\) 2.92191e10i 1.20473i
\(928\) 5.73382e9 0.235519
\(929\) −2.45214e10 −1.00344 −0.501719 0.865031i \(-0.667299\pi\)
−0.501719 + 0.865031i \(0.667299\pi\)
\(930\) 1.52073e10i 0.619955i
\(931\) 2.56302e10i 1.04094i
\(932\) 1.52549e10 0.617241
\(933\) 2.75203e10i 1.10935i
\(934\) −2.85687e10 −1.14730
\(935\) 2.43929e10 0.975939
\(936\) −9.00270e9 −0.358845
\(937\) −2.41898e10 −0.960601 −0.480300 0.877104i \(-0.659472\pi\)
−0.480300 + 0.877104i \(0.659472\pi\)
\(938\) 3.13378e9i 0.123982i
\(939\) 5.16871e9i 0.203729i
\(940\) 8.25637e9i 0.324221i
\(941\) 1.50456e9 0.0588636 0.0294318 0.999567i \(-0.490630\pi\)
0.0294318 + 0.999567i \(0.490630\pi\)
\(942\) 1.35299e10i 0.527371i
\(943\) 2.63525e10i 1.02336i
\(944\) 6.45349e9i 0.249685i
\(945\) 9.72957e9i 0.375044i
\(946\) 1.15991e10 0.445458
\(947\) 1.65709e10i 0.634045i 0.948418 + 0.317023i \(0.102683\pi\)
−0.948418 + 0.317023i \(0.897317\pi\)
\(948\) 3.54011e9i 0.134955i
\(949\) 4.99699e10i 1.89791i
\(950\) −2.96731e10 −1.12287
\(951\) 3.22430e9 0.121564
\(952\) −3.39842e9 −0.127658
\(953\) 1.84240e10 0.689540 0.344770 0.938687i \(-0.387957\pi\)
0.344770 + 0.938687i \(0.387957\pi\)
\(954\) 1.32227e10i 0.493063i
\(955\) −4.84120e10 −1.79863
\(956\) 3.30928e9i 0.122499i
\(957\) 9.26558e9i 0.341728i
\(958\) −1.82398e10 −0.670255
\(959\) 3.99262e9 0.146182
\(960\) 3.29002e9i 0.120019i
\(961\) 4.57211e9 0.166182
\(962\) −3.10580e10 7.17381e9i −1.12476 0.259799i
\(963\) 1.29511e10 0.467320
\(964\) 1.02218e10i 0.367502i
\(965\) 5.22354e10 1.87120
\(966\) 3.23355e9 0.115414
\(967\) 4.43490e10i 1.57722i −0.614896 0.788608i \(-0.710802\pi\)
0.614896 0.788608i \(-0.289198\pi\)
\(968\) 8.24220e9i 0.292065i
\(969\) −2.88570e10 −1.01887
\(970\) 1.99010e10i 0.700123i
\(971\) −7.02253e9 −0.246165 −0.123082 0.992396i \(-0.539278\pi\)
−0.123082 + 0.992396i \(0.539278\pi\)
\(972\) 1.43512e10 0.501252
\(973\) −2.38626e9 −0.0830466
\(974\) 3.65384e10 1.26705
\(975\) 4.17591e10i 1.44289i
\(976\) 7.45870e9i 0.256796i
\(977\) 2.56143e10i 0.878721i 0.898311 + 0.439361i \(0.144795\pi\)
−0.898311 + 0.439361i \(0.855205\pi\)
\(978\) 2.91685e9 0.0997076
\(979\) 7.19623e9i 0.245113i
\(980\) 2.16638e10i 0.735264i
\(981\) 2.08207e10i 0.704131i
\(982\) 2.46327e10i 0.830085i
\(983\) 3.79136e10 1.27309 0.636544 0.771241i \(-0.280364\pi\)
0.636544 + 0.771241i \(0.280364\pi\)
\(984\) 6.03647e9i 0.201976i
\(985\) 3.99403e10i 1.33163i
\(986\) 4.25088e10i 1.41224i
\(987\) −1.85879e9 −0.0615348
\(988\) −2.73442e10 −0.902019
\(989\) 5.06331e10 1.66436
\(990\) −8.73770e9 −0.286203
\(991\) 3.80017e10i 1.24035i −0.784463 0.620176i \(-0.787061\pi\)
0.784463 0.620176i \(-0.212939\pi\)
\(992\) 4.96308e9 0.161421
\(993\) 9.37103e9i 0.303714i
\(994\) 8.14103e9i 0.262922i
\(995\) 4.35706e10 1.40221
\(996\) −1.10744e10 −0.355151
\(997\) 4.32069e10i 1.38077i −0.723444 0.690383i \(-0.757442\pi\)
0.723444 0.690383i \(-0.242558\pi\)
\(998\) −1.26575e10 −0.403079
\(999\) 3.06251e10 + 7.07382e9i 0.971847 + 0.224478i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.b.a.73.6 24
37.36 even 2 inner 74.8.b.a.73.18 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.b.a.73.6 24 1.1 even 1 trivial
74.8.b.a.73.18 yes 24 37.36 even 2 inner