Properties

Label 74.8.b.a.73.8
Level $74$
Weight $8$
Character 74.73
Analytic conductor $23.116$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(73,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.73");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.1164918858\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 73.8
Character \(\chi\) \(=\) 74.73
Dual form 74.8.b.a.73.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000i q^{2} +14.3858 q^{3} -64.0000 q^{4} +303.371i q^{5} -115.086i q^{6} +76.6627 q^{7} +512.000i q^{8} -1980.05 q^{9} +2426.97 q^{10} +969.796 q^{11} -920.689 q^{12} -10523.6i q^{13} -613.301i q^{14} +4364.23i q^{15} +4096.00 q^{16} -6840.58i q^{17} +15840.4i q^{18} -56955.9i q^{19} -19415.8i q^{20} +1102.85 q^{21} -7758.37i q^{22} -30093.0i q^{23} +7365.51i q^{24} -13909.1 q^{25} -84189.1 q^{26} -59946.2 q^{27} -4906.41 q^{28} +114922. i q^{29} +34913.8 q^{30} -110397. i q^{31} -32768.0i q^{32} +13951.3 q^{33} -54724.6 q^{34} +23257.3i q^{35} +126723. q^{36} +(-190668. - 242028. i) q^{37} -455647. q^{38} -151391. i q^{39} -155326. q^{40} -384466. q^{41} -8822.81i q^{42} -48082.4i q^{43} -62067.0 q^{44} -600690. i q^{45} -240744. q^{46} +329501. q^{47} +58924.1 q^{48} -817666. q^{49} +111273. i q^{50} -98406.9i q^{51} +673513. i q^{52} -1.29994e6 q^{53} +479569. i q^{54} +294208. i q^{55} +39251.3i q^{56} -819354. i q^{57} +919376. q^{58} +316983. i q^{59} -279310. i q^{60} -1.54587e6i q^{61} -883178. q^{62} -151796. q^{63} -262144. q^{64} +3.19257e6 q^{65} -111610. i q^{66} +4.60848e6 q^{67} +437797. i q^{68} -432910. i q^{69} +186058. q^{70} +2.95688e6 q^{71} -1.01379e6i q^{72} +2.87820e6 q^{73} +(-1.93622e6 + 1.52535e6i) q^{74} -200093. q^{75} +3.64518e6i q^{76} +74347.2 q^{77} -1.21112e6 q^{78} -1.05741e6i q^{79} +1.24261e6i q^{80} +3.46800e6 q^{81} +3.07573e6i q^{82} -7.53870e6 q^{83} -70582.5 q^{84} +2.07523e6 q^{85} -384659. q^{86} +1.65324e6i q^{87} +496536. i q^{88} +2.20030e6i q^{89} -4.80552e6 q^{90} -806770. i q^{91} +1.92595e6i q^{92} -1.58815e6i q^{93} -2.63601e6i q^{94} +1.72788e7 q^{95} -471393. i q^{96} +1.16988e7i q^{97} +6.54133e6i q^{98} -1.92025e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 106 q^{3} - 1536 q^{4} + 104 q^{7} + 17554 q^{9} + 1136 q^{10} + 366 q^{11} + 6784 q^{12} + 98304 q^{16} - 239820 q^{21} - 675570 q^{25} + 97008 q^{26} + 338780 q^{27} - 6656 q^{28} + 350400 q^{30}+ \cdots - 53279900 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/74\mathbb{Z}\right)^\times\).

\(n\) \(39\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000i 0.707107i
\(3\) 14.3858 0.307616 0.153808 0.988101i \(-0.450846\pi\)
0.153808 + 0.988101i \(0.450846\pi\)
\(4\) −64.0000 −0.500000
\(5\) 303.371i 1.08537i 0.839935 + 0.542687i \(0.182593\pi\)
−0.839935 + 0.542687i \(0.817407\pi\)
\(6\) 115.086i 0.217517i
\(7\) 76.6627 0.0844775 0.0422387 0.999108i \(-0.486551\pi\)
0.0422387 + 0.999108i \(0.486551\pi\)
\(8\) 512.000i 0.353553i
\(9\) −1980.05 −0.905373
\(10\) 2426.97 0.767475
\(11\) 969.796 0.219688 0.109844 0.993949i \(-0.464965\pi\)
0.109844 + 0.993949i \(0.464965\pi\)
\(12\) −920.689 −0.153808
\(13\) 10523.6i 1.32851i −0.747507 0.664254i \(-0.768749\pi\)
0.747507 0.664254i \(-0.231251\pi\)
\(14\) 613.301i 0.0597346i
\(15\) 4364.23i 0.333878i
\(16\) 4096.00 0.250000
\(17\) 6840.58i 0.337693i −0.985642 0.168846i \(-0.945996\pi\)
0.985642 0.168846i \(-0.0540042\pi\)
\(18\) 15840.4i 0.640195i
\(19\) 56955.9i 1.90503i −0.304495 0.952514i \(-0.598488\pi\)
0.304495 0.952514i \(-0.401512\pi\)
\(20\) 19415.8i 0.542687i
\(21\) 1102.85 0.0259866
\(22\) 7758.37i 0.155343i
\(23\) 30093.0i 0.515724i −0.966182 0.257862i \(-0.916982\pi\)
0.966182 0.257862i \(-0.0830181\pi\)
\(24\) 7365.51i 0.108759i
\(25\) −13909.1 −0.178036
\(26\) −84189.1 −0.939397
\(27\) −59946.2 −0.586122
\(28\) −4906.41 −0.0422387
\(29\) 114922.i 0.875004i 0.899217 + 0.437502i \(0.144137\pi\)
−0.899217 + 0.437502i \(0.855863\pi\)
\(30\) 34913.8 0.236087
\(31\) 110397.i 0.665568i −0.943003 0.332784i \(-0.892012\pi\)
0.943003 0.332784i \(-0.107988\pi\)
\(32\) 32768.0i 0.176777i
\(33\) 13951.3 0.0675795
\(34\) −54724.6 −0.238785
\(35\) 23257.3i 0.0916896i
\(36\) 126723. 0.452686
\(37\) −190668. 242028.i −0.618832 0.785524i
\(38\) −455647. −1.34706
\(39\) 151391.i 0.408670i
\(40\) −155326. −0.383738
\(41\) −384466. −0.871193 −0.435596 0.900142i \(-0.643463\pi\)
−0.435596 + 0.900142i \(0.643463\pi\)
\(42\) 8822.81i 0.0183753i
\(43\) 48082.4i 0.0922246i −0.998936 0.0461123i \(-0.985317\pi\)
0.998936 0.0461123i \(-0.0146832\pi\)
\(44\) −62067.0 −0.109844
\(45\) 600690.i 0.982668i
\(46\) −240744. −0.364672
\(47\) 329501. 0.462929 0.231464 0.972843i \(-0.425648\pi\)
0.231464 + 0.972843i \(0.425648\pi\)
\(48\) 58924.1 0.0769039
\(49\) −817666. −0.992864
\(50\) 111273.i 0.125891i
\(51\) 98406.9i 0.103880i
\(52\) 673513.i 0.664254i
\(53\) −1.29994e6 −1.19938 −0.599689 0.800233i \(-0.704709\pi\)
−0.599689 + 0.800233i \(0.704709\pi\)
\(54\) 479569.i 0.414451i
\(55\) 294208.i 0.238444i
\(56\) 39251.3i 0.0298673i
\(57\) 819354.i 0.586016i
\(58\) 919376. 0.618721
\(59\) 316983.i 0.200934i 0.994940 + 0.100467i \(0.0320337\pi\)
−0.994940 + 0.100467i \(0.967966\pi\)
\(60\) 279310.i 0.166939i
\(61\) 1.54587e6i 0.872004i −0.899946 0.436002i \(-0.856394\pi\)
0.899946 0.436002i \(-0.143606\pi\)
\(62\) −883178. −0.470628
\(63\) −151796. −0.0764836
\(64\) −262144. −0.125000
\(65\) 3.19257e6 1.44193
\(66\) 111610.i 0.0477859i
\(67\) 4.60848e6 1.87196 0.935980 0.352054i \(-0.114517\pi\)
0.935980 + 0.352054i \(0.114517\pi\)
\(68\) 437797.i 0.168846i
\(69\) 432910.i 0.158645i
\(70\) 186058. 0.0648344
\(71\) 2.95688e6 0.980460 0.490230 0.871593i \(-0.336913\pi\)
0.490230 + 0.871593i \(0.336913\pi\)
\(72\) 1.01379e6i 0.320098i
\(73\) 2.87820e6 0.865947 0.432973 0.901407i \(-0.357464\pi\)
0.432973 + 0.901407i \(0.357464\pi\)
\(74\) −1.93622e6 + 1.52535e6i −0.555449 + 0.437580i
\(75\) −200093. −0.0547668
\(76\) 3.64518e6i 0.952514i
\(77\) 74347.2 0.0185587
\(78\) −1.21112e6 −0.288973
\(79\) 1.05741e6i 0.241295i −0.992695 0.120647i \(-0.961503\pi\)
0.992695 0.120647i \(-0.0384970\pi\)
\(80\) 1.24261e6i 0.271343i
\(81\) 3.46800e6 0.725072
\(82\) 3.07573e6i 0.616026i
\(83\) −7.53870e6 −1.44718 −0.723591 0.690229i \(-0.757510\pi\)
−0.723591 + 0.690229i \(0.757510\pi\)
\(84\) −70582.5 −0.0129933
\(85\) 2.07523e6 0.366523
\(86\) −384659. −0.0652126
\(87\) 1.65324e6i 0.269165i
\(88\) 496536.i 0.0776714i
\(89\) 2.20030e6i 0.330840i 0.986223 + 0.165420i \(0.0528979\pi\)
−0.986223 + 0.165420i \(0.947102\pi\)
\(90\) −4.80552e6 −0.694851
\(91\) 806770.i 0.112229i
\(92\) 1.92595e6i 0.257862i
\(93\) 1.58815e6i 0.204739i
\(94\) 2.63601e6i 0.327340i
\(95\) 1.72788e7 2.06767
\(96\) 471393.i 0.0543793i
\(97\) 1.16988e7i 1.30149i 0.759297 + 0.650744i \(0.225543\pi\)
−0.759297 + 0.650744i \(0.774457\pi\)
\(98\) 6.54133e6i 0.702061i
\(99\) −1.92025e6 −0.198899
\(100\) 890182. 0.0890182
\(101\) −5.63785e6 −0.544488 −0.272244 0.962228i \(-0.587766\pi\)
−0.272244 + 0.962228i \(0.587766\pi\)
\(102\) −787255. −0.0734539
\(103\) 1.39728e6i 0.125995i −0.998014 0.0629973i \(-0.979934\pi\)
0.998014 0.0629973i \(-0.0200660\pi\)
\(104\) 5.38810e6 0.469698
\(105\) 334573.i 0.0282052i
\(106\) 1.03995e7i 0.848089i
\(107\) −3.65843e6 −0.288704 −0.144352 0.989526i \(-0.546110\pi\)
−0.144352 + 0.989526i \(0.546110\pi\)
\(108\) 3.83656e6 0.293061
\(109\) 1.33252e7i 0.985554i −0.870156 0.492777i \(-0.835982\pi\)
0.870156 0.492777i \(-0.164018\pi\)
\(110\) 2.35367e6 0.168605
\(111\) −2.74291e6 3.48175e6i −0.190362 0.241639i
\(112\) 314010. 0.0211194
\(113\) 3.02877e7i 1.97465i −0.158697 0.987327i \(-0.550729\pi\)
0.158697 0.987327i \(-0.449271\pi\)
\(114\) −6.55483e6 −0.414376
\(115\) 9.12934e6 0.559754
\(116\) 7.35500e6i 0.437502i
\(117\) 2.08373e7i 1.20279i
\(118\) 2.53586e6 0.142082
\(119\) 524417.i 0.0285274i
\(120\) −2.23448e6 −0.118044
\(121\) −1.85467e7 −0.951737
\(122\) −1.23670e7 −0.616600
\(123\) −5.53084e6 −0.267993
\(124\) 7.06543e6i 0.332784i
\(125\) 1.94813e7i 0.892138i
\(126\) 1.21437e6i 0.0540821i
\(127\) −1.14906e7 −0.497773 −0.248886 0.968533i \(-0.580065\pi\)
−0.248886 + 0.968533i \(0.580065\pi\)
\(128\) 2.09715e6i 0.0883883i
\(129\) 691702.i 0.0283697i
\(130\) 2.55405e7i 1.01960i
\(131\) 1.55640e7i 0.604882i −0.953168 0.302441i \(-0.902198\pi\)
0.953168 0.302441i \(-0.0978015\pi\)
\(132\) −892881. −0.0337897
\(133\) 4.36639e6i 0.160932i
\(134\) 3.68679e7i 1.32367i
\(135\) 1.81859e7i 0.636162i
\(136\) 3.50238e6 0.119392
\(137\) 2.65380e7 0.881753 0.440876 0.897568i \(-0.354668\pi\)
0.440876 + 0.897568i \(0.354668\pi\)
\(138\) −3.46328e6 −0.112179
\(139\) −4.58788e7 −1.44897 −0.724487 0.689289i \(-0.757923\pi\)
−0.724487 + 0.689289i \(0.757923\pi\)
\(140\) 1.48846e6i 0.0458448i
\(141\) 4.74012e6 0.142404
\(142\) 2.36551e7i 0.693290i
\(143\) 1.02058e7i 0.291857i
\(144\) −8.11028e6 −0.226343
\(145\) −3.48640e7 −0.949706
\(146\) 2.30256e7i 0.612317i
\(147\) −1.17627e7 −0.305420
\(148\) 1.22028e7 + 1.54898e7i 0.309416 + 0.392762i
\(149\) 1.82942e7 0.453065 0.226533 0.974004i \(-0.427261\pi\)
0.226533 + 0.974004i \(0.427261\pi\)
\(150\) 1.60074e6i 0.0387260i
\(151\) −6.74262e7 −1.59371 −0.796855 0.604170i \(-0.793505\pi\)
−0.796855 + 0.604170i \(0.793505\pi\)
\(152\) 2.91614e7 0.673529
\(153\) 1.35447e7i 0.305738i
\(154\) 594778.i 0.0131230i
\(155\) 3.34914e7 0.722390
\(156\) 9.68899e6i 0.204335i
\(157\) 6.33668e7 1.30681 0.653406 0.757008i \(-0.273340\pi\)
0.653406 + 0.757008i \(0.273340\pi\)
\(158\) −8.45926e6 −0.170621
\(159\) −1.87006e7 −0.368948
\(160\) 9.94087e6 0.191869
\(161\) 2.30701e6i 0.0435671i
\(162\) 2.77440e7i 0.512703i
\(163\) 5.89098e7i 1.06545i 0.846290 + 0.532723i \(0.178831\pi\)
−0.846290 + 0.532723i \(0.821169\pi\)
\(164\) 2.46058e7 0.435596
\(165\) 4.23241e6i 0.0733490i
\(166\) 6.03096e7i 1.02331i
\(167\) 2.87873e7i 0.478291i −0.970984 0.239146i \(-0.923133\pi\)
0.970984 0.239146i \(-0.0768674\pi\)
\(168\) 564660.i 0.00918765i
\(169\) −4.79984e7 −0.764933
\(170\) 1.66019e7i 0.259171i
\(171\) 1.12776e8i 1.72476i
\(172\) 3.07728e6i 0.0461123i
\(173\) −4.16794e7 −0.612013 −0.306006 0.952029i \(-0.598993\pi\)
−0.306006 + 0.952029i \(0.598993\pi\)
\(174\) 1.32259e7 0.190328
\(175\) −1.06631e6 −0.0150401
\(176\) 3.97229e6 0.0549220
\(177\) 4.56004e6i 0.0618105i
\(178\) 1.76024e7 0.233939
\(179\) 1.02139e8i 1.33108i 0.746362 + 0.665541i \(0.231799\pi\)
−0.746362 + 0.665541i \(0.768201\pi\)
\(180\) 3.84442e7i 0.491334i
\(181\) −4.10966e7 −0.515146 −0.257573 0.966259i \(-0.582923\pi\)
−0.257573 + 0.966259i \(0.582923\pi\)
\(182\) −6.45416e6 −0.0793579
\(183\) 2.22385e7i 0.268242i
\(184\) 1.54076e7 0.182336
\(185\) 7.34243e7 5.78433e7i 0.852587 0.671664i
\(186\) −1.27052e7 −0.144772
\(187\) 6.63397e6i 0.0741870i
\(188\) −2.10881e7 −0.231464
\(189\) −4.59564e6 −0.0495141
\(190\) 1.38230e8i 1.46206i
\(191\) 1.05775e8i 1.09841i 0.835687 + 0.549206i \(0.185070\pi\)
−0.835687 + 0.549206i \(0.814930\pi\)
\(192\) −3.77114e6 −0.0384520
\(193\) 4.88570e7i 0.489189i 0.969625 + 0.244594i \(0.0786548\pi\)
−0.969625 + 0.244594i \(0.921345\pi\)
\(194\) 9.35903e7 0.920291
\(195\) 4.59275e7 0.443560
\(196\) 5.23306e7 0.496432
\(197\) 1.17028e8 1.09058 0.545292 0.838246i \(-0.316419\pi\)
0.545292 + 0.838246i \(0.316419\pi\)
\(198\) 1.53620e7i 0.140643i
\(199\) 1.77633e7i 0.159785i −0.996803 0.0798927i \(-0.974542\pi\)
0.996803 0.0798927i \(-0.0254578\pi\)
\(200\) 7.12145e6i 0.0629454i
\(201\) 6.62966e7 0.575844
\(202\) 4.51028e7i 0.385011i
\(203\) 8.81022e6i 0.0739181i
\(204\) 6.29804e6i 0.0519398i
\(205\) 1.16636e8i 0.945570i
\(206\) −1.11782e7 −0.0890917
\(207\) 5.95856e7i 0.466923i
\(208\) 4.31048e7i 0.332127i
\(209\) 5.52357e7i 0.418512i
\(210\) 2.67659e6 0.0199441
\(211\) 1.01923e8 0.746933 0.373467 0.927644i \(-0.378169\pi\)
0.373467 + 0.927644i \(0.378169\pi\)
\(212\) 8.31959e7 0.599689
\(213\) 4.25370e7 0.301605
\(214\) 2.92675e7i 0.204144i
\(215\) 1.45868e7 0.100098
\(216\) 3.06924e7i 0.207226i
\(217\) 8.46335e6i 0.0562255i
\(218\) −1.06602e8 −0.696892
\(219\) 4.14051e7 0.266379
\(220\) 1.88293e7i 0.119222i
\(221\) −7.19878e7 −0.448627
\(222\) −2.78540e7 + 2.19433e7i −0.170865 + 0.134606i
\(223\) −4.10431e7 −0.247841 −0.123920 0.992292i \(-0.539547\pi\)
−0.123920 + 0.992292i \(0.539547\pi\)
\(224\) 2.51208e6i 0.0149336i
\(225\) 2.75407e7 0.161189
\(226\) −2.42301e8 −1.39629
\(227\) 1.98424e8i 1.12591i 0.826488 + 0.562954i \(0.190335\pi\)
−0.826488 + 0.562954i \(0.809665\pi\)
\(228\) 5.24387e7i 0.293008i
\(229\) −2.01547e8 −1.10905 −0.554527 0.832166i \(-0.687101\pi\)
−0.554527 + 0.832166i \(0.687101\pi\)
\(230\) 7.30347e7i 0.395806i
\(231\) 1.06954e6 0.00570894
\(232\) −5.88400e7 −0.309361
\(233\) 2.32614e8 1.20473 0.602366 0.798220i \(-0.294225\pi\)
0.602366 + 0.798220i \(0.294225\pi\)
\(234\) 1.66699e8 0.850504
\(235\) 9.99611e7i 0.502451i
\(236\) 2.02869e7i 0.100467i
\(237\) 1.52116e7i 0.0742260i
\(238\) −4.19534e6 −0.0201719
\(239\) 1.56112e8i 0.739682i −0.929095 0.369841i \(-0.879412\pi\)
0.929095 0.369841i \(-0.120588\pi\)
\(240\) 1.78759e7i 0.0834695i
\(241\) 2.58351e8i 1.18891i −0.804128 0.594457i \(-0.797367\pi\)
0.804128 0.594457i \(-0.202633\pi\)
\(242\) 1.48373e8i 0.672980i
\(243\) 1.80992e8 0.809166
\(244\) 9.89357e7i 0.436002i
\(245\) 2.48056e8i 1.07763i
\(246\) 4.42467e7i 0.189499i
\(247\) −5.99383e8 −2.53084
\(248\) 5.65234e7 0.235314
\(249\) −1.08450e8 −0.445176
\(250\) 1.55850e8 0.630837
\(251\) 1.82736e8i 0.729400i −0.931125 0.364700i \(-0.881172\pi\)
0.931125 0.364700i \(-0.118828\pi\)
\(252\) 9.71494e6 0.0382418
\(253\) 2.91841e7i 0.113298i
\(254\) 9.19251e7i 0.351978i
\(255\) 2.98538e7 0.112748
\(256\) 1.67772e7 0.0625000
\(257\) 2.85517e8i 1.04922i 0.851343 + 0.524610i \(0.175789\pi\)
−0.851343 + 0.524610i \(0.824211\pi\)
\(258\) −5.53362e6 −0.0200604
\(259\) −1.46171e7 1.85545e7i −0.0522773 0.0663591i
\(260\) −2.04324e8 −0.720964
\(261\) 2.27551e8i 0.792205i
\(262\) −1.24512e8 −0.427716
\(263\) −5.54351e8 −1.87906 −0.939528 0.342471i \(-0.888736\pi\)
−0.939528 + 0.342471i \(0.888736\pi\)
\(264\) 7.14305e6i 0.0238929i
\(265\) 3.94363e8i 1.30177i
\(266\) −3.49312e7 −0.113796
\(267\) 3.16530e7i 0.101771i
\(268\) −2.94943e8 −0.935980
\(269\) 2.50262e8 0.783901 0.391950 0.919986i \(-0.371800\pi\)
0.391950 + 0.919986i \(0.371800\pi\)
\(270\) −1.45488e8 −0.449834
\(271\) 2.05974e8 0.628667 0.314333 0.949313i \(-0.398219\pi\)
0.314333 + 0.949313i \(0.398219\pi\)
\(272\) 2.80190e7i 0.0844232i
\(273\) 1.16060e7i 0.0345234i
\(274\) 2.12304e8i 0.623493i
\(275\) −1.34890e7 −0.0391124
\(276\) 2.77063e7i 0.0793225i
\(277\) 1.32409e8i 0.374316i −0.982330 0.187158i \(-0.940072\pi\)
0.982330 0.187158i \(-0.0599276\pi\)
\(278\) 3.67031e8i 1.02458i
\(279\) 2.18592e8i 0.602587i
\(280\) −1.19077e7 −0.0324172
\(281\) 9.73790e7i 0.261814i −0.991395 0.130907i \(-0.958211\pi\)
0.991395 0.130907i \(-0.0417890\pi\)
\(282\) 3.79210e7i 0.100695i
\(283\) 2.84385e7i 0.0745856i −0.999304 0.0372928i \(-0.988127\pi\)
0.999304 0.0372928i \(-0.0118734\pi\)
\(284\) −1.89241e8 −0.490230
\(285\) 2.48569e8 0.636047
\(286\) −8.16463e7 −0.206374
\(287\) −2.94742e7 −0.0735962
\(288\) 6.48823e7i 0.160049i
\(289\) 3.63545e8 0.885964
\(290\) 2.78912e8i 0.671544i
\(291\) 1.68296e8i 0.400358i
\(292\) −1.84205e8 −0.432973
\(293\) −2.05178e8 −0.476534 −0.238267 0.971200i \(-0.576579\pi\)
−0.238267 + 0.971200i \(0.576579\pi\)
\(294\) 9.41020e7i 0.215965i
\(295\) −9.61635e7 −0.218089
\(296\) 1.23918e8 9.76222e7i 0.277725 0.218790i
\(297\) −5.81356e7 −0.128764
\(298\) 1.46353e8i 0.320366i
\(299\) −3.16688e8 −0.685144
\(300\) 1.28059e7 0.0273834
\(301\) 3.68613e6i 0.00779090i
\(302\) 5.39410e8i 1.12692i
\(303\) −8.11047e7 −0.167493
\(304\) 2.33291e8i 0.476257i
\(305\) 4.68973e8 0.946451
\(306\) 1.08357e8 0.216189
\(307\) 3.77499e8 0.744614 0.372307 0.928110i \(-0.378567\pi\)
0.372307 + 0.928110i \(0.378567\pi\)
\(308\) −4.75822e6 −0.00927934
\(309\) 2.01009e7i 0.0387579i
\(310\) 2.67931e8i 0.510807i
\(311\) 3.96966e8i 0.748328i −0.927363 0.374164i \(-0.877930\pi\)
0.927363 0.374164i \(-0.122070\pi\)
\(312\) 7.75120e7 0.144487
\(313\) 6.64097e8i 1.22413i −0.790808 0.612064i \(-0.790340\pi\)
0.790808 0.612064i \(-0.209660\pi\)
\(314\) 5.06934e8i 0.924055i
\(315\) 4.60505e7i 0.0830133i
\(316\) 6.76741e7i 0.120647i
\(317\) 9.79448e8 1.72693 0.863463 0.504411i \(-0.168291\pi\)
0.863463 + 0.504411i \(0.168291\pi\)
\(318\) 1.49605e8i 0.260885i
\(319\) 1.11451e8i 0.192228i
\(320\) 7.95269e7i 0.135672i
\(321\) −5.26294e7 −0.0888097
\(322\) −1.84561e7 −0.0308066
\(323\) −3.89611e8 −0.643314
\(324\) −2.21952e8 −0.362536
\(325\) 1.46374e8i 0.236523i
\(326\) 4.71279e8 0.753384
\(327\) 1.91693e8i 0.303172i
\(328\) 1.96847e8i 0.308013i
\(329\) 2.52604e7 0.0391070
\(330\) 3.38593e7 0.0518656
\(331\) 7.40239e8i 1.12195i 0.827832 + 0.560976i \(0.189574\pi\)
−0.827832 + 0.560976i \(0.810426\pi\)
\(332\) 4.82477e8 0.723591
\(333\) 3.77533e8 + 4.79227e8i 0.560273 + 0.711192i
\(334\) −2.30298e8 −0.338203
\(335\) 1.39808e9i 2.03178i
\(336\) 4.51728e6 0.00649665
\(337\) 4.56122e8 0.649197 0.324599 0.945852i \(-0.394771\pi\)
0.324599 + 0.945852i \(0.394771\pi\)
\(338\) 3.83987e8i 0.540889i
\(339\) 4.35711e8i 0.607435i
\(340\) −1.32815e8 −0.183261
\(341\) 1.07063e8i 0.146217i
\(342\) 9.02205e8 1.21959
\(343\) −1.25819e8 −0.168352
\(344\) 2.46182e7 0.0326063
\(345\) 1.31333e8 0.172189
\(346\) 3.33436e8i 0.432758i
\(347\) 7.14958e8i 0.918601i −0.888281 0.459301i \(-0.848100\pi\)
0.888281 0.459301i \(-0.151900\pi\)
\(348\) 1.05807e8i 0.134582i
\(349\) 2.16908e8 0.273141 0.136570 0.990630i \(-0.456392\pi\)
0.136570 + 0.990630i \(0.456392\pi\)
\(350\) 8.53047e6i 0.0106349i
\(351\) 6.30852e8i 0.778668i
\(352\) 3.17783e7i 0.0388357i
\(353\) 1.20749e6i 0.00146108i 1.00000 0.000730538i \(0.000232537\pi\)
−1.00000 0.000730538i \(0.999767\pi\)
\(354\) 3.64803e7 0.0437066
\(355\) 8.97033e8i 1.06417i
\(356\) 1.40819e8i 0.165420i
\(357\) 7.54414e6i 0.00877548i
\(358\) 8.17109e8 0.941217
\(359\) 9.30859e8 1.06183 0.530913 0.847426i \(-0.321849\pi\)
0.530913 + 0.847426i \(0.321849\pi\)
\(360\) 3.07553e8 0.347426
\(361\) −2.35011e9 −2.62913
\(362\) 3.28773e8i 0.364263i
\(363\) −2.66808e8 −0.292769
\(364\) 5.16333e7i 0.0561145i
\(365\) 8.73163e8i 0.939876i
\(366\) −1.77908e8 −0.189676
\(367\) −8.96938e8 −0.947177 −0.473588 0.880746i \(-0.657042\pi\)
−0.473588 + 0.880746i \(0.657042\pi\)
\(368\) 1.23261e8i 0.128931i
\(369\) 7.61262e8 0.788754
\(370\) −4.62746e8 5.87394e8i −0.474938 0.602870i
\(371\) −9.96566e7 −0.101320
\(372\) 1.01642e8i 0.102370i
\(373\) −1.08626e9 −1.08381 −0.541904 0.840441i \(-0.682296\pi\)
−0.541904 + 0.840441i \(0.682296\pi\)
\(374\) −5.30718e7 −0.0524581
\(375\) 2.80253e8i 0.274436i
\(376\) 1.68704e8i 0.163670i
\(377\) 1.20940e9 1.16245
\(378\) 3.67651e7i 0.0350118i
\(379\) −1.42519e8 −0.134473 −0.0672366 0.997737i \(-0.521418\pi\)
−0.0672366 + 0.997737i \(0.521418\pi\)
\(380\) −1.10584e9 −1.03383
\(381\) −1.65302e8 −0.153123
\(382\) 8.46199e8 0.776695
\(383\) 1.34836e9i 1.22634i 0.789951 + 0.613170i \(0.210106\pi\)
−0.789951 + 0.613170i \(0.789894\pi\)
\(384\) 3.01691e7i 0.0271896i
\(385\) 2.25548e7i 0.0201431i
\(386\) 3.90856e8 0.345909
\(387\) 9.52056e7i 0.0834976i
\(388\) 7.48723e8i 0.650744i
\(389\) 4.61882e8i 0.397839i −0.980016 0.198920i \(-0.936257\pi\)
0.980016 0.198920i \(-0.0637432\pi\)
\(390\) 3.67420e8i 0.313644i
\(391\) −2.05853e8 −0.174156
\(392\) 4.18645e8i 0.351030i
\(393\) 2.23899e8i 0.186071i
\(394\) 9.36227e8i 0.771160i
\(395\) 3.20787e8 0.261895
\(396\) 1.22896e8 0.0994497
\(397\) −3.72153e8 −0.298507 −0.149254 0.988799i \(-0.547687\pi\)
−0.149254 + 0.988799i \(0.547687\pi\)
\(398\) −1.42106e8 −0.112985
\(399\) 6.28139e7i 0.0495052i
\(400\) −5.69716e7 −0.0445091
\(401\) 5.73275e8i 0.443974i 0.975050 + 0.221987i \(0.0712543\pi\)
−0.975050 + 0.221987i \(0.928746\pi\)
\(402\) 5.30372e8i 0.407183i
\(403\) −1.16178e9 −0.884213
\(404\) 3.60822e8 0.272244
\(405\) 1.05209e9i 0.786974i
\(406\) 7.04818e7 0.0522680
\(407\) −1.84909e8 2.34718e8i −0.135950 0.172570i
\(408\) 5.03843e7 0.0367270
\(409\) 1.99617e9i 1.44267i −0.692589 0.721333i \(-0.743530\pi\)
0.692589 0.721333i \(-0.256470\pi\)
\(410\) −9.33087e8 −0.668619
\(411\) 3.81770e8 0.271241
\(412\) 8.94257e7i 0.0629973i
\(413\) 2.43008e7i 0.0169744i
\(414\) 4.76685e8 0.330164
\(415\) 2.28702e9i 1.57073i
\(416\) −3.44839e8 −0.234849
\(417\) −6.60002e8 −0.445727
\(418\) −4.41885e8 −0.295932
\(419\) −2.91379e8 −0.193513 −0.0967563 0.995308i \(-0.530847\pi\)
−0.0967563 + 0.995308i \(0.530847\pi\)
\(420\) 2.14127e7i 0.0141026i
\(421\) 1.79420e9i 1.17188i −0.810353 0.585942i \(-0.800725\pi\)
0.810353 0.585942i \(-0.199275\pi\)
\(422\) 8.15380e8i 0.528161i
\(423\) −6.52428e8 −0.419123
\(424\) 6.65567e8i 0.424044i
\(425\) 9.51462e7i 0.0601216i
\(426\) 3.40296e8i 0.213267i
\(427\) 1.18511e8i 0.0736647i
\(428\) 2.34140e8 0.144352
\(429\) 1.46818e8i 0.0897798i
\(430\) 1.16695e8i 0.0707801i
\(431\) 2.60384e9i 1.56655i 0.621677 + 0.783274i \(0.286452\pi\)
−0.621677 + 0.783274i \(0.713548\pi\)
\(432\) −2.45540e8 −0.146531
\(433\) 5.58880e8 0.330834 0.165417 0.986224i \(-0.447103\pi\)
0.165417 + 0.986224i \(0.447103\pi\)
\(434\) −6.77068e7 −0.0397574
\(435\) −5.01545e8 −0.292145
\(436\) 8.52812e8i 0.492777i
\(437\) −1.71397e9 −0.982469
\(438\) 3.31241e8i 0.188358i
\(439\) 2.86537e8i 0.161642i −0.996729 0.0808211i \(-0.974246\pi\)
0.996729 0.0808211i \(-0.0257542\pi\)
\(440\) −1.50635e8 −0.0843025
\(441\) 1.61902e9 0.898911
\(442\) 5.75902e8i 0.317227i
\(443\) −7.81293e7 −0.0426973 −0.0213487 0.999772i \(-0.506796\pi\)
−0.0213487 + 0.999772i \(0.506796\pi\)
\(444\) 1.75546e8 + 2.22832e8i 0.0951811 + 0.120820i
\(445\) −6.67508e8 −0.359085
\(446\) 3.28345e8i 0.175250i
\(447\) 2.63176e8 0.139370
\(448\) −2.00967e7 −0.0105597
\(449\) 7.37008e8i 0.384247i −0.981371 0.192123i \(-0.938463\pi\)
0.981371 0.192123i \(-0.0615374\pi\)
\(450\) 2.20326e8i 0.113978i
\(451\) −3.72854e8 −0.191391
\(452\) 1.93841e9i 0.987327i
\(453\) −9.69977e8 −0.490250
\(454\) 1.58739e9 0.796138
\(455\) 2.44751e8 0.121810
\(456\) 4.19509e8 0.207188
\(457\) 1.67674e9i 0.821785i −0.911684 0.410893i \(-0.865217\pi\)
0.911684 0.410893i \(-0.134783\pi\)
\(458\) 1.61238e9i 0.784219i
\(459\) 4.10067e8i 0.197929i
\(460\) −5.84278e8 −0.279877
\(461\) 2.36757e9i 1.12551i −0.826623 0.562756i \(-0.809741\pi\)
0.826623 0.562756i \(-0.190259\pi\)
\(462\) 8.55633e6i 0.00403683i
\(463\) 1.26126e9i 0.590570i −0.955409 0.295285i \(-0.904585\pi\)
0.955409 0.295285i \(-0.0954146\pi\)
\(464\) 4.70720e8i 0.218751i
\(465\) 4.81799e8 0.222219
\(466\) 1.86091e9i 0.851874i
\(467\) 1.73825e9i 0.789777i 0.918729 + 0.394888i \(0.129217\pi\)
−0.918729 + 0.394888i \(0.870783\pi\)
\(468\) 1.33359e9i 0.601397i
\(469\) 3.53299e8 0.158138
\(470\) 7.99689e8 0.355286
\(471\) 9.11579e8 0.401996
\(472\) −1.62295e8 −0.0710410
\(473\) 4.66302e7i 0.0202606i
\(474\) −1.21693e8 −0.0524857
\(475\) 7.92205e8i 0.339164i
\(476\) 3.35627e7i 0.0142637i
\(477\) 2.57394e9 1.08588
\(478\) −1.24890e9 −0.523034
\(479\) 4.35936e9i 1.81238i −0.422874 0.906188i \(-0.638979\pi\)
0.422874 0.906188i \(-0.361021\pi\)
\(480\) 1.43007e8 0.0590218
\(481\) −2.54701e9 + 2.00652e9i −1.04357 + 0.822123i
\(482\) −2.06681e9 −0.840689
\(483\) 3.31881e7i 0.0134019i
\(484\) 1.18699e9 0.475869
\(485\) −3.54908e9 −1.41260
\(486\) 1.44794e9i 0.572167i
\(487\) 4.39964e9i 1.72610i 0.505120 + 0.863049i \(0.331448\pi\)
−0.505120 + 0.863049i \(0.668552\pi\)
\(488\) 7.91486e8 0.308300
\(489\) 8.47463e8i 0.327748i
\(490\) −1.98445e9 −0.761998
\(491\) 2.99002e9 1.13996 0.569979 0.821659i \(-0.306951\pi\)
0.569979 + 0.821659i \(0.306951\pi\)
\(492\) 3.53973e8 0.133996
\(493\) 7.86133e8 0.295482
\(494\) 4.79507e9i 1.78958i
\(495\) 5.82547e8i 0.215880i
\(496\) 4.52187e8i 0.166392i
\(497\) 2.26683e8 0.0828268
\(498\) 8.67599e8i 0.314787i
\(499\) 5.17455e8i 0.186432i 0.995646 + 0.0932161i \(0.0297147\pi\)
−0.995646 + 0.0932161i \(0.970285\pi\)
\(500\) 1.24680e9i 0.446069i
\(501\) 4.14127e8i 0.147130i
\(502\) −1.46189e9 −0.515763
\(503\) 7.73903e8i 0.271143i 0.990768 + 0.135572i \(0.0432871\pi\)
−0.990768 + 0.135572i \(0.956713\pi\)
\(504\) 7.77195e7i 0.0270410i
\(505\) 1.71036e9i 0.590973i
\(506\) −2.33473e8 −0.0801141
\(507\) −6.90494e8 −0.235305
\(508\) 7.35401e8 0.248886
\(509\) 3.95232e9 1.32843 0.664217 0.747540i \(-0.268765\pi\)
0.664217 + 0.747540i \(0.268765\pi\)
\(510\) 2.38831e8i 0.0797250i
\(511\) 2.20651e8 0.0731530
\(512\) 1.34218e8i 0.0441942i
\(513\) 3.41429e9i 1.11658i
\(514\) 2.28414e9 0.741911
\(515\) 4.23893e8 0.136751
\(516\) 4.42689e7i 0.0141849i
\(517\) 3.19549e8 0.101700
\(518\) −1.48436e8 + 1.16937e8i −0.0469229 + 0.0369657i
\(519\) −5.99591e8 −0.188265
\(520\) 1.63460e9i 0.509798i
\(521\) 3.17154e9 0.982511 0.491256 0.871015i \(-0.336538\pi\)
0.491256 + 0.871015i \(0.336538\pi\)
\(522\) −1.82041e9 −0.560173
\(523\) 1.03110e8i 0.0315171i −0.999876 0.0157585i \(-0.994984\pi\)
0.999876 0.0157585i \(-0.00501631\pi\)
\(524\) 9.96094e8i 0.302441i
\(525\) −1.53397e7 −0.00462656
\(526\) 4.43481e9i 1.32869i
\(527\) −7.55181e8 −0.224757
\(528\) 5.71444e7 0.0168949
\(529\) 2.49924e9 0.734028
\(530\) −3.15491e9 −0.920494
\(531\) 6.27642e8i 0.181920i
\(532\) 2.79449e8i 0.0804660i
\(533\) 4.04598e9i 1.15739i
\(534\) 2.53224e8 0.0719633
\(535\) 1.10986e9i 0.313351i
\(536\) 2.35954e9i 0.661837i
\(537\) 1.46934e9i 0.409461i
\(538\) 2.00209e9i 0.554302i
\(539\) −7.92969e8 −0.218120
\(540\) 1.16390e9i 0.318081i
\(541\) 4.13795e9i 1.12356i 0.827288 + 0.561778i \(0.189883\pi\)
−0.827288 + 0.561778i \(0.810117\pi\)
\(542\) 1.64779e9i 0.444534i
\(543\) −5.91205e8 −0.158467
\(544\) −2.24152e8 −0.0596962
\(545\) 4.04248e9 1.06969
\(546\) −9.28480e7 −0.0244117
\(547\) 5.79115e9i 1.51290i −0.654054 0.756448i \(-0.726933\pi\)
0.654054 0.756448i \(-0.273067\pi\)
\(548\) −1.69843e9 −0.440876
\(549\) 3.06090e9i 0.789489i
\(550\) 1.07912e8i 0.0276567i
\(551\) 6.54549e9 1.66691
\(552\) 2.21650e8 0.0560895
\(553\) 8.10637e7i 0.0203840i
\(554\) −1.05927e9 −0.264681
\(555\) 1.05626e9 8.32120e8i 0.262269 0.206614i
\(556\) 2.93624e9 0.724487
\(557\) 3.59091e9i 0.880462i −0.897884 0.440231i \(-0.854896\pi\)
0.897884 0.440231i \(-0.145104\pi\)
\(558\) 1.74874e9 0.426093
\(559\) −5.06002e8 −0.122521
\(560\) 9.52617e7i 0.0229224i
\(561\) 9.54347e7i 0.0228211i
\(562\) −7.79032e8 −0.185131
\(563\) 7.40755e9i 1.74942i −0.484643 0.874712i \(-0.661050\pi\)
0.484643 0.874712i \(-0.338950\pi\)
\(564\) −3.03368e8 −0.0712021
\(565\) 9.18840e9 2.14324
\(566\) −2.27508e8 −0.0527400
\(567\) 2.65866e8 0.0612523
\(568\) 1.51392e9i 0.346645i
\(569\) 3.57033e9i 0.812485i −0.913765 0.406243i \(-0.866839\pi\)
0.913765 0.406243i \(-0.133161\pi\)
\(570\) 1.98855e9i 0.449753i
\(571\) −2.45218e9 −0.551222 −0.275611 0.961269i \(-0.588880\pi\)
−0.275611 + 0.961269i \(0.588880\pi\)
\(572\) 6.53170e8i 0.145929i
\(573\) 1.52165e9i 0.337889i
\(574\) 2.35794e8i 0.0520404i
\(575\) 4.18566e8i 0.0918177i
\(576\) 5.19058e8 0.113172
\(577\) 6.75658e8i 0.146424i 0.997316 + 0.0732119i \(0.0233249\pi\)
−0.997316 + 0.0732119i \(0.976675\pi\)
\(578\) 2.90836e9i 0.626471i
\(579\) 7.02845e8i 0.150482i
\(580\) 2.23130e9 0.474853
\(581\) −5.77937e8 −0.122254
\(582\) 1.34637e9 0.283096
\(583\) −1.26067e9 −0.263489
\(584\) 1.47364e9i 0.306158i
\(585\) −6.32145e9 −1.30548
\(586\) 1.64142e9i 0.336960i
\(587\) 5.25561e9i 1.07248i −0.844065 0.536240i \(-0.819844\pi\)
0.844065 0.536240i \(-0.180156\pi\)
\(588\) 7.52816e8 0.152710
\(589\) −6.28778e9 −1.26793
\(590\) 7.69308e8i 0.154212i
\(591\) 1.68354e9 0.335481
\(592\) −7.80977e8 9.91346e8i −0.154708 0.196381i
\(593\) −4.90622e9 −0.966175 −0.483088 0.875572i \(-0.660485\pi\)
−0.483088 + 0.875572i \(0.660485\pi\)
\(594\) 4.65085e8i 0.0910499i
\(595\) 1.59093e8 0.0309629
\(596\) −1.17083e9 −0.226533
\(597\) 2.55538e8i 0.0491525i
\(598\) 2.53350e9i 0.484470i
\(599\) 6.93042e9 1.31754 0.658772 0.752342i \(-0.271076\pi\)
0.658772 + 0.752342i \(0.271076\pi\)
\(600\) 1.02448e8i 0.0193630i
\(601\) −8.76361e9 −1.64673 −0.823365 0.567512i \(-0.807906\pi\)
−0.823365 + 0.567512i \(0.807906\pi\)
\(602\) −2.94890e7 −0.00550900
\(603\) −9.12503e9 −1.69482
\(604\) 4.31528e9 0.796855
\(605\) 5.62652e9i 1.03299i
\(606\) 6.48838e8i 0.118436i
\(607\) 1.82720e9i 0.331608i 0.986159 + 0.165804i \(0.0530219\pi\)
−0.986159 + 0.165804i \(0.946978\pi\)
\(608\) −1.86633e9 −0.336764
\(609\) 1.26742e8i 0.0227384i
\(610\) 3.75178e9i 0.669242i
\(611\) 3.46755e9i 0.615004i
\(612\) 8.66860e8i 0.152869i
\(613\) −7.12745e9 −1.24975 −0.624874 0.780725i \(-0.714850\pi\)
−0.624874 + 0.780725i \(0.714850\pi\)
\(614\) 3.01999e9i 0.526522i
\(615\) 1.67790e9i 0.290872i
\(616\) 3.80658e7i 0.00656148i
\(617\) 3.34754e9 0.573757 0.286878 0.957967i \(-0.407382\pi\)
0.286878 + 0.957967i \(0.407382\pi\)
\(618\) −1.60807e8 −0.0274060
\(619\) 1.11248e10 1.88527 0.942635 0.333826i \(-0.108340\pi\)
0.942635 + 0.333826i \(0.108340\pi\)
\(620\) −2.14345e9 −0.361195
\(621\) 1.80396e9i 0.302278i
\(622\) −3.17573e9 −0.529148
\(623\) 1.68681e8i 0.0279485i
\(624\) 6.20096e8i 0.102167i
\(625\) −6.99670e9 −1.14634
\(626\) −5.31278e9 −0.865589
\(627\) 7.94607e8i 0.128741i
\(628\) −4.05547e9 −0.653406
\(629\) −1.65561e9 + 1.30428e9i −0.265266 + 0.208975i
\(630\) −3.68404e8 −0.0586993
\(631\) 8.68011e9i 1.37538i 0.726005 + 0.687690i \(0.241375\pi\)
−0.726005 + 0.687690i \(0.758625\pi\)
\(632\) 5.41393e8 0.0853105
\(633\) 1.46623e9 0.229768
\(634\) 7.83558e9i 1.22112i
\(635\) 3.48593e9i 0.540269i
\(636\) 1.19684e9 0.184474
\(637\) 8.60482e9i 1.31903i
\(638\) 8.91607e8 0.135926
\(639\) −5.85478e9 −0.887682
\(640\) −6.36216e8 −0.0959344
\(641\) 1.35809e9 0.203670 0.101835 0.994801i \(-0.467529\pi\)
0.101835 + 0.994801i \(0.467529\pi\)
\(642\) 4.21035e8i 0.0627980i
\(643\) 3.88042e9i 0.575626i 0.957687 + 0.287813i \(0.0929281\pi\)
−0.957687 + 0.287813i \(0.907072\pi\)
\(644\) 1.47649e8i 0.0217835i
\(645\) 2.09843e8 0.0307918
\(646\) 3.11689e9i 0.454892i
\(647\) 5.46475e9i 0.793241i 0.917983 + 0.396621i \(0.129817\pi\)
−0.917983 + 0.396621i \(0.870183\pi\)
\(648\) 1.77561e9i 0.256352i
\(649\) 3.07409e8i 0.0441428i
\(650\) 1.17099e9 0.167247
\(651\) 1.21752e8i 0.0172958i
\(652\) 3.77023e9i 0.532723i
\(653\) 1.03020e10i 1.44786i −0.689875 0.723929i \(-0.742334\pi\)
0.689875 0.723929i \(-0.257666\pi\)
\(654\) −1.53354e9 −0.214375
\(655\) 4.72166e9 0.656523
\(656\) −1.57477e9 −0.217798
\(657\) −5.69898e9 −0.784004
\(658\) 2.02083e8i 0.0276529i
\(659\) −1.12114e10 −1.52602 −0.763011 0.646386i \(-0.776280\pi\)
−0.763011 + 0.646386i \(0.776280\pi\)
\(660\) 2.70874e8i 0.0366745i
\(661\) 6.79897e9i 0.915669i 0.889038 + 0.457834i \(0.151375\pi\)
−0.889038 + 0.457834i \(0.848625\pi\)
\(662\) 5.92191e9 0.793339
\(663\) −1.03560e9 −0.138005
\(664\) 3.85981e9i 0.511656i
\(665\) 1.32464e9 0.174671
\(666\) 3.83382e9 3.02026e9i 0.502888 0.396173i
\(667\) 3.45834e9 0.451261
\(668\) 1.84238e9i 0.239146i
\(669\) −5.90436e8 −0.0762397
\(670\) 1.11847e10 1.43668
\(671\) 1.49918e9i 0.191569i
\(672\) 3.61382e7i 0.00459382i
\(673\) 5.94304e9 0.751547 0.375773 0.926712i \(-0.377377\pi\)
0.375773 + 0.926712i \(0.377377\pi\)
\(674\) 3.64898e9i 0.459052i
\(675\) 8.33797e8 0.104351
\(676\) 3.07190e9 0.382467
\(677\) −1.16219e10 −1.43952 −0.719759 0.694224i \(-0.755748\pi\)
−0.719759 + 0.694224i \(0.755748\pi\)
\(678\) −3.48569e9 −0.429521
\(679\) 8.96861e8i 0.109946i
\(680\) 1.06252e9i 0.129585i
\(681\) 2.85448e9i 0.346347i
\(682\) −8.56503e8 −0.103391
\(683\) 1.19655e10i 1.43701i −0.695523 0.718503i \(-0.744827\pi\)
0.695523 0.718503i \(-0.255173\pi\)
\(684\) 7.21764e9i 0.862380i
\(685\) 8.05088e9i 0.957031i
\(686\) 1.00656e9i 0.119043i
\(687\) −2.89941e9 −0.341162
\(688\) 1.96946e8i 0.0230561i
\(689\) 1.36801e10i 1.59338i
\(690\) 1.05066e9i 0.121756i
\(691\) 1.52706e10 1.76069 0.880344 0.474336i \(-0.157312\pi\)
0.880344 + 0.474336i \(0.157312\pi\)
\(692\) 2.66748e9 0.306006
\(693\) −1.47211e8 −0.0168025
\(694\) −5.71966e9 −0.649549
\(695\) 1.39183e10i 1.57268i
\(696\) −8.46459e8 −0.0951642
\(697\) 2.62997e9i 0.294195i
\(698\) 1.73526e9i 0.193140i
\(699\) 3.34633e9 0.370594
\(700\) 6.82437e7 0.00752003
\(701\) 9.98256e9i 1.09453i 0.836959 + 0.547266i \(0.184331\pi\)
−0.836959 + 0.547266i \(0.815669\pi\)
\(702\) 5.04682e9 0.550602
\(703\) −1.37849e10 + 1.08597e10i −1.49644 + 1.17889i
\(704\) −2.54226e8 −0.0274610
\(705\) 1.43802e9i 0.154562i
\(706\) 9.65993e6 0.00103314
\(707\) −4.32213e8 −0.0459970
\(708\) 2.91843e8i 0.0309052i
\(709\) 1.06532e10i 1.12258i −0.827620 0.561289i \(-0.810306\pi\)
0.827620 0.561289i \(-0.189694\pi\)
\(710\) 7.17627e9 0.752479
\(711\) 2.09372e9i 0.218461i
\(712\) −1.12655e9 −0.116969
\(713\) −3.32218e9 −0.343250
\(714\) −6.03531e7 −0.00620520
\(715\) 3.09614e9 0.316774
\(716\) 6.53687e9i 0.665541i
\(717\) 2.24580e9i 0.227538i
\(718\) 7.44687e9i 0.750824i
\(719\) 3.96005e9 0.397329 0.198664 0.980068i \(-0.436340\pi\)
0.198664 + 0.980068i \(0.436340\pi\)
\(720\) 2.46043e9i 0.245667i
\(721\) 1.07119e8i 0.0106437i
\(722\) 1.88008e10i 1.85908i
\(723\) 3.71657e9i 0.365728i
\(724\) 2.63018e9 0.257573
\(725\) 1.59846e9i 0.155782i
\(726\) 2.13446e9i 0.207019i
\(727\) 1.19431e10i 1.15278i 0.817176 + 0.576389i \(0.195539\pi\)
−0.817176 + 0.576389i \(0.804461\pi\)
\(728\) 4.13066e8 0.0396789
\(729\) −4.98080e9 −0.476160
\(730\) 6.98531e9 0.664593
\(731\) −3.28912e8 −0.0311436
\(732\) 1.42327e9i 0.134121i
\(733\) 3.10085e9 0.290815 0.145408 0.989372i \(-0.453551\pi\)
0.145408 + 0.989372i \(0.453551\pi\)
\(734\) 7.17550e9i 0.669755i
\(735\) 3.56848e9i 0.331495i
\(736\) −9.86087e8 −0.0911681
\(737\) 4.46929e9 0.411247
\(738\) 6.09009e9i 0.557733i
\(739\) 1.08720e10 0.990951 0.495476 0.868622i \(-0.334994\pi\)
0.495476 + 0.868622i \(0.334994\pi\)
\(740\) −4.69915e9 + 3.70197e9i −0.426293 + 0.335832i
\(741\) −8.62259e9 −0.778527
\(742\) 7.97253e8i 0.0716444i
\(743\) −1.13930e10 −1.01901 −0.509503 0.860469i \(-0.670171\pi\)
−0.509503 + 0.860469i \(0.670171\pi\)
\(744\) 8.13132e8 0.0723862
\(745\) 5.54993e9i 0.491745i
\(746\) 8.69006e9i 0.766367i
\(747\) 1.49270e10 1.31024
\(748\) 4.24574e8i 0.0370935i
\(749\) −2.80465e8 −0.0243889
\(750\) 2.24202e9 0.194055
\(751\) 2.17926e10 1.87745 0.938725 0.344667i \(-0.112008\pi\)
0.938725 + 0.344667i \(0.112008\pi\)
\(752\) 1.34964e9 0.115732
\(753\) 2.62879e9i 0.224375i
\(754\) 9.67518e9i 0.821976i
\(755\) 2.04552e10i 1.72977i
\(756\) 2.94121e8 0.0247571
\(757\) 3.05892e6i 0.000256290i −1.00000 0.000128145i \(-0.999959\pi\)
1.00000 0.000128145i \(-4.07899e-5\pi\)
\(758\) 1.14015e9i 0.0950869i
\(759\) 4.19835e8i 0.0348524i
\(760\) 8.84674e9i 0.731031i
\(761\) 1.42694e10 1.17370 0.586852 0.809695i \(-0.300367\pi\)
0.586852 + 0.809695i \(0.300367\pi\)
\(762\) 1.32241e9i 0.108274i
\(763\) 1.02154e9i 0.0832571i
\(764\) 6.76959e9i 0.549206i
\(765\) −4.10907e9 −0.331840
\(766\) 1.07869e10 0.867154
\(767\) 3.33581e9 0.266943
\(768\) 2.41353e8 0.0192260
\(769\) 9.54592e8i 0.0756965i 0.999283 + 0.0378482i \(0.0120503\pi\)
−0.999283 + 0.0378482i \(0.987950\pi\)
\(770\) 1.80438e8 0.0142433
\(771\) 4.10739e9i 0.322757i
\(772\) 3.12685e9i 0.244594i
\(773\) 8.17089e9 0.636270 0.318135 0.948045i \(-0.396944\pi\)
0.318135 + 0.948045i \(0.396944\pi\)
\(774\) 7.61645e8 0.0590417
\(775\) 1.53553e9i 0.118495i
\(776\) −5.98978e9 −0.460145
\(777\) −2.10279e8 2.66921e8i −0.0160813 0.0204131i
\(778\) −3.69506e9 −0.281315
\(779\) 2.18976e10i 1.65965i
\(780\) −2.93936e9 −0.221780
\(781\) 2.86758e9 0.215395
\(782\) 1.64683e9i 0.123147i
\(783\) 6.88913e9i 0.512859i
\(784\) −3.34916e9 −0.248216
\(785\) 1.92237e10i 1.41838i
\(786\) −1.79120e9 −0.131572
\(787\) 1.45631e10 1.06498 0.532492 0.846435i \(-0.321256\pi\)
0.532492 + 0.846435i \(0.321256\pi\)
\(788\) −7.48982e9 −0.545292
\(789\) −7.97476e9 −0.578027
\(790\) 2.56630e9i 0.185188i
\(791\) 2.32193e9i 0.166814i
\(792\) 9.83166e8i 0.0703216i
\(793\) −1.62682e10 −1.15846
\(794\) 2.97722e9i 0.211076i
\(795\) 5.67321e9i 0.400446i
\(796\) 1.13685e9i 0.0798927i
\(797\) 2.97098e9i 0.207872i 0.994584 + 0.103936i \(0.0331437\pi\)
−0.994584 + 0.103936i \(0.966856\pi\)
\(798\) −5.02511e8 −0.0350054
\(799\) 2.25398e9i 0.156328i
\(800\) 4.55773e8i 0.0314727i
\(801\) 4.35671e9i 0.299533i
\(802\) 4.58620e9 0.313937
\(803\) 2.79127e9 0.190238
\(804\) −4.24298e9 −0.287922
\(805\) 6.99880e8 0.0472866
\(806\) 9.29425e9i 0.625233i
\(807\) 3.60020e9 0.241140
\(808\) 2.88658e9i 0.192506i
\(809\) 4.88772e9i 0.324554i 0.986745 + 0.162277i \(0.0518838\pi\)
−0.986745 + 0.162277i \(0.948116\pi\)
\(810\) 8.41672e9 0.556475
\(811\) −1.44236e9 −0.0949511 −0.0474756 0.998872i \(-0.515118\pi\)
−0.0474756 + 0.998872i \(0.515118\pi\)
\(812\) 5.63854e8i 0.0369591i
\(813\) 2.96310e9 0.193388
\(814\) −1.87774e9 + 1.47928e9i −0.122025 + 0.0961311i
\(815\) −1.78715e10 −1.15641
\(816\) 4.03075e8i 0.0259699i
\(817\) −2.73858e9 −0.175690
\(818\) −1.59693e10 −1.02012
\(819\) 1.59745e9i 0.101609i
\(820\) 7.46470e9i 0.472785i
\(821\) 1.44977e10 0.914321 0.457161 0.889384i \(-0.348866\pi\)
0.457161 + 0.889384i \(0.348866\pi\)
\(822\) 3.05416e9i 0.191796i
\(823\) −1.48319e10 −0.927463 −0.463732 0.885976i \(-0.653490\pi\)
−0.463732 + 0.885976i \(0.653490\pi\)
\(824\) 7.15405e8 0.0445458
\(825\) −1.94049e8 −0.0120316
\(826\) 1.94406e8 0.0120027
\(827\) 1.34376e10i 0.826135i −0.910700 0.413067i \(-0.864457\pi\)
0.910700 0.413067i \(-0.135543\pi\)
\(828\) 3.81348e9i 0.233461i
\(829\) 1.76816e9i 0.107791i 0.998547 + 0.0538954i \(0.0171637\pi\)
−0.998547 + 0.0538954i \(0.982836\pi\)
\(830\) −1.82962e10 −1.11068
\(831\) 1.90480e9i 0.115145i
\(832\) 2.75871e9i 0.166063i
\(833\) 5.59331e9i 0.335283i
\(834\) 5.28001e9i 0.315177i
\(835\) 8.73322e9 0.519125
\(836\) 3.53508e9i 0.209256i
\(837\) 6.61790e9i 0.390104i
\(838\) 2.33103e9i 0.136834i
\(839\) −2.67966e10 −1.56644 −0.783219 0.621746i \(-0.786424\pi\)
−0.783219 + 0.621746i \(0.786424\pi\)
\(840\) −1.71302e8 −0.00997203
\(841\) 4.04282e9 0.234368
\(842\) −1.43536e10 −0.828647
\(843\) 1.40087e9i 0.0805382i
\(844\) −6.52304e9 −0.373467
\(845\) 1.45613e10i 0.830239i
\(846\) 5.21943e9i 0.296365i
\(847\) −1.42184e9 −0.0804003
\(848\) −5.32454e9 −0.299845
\(849\) 4.09110e8i 0.0229437i
\(850\) 7.61170e8 0.0425124
\(851\) −7.28334e9 + 5.73778e9i −0.405114 + 0.319147i
\(852\) −2.72237e9 −0.150802
\(853\) 9.12131e9i 0.503194i 0.967832 + 0.251597i \(0.0809558\pi\)
−0.967832 + 0.251597i \(0.919044\pi\)
\(854\) −9.48084e8 −0.0520888
\(855\) −3.42129e10 −1.87201
\(856\) 1.87312e9i 0.102072i
\(857\) 2.82440e10i 1.53283i −0.642348 0.766413i \(-0.722040\pi\)
0.642348 0.766413i \(-0.277960\pi\)
\(858\) −1.17454e9 −0.0634839
\(859\) 8.24724e9i 0.443948i −0.975053 0.221974i \(-0.928750\pi\)
0.975053 0.221974i \(-0.0712501\pi\)
\(860\) −9.33557e8 −0.0500491
\(861\) −4.24009e8 −0.0226393
\(862\) 2.08307e10 1.10772
\(863\) 1.59406e10 0.844240 0.422120 0.906540i \(-0.361286\pi\)
0.422120 + 0.906540i \(0.361286\pi\)
\(864\) 1.96432e9i 0.103613i
\(865\) 1.26443e10i 0.664263i
\(866\) 4.47104e9i 0.233935i
\(867\) 5.22987e9 0.272536
\(868\) 5.41655e8i 0.0281128i
\(869\) 1.02547e9i 0.0530095i
\(870\) 4.01236e9i 0.206577i
\(871\) 4.84980e10i 2.48691i
\(872\) 6.82250e9 0.348446
\(873\) 2.31642e10i 1.17833i
\(874\) 1.37118e10i 0.694711i
\(875\) 1.49349e9i 0.0753655i
\(876\) −2.64993e9 −0.133189
\(877\) 1.79597e10 0.899087 0.449543 0.893258i \(-0.351587\pi\)
0.449543 + 0.893258i \(0.351587\pi\)
\(878\) −2.29229e9 −0.114298
\(879\) −2.95164e9 −0.146589
\(880\) 1.20508e9i 0.0596109i
\(881\) 9.39202e9 0.462747 0.231373 0.972865i \(-0.425678\pi\)
0.231373 + 0.972865i \(0.425678\pi\)
\(882\) 1.29522e10i 0.635626i
\(883\) 2.63143e10i 1.28626i −0.765755 0.643132i \(-0.777635\pi\)
0.765755 0.643132i \(-0.222365\pi\)
\(884\) 4.60722e9 0.224314
\(885\) −1.38338e9 −0.0670875
\(886\) 6.25034e8i 0.0301916i
\(887\) −3.06311e9 −0.147377 −0.0736885 0.997281i \(-0.523477\pi\)
−0.0736885 + 0.997281i \(0.523477\pi\)
\(888\) 1.78266e9 1.40437e9i 0.0854324 0.0673032i
\(889\) −8.80903e8 −0.0420506
\(890\) 5.34007e9i 0.253911i
\(891\) 3.36325e9 0.159290
\(892\) 2.62676e9 0.123920
\(893\) 1.87670e10i 0.881892i
\(894\) 2.10540e9i 0.0985495i
\(895\) −3.09859e10 −1.44472
\(896\) 1.60773e8i 0.00746682i
\(897\) −4.55579e9 −0.210761
\(898\) −5.89607e9 −0.271704
\(899\) 1.26871e10 0.582375
\(900\) −1.76260e9 −0.0805946
\(901\) 8.89231e9i 0.405021i
\(902\) 2.98283e9i 0.135334i
\(903\) 5.30278e7i 0.00239660i
\(904\) 1.55073e10 0.698146
\(905\) 1.24675e10i 0.559126i
\(906\) 7.75982e9i 0.346659i
\(907\) 3.77092e10i 1.67812i 0.544041 + 0.839058i \(0.316893\pi\)
−0.544041 + 0.839058i \(0.683107\pi\)
\(908\) 1.26991e10i 0.562954i
\(909\) 1.11632e10 0.492965
\(910\) 1.95801e9i 0.0861330i
\(911\) 1.62520e10i 0.712183i 0.934451 + 0.356091i \(0.115891\pi\)
−0.934451 + 0.356091i \(0.884109\pi\)
\(912\) 3.35608e9i 0.146504i
\(913\) −7.31100e9 −0.317928
\(914\) −1.34139e10 −0.581090
\(915\) 6.74653e9 0.291143
\(916\) 1.28990e10 0.554527
\(917\) 1.19318e9i 0.0510989i
\(918\) 3.28053e9 0.139957
\(919\) 2.69483e10i 1.14532i 0.819793 + 0.572660i \(0.194088\pi\)
−0.819793 + 0.572660i \(0.805912\pi\)
\(920\) 4.67422e9i 0.197903i
\(921\) 5.43061e9 0.229055
\(922\) −1.89406e10 −0.795857
\(923\) 3.11172e10i 1.30255i
\(924\) −6.84506e7 −0.00285447
\(925\) 2.65202e9 + 3.36639e9i 0.110175 + 0.139852i
\(926\) −1.00901e10 −0.417596
\(927\) 2.76668e9i 0.114072i
\(928\) 3.76576e9 0.154680
\(929\) −2.50422e10 −1.02475 −0.512374 0.858763i \(-0.671234\pi\)
−0.512374 + 0.858763i \(0.671234\pi\)
\(930\) 3.85439e9i 0.157132i
\(931\) 4.65709e10i 1.89143i
\(932\) −1.48873e10 −0.602366
\(933\) 5.71066e9i 0.230197i
\(934\) 1.39060e10 0.558456
\(935\) 2.01256e9 0.0805206
\(936\) −1.06687e10 −0.425252
\(937\) 3.50866e10 1.39333 0.696664 0.717398i \(-0.254667\pi\)
0.696664 + 0.717398i \(0.254667\pi\)
\(938\) 2.82639e9i 0.111821i
\(939\) 9.55355e9i 0.376561i
\(940\) 6.39751e9i 0.251225i
\(941\) 3.21248e10 1.25683 0.628416 0.777877i \(-0.283703\pi\)
0.628416 + 0.777877i \(0.283703\pi\)
\(942\) 7.29264e9i 0.284254i
\(943\) 1.15697e10i 0.449296i
\(944\) 1.29836e9i 0.0502335i
\(945\) 1.39418e9i 0.0537414i
\(946\) −3.73041e8 −0.0143264
\(947\) 1.87259e10i 0.716502i 0.933625 + 0.358251i \(0.116627\pi\)
−0.933625 + 0.358251i \(0.883373\pi\)
\(948\) 9.73543e8i 0.0371130i
\(949\) 3.02891e10i 1.15042i
\(950\) 6.33764e9 0.239825
\(951\) 1.40901e10 0.531230
\(952\) 2.68502e8 0.0100860
\(953\) −3.28075e10 −1.22786 −0.613928 0.789362i \(-0.710412\pi\)
−0.613928 + 0.789362i \(0.710412\pi\)
\(954\) 2.05915e10i 0.767837i
\(955\) −3.20890e10 −1.19219
\(956\) 9.99120e9i 0.369841i
\(957\) 1.60331e9i 0.0591323i
\(958\) −3.48749e10 −1.28154
\(959\) 2.03448e9 0.0744882
\(960\) 1.14406e9i 0.0417347i
\(961\) 1.53250e10 0.557019
\(962\) 1.60522e10 + 2.03761e10i 0.581329 + 0.737919i
\(963\) 7.24388e9 0.261384
\(964\) 1.65345e10i 0.594457i
\(965\) −1.48218e10 −0.530953
\(966\) −2.65505e8 −0.00947659
\(967\) 8.77361e9i 0.312022i 0.987755 + 0.156011i \(0.0498636\pi\)
−0.987755 + 0.156011i \(0.950136\pi\)
\(968\) 9.49589e9i 0.336490i
\(969\) −5.60486e9 −0.197893
\(970\) 2.83926e10i 0.998859i
\(971\) 4.17553e10 1.46368 0.731838 0.681479i \(-0.238663\pi\)
0.731838 + 0.681479i \(0.238663\pi\)
\(972\) −1.15835e10 −0.404583
\(973\) −3.51719e9 −0.122406
\(974\) 3.51971e10 1.22054
\(975\) 2.10570e9i 0.0727581i
\(976\) 6.33188e9i 0.218001i
\(977\) 1.62656e10i 0.558005i −0.960290 0.279002i \(-0.909996\pi\)
0.960290 0.279002i \(-0.0900037\pi\)
\(978\) 6.77970e9 0.231753
\(979\) 2.13385e9i 0.0726815i
\(980\) 1.58756e10i 0.538814i
\(981\) 2.63845e10i 0.892294i
\(982\) 2.39202e10i 0.806072i
\(983\) −3.96751e9 −0.133224 −0.0666118 0.997779i \(-0.521219\pi\)
−0.0666118 + 0.997779i \(0.521219\pi\)
\(984\) 2.83179e9i 0.0947497i
\(985\) 3.55030e10i 1.18369i
\(986\) 6.28906e9i 0.208938i
\(987\) 3.63390e8 0.0120299
\(988\) 3.83605e10 1.26542
\(989\) −1.44694e9 −0.0475625
\(990\) −4.66038e9 −0.152650
\(991\) 1.00915e10i 0.329379i −0.986345 0.164690i \(-0.947338\pi\)
0.986345 0.164690i \(-0.0526622\pi\)
\(992\) −3.61750e9 −0.117657
\(993\) 1.06489e10i 0.345130i
\(994\) 1.81346e9i 0.0585674i
\(995\) 5.38886e9 0.173427
\(996\) 6.94079e9 0.222588
\(997\) 4.86477e10i 1.55464i −0.629107 0.777319i \(-0.716579\pi\)
0.629107 0.777319i \(-0.283421\pi\)
\(998\) 4.13964e9 0.131827
\(999\) 1.14298e10 + 1.45086e10i 0.362711 + 0.460413i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.8.b.a.73.8 24
37.36 even 2 inner 74.8.b.a.73.20 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.b.a.73.8 24 1.1 even 1 trivial
74.8.b.a.73.20 yes 24 37.36 even 2 inner