Properties

Label 740.2.bf.a.97.15
Level $740$
Weight $2$
Character 740.97
Analytic conductor $5.909$
Analytic rank $0$
Dimension $76$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [740,2,Mod(97,740)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(740, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("740.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.bf (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(76\)
Relative dimension: \(19\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 97.15
Character \(\chi\) \(=\) 740.97
Dual form 740.2.bf.a.473.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.405966 - 1.51509i) q^{3} +(-1.67270 + 1.48394i) q^{5} +(0.553968 - 2.06744i) q^{7} +(0.467396 + 0.269851i) q^{9} +6.12528i q^{11} +(1.98176 + 3.43251i) q^{13} +(1.56924 + 3.13671i) q^{15} +(2.12758 + 1.22836i) q^{17} +(-1.51854 - 0.406892i) q^{19} +(-2.90746 - 1.67862i) q^{21} +7.58124 q^{23} +(0.595841 - 4.96437i) q^{25} +(3.92596 - 3.92596i) q^{27} +(-4.95913 - 4.95913i) q^{29} +(7.17941 - 7.17941i) q^{31} +(9.28032 + 2.48666i) q^{33} +(2.14133 + 4.28026i) q^{35} +(-0.351904 + 6.07257i) q^{37} +(6.00508 - 1.60906i) q^{39} +(-6.05085 + 3.49346i) q^{41} -5.60574 q^{43} +(-1.18226 + 0.242208i) q^{45} +(5.21111 + 5.21111i) q^{47} +(2.09476 + 1.20941i) q^{49} +(2.72480 - 2.72480i) q^{51} +(0.278176 + 1.03817i) q^{53} +(-9.08954 - 10.2457i) q^{55} +(-1.23295 + 2.13554i) q^{57} +(1.14862 + 4.28673i) q^{59} +(1.49732 + 0.401206i) q^{61} +(0.816824 - 0.816824i) q^{63} +(-8.40853 - 2.80074i) q^{65} +(2.08749 + 0.559341i) q^{67} +(3.07773 - 11.4862i) q^{69} +(7.91056 + 13.7015i) q^{71} +(-0.464143 - 0.464143i) q^{73} +(-7.27956 - 2.91812i) q^{75} +(12.6636 + 3.39321i) q^{77} +(-2.38849 - 0.639993i) q^{79} +(-3.54481 - 6.13978i) q^{81} +(-2.65414 - 9.90537i) q^{83} +(-5.38162 + 1.10253i) q^{85} +(-9.52675 + 5.50027i) q^{87} +(-3.51683 + 0.942333i) q^{89} +(8.19433 - 2.19566i) q^{91} +(-7.96284 - 13.7920i) q^{93} +(3.14386 - 1.57282i) q^{95} -9.70531i q^{97} +(-1.65291 + 2.86293i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q - 2 q^{3} + 8 q^{13} + 2 q^{15} + 12 q^{19} - 4 q^{23} + 2 q^{25} + 28 q^{27} - 6 q^{29} + 16 q^{31} - 6 q^{33} + 20 q^{35} - 22 q^{37} + 8 q^{39} + 54 q^{41} - 16 q^{43} + 38 q^{45} + 8 q^{47} - 36 q^{49}+ \cdots - 70 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.405966 1.51509i 0.234385 0.874736i −0.744040 0.668135i \(-0.767093\pi\)
0.978425 0.206601i \(-0.0662403\pi\)
\(4\) 0 0
\(5\) −1.67270 + 1.48394i −0.748054 + 0.663638i
\(6\) 0 0
\(7\) 0.553968 2.06744i 0.209380 0.781418i −0.778689 0.627410i \(-0.784115\pi\)
0.988070 0.154008i \(-0.0492182\pi\)
\(8\) 0 0
\(9\) 0.467396 + 0.269851i 0.155799 + 0.0899505i
\(10\) 0 0
\(11\) 6.12528i 1.84684i 0.383791 + 0.923420i \(0.374618\pi\)
−0.383791 + 0.923420i \(0.625382\pi\)
\(12\) 0 0
\(13\) 1.98176 + 3.43251i 0.549641 + 0.952007i 0.998299 + 0.0583030i \(0.0185689\pi\)
−0.448658 + 0.893704i \(0.648098\pi\)
\(14\) 0 0
\(15\) 1.56924 + 3.13671i 0.405176 + 0.809896i
\(16\) 0 0
\(17\) 2.12758 + 1.22836i 0.516015 + 0.297921i 0.735303 0.677739i \(-0.237040\pi\)
−0.219288 + 0.975660i \(0.570373\pi\)
\(18\) 0 0
\(19\) −1.51854 0.406892i −0.348377 0.0933474i 0.0803872 0.996764i \(-0.474384\pi\)
−0.428764 + 0.903416i \(0.641051\pi\)
\(20\) 0 0
\(21\) −2.90746 1.67862i −0.634459 0.366305i
\(22\) 0 0
\(23\) 7.58124 1.58080 0.790399 0.612592i \(-0.209873\pi\)
0.790399 + 0.612592i \(0.209873\pi\)
\(24\) 0 0
\(25\) 0.595841 4.96437i 0.119168 0.992874i
\(26\) 0 0
\(27\) 3.92596 3.92596i 0.755551 0.755551i
\(28\) 0 0
\(29\) −4.95913 4.95913i −0.920887 0.920887i 0.0762050 0.997092i \(-0.475720\pi\)
−0.997092 + 0.0762050i \(0.975720\pi\)
\(30\) 0 0
\(31\) 7.17941 7.17941i 1.28946 1.28946i 0.354347 0.935114i \(-0.384703\pi\)
0.935114 0.354347i \(-0.115297\pi\)
\(32\) 0 0
\(33\) 9.28032 + 2.48666i 1.61550 + 0.432871i
\(34\) 0 0
\(35\) 2.14133 + 4.28026i 0.361951 + 0.723495i
\(36\) 0 0
\(37\) −0.351904 + 6.07257i −0.0578527 + 0.998325i
\(38\) 0 0
\(39\) 6.00508 1.60906i 0.961582 0.257655i
\(40\) 0 0
\(41\) −6.05085 + 3.49346i −0.944984 + 0.545587i −0.891519 0.452983i \(-0.850360\pi\)
−0.0534647 + 0.998570i \(0.517026\pi\)
\(42\) 0 0
\(43\) −5.60574 −0.854867 −0.427434 0.904047i \(-0.640582\pi\)
−0.427434 + 0.904047i \(0.640582\pi\)
\(44\) 0 0
\(45\) −1.18226 + 0.242208i −0.176240 + 0.0361063i
\(46\) 0 0
\(47\) 5.21111 + 5.21111i 0.760119 + 0.760119i 0.976344 0.216225i \(-0.0693744\pi\)
−0.216225 + 0.976344i \(0.569374\pi\)
\(48\) 0 0
\(49\) 2.09476 + 1.20941i 0.299251 + 0.172773i
\(50\) 0 0
\(51\) 2.72480 2.72480i 0.381548 0.381548i
\(52\) 0 0
\(53\) 0.278176 + 1.03817i 0.0382104 + 0.142603i 0.982396 0.186811i \(-0.0598153\pi\)
−0.944185 + 0.329415i \(0.893149\pi\)
\(54\) 0 0
\(55\) −9.08954 10.2457i −1.22563 1.38154i
\(56\) 0 0
\(57\) −1.23295 + 2.13554i −0.163309 + 0.282859i
\(58\) 0 0
\(59\) 1.14862 + 4.28673i 0.149538 + 0.558084i 0.999511 + 0.0312581i \(0.00995138\pi\)
−0.849973 + 0.526826i \(0.823382\pi\)
\(60\) 0 0
\(61\) 1.49732 + 0.401206i 0.191712 + 0.0513692i 0.353398 0.935473i \(-0.385026\pi\)
−0.161685 + 0.986842i \(0.551693\pi\)
\(62\) 0 0
\(63\) 0.816824 0.816824i 0.102910 0.102910i
\(64\) 0 0
\(65\) −8.40853 2.80074i −1.04295 0.347389i
\(66\) 0 0
\(67\) 2.08749 + 0.559341i 0.255028 + 0.0683344i 0.384068 0.923305i \(-0.374523\pi\)
−0.129040 + 0.991639i \(0.541190\pi\)
\(68\) 0 0
\(69\) 3.07773 11.4862i 0.370515 1.38278i
\(70\) 0 0
\(71\) 7.91056 + 13.7015i 0.938811 + 1.62607i 0.767693 + 0.640818i \(0.221405\pi\)
0.171118 + 0.985250i \(0.445262\pi\)
\(72\) 0 0
\(73\) −0.464143 0.464143i −0.0543238 0.0543238i 0.679423 0.733747i \(-0.262230\pi\)
−0.733747 + 0.679423i \(0.762230\pi\)
\(74\) 0 0
\(75\) −7.27956 2.91812i −0.840571 0.336955i
\(76\) 0 0
\(77\) 12.6636 + 3.39321i 1.44315 + 0.386692i
\(78\) 0 0
\(79\) −2.38849 0.639993i −0.268726 0.0720048i 0.121940 0.992537i \(-0.461088\pi\)
−0.390666 + 0.920533i \(0.627755\pi\)
\(80\) 0 0
\(81\) −3.54481 6.13978i −0.393867 0.682198i
\(82\) 0 0
\(83\) −2.65414 9.90537i −0.291329 1.08726i −0.944089 0.329691i \(-0.893056\pi\)
0.652760 0.757565i \(-0.273611\pi\)
\(84\) 0 0
\(85\) −5.38162 + 1.10253i −0.583719 + 0.119586i
\(86\) 0 0
\(87\) −9.52675 + 5.50027i −1.02137 + 0.589691i
\(88\) 0 0
\(89\) −3.51683 + 0.942333i −0.372784 + 0.0998871i −0.440346 0.897828i \(-0.645144\pi\)
0.0675628 + 0.997715i \(0.478478\pi\)
\(90\) 0 0
\(91\) 8.19433 2.19566i 0.858999 0.230168i
\(92\) 0 0
\(93\) −7.96284 13.7920i −0.825708 1.43017i
\(94\) 0 0
\(95\) 3.14386 1.57282i 0.322554 0.161368i
\(96\) 0 0
\(97\) 9.70531i 0.985425i −0.870192 0.492713i \(-0.836005\pi\)
0.870192 0.492713i \(-0.163995\pi\)
\(98\) 0 0
\(99\) −1.65291 + 2.86293i −0.166124 + 0.287736i
\(100\) 0 0
\(101\) 4.91307i 0.488869i −0.969666 0.244435i \(-0.921398\pi\)
0.969666 0.244435i \(-0.0786023\pi\)
\(102\) 0 0
\(103\) 7.27718i 0.717042i 0.933522 + 0.358521i \(0.116719\pi\)
−0.933522 + 0.358521i \(0.883281\pi\)
\(104\) 0 0
\(105\) 7.35427 1.50667i 0.717703 0.147035i
\(106\) 0 0
\(107\) −3.23691 + 12.0803i −0.312924 + 1.16785i 0.612982 + 0.790097i \(0.289970\pi\)
−0.925907 + 0.377753i \(0.876697\pi\)
\(108\) 0 0
\(109\) −4.22836 15.7804i −0.405003 1.51149i −0.804050 0.594562i \(-0.797325\pi\)
0.399046 0.916931i \(-0.369341\pi\)
\(110\) 0 0
\(111\) 9.05762 + 2.99843i 0.859711 + 0.284598i
\(112\) 0 0
\(113\) 4.82461 + 2.78549i 0.453862 + 0.262037i 0.709460 0.704746i \(-0.248939\pi\)
−0.255598 + 0.966783i \(0.582272\pi\)
\(114\) 0 0
\(115\) −12.6811 + 11.2501i −1.18252 + 1.04908i
\(116\) 0 0
\(117\) 2.13912i 0.197762i
\(118\) 0 0
\(119\) 3.71817 3.71817i 0.340844 0.340844i
\(120\) 0 0
\(121\) −26.5190 −2.41082
\(122\) 0 0
\(123\) 2.83645 + 10.5858i 0.255754 + 0.954488i
\(124\) 0 0
\(125\) 6.37017 + 9.18809i 0.569765 + 0.821808i
\(126\) 0 0
\(127\) −9.04950 + 2.42481i −0.803013 + 0.215167i −0.636907 0.770941i \(-0.719786\pi\)
−0.166107 + 0.986108i \(0.553120\pi\)
\(128\) 0 0
\(129\) −2.27574 + 8.49318i −0.200368 + 0.747783i
\(130\) 0 0
\(131\) −2.10337 7.84988i −0.183772 0.685847i −0.994890 0.100965i \(-0.967807\pi\)
0.811118 0.584883i \(-0.198860\pi\)
\(132\) 0 0
\(133\) −1.68245 + 2.91408i −0.145887 + 0.252683i
\(134\) 0 0
\(135\) −0.741056 + 12.3928i −0.0637800 + 1.06661i
\(136\) 0 0
\(137\) 1.01155 + 1.01155i 0.0864225 + 0.0864225i 0.748996 0.662574i \(-0.230536\pi\)
−0.662574 + 0.748996i \(0.730536\pi\)
\(138\) 0 0
\(139\) −9.39209 + 16.2676i −0.796627 + 1.37980i 0.125174 + 0.992135i \(0.460051\pi\)
−0.921801 + 0.387663i \(0.873282\pi\)
\(140\) 0 0
\(141\) 10.0108 5.77975i 0.843063 0.486743i
\(142\) 0 0
\(143\) −21.0251 + 12.1388i −1.75820 + 1.01510i
\(144\) 0 0
\(145\) 15.6542 + 0.936076i 1.30001 + 0.0777369i
\(146\) 0 0
\(147\) 2.68276 2.68276i 0.221271 0.221271i
\(148\) 0 0
\(149\) 9.42315i 0.771974i −0.922504 0.385987i \(-0.873861\pi\)
0.922504 0.385987i \(-0.126139\pi\)
\(150\) 0 0
\(151\) 12.9950 7.50270i 1.05752 0.610561i 0.132776 0.991146i \(-0.457611\pi\)
0.924746 + 0.380585i \(0.124277\pi\)
\(152\) 0 0
\(153\) 0.662950 + 1.14826i 0.0535963 + 0.0928316i
\(154\) 0 0
\(155\) −1.35517 + 22.6628i −0.108850 + 1.82032i
\(156\) 0 0
\(157\) 5.37189 1.43939i 0.428724 0.114876i −0.0380033 0.999278i \(-0.512100\pi\)
0.466727 + 0.884401i \(0.345433\pi\)
\(158\) 0 0
\(159\) 1.68584 0.133696
\(160\) 0 0
\(161\) 4.19977 15.6737i 0.330988 1.23526i
\(162\) 0 0
\(163\) 1.84098 + 1.06289i 0.144197 + 0.0832522i 0.570363 0.821393i \(-0.306803\pi\)
−0.426166 + 0.904645i \(0.640136\pi\)
\(164\) 0 0
\(165\) −19.2132 + 9.61202i −1.49575 + 0.748295i
\(166\) 0 0
\(167\) 20.3149 11.7288i 1.57202 0.907604i 0.576094 0.817384i \(-0.304576\pi\)
0.995922 0.0902197i \(-0.0287569\pi\)
\(168\) 0 0
\(169\) −1.35475 + 2.34649i −0.104211 + 0.180499i
\(170\) 0 0
\(171\) −0.599960 0.599960i −0.0458801 0.0458801i
\(172\) 0 0
\(173\) −20.8700 + 5.59210i −1.58672 + 0.425159i −0.940997 0.338415i \(-0.890109\pi\)
−0.645720 + 0.763575i \(0.723442\pi\)
\(174\) 0 0
\(175\) −9.93345 3.98197i −0.750898 0.301009i
\(176\) 0 0
\(177\) 6.96106 0.523226
\(178\) 0 0
\(179\) −17.3309 17.3309i −1.29537 1.29537i −0.931417 0.363954i \(-0.881427\pi\)
−0.363954 0.931417i \(-0.618573\pi\)
\(180\) 0 0
\(181\) 8.14391 + 14.1057i 0.605332 + 1.04847i 0.991999 + 0.126246i \(0.0402929\pi\)
−0.386667 + 0.922219i \(0.626374\pi\)
\(182\) 0 0
\(183\) 1.21572 2.10570i 0.0898689 0.155657i
\(184\) 0 0
\(185\) −8.42271 10.6798i −0.619250 0.785194i
\(186\) 0 0
\(187\) −7.52405 + 13.0320i −0.550213 + 0.952997i
\(188\) 0 0
\(189\) −5.94182 10.2915i −0.432204 0.748599i
\(190\) 0 0
\(191\) −7.45269 7.45269i −0.539257 0.539257i 0.384053 0.923311i \(-0.374528\pi\)
−0.923311 + 0.384053i \(0.874528\pi\)
\(192\) 0 0
\(193\) −26.1972 −1.88572 −0.942858 0.333194i \(-0.891874\pi\)
−0.942858 + 0.333194i \(0.891874\pi\)
\(194\) 0 0
\(195\) −7.65694 + 11.6026i −0.548325 + 0.830882i
\(196\) 0 0
\(197\) 17.3177 4.64027i 1.23384 0.330605i 0.417764 0.908556i \(-0.362814\pi\)
0.816072 + 0.577950i \(0.196147\pi\)
\(198\) 0 0
\(199\) −17.2167 17.2167i −1.22046 1.22046i −0.967469 0.252990i \(-0.918586\pi\)
−0.252990 0.967469i \(-0.581414\pi\)
\(200\) 0 0
\(201\) 1.69490 2.93566i 0.119549 0.207065i
\(202\) 0 0
\(203\) −12.9999 + 7.50549i −0.912413 + 0.526782i
\(204\) 0 0
\(205\) 4.93716 14.8226i 0.344826 1.03526i
\(206\) 0 0
\(207\) 3.54344 + 2.04581i 0.246286 + 0.142194i
\(208\) 0 0
\(209\) 2.49232 9.30148i 0.172398 0.643397i
\(210\) 0 0
\(211\) −8.01500 −0.551776 −0.275888 0.961190i \(-0.588972\pi\)
−0.275888 + 0.961190i \(0.588972\pi\)
\(212\) 0 0
\(213\) 23.9704 6.42284i 1.64242 0.440086i
\(214\) 0 0
\(215\) 9.37671 8.31859i 0.639487 0.567323i
\(216\) 0 0
\(217\) −10.8658 18.8202i −0.737620 1.27760i
\(218\) 0 0
\(219\) −0.891643 + 0.514791i −0.0602517 + 0.0347863i
\(220\) 0 0
\(221\) 9.73727i 0.654999i
\(222\) 0 0
\(223\) 16.5105 16.5105i 1.10563 1.10563i 0.111909 0.993718i \(-0.464303\pi\)
0.993718 0.111909i \(-0.0356966\pi\)
\(224\) 0 0
\(225\) 1.61814 2.15954i 0.107876 0.143969i
\(226\) 0 0
\(227\) 8.24129 4.75811i 0.546993 0.315807i −0.200915 0.979609i \(-0.564392\pi\)
0.747908 + 0.663802i \(0.231058\pi\)
\(228\) 0 0
\(229\) 0.0183277 0.0105815i 0.00121113 0.000699247i −0.499394 0.866375i \(-0.666444\pi\)
0.500605 + 0.865676i \(0.333111\pi\)
\(230\) 0 0
\(231\) 10.2820 17.8090i 0.676507 1.17174i
\(232\) 0 0
\(233\) −13.6444 13.6444i −0.893872 0.893872i 0.101013 0.994885i \(-0.467792\pi\)
−0.994885 + 0.101013i \(0.967792\pi\)
\(234\) 0 0
\(235\) −16.4496 0.983640i −1.07305 0.0641656i
\(236\) 0 0
\(237\) −1.93929 + 3.35895i −0.125970 + 0.218187i
\(238\) 0 0
\(239\) 3.44061 + 12.8405i 0.222555 + 0.830585i 0.983369 + 0.181616i \(0.0581329\pi\)
−0.760815 + 0.648969i \(0.775200\pi\)
\(240\) 0 0
\(241\) −3.45609 + 12.8983i −0.222627 + 0.830854i 0.760715 + 0.649086i \(0.224849\pi\)
−0.983341 + 0.181768i \(0.941818\pi\)
\(242\) 0 0
\(243\) 5.34749 1.43286i 0.343042 0.0919178i
\(244\) 0 0
\(245\) −5.29859 + 1.08552i −0.338515 + 0.0693513i
\(246\) 0 0
\(247\) −1.61272 6.01877i −0.102615 0.382965i
\(248\) 0 0
\(249\) −16.0850 −1.01934
\(250\) 0 0
\(251\) 15.4889 15.4889i 0.977651 0.977651i −0.0221046 0.999756i \(-0.507037\pi\)
0.999756 + 0.0221046i \(0.00703670\pi\)
\(252\) 0 0
\(253\) 46.4372i 2.91948i
\(254\) 0 0
\(255\) −0.514328 + 8.60121i −0.0322085 + 0.538629i
\(256\) 0 0
\(257\) −9.19404 5.30818i −0.573508 0.331115i 0.185041 0.982731i \(-0.440758\pi\)
−0.758549 + 0.651616i \(0.774092\pi\)
\(258\) 0 0
\(259\) 12.3597 + 4.09155i 0.767996 + 0.254237i
\(260\) 0 0
\(261\) −0.979651 3.65611i −0.0606389 0.226307i
\(262\) 0 0
\(263\) −2.64085 + 9.85577i −0.162842 + 0.607733i 0.835464 + 0.549545i \(0.185199\pi\)
−0.998306 + 0.0581879i \(0.981468\pi\)
\(264\) 0 0
\(265\) −2.00588 1.32374i −0.123220 0.0813169i
\(266\) 0 0
\(267\) 5.71086i 0.349499i
\(268\) 0 0
\(269\) 17.2415i 1.05124i −0.850721 0.525618i \(-0.823834\pi\)
0.850721 0.525618i \(-0.176166\pi\)
\(270\) 0 0
\(271\) −0.552841 + 0.957549i −0.0335827 + 0.0581670i −0.882328 0.470634i \(-0.844025\pi\)
0.848746 + 0.528801i \(0.177358\pi\)
\(272\) 0 0
\(273\) 13.3065i 0.805345i
\(274\) 0 0
\(275\) 30.4081 + 3.64969i 1.83368 + 0.220085i
\(276\) 0 0
\(277\) −9.20058 15.9359i −0.552809 0.957494i −0.998070 0.0620930i \(-0.980222\pi\)
0.445261 0.895401i \(-0.353111\pi\)
\(278\) 0 0
\(279\) 5.29301 1.41826i 0.316884 0.0849088i
\(280\) 0 0
\(281\) −11.5682 + 3.09969i −0.690100 + 0.184912i −0.586792 0.809738i \(-0.699609\pi\)
−0.103308 + 0.994649i \(0.532943\pi\)
\(282\) 0 0
\(283\) −5.44518 + 3.14378i −0.323683 + 0.186878i −0.653033 0.757330i \(-0.726504\pi\)
0.329350 + 0.944208i \(0.393170\pi\)
\(284\) 0 0
\(285\) −1.10665 5.40174i −0.0655524 0.319971i
\(286\) 0 0
\(287\) 3.87053 + 14.4450i 0.228470 + 0.852662i
\(288\) 0 0
\(289\) −5.48226 9.49555i −0.322486 0.558562i
\(290\) 0 0
\(291\) −14.7044 3.94003i −0.861987 0.230969i
\(292\) 0 0
\(293\) 19.9417 + 5.34337i 1.16501 + 0.312163i 0.788965 0.614438i \(-0.210617\pi\)
0.376044 + 0.926602i \(0.377284\pi\)
\(294\) 0 0
\(295\) −8.28255 5.46591i −0.482229 0.318238i
\(296\) 0 0
\(297\) 24.0476 + 24.0476i 1.39538 + 1.39538i
\(298\) 0 0
\(299\) 15.0242 + 26.0227i 0.868872 + 1.50493i
\(300\) 0 0
\(301\) −3.10540 + 11.5895i −0.178992 + 0.668009i
\(302\) 0 0
\(303\) −7.44373 1.99454i −0.427631 0.114583i
\(304\) 0 0
\(305\) −3.09993 + 1.55084i −0.177502 + 0.0888008i
\(306\) 0 0
\(307\) 2.93707 2.93707i 0.167627 0.167627i −0.618308 0.785936i \(-0.712182\pi\)
0.785936 + 0.618308i \(0.212182\pi\)
\(308\) 0 0
\(309\) 11.0256 + 2.95429i 0.627223 + 0.168064i
\(310\) 0 0
\(311\) 3.22003 + 12.0173i 0.182591 + 0.681439i 0.995133 + 0.0985370i \(0.0314163\pi\)
−0.812542 + 0.582902i \(0.801917\pi\)
\(312\) 0 0
\(313\) −2.28242 + 3.95327i −0.129010 + 0.223452i −0.923293 0.384095i \(-0.874513\pi\)
0.794283 + 0.607548i \(0.207847\pi\)
\(314\) 0 0
\(315\) −0.154182 + 2.57842i −0.00868718 + 0.145277i
\(316\) 0 0
\(317\) 5.34258 + 19.9388i 0.300069 + 1.11987i 0.937107 + 0.349041i \(0.113493\pi\)
−0.637038 + 0.770832i \(0.719841\pi\)
\(318\) 0 0
\(319\) 30.3760 30.3760i 1.70073 1.70073i
\(320\) 0 0
\(321\) 16.9887 + 9.80841i 0.948215 + 0.547452i
\(322\) 0 0
\(323\) −2.73101 2.73101i −0.151958 0.151958i
\(324\) 0 0
\(325\) 18.2211 7.79296i 1.01072 0.432276i
\(326\) 0 0
\(327\) −25.6253 −1.41708
\(328\) 0 0
\(329\) 13.6604 7.88686i 0.753125 0.434817i
\(330\) 0 0
\(331\) 5.17952 1.38785i 0.284692 0.0762830i −0.113647 0.993521i \(-0.536253\pi\)
0.398339 + 0.917238i \(0.369587\pi\)
\(332\) 0 0
\(333\) −1.80317 + 2.74334i −0.0988132 + 0.150334i
\(334\) 0 0
\(335\) −4.32177 + 2.16210i −0.236124 + 0.118128i
\(336\) 0 0
\(337\) 2.01791 + 0.540698i 0.109923 + 0.0294537i 0.313361 0.949634i \(-0.398545\pi\)
−0.203438 + 0.979088i \(0.565212\pi\)
\(338\) 0 0
\(339\) 6.17889 6.17889i 0.335591 0.335591i
\(340\) 0 0
\(341\) 43.9759 + 43.9759i 2.38143 + 2.38143i
\(342\) 0 0
\(343\) 14.2551 14.2551i 0.769703 0.769703i
\(344\) 0 0
\(345\) 11.8968 + 23.7802i 0.640501 + 1.28028i
\(346\) 0 0
\(347\) −4.93120 −0.264721 −0.132360 0.991202i \(-0.542256\pi\)
−0.132360 + 0.991202i \(0.542256\pi\)
\(348\) 0 0
\(349\) −10.4303 6.02195i −0.558323 0.322348i 0.194149 0.980972i \(-0.437805\pi\)
−0.752472 + 0.658624i \(0.771139\pi\)
\(350\) 0 0
\(351\) 21.2562 + 5.69558i 1.13457 + 0.304008i
\(352\) 0 0
\(353\) 5.33767 + 3.08170i 0.284095 + 0.164023i 0.635276 0.772285i \(-0.280886\pi\)
−0.351181 + 0.936308i \(0.614220\pi\)
\(354\) 0 0
\(355\) −33.5642 11.1797i −1.78140 0.593355i
\(356\) 0 0
\(357\) −4.12390 7.14281i −0.218260 0.378038i
\(358\) 0 0
\(359\) 20.4873i 1.08128i −0.841254 0.540639i \(-0.818182\pi\)
0.841254 0.540639i \(-0.181818\pi\)
\(360\) 0 0
\(361\) −14.3141 8.26424i −0.753372 0.434960i
\(362\) 0 0
\(363\) −10.7658 + 40.1786i −0.565059 + 2.10883i
\(364\) 0 0
\(365\) 1.46513 + 0.0876108i 0.0766885 + 0.00458576i
\(366\) 0 0
\(367\) −3.25916 + 12.1634i −0.170127 + 0.634923i 0.827203 + 0.561903i \(0.189930\pi\)
−0.997330 + 0.0730201i \(0.976736\pi\)
\(368\) 0 0
\(369\) −3.77086 −0.196303
\(370\) 0 0
\(371\) 2.30045 0.119433
\(372\) 0 0
\(373\) −0.470315 + 1.75524i −0.0243520 + 0.0908828i −0.977032 0.213091i \(-0.931647\pi\)
0.952680 + 0.303974i \(0.0983136\pi\)
\(374\) 0 0
\(375\) 16.5068 5.92130i 0.852409 0.305775i
\(376\) 0 0
\(377\) 7.19445 26.8501i 0.370533 1.38285i
\(378\) 0 0
\(379\) −2.90970 1.67992i −0.149461 0.0862916i 0.423404 0.905941i \(-0.360835\pi\)
−0.572866 + 0.819649i \(0.694168\pi\)
\(380\) 0 0
\(381\) 14.6952i 0.752856i
\(382\) 0 0
\(383\) −3.43353 5.94705i −0.175445 0.303880i 0.764870 0.644185i \(-0.222803\pi\)
−0.940315 + 0.340305i \(0.889470\pi\)
\(384\) 0 0
\(385\) −26.2177 + 13.1163i −1.33618 + 0.668466i
\(386\) 0 0
\(387\) −2.62010 1.51272i −0.133187 0.0768957i
\(388\) 0 0
\(389\) −13.0506 3.49690i −0.661692 0.177300i −0.0876825 0.996148i \(-0.527946\pi\)
−0.574009 + 0.818849i \(0.694613\pi\)
\(390\) 0 0
\(391\) 16.1297 + 9.31250i 0.815715 + 0.470953i
\(392\) 0 0
\(393\) −12.7472 −0.643009
\(394\) 0 0
\(395\) 4.94493 2.47386i 0.248806 0.124473i
\(396\) 0 0
\(397\) 20.9695 20.9695i 1.05243 1.05243i 0.0538814 0.998547i \(-0.482841\pi\)
0.998547 0.0538814i \(-0.0171593\pi\)
\(398\) 0 0
\(399\) 3.73207 + 3.73207i 0.186837 + 0.186837i
\(400\) 0 0
\(401\) −3.95683 + 3.95683i −0.197595 + 0.197595i −0.798968 0.601373i \(-0.794620\pi\)
0.601373 + 0.798968i \(0.294620\pi\)
\(402\) 0 0
\(403\) 38.8713 + 10.4155i 1.93632 + 0.518834i
\(404\) 0 0
\(405\) 15.0405 + 5.00973i 0.747367 + 0.248935i
\(406\) 0 0
\(407\) −37.1962 2.15551i −1.84375 0.106845i
\(408\) 0 0
\(409\) 13.2096 3.53951i 0.653174 0.175017i 0.0830106 0.996549i \(-0.473546\pi\)
0.570164 + 0.821531i \(0.306880\pi\)
\(410\) 0 0
\(411\) 1.94324 1.12193i 0.0958530 0.0553408i
\(412\) 0 0
\(413\) 9.49884 0.467407
\(414\) 0 0
\(415\) 19.1385 + 12.6301i 0.939474 + 0.619988i
\(416\) 0 0
\(417\) 20.8339 + 20.8339i 1.02024 + 1.02024i
\(418\) 0 0
\(419\) −9.95188 5.74572i −0.486181 0.280697i 0.236808 0.971557i \(-0.423899\pi\)
−0.722989 + 0.690860i \(0.757232\pi\)
\(420\) 0 0
\(421\) 0.0426691 0.0426691i 0.00207957 0.00207957i −0.706066 0.708146i \(-0.749532\pi\)
0.708146 + 0.706066i \(0.249532\pi\)
\(422\) 0 0
\(423\) 1.02943 + 3.84188i 0.0500526 + 0.186799i
\(424\) 0 0
\(425\) 7.36574 9.83021i 0.357291 0.476835i
\(426\) 0 0
\(427\) 1.65894 2.87336i 0.0802816 0.139052i
\(428\) 0 0
\(429\) 9.85591 + 36.7828i 0.475848 + 1.77589i
\(430\) 0 0
\(431\) −18.9778 5.08508i −0.914128 0.244940i −0.229054 0.973414i \(-0.573563\pi\)
−0.685074 + 0.728474i \(0.740230\pi\)
\(432\) 0 0
\(433\) 13.9360 13.9360i 0.669720 0.669720i −0.287931 0.957651i \(-0.592967\pi\)
0.957651 + 0.287931i \(0.0929673\pi\)
\(434\) 0 0
\(435\) 7.77331 23.3374i 0.372702 1.11894i
\(436\) 0 0
\(437\) −11.5124 3.08474i −0.550714 0.147563i
\(438\) 0 0
\(439\) −0.204787 + 0.764276i −0.00977395 + 0.0364769i −0.970641 0.240534i \(-0.922677\pi\)
0.960867 + 0.277011i \(0.0893440\pi\)
\(440\) 0 0
\(441\) 0.652722 + 1.13055i 0.0310820 + 0.0538356i
\(442\) 0 0
\(443\) 18.1047 + 18.1047i 0.860180 + 0.860180i 0.991359 0.131179i \(-0.0418763\pi\)
−0.131179 + 0.991359i \(0.541876\pi\)
\(444\) 0 0
\(445\) 4.48424 6.79501i 0.212573 0.322114i
\(446\) 0 0
\(447\) −14.2769 3.82548i −0.675274 0.180939i
\(448\) 0 0
\(449\) −26.0341 6.97581i −1.22862 0.329209i −0.414580 0.910013i \(-0.636072\pi\)
−0.814043 + 0.580804i \(0.802738\pi\)
\(450\) 0 0
\(451\) −21.3984 37.0631i −1.00761 1.74523i
\(452\) 0 0
\(453\) −6.09168 22.7345i −0.286212 1.06816i
\(454\) 0 0
\(455\) −10.4484 + 15.8326i −0.489829 + 0.742243i
\(456\) 0 0
\(457\) −12.1007 + 6.98637i −0.566049 + 0.326808i −0.755570 0.655068i \(-0.772640\pi\)
0.189521 + 0.981877i \(0.439307\pi\)
\(458\) 0 0
\(459\) 13.1753 3.53031i 0.614970 0.164781i
\(460\) 0 0
\(461\) −4.96919 + 1.33149i −0.231438 + 0.0620137i −0.372674 0.927962i \(-0.621559\pi\)
0.141236 + 0.989976i \(0.454892\pi\)
\(462\) 0 0
\(463\) 1.23913 + 2.14623i 0.0575871 + 0.0997438i 0.893382 0.449298i \(-0.148326\pi\)
−0.835795 + 0.549042i \(0.814993\pi\)
\(464\) 0 0
\(465\) 33.7860 + 11.2535i 1.56679 + 0.521871i
\(466\) 0 0
\(467\) 6.14752i 0.284473i −0.989833 0.142237i \(-0.954571\pi\)
0.989833 0.142237i \(-0.0454294\pi\)
\(468\) 0 0
\(469\) 2.31281 4.00590i 0.106795 0.184975i
\(470\) 0 0
\(471\) 8.72323i 0.401945i
\(472\) 0 0
\(473\) 34.3367i 1.57880i
\(474\) 0 0
\(475\) −2.92477 + 7.29616i −0.134198 + 0.334771i
\(476\) 0 0
\(477\) −0.150132 + 0.560302i −0.00687409 + 0.0256545i
\(478\) 0 0
\(479\) 5.52599 + 20.6233i 0.252489 + 0.942302i 0.969470 + 0.245209i \(0.0788567\pi\)
−0.716981 + 0.697093i \(0.754477\pi\)
\(480\) 0 0
\(481\) −21.5416 + 10.8265i −0.982210 + 0.493645i
\(482\) 0 0
\(483\) −22.0421 12.7260i −1.00295 0.579054i
\(484\) 0 0
\(485\) 14.4021 + 16.2341i 0.653966 + 0.737151i
\(486\) 0 0
\(487\) 21.8499i 0.990113i −0.868861 0.495057i \(-0.835147\pi\)
0.868861 0.495057i \(-0.164853\pi\)
\(488\) 0 0
\(489\) 2.35775 2.35775i 0.106621 0.106621i
\(490\) 0 0
\(491\) 3.87041 0.174669 0.0873346 0.996179i \(-0.472165\pi\)
0.0873346 + 0.996179i \(0.472165\pi\)
\(492\) 0 0
\(493\) −4.45936 16.6426i −0.200840 0.749543i
\(494\) 0 0
\(495\) −1.48359 7.24165i −0.0666825 0.325488i
\(496\) 0 0
\(497\) 32.7092 8.76440i 1.46721 0.393137i
\(498\) 0 0
\(499\) 2.17573 8.11993i 0.0973990 0.363498i −0.899973 0.435945i \(-0.856414\pi\)
0.997372 + 0.0724470i \(0.0230808\pi\)
\(500\) 0 0
\(501\) −9.52301 35.5404i −0.425457 1.58783i
\(502\) 0 0
\(503\) 17.1762 29.7501i 0.765851 1.32649i −0.173945 0.984755i \(-0.555651\pi\)
0.939796 0.341737i \(-0.111015\pi\)
\(504\) 0 0
\(505\) 7.29071 + 8.21809i 0.324432 + 0.365700i
\(506\) 0 0
\(507\) 3.00515 + 3.00515i 0.133463 + 0.133463i
\(508\) 0 0
\(509\) −15.6825 + 27.1629i −0.695114 + 1.20397i 0.275028 + 0.961436i \(0.411313\pi\)
−0.970142 + 0.242537i \(0.922021\pi\)
\(510\) 0 0
\(511\) −1.21671 + 0.702466i −0.0538240 + 0.0310753i
\(512\) 0 0
\(513\) −7.55917 + 4.36429i −0.333745 + 0.192688i
\(514\) 0 0
\(515\) −10.7989 12.1725i −0.475857 0.536386i
\(516\) 0 0
\(517\) −31.9195 + 31.9195i −1.40382 + 1.40382i
\(518\) 0 0
\(519\) 33.8901i 1.48761i
\(520\) 0 0
\(521\) −7.45751 + 4.30560i −0.326719 + 0.188632i −0.654384 0.756163i \(-0.727072\pi\)
0.327664 + 0.944794i \(0.393739\pi\)
\(522\) 0 0
\(523\) 8.82687 + 15.2886i 0.385972 + 0.668523i 0.991904 0.126994i \(-0.0405328\pi\)
−0.605932 + 0.795517i \(0.707199\pi\)
\(524\) 0 0
\(525\) −10.0657 + 13.4335i −0.439302 + 0.586286i
\(526\) 0 0
\(527\) 24.0937 6.45589i 1.04954 0.281223i
\(528\) 0 0
\(529\) 34.4752 1.49892
\(530\) 0 0
\(531\) −0.619916 + 2.31356i −0.0269021 + 0.100400i
\(532\) 0 0
\(533\) −23.9827 13.8464i −1.03880 0.599754i
\(534\) 0 0
\(535\) −12.5121 25.0101i −0.540945 1.08128i
\(536\) 0 0
\(537\) −33.2935 + 19.2220i −1.43672 + 0.829492i
\(538\) 0 0
\(539\) −7.40797 + 12.8310i −0.319084 + 0.552669i
\(540\) 0 0
\(541\) −29.9372 29.9372i −1.28710 1.28710i −0.936541 0.350559i \(-0.885992\pi\)
−0.350559 0.936541i \(-0.614008\pi\)
\(542\) 0 0
\(543\) 24.6775 6.61230i 1.05901 0.283761i
\(544\) 0 0
\(545\) 30.4900 + 20.1213i 1.30605 + 0.861902i
\(546\) 0 0
\(547\) 26.5354 1.13457 0.567285 0.823522i \(-0.307994\pi\)
0.567285 + 0.823522i \(0.307994\pi\)
\(548\) 0 0
\(549\) 0.591576 + 0.591576i 0.0252479 + 0.0252479i
\(550\) 0 0
\(551\) 5.51281 + 9.54847i 0.234854 + 0.406779i
\(552\) 0 0
\(553\) −2.64629 + 4.58351i −0.112532 + 0.194911i
\(554\) 0 0
\(555\) −19.6001 + 8.42550i −0.831980 + 0.357643i
\(556\) 0 0
\(557\) 18.9422 32.8088i 0.802605 1.39015i −0.115290 0.993332i \(-0.536780\pi\)
0.917896 0.396822i \(-0.129887\pi\)
\(558\) 0 0
\(559\) −11.1092 19.2418i −0.469870 0.813840i
\(560\) 0 0
\(561\) 16.6902 + 16.6902i 0.704659 + 0.704659i
\(562\) 0 0
\(563\) −1.60329 −0.0675706 −0.0337853 0.999429i \(-0.510756\pi\)
−0.0337853 + 0.999429i \(0.510756\pi\)
\(564\) 0 0
\(565\) −12.2036 + 2.50015i −0.513411 + 0.105182i
\(566\) 0 0
\(567\) −14.6573 + 3.92742i −0.615550 + 0.164936i
\(568\) 0 0
\(569\) 8.13575 + 8.13575i 0.341068 + 0.341068i 0.856769 0.515700i \(-0.172468\pi\)
−0.515700 + 0.856769i \(0.672468\pi\)
\(570\) 0 0
\(571\) 10.4469 18.0945i 0.437187 0.757230i −0.560284 0.828300i \(-0.689308\pi\)
0.997471 + 0.0710702i \(0.0226414\pi\)
\(572\) 0 0
\(573\) −14.3170 + 8.26593i −0.598101 + 0.345314i
\(574\) 0 0
\(575\) 4.51722 37.6361i 0.188381 1.56953i
\(576\) 0 0
\(577\) 30.6651 + 17.7045i 1.27660 + 0.737048i 0.976223 0.216771i \(-0.0695525\pi\)
0.300382 + 0.953819i \(0.402886\pi\)
\(578\) 0 0
\(579\) −10.6352 + 39.6911i −0.441983 + 1.64950i
\(580\) 0 0
\(581\) −21.9490 −0.910600
\(582\) 0 0
\(583\) −6.35906 + 1.70390i −0.263365 + 0.0705685i
\(584\) 0 0
\(585\) −3.17433 3.57811i −0.131242 0.147937i
\(586\) 0 0
\(587\) −9.00898 15.6040i −0.371840 0.644046i 0.618008 0.786172i \(-0.287940\pi\)
−0.989849 + 0.142125i \(0.954606\pi\)
\(588\) 0 0
\(589\) −13.8235 + 7.98099i −0.569587 + 0.328851i
\(590\) 0 0
\(591\) 28.1216i 1.15677i
\(592\) 0 0
\(593\) −11.2796 + 11.2796i −0.463198 + 0.463198i −0.899702 0.436504i \(-0.856216\pi\)
0.436504 + 0.899702i \(0.356216\pi\)
\(594\) 0 0
\(595\) −0.701836 + 11.7369i −0.0287725 + 0.481167i
\(596\) 0 0
\(597\) −33.0742 + 19.0954i −1.35364 + 0.781522i
\(598\) 0 0
\(599\) −2.41752 + 1.39576i −0.0987772 + 0.0570290i −0.548575 0.836101i \(-0.684829\pi\)
0.449798 + 0.893130i \(0.351496\pi\)
\(600\) 0 0
\(601\) −1.01460 + 1.75734i −0.0413865 + 0.0716835i −0.885977 0.463730i \(-0.846511\pi\)
0.844590 + 0.535413i \(0.179844\pi\)
\(602\) 0 0
\(603\) 0.824747 + 0.824747i 0.0335863 + 0.0335863i
\(604\) 0 0
\(605\) 44.3583 39.3526i 1.80342 1.59991i
\(606\) 0 0
\(607\) 9.30098 16.1098i 0.377515 0.653875i −0.613185 0.789939i \(-0.710112\pi\)
0.990700 + 0.136064i \(0.0434453\pi\)
\(608\) 0 0
\(609\) 6.09395 + 22.7429i 0.246939 + 0.921590i
\(610\) 0 0
\(611\) −7.56002 + 28.2144i −0.305846 + 1.14143i
\(612\) 0 0
\(613\) 19.5983 5.25135i 0.791569 0.212100i 0.159690 0.987167i \(-0.448951\pi\)
0.631879 + 0.775067i \(0.282284\pi\)
\(614\) 0 0
\(615\) −20.4532 13.4977i −0.824753 0.544280i
\(616\) 0 0
\(617\) 9.56798 + 35.7082i 0.385192 + 1.43756i 0.837863 + 0.545880i \(0.183805\pi\)
−0.452671 + 0.891678i \(0.649529\pi\)
\(618\) 0 0
\(619\) 27.5880 1.10886 0.554429 0.832231i \(-0.312937\pi\)
0.554429 + 0.832231i \(0.312937\pi\)
\(620\) 0 0
\(621\) 29.7636 29.7636i 1.19437 1.19437i
\(622\) 0 0
\(623\) 7.79286i 0.312214i
\(624\) 0 0
\(625\) −24.2899 5.91595i −0.971598 0.236638i
\(626\) 0 0
\(627\) −13.0808 7.55218i −0.522395 0.301605i
\(628\) 0 0
\(629\) −8.20802 + 12.4876i −0.327275 + 0.497915i
\(630\) 0 0
\(631\) 1.39942 + 5.22271i 0.0557100 + 0.207913i 0.988170 0.153359i \(-0.0490092\pi\)
−0.932460 + 0.361272i \(0.882343\pi\)
\(632\) 0 0
\(633\) −3.25382 + 12.1434i −0.129328 + 0.482658i
\(634\) 0 0
\(635\) 11.5388 17.4849i 0.457904 0.693867i
\(636\) 0 0
\(637\) 9.58704i 0.379852i
\(638\) 0 0
\(639\) 8.53871i 0.337786i
\(640\) 0 0
\(641\) −23.9529 + 41.4876i −0.946082 + 1.63866i −0.192513 + 0.981295i \(0.561664\pi\)
−0.753570 + 0.657368i \(0.771670\pi\)
\(642\) 0 0
\(643\) 21.9328i 0.864943i −0.901648 0.432472i \(-0.857642\pi\)
0.901648 0.432472i \(-0.142358\pi\)
\(644\) 0 0
\(645\) −8.79675 17.5836i −0.346372 0.692354i
\(646\) 0 0
\(647\) −10.2229 17.7065i −0.401902 0.696114i 0.592054 0.805899i \(-0.298317\pi\)
−0.993955 + 0.109784i \(0.964984\pi\)
\(648\) 0 0
\(649\) −26.2574 + 7.03564i −1.03069 + 0.276173i
\(650\) 0 0
\(651\) −32.9253 + 8.82232i −1.29045 + 0.345774i
\(652\) 0 0
\(653\) 32.3312 18.6664i 1.26522 0.730473i 0.291137 0.956681i \(-0.405966\pi\)
0.974079 + 0.226209i \(0.0726331\pi\)
\(654\) 0 0
\(655\) 15.1671 + 10.0092i 0.592626 + 0.391092i
\(656\) 0 0
\(657\) −0.0916891 0.342188i −0.00357713 0.0133500i
\(658\) 0 0
\(659\) 17.4183 + 30.1694i 0.678522 + 1.17523i 0.975426 + 0.220327i \(0.0707124\pi\)
−0.296905 + 0.954907i \(0.595954\pi\)
\(660\) 0 0
\(661\) −35.2181 9.43666i −1.36983 0.367044i −0.502411 0.864629i \(-0.667553\pi\)
−0.867415 + 0.497586i \(0.834220\pi\)
\(662\) 0 0
\(663\) 14.7528 + 3.95300i 0.572952 + 0.153522i
\(664\) 0 0
\(665\) −1.51010 7.37104i −0.0585592 0.285837i
\(666\) 0 0
\(667\) −37.5963 37.5963i −1.45574 1.45574i
\(668\) 0 0
\(669\) −18.3122 31.7176i −0.707990 1.22627i
\(670\) 0 0
\(671\) −2.45750 + 9.17150i −0.0948706 + 0.354062i
\(672\) 0 0
\(673\) −23.2764 6.23688i −0.897238 0.240414i −0.219408 0.975633i \(-0.570413\pi\)
−0.677830 + 0.735219i \(0.737079\pi\)
\(674\) 0 0
\(675\) −17.1507 21.8292i −0.660129 0.840205i
\(676\) 0 0
\(677\) −30.4653 + 30.4653i −1.17088 + 1.17088i −0.188876 + 0.982001i \(0.560484\pi\)
−0.982001 + 0.188876i \(0.939516\pi\)
\(678\) 0 0
\(679\) −20.0651 5.37644i −0.770029 0.206329i
\(680\) 0 0
\(681\) −3.86326 14.4179i −0.148041 0.552495i
\(682\) 0 0
\(683\) −9.95715 + 17.2463i −0.381000 + 0.659911i −0.991205 0.132332i \(-0.957753\pi\)
0.610206 + 0.792243i \(0.291087\pi\)
\(684\) 0 0
\(685\) −3.19310 0.190938i −0.122002 0.00729538i
\(686\) 0 0
\(687\) −0.00859149 0.0320639i −0.000327786 0.00122331i
\(688\) 0 0
\(689\) −3.01224 + 3.01224i −0.114757 + 0.114757i
\(690\) 0 0
\(691\) 9.11179 + 5.26070i 0.346629 + 0.200126i 0.663200 0.748443i \(-0.269198\pi\)
−0.316571 + 0.948569i \(0.602531\pi\)
\(692\) 0 0
\(693\) 5.00327 + 5.00327i 0.190059 + 0.190059i
\(694\) 0 0
\(695\) −8.42998 41.1481i −0.319767 1.56083i
\(696\) 0 0
\(697\) −17.1649 −0.650168
\(698\) 0 0
\(699\) −26.2115 + 15.1332i −0.991412 + 0.572392i
\(700\) 0 0
\(701\) 24.4073 6.53992i 0.921852 0.247009i 0.233475 0.972363i \(-0.424990\pi\)
0.688377 + 0.725353i \(0.258324\pi\)
\(702\) 0 0
\(703\) 3.00526 9.07827i 0.113346 0.342393i
\(704\) 0 0
\(705\) −8.16828 + 24.5233i −0.307635 + 0.923599i
\(706\) 0 0
\(707\) −10.1575 2.72169i −0.382011 0.102360i
\(708\) 0 0
\(709\) −31.0307 + 31.0307i −1.16538 + 1.16538i −0.182101 + 0.983280i \(0.558290\pi\)
−0.983280 + 0.182101i \(0.941710\pi\)
\(710\) 0 0
\(711\) −0.943667 0.943667i −0.0353903 0.0353903i
\(712\) 0 0
\(713\) 54.4289 54.4289i 2.03838 2.03838i
\(714\) 0 0
\(715\) 17.1553 51.5045i 0.641572 1.92616i
\(716\) 0 0
\(717\) 20.8513 0.778706
\(718\) 0 0
\(719\) −21.0327 12.1432i −0.784388 0.452867i 0.0535953 0.998563i \(-0.482932\pi\)
−0.837983 + 0.545696i \(0.816265\pi\)
\(720\) 0 0
\(721\) 15.0451 + 4.03133i 0.560310 + 0.150135i
\(722\) 0 0
\(723\) 18.1390 + 10.4726i 0.674597 + 0.389479i
\(724\) 0 0
\(725\) −27.5738 + 21.6641i −1.02407 + 0.804584i
\(726\) 0 0
\(727\) 13.8071 + 23.9146i 0.512077 + 0.886943i 0.999902 + 0.0140018i \(0.00445704\pi\)
−0.487825 + 0.872941i \(0.662210\pi\)
\(728\) 0 0
\(729\) 29.9524i 1.10935i
\(730\) 0 0
\(731\) −11.9267 6.88587i −0.441124 0.254683i
\(732\) 0 0
\(733\) −0.418152 + 1.56056i −0.0154448 + 0.0576407i −0.973218 0.229883i \(-0.926166\pi\)
0.957773 + 0.287524i \(0.0928322\pi\)
\(734\) 0 0
\(735\) −0.506393 + 8.46852i −0.0186786 + 0.312366i
\(736\) 0 0
\(737\) −3.42612 + 12.7865i −0.126203 + 0.470995i
\(738\) 0 0
\(739\) 3.78461 0.139219 0.0696095 0.997574i \(-0.477825\pi\)
0.0696095 + 0.997574i \(0.477825\pi\)
\(740\) 0 0
\(741\) −9.77367 −0.359045
\(742\) 0 0
\(743\) −4.25835 + 15.8924i −0.156224 + 0.583035i 0.842774 + 0.538268i \(0.180921\pi\)
−0.998997 + 0.0447670i \(0.985745\pi\)
\(744\) 0 0
\(745\) 13.9834 + 15.7621i 0.512312 + 0.577478i
\(746\) 0 0
\(747\) 1.43244 5.34596i 0.0524104 0.195598i
\(748\) 0 0
\(749\) 23.1822 + 13.3842i 0.847058 + 0.489049i
\(750\) 0 0
\(751\) 15.5864i 0.568755i −0.958712 0.284377i \(-0.908213\pi\)
0.958712 0.284377i \(-0.0917868\pi\)
\(752\) 0 0
\(753\) −17.1791 29.7550i −0.626040 1.08433i
\(754\) 0 0
\(755\) −10.6032 + 31.8336i −0.385892 + 1.15854i
\(756\) 0 0
\(757\) 11.6521 + 6.72736i 0.423504 + 0.244510i 0.696575 0.717484i \(-0.254706\pi\)
−0.273071 + 0.961994i \(0.588040\pi\)
\(758\) 0 0
\(759\) 70.3564 + 18.8519i 2.55377 + 0.684282i
\(760\) 0 0
\(761\) 7.67383 + 4.43049i 0.278176 + 0.160605i 0.632597 0.774481i \(-0.281989\pi\)
−0.354421 + 0.935086i \(0.615322\pi\)
\(762\) 0 0
\(763\) −34.9675 −1.26591
\(764\) 0 0
\(765\) −2.81287 0.936920i −0.101700 0.0338744i
\(766\) 0 0
\(767\) −12.4379 + 12.4379i −0.449107 + 0.449107i
\(768\) 0 0
\(769\) 33.7296 + 33.7296i 1.21632 + 1.21632i 0.968911 + 0.247411i \(0.0795798\pi\)
0.247411 + 0.968911i \(0.420420\pi\)
\(770\) 0 0
\(771\) −11.7748 + 11.7748i −0.424060 + 0.424060i
\(772\) 0 0
\(773\) −37.3170 9.99907i −1.34220 0.359642i −0.484950 0.874542i \(-0.661162\pi\)
−0.857250 + 0.514900i \(0.827829\pi\)
\(774\) 0 0
\(775\) −31.3635 39.9191i −1.12661 1.43394i
\(776\) 0 0
\(777\) 11.2167 17.0650i 0.402397 0.612204i
\(778\) 0 0
\(779\) 10.6099 2.84292i 0.380140 0.101858i
\(780\) 0 0
\(781\) −83.9254 + 48.4544i −3.00309 + 1.73383i
\(782\) 0 0
\(783\) −38.9387 −1.39155
\(784\) 0 0
\(785\) −6.84958 + 10.3792i −0.244472 + 0.370451i
\(786\) 0 0
\(787\) 8.45322 + 8.45322i 0.301325 + 0.301325i 0.841532 0.540207i \(-0.181654\pi\)
−0.540207 + 0.841532i \(0.681654\pi\)
\(788\) 0 0
\(789\) 13.8603 + 8.00222i 0.493438 + 0.284887i
\(790\) 0 0
\(791\) 8.43152 8.43152i 0.299790 0.299790i
\(792\) 0 0
\(793\) 1.59019 + 5.93466i 0.0564692 + 0.210746i
\(794\) 0 0
\(795\) −2.81991 + 2.50169i −0.100012 + 0.0887259i
\(796\) 0 0
\(797\) −5.12625 + 8.87893i −0.181581 + 0.314508i −0.942419 0.334434i \(-0.891455\pi\)
0.760838 + 0.648942i \(0.224788\pi\)
\(798\) 0 0
\(799\) 4.68595 + 17.4882i 0.165777 + 0.618688i
\(800\) 0 0
\(801\) −1.89805 0.508580i −0.0670641 0.0179698i
\(802\) 0 0
\(803\) 2.84300 2.84300i 0.100327 0.100327i
\(804\) 0 0
\(805\) 16.2340 + 32.4496i 0.572172 + 1.14370i
\(806\) 0 0
\(807\) −26.1224 6.99949i −0.919554 0.246394i
\(808\) 0 0
\(809\) −1.54603 + 5.76987i −0.0543556 + 0.202858i −0.987763 0.155959i \(-0.950153\pi\)
0.933408 + 0.358817i \(0.116820\pi\)
\(810\) 0 0
\(811\) −15.2338 26.3857i −0.534932 0.926529i −0.999167 0.0408168i \(-0.987004\pi\)
0.464235 0.885712i \(-0.346329\pi\)
\(812\) 0 0
\(813\) 1.22633 + 1.22633i 0.0430094 + 0.0430094i
\(814\) 0 0
\(815\) −4.65668 + 0.954012i −0.163116 + 0.0334176i
\(816\) 0 0
\(817\) 8.51255 + 2.28093i 0.297816 + 0.0797996i
\(818\) 0 0
\(819\) 4.42250 + 1.18501i 0.154535 + 0.0414075i
\(820\) 0 0
\(821\) 21.0393 + 36.4411i 0.734276 + 1.27180i 0.955040 + 0.296477i \(0.0958117\pi\)
−0.220764 + 0.975327i \(0.570855\pi\)
\(822\) 0 0
\(823\) −11.0856 41.3719i −0.386419 1.44214i −0.835918 0.548854i \(-0.815064\pi\)
0.449499 0.893281i \(-0.351603\pi\)
\(824\) 0 0
\(825\) 17.8743 44.5893i 0.622303 1.55240i
\(826\) 0 0
\(827\) 22.2285 12.8336i 0.772961 0.446269i −0.0609689 0.998140i \(-0.519419\pi\)
0.833930 + 0.551870i \(0.186086\pi\)
\(828\) 0 0
\(829\) 14.4577 3.87393i 0.502136 0.134547i 0.00114511 0.999999i \(-0.499636\pi\)
0.500991 + 0.865452i \(0.332969\pi\)
\(830\) 0 0
\(831\) −27.8794 + 7.47025i −0.967124 + 0.259140i
\(832\) 0 0
\(833\) 2.97118 + 5.14624i 0.102945 + 0.178307i
\(834\) 0 0
\(835\) −16.5759 + 49.7649i −0.573631 + 1.72219i
\(836\) 0 0
\(837\) 56.3721i 1.94851i
\(838\) 0 0
\(839\) −21.3278 + 36.9407i −0.736316 + 1.27534i 0.217828 + 0.975987i \(0.430103\pi\)
−0.954144 + 0.299349i \(0.903230\pi\)
\(840\) 0 0
\(841\) 20.1859i 0.696066i
\(842\) 0 0
\(843\) 18.7852i 0.646996i
\(844\) 0 0
\(845\) −1.21597 5.93533i −0.0418306 0.204182i
\(846\) 0 0
\(847\) −14.6907 + 54.8264i −0.504778 + 1.88386i
\(848\) 0 0
\(849\) 2.55254 + 9.52620i 0.0876028 + 0.326938i
\(850\) 0 0
\(851\) −2.66787 + 46.0376i −0.0914534 + 1.57815i
\(852\) 0 0
\(853\) 12.7726 + 7.37424i 0.437324 + 0.252489i 0.702462 0.711721i \(-0.252084\pi\)
−0.265138 + 0.964211i \(0.585417\pi\)
\(854\) 0 0
\(855\) 1.89386 + 0.113247i 0.0647686 + 0.00387298i
\(856\) 0 0
\(857\) 28.4190i 0.970775i −0.874299 0.485387i \(-0.838679\pi\)
0.874299 0.485387i \(-0.161321\pi\)
\(858\) 0 0
\(859\) 29.9804 29.9804i 1.02292 1.02292i 0.0231882 0.999731i \(-0.492618\pi\)
0.999731 0.0231882i \(-0.00738170\pi\)
\(860\) 0 0
\(861\) 23.4568 0.799404
\(862\) 0 0
\(863\) −9.38802 35.0366i −0.319572 1.19266i −0.919657 0.392723i \(-0.871533\pi\)
0.600085 0.799936i \(-0.295133\pi\)
\(864\) 0 0
\(865\) 26.6109 40.3237i 0.904797 1.37105i
\(866\) 0 0
\(867\) −16.6122 + 4.45122i −0.564180 + 0.151172i
\(868\) 0 0
\(869\) 3.92013 14.6301i 0.132981 0.496293i
\(870\) 0 0
\(871\) 2.21696 + 8.27381i 0.0751188 + 0.280347i
\(872\) 0 0
\(873\) 2.61899 4.53623i 0.0886395 0.153528i
\(874\) 0 0
\(875\) 22.5247 8.08001i 0.761473 0.273154i
\(876\) 0 0
\(877\) 6.04801 + 6.04801i 0.204227 + 0.204227i 0.801808 0.597581i \(-0.203872\pi\)
−0.597581 + 0.801808i \(0.703872\pi\)
\(878\) 0 0
\(879\) 16.1914 28.0442i 0.546121 0.945909i
\(880\) 0 0
\(881\) −4.94232 + 2.85345i −0.166511 + 0.0961352i −0.580940 0.813947i \(-0.697315\pi\)
0.414429 + 0.910082i \(0.363981\pi\)
\(882\) 0 0
\(883\) −12.4918 + 7.21216i −0.420383 + 0.242708i −0.695241 0.718776i \(-0.744702\pi\)
0.274858 + 0.961485i \(0.411369\pi\)
\(884\) 0 0
\(885\) −11.6438 + 10.3298i −0.391401 + 0.347233i
\(886\) 0 0
\(887\) 25.5592 25.5592i 0.858192 0.858192i −0.132933 0.991125i \(-0.542439\pi\)
0.991125 + 0.132933i \(0.0424394\pi\)
\(888\) 0 0
\(889\) 20.0525i 0.672541i
\(890\) 0 0
\(891\) 37.6079 21.7129i 1.25991 0.727410i
\(892\) 0 0
\(893\) −5.79293 10.0336i −0.193853 0.335763i
\(894\) 0 0
\(895\) 54.7073 + 3.27134i 1.82866 + 0.109349i
\(896\) 0 0
\(897\) 45.5259 12.1986i 1.52007 0.407301i
\(898\) 0 0
\(899\) −71.2073 −2.37490
\(900\) 0 0
\(901\) −0.683401 + 2.55049i −0.0227674 + 0.0849691i
\(902\) 0 0
\(903\) 16.2984 + 9.40991i 0.542378 + 0.313142i
\(904\) 0 0
\(905\) −34.5543 11.5094i −1.14862 0.382587i
\(906\) 0 0
\(907\) 8.69782 5.02169i 0.288806 0.166742i −0.348597 0.937273i \(-0.613342\pi\)
0.637403 + 0.770530i \(0.280008\pi\)
\(908\) 0 0
\(909\) 1.32580 2.29635i 0.0439740 0.0761652i
\(910\) 0 0
\(911\) −30.0237 30.0237i −0.994730 0.994730i 0.00525595 0.999986i \(-0.498327\pi\)
−0.999986 + 0.00525595i \(0.998327\pi\)
\(912\) 0 0
\(913\) 60.6731 16.2573i 2.00799 0.538038i
\(914\) 0 0
\(915\) 1.09119 + 5.32626i 0.0360735 + 0.176081i
\(916\) 0 0
\(917\) −17.3943 −0.574412
\(918\) 0 0
\(919\) 2.42586 + 2.42586i 0.0800219 + 0.0800219i 0.745985 0.665963i \(-0.231979\pi\)
−0.665963 + 0.745985i \(0.731979\pi\)
\(920\) 0 0
\(921\) −3.25757 5.64227i −0.107340 0.185919i
\(922\) 0 0
\(923\) −31.3537 + 54.3062i −1.03202 + 1.78751i
\(924\) 0 0
\(925\) 29.9368 + 5.36527i 0.984317 + 0.176409i
\(926\) 0 0
\(927\) −1.96376 + 3.40133i −0.0644983 + 0.111714i
\(928\) 0 0
\(929\) 4.26647 + 7.38974i 0.139978 + 0.242450i 0.927488 0.373852i \(-0.121963\pi\)
−0.787510 + 0.616302i \(0.788630\pi\)
\(930\) 0 0
\(931\) −2.68888 2.68888i −0.0881245 0.0881245i
\(932\) 0 0
\(933\) 19.5145 0.638876
\(934\) 0 0
\(935\) −6.75330 32.9639i −0.220856 1.07804i
\(936\) 0 0
\(937\) −9.04356 + 2.42321i −0.295440 + 0.0791630i −0.403495 0.914982i \(-0.632205\pi\)
0.108054 + 0.994145i \(0.465538\pi\)
\(938\) 0 0
\(939\) 5.06297 + 5.06297i 0.165224 + 0.165224i
\(940\) 0 0
\(941\) 2.98104 5.16331i 0.0971791 0.168319i −0.813337 0.581793i \(-0.802351\pi\)
0.910516 + 0.413474i \(0.135685\pi\)
\(942\) 0 0
\(943\) −45.8729 + 26.4848i −1.49383 + 0.862462i
\(944\) 0 0
\(945\) 25.2109 + 8.39732i 0.820110 + 0.273165i
\(946\) 0 0
\(947\) −32.5395 18.7867i −1.05739 0.610485i −0.132682 0.991159i \(-0.542359\pi\)
−0.924709 + 0.380674i \(0.875692\pi\)
\(948\) 0 0
\(949\) 0.673355 2.51299i 0.0218580 0.0815753i
\(950\) 0 0
\(951\) 32.3779 1.04993
\(952\) 0 0
\(953\) −23.0281 + 6.17036i −0.745953 + 0.199877i −0.611722 0.791073i \(-0.709523\pi\)
−0.134231 + 0.990950i \(0.542856\pi\)
\(954\) 0 0
\(955\) 23.5254 + 1.40676i 0.761265 + 0.0455215i
\(956\) 0 0
\(957\) −33.6907 58.3540i −1.08907 1.88632i
\(958\) 0 0
\(959\) 2.65168 1.53095i 0.0856273 0.0494369i
\(960\) 0 0
\(961\) 72.0880i 2.32542i
\(962\) 0 0
\(963\) −4.77282 + 4.77282i −0.153802 + 0.153802i
\(964\) 0 0
\(965\) 43.8200 38.8751i 1.41062 1.25143i
\(966\) 0 0
\(967\) 6.74953 3.89684i 0.217050 0.125314i −0.387533 0.921856i \(-0.626673\pi\)
0.604584 + 0.796542i \(0.293340\pi\)
\(968\) 0 0
\(969\) −5.24642 + 3.02902i −0.168539 + 0.0973062i
\(970\) 0 0
\(971\) 6.98253 12.0941i 0.224080 0.388118i −0.731963 0.681344i \(-0.761396\pi\)
0.956043 + 0.293226i \(0.0947290\pi\)
\(972\) 0 0
\(973\) 28.4293 + 28.4293i 0.911401 + 0.911401i
\(974\) 0 0
\(975\) −4.40987 30.7702i −0.141229 0.985434i
\(976\) 0 0
\(977\) −14.4009 + 24.9431i −0.460726 + 0.798000i −0.998997 0.0447713i \(-0.985744\pi\)
0.538272 + 0.842771i \(0.319077\pi\)
\(978\) 0 0
\(979\) −5.77205 21.5416i −0.184475 0.688472i
\(980\) 0 0
\(981\) 2.28206 8.51675i 0.0728605 0.271919i
\(982\) 0 0
\(983\) 12.1884 3.26586i 0.388748 0.104165i −0.0591504 0.998249i \(-0.518839\pi\)
0.447899 + 0.894084i \(0.352173\pi\)
\(984\) 0 0
\(985\) −22.0814 + 33.4602i −0.703573 + 1.06613i
\(986\) 0 0
\(987\) −6.40360 23.8986i −0.203829 0.760699i
\(988\) 0 0
\(989\) −42.4985 −1.35137
\(990\) 0 0
\(991\) −13.0769 + 13.0769i −0.415403 + 0.415403i −0.883616 0.468213i \(-0.844898\pi\)
0.468213 + 0.883616i \(0.344898\pi\)
\(992\) 0 0
\(993\) 8.41084i 0.266910i
\(994\) 0 0
\(995\) 54.3469 + 3.24979i 1.72291 + 0.103025i
\(996\) 0 0
\(997\) −9.04229 5.22057i −0.286372 0.165337i 0.349933 0.936775i \(-0.386205\pi\)
−0.636305 + 0.771438i \(0.719538\pi\)
\(998\) 0 0
\(999\) 22.4591 + 25.2222i 0.710575 + 0.797996i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.bf.a.97.15 76
5.3 odd 4 740.2.bi.a.393.15 yes 76
37.29 odd 12 740.2.bi.a.177.15 yes 76
185.103 even 12 inner 740.2.bf.a.473.15 yes 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.bf.a.97.15 76 1.1 even 1 trivial
740.2.bf.a.473.15 yes 76 185.103 even 12 inner
740.2.bi.a.177.15 yes 76 37.29 odd 12
740.2.bi.a.393.15 yes 76 5.3 odd 4