Properties

Label 740.2.bf.a.97.19
Level $740$
Weight $2$
Character 740.97
Analytic conductor $5.909$
Analytic rank $0$
Dimension $76$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [740,2,Mod(97,740)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(740, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("740.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.bf (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(76\)
Relative dimension: \(19\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 97.19
Character \(\chi\) \(=\) 740.97
Dual form 740.2.bf.a.473.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.843267 - 3.14712i) q^{3} +(-2.00134 - 0.997312i) q^{5} +(0.336984 - 1.25764i) q^{7} +(-6.59517 - 3.80772i) q^{9} +0.753951i q^{11} +(0.257348 + 0.445740i) q^{13} +(-4.82632 + 5.45745i) q^{15} +(-4.71154 - 2.72021i) q^{17} +(8.35912 + 2.23982i) q^{19} +(-3.67377 - 2.12105i) q^{21} -7.75662 q^{23} +(3.01074 + 3.99193i) q^{25} +(-10.6333 + 10.6333i) q^{27} +(1.51569 + 1.51569i) q^{29} +(5.02996 - 5.02996i) q^{31} +(2.37277 + 0.635783i) q^{33} +(-1.92868 + 2.18089i) q^{35} +(-3.80792 - 4.74339i) q^{37} +(1.61981 - 0.434026i) q^{39} +(5.29441 - 3.05673i) q^{41} -6.78856 q^{43} +(9.40169 + 14.1980i) q^{45} +(1.96762 + 1.96762i) q^{47} +(4.59408 + 2.65239i) q^{49} +(-12.5339 + 12.5339i) q^{51} +(-0.0508139 - 0.189640i) q^{53} +(0.751925 - 1.50891i) q^{55} +(14.0979 - 24.4183i) q^{57} +(-2.50761 - 9.35852i) q^{59} +(-9.48560 - 2.54166i) q^{61} +(-7.01120 + 7.01120i) q^{63} +(-0.0704995 - 1.14873i) q^{65} +(0.679656 + 0.182113i) q^{67} +(-6.54090 + 24.4110i) q^{69} +(3.51261 + 6.08402i) q^{71} +(2.33866 + 2.33866i) q^{73} +(15.1019 - 6.10888i) q^{75} +(0.948199 + 0.254069i) q^{77} +(-13.2069 - 3.53879i) q^{79} +(13.0743 + 22.6454i) q^{81} +(0.350447 + 1.30789i) q^{83} +(6.71650 + 10.1429i) q^{85} +(6.04818 - 3.49192i) q^{87} +(8.40884 - 2.25314i) q^{89} +(0.647302 - 0.173444i) q^{91} +(-11.5883 - 20.0715i) q^{93} +(-14.4956 - 12.8193i) q^{95} -3.58048i q^{97} +(2.87084 - 4.97244i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q - 2 q^{3} + 8 q^{13} + 2 q^{15} + 12 q^{19} - 4 q^{23} + 2 q^{25} + 28 q^{27} - 6 q^{29} + 16 q^{31} - 6 q^{33} + 20 q^{35} - 22 q^{37} + 8 q^{39} + 54 q^{41} - 16 q^{43} + 38 q^{45} + 8 q^{47} - 36 q^{49}+ \cdots - 70 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.843267 3.14712i 0.486861 1.81699i −0.0846714 0.996409i \(-0.526984\pi\)
0.571532 0.820580i \(-0.306349\pi\)
\(4\) 0 0
\(5\) −2.00134 0.997312i −0.895027 0.446012i
\(6\) 0 0
\(7\) 0.336984 1.25764i 0.127368 0.475343i −0.872545 0.488533i \(-0.837532\pi\)
0.999913 + 0.0131903i \(0.00419871\pi\)
\(8\) 0 0
\(9\) −6.59517 3.80772i −2.19839 1.26924i
\(10\) 0 0
\(11\) 0.753951i 0.227325i 0.993519 + 0.113662i \(0.0362582\pi\)
−0.993519 + 0.113662i \(0.963742\pi\)
\(12\) 0 0
\(13\) 0.257348 + 0.445740i 0.0713755 + 0.123626i 0.899504 0.436912i \(-0.143928\pi\)
−0.828129 + 0.560538i \(0.810594\pi\)
\(14\) 0 0
\(15\) −4.82632 + 5.45745i −1.24615 + 1.40911i
\(16\) 0 0
\(17\) −4.71154 2.72021i −1.14272 0.659747i −0.195614 0.980681i \(-0.562670\pi\)
−0.947102 + 0.320934i \(0.896003\pi\)
\(18\) 0 0
\(19\) 8.35912 + 2.23982i 1.91771 + 0.513850i 0.990112 + 0.140276i \(0.0447989\pi\)
0.927600 + 0.373574i \(0.121868\pi\)
\(20\) 0 0
\(21\) −3.67377 2.12105i −0.801683 0.462852i
\(22\) 0 0
\(23\) −7.75662 −1.61737 −0.808683 0.588245i \(-0.799819\pi\)
−0.808683 + 0.588245i \(0.799819\pi\)
\(24\) 0 0
\(25\) 3.01074 + 3.99193i 0.602147 + 0.798385i
\(26\) 0 0
\(27\) −10.6333 + 10.6333i −2.04638 + 2.04638i
\(28\) 0 0
\(29\) 1.51569 + 1.51569i 0.281456 + 0.281456i 0.833690 0.552233i \(-0.186224\pi\)
−0.552233 + 0.833690i \(0.686224\pi\)
\(30\) 0 0
\(31\) 5.02996 5.02996i 0.903408 0.903408i −0.0923213 0.995729i \(-0.529429\pi\)
0.995729 + 0.0923213i \(0.0294287\pi\)
\(32\) 0 0
\(33\) 2.37277 + 0.635783i 0.413047 + 0.110676i
\(34\) 0 0
\(35\) −1.92868 + 2.18089i −0.326006 + 0.368637i
\(36\) 0 0
\(37\) −3.80792 4.74339i −0.626018 0.779809i
\(38\) 0 0
\(39\) 1.61981 0.434026i 0.259377 0.0694999i
\(40\) 0 0
\(41\) 5.29441 3.05673i 0.826849 0.477381i −0.0259238 0.999664i \(-0.508253\pi\)
0.852772 + 0.522283i \(0.174919\pi\)
\(42\) 0 0
\(43\) −6.78856 −1.03525 −0.517623 0.855609i \(-0.673183\pi\)
−0.517623 + 0.855609i \(0.673183\pi\)
\(44\) 0 0
\(45\) 9.40169 + 14.1980i 1.40152 + 2.11651i
\(46\) 0 0
\(47\) 1.96762 + 1.96762i 0.287007 + 0.287007i 0.835896 0.548888i \(-0.184949\pi\)
−0.548888 + 0.835896i \(0.684949\pi\)
\(48\) 0 0
\(49\) 4.59408 + 2.65239i 0.656297 + 0.378913i
\(50\) 0 0
\(51\) −12.5339 + 12.5339i −1.75510 + 1.75510i
\(52\) 0 0
\(53\) −0.0508139 0.189640i −0.00697983 0.0260491i 0.962348 0.271820i \(-0.0876256\pi\)
−0.969328 + 0.245771i \(0.920959\pi\)
\(54\) 0 0
\(55\) 0.751925 1.50891i 0.101390 0.203462i
\(56\) 0 0
\(57\) 14.0979 24.4183i 1.86732 3.23429i
\(58\) 0 0
\(59\) −2.50761 9.35852i −0.326463 1.21838i −0.912833 0.408333i \(-0.866110\pi\)
0.586370 0.810043i \(-0.300556\pi\)
\(60\) 0 0
\(61\) −9.48560 2.54166i −1.21451 0.325426i −0.405978 0.913883i \(-0.633069\pi\)
−0.808529 + 0.588457i \(0.799736\pi\)
\(62\) 0 0
\(63\) −7.01120 + 7.01120i −0.883329 + 0.883329i
\(64\) 0 0
\(65\) −0.0704995 1.14873i −0.00874438 0.142483i
\(66\) 0 0
\(67\) 0.679656 + 0.182113i 0.0830331 + 0.0222487i 0.300096 0.953909i \(-0.402981\pi\)
−0.217063 + 0.976158i \(0.569648\pi\)
\(68\) 0 0
\(69\) −6.54090 + 24.4110i −0.787432 + 2.93874i
\(70\) 0 0
\(71\) 3.51261 + 6.08402i 0.416871 + 0.722041i 0.995623 0.0934625i \(-0.0297935\pi\)
−0.578752 + 0.815503i \(0.696460\pi\)
\(72\) 0 0
\(73\) 2.33866 + 2.33866i 0.273719 + 0.273719i 0.830596 0.556876i \(-0.188000\pi\)
−0.556876 + 0.830596i \(0.688000\pi\)
\(74\) 0 0
\(75\) 15.1019 6.10888i 1.74382 0.705393i
\(76\) 0 0
\(77\) 0.948199 + 0.254069i 0.108057 + 0.0289539i
\(78\) 0 0
\(79\) −13.2069 3.53879i −1.48590 0.398145i −0.577548 0.816357i \(-0.695990\pi\)
−0.908350 + 0.418212i \(0.862657\pi\)
\(80\) 0 0
\(81\) 13.0743 + 22.6454i 1.45270 + 2.51615i
\(82\) 0 0
\(83\) 0.350447 + 1.30789i 0.0384666 + 0.143559i 0.982488 0.186324i \(-0.0596574\pi\)
−0.944022 + 0.329883i \(0.892991\pi\)
\(84\) 0 0
\(85\) 6.71650 + 10.1429i 0.728507 + 1.10016i
\(86\) 0 0
\(87\) 6.04818 3.49192i 0.648433 0.374373i
\(88\) 0 0
\(89\) 8.40884 2.25314i 0.891335 0.238832i 0.216044 0.976384i \(-0.430685\pi\)
0.675291 + 0.737551i \(0.264018\pi\)
\(90\) 0 0
\(91\) 0.647302 0.173444i 0.0678557 0.0181819i
\(92\) 0 0
\(93\) −11.5883 20.0715i −1.20165 2.08132i
\(94\) 0 0
\(95\) −14.4956 12.8193i −1.48722 1.31523i
\(96\) 0 0
\(97\) 3.58048i 0.363543i −0.983341 0.181772i \(-0.941817\pi\)
0.983341 0.181772i \(-0.0581831\pi\)
\(98\) 0 0
\(99\) 2.87084 4.97244i 0.288530 0.499749i
\(100\) 0 0
\(101\) 4.51410i 0.449169i −0.974455 0.224585i \(-0.927897\pi\)
0.974455 0.224585i \(-0.0721025\pi\)
\(102\) 0 0
\(103\) 8.78656i 0.865766i −0.901450 0.432883i \(-0.857496\pi\)
0.901450 0.432883i \(-0.142504\pi\)
\(104\) 0 0
\(105\) 5.23712 + 7.90885i 0.511091 + 0.771825i
\(106\) 0 0
\(107\) 1.62511 6.06499i 0.157105 0.586325i −0.841811 0.539773i \(-0.818510\pi\)
0.998916 0.0465518i \(-0.0148232\pi\)
\(108\) 0 0
\(109\) −4.06748 15.1800i −0.389594 1.45398i −0.830797 0.556576i \(-0.812115\pi\)
0.441203 0.897407i \(-0.354552\pi\)
\(110\) 0 0
\(111\) −18.1391 + 7.98401i −1.72169 + 0.757809i
\(112\) 0 0
\(113\) −0.0331903 0.0191624i −0.00312228 0.00180265i 0.498438 0.866925i \(-0.333907\pi\)
−0.501560 + 0.865123i \(0.667240\pi\)
\(114\) 0 0
\(115\) 15.5236 + 7.73577i 1.44759 + 0.721364i
\(116\) 0 0
\(117\) 3.91964i 0.362371i
\(118\) 0 0
\(119\) −5.00875 + 5.00875i −0.459151 + 0.459151i
\(120\) 0 0
\(121\) 10.4316 0.948323
\(122\) 0 0
\(123\) −5.15528 19.2398i −0.464836 1.73479i
\(124\) 0 0
\(125\) −2.04432 10.9919i −0.182849 0.983141i
\(126\) 0 0
\(127\) −7.33510 + 1.96543i −0.650884 + 0.174404i −0.569129 0.822248i \(-0.692719\pi\)
−0.0817557 + 0.996652i \(0.526053\pi\)
\(128\) 0 0
\(129\) −5.72457 + 21.3644i −0.504021 + 1.88103i
\(130\) 0 0
\(131\) −4.85667 18.1254i −0.424330 1.58362i −0.765383 0.643576i \(-0.777450\pi\)
0.341053 0.940044i \(-0.389216\pi\)
\(132\) 0 0
\(133\) 5.63377 9.75798i 0.488510 0.846124i
\(134\) 0 0
\(135\) 31.8855 10.6761i 2.74427 0.918855i
\(136\) 0 0
\(137\) −10.7920 10.7920i −0.922025 0.922025i 0.0751471 0.997172i \(-0.476057\pi\)
−0.997172 + 0.0751471i \(0.976057\pi\)
\(138\) 0 0
\(139\) −0.628806 + 1.08912i −0.0533346 + 0.0923783i −0.891460 0.453099i \(-0.850318\pi\)
0.838125 + 0.545477i \(0.183652\pi\)
\(140\) 0 0
\(141\) 7.85157 4.53310i 0.661221 0.381756i
\(142\) 0 0
\(143\) −0.336066 + 0.194028i −0.0281033 + 0.0162254i
\(144\) 0 0
\(145\) −1.52180 4.54503i −0.126378 0.377444i
\(146\) 0 0
\(147\) 12.2214 12.2214i 1.00801 1.00801i
\(148\) 0 0
\(149\) 17.0103i 1.39354i 0.717295 + 0.696769i \(0.245380\pi\)
−0.717295 + 0.696769i \(0.754620\pi\)
\(150\) 0 0
\(151\) 11.7599 6.78958i 0.957007 0.552528i 0.0617565 0.998091i \(-0.480330\pi\)
0.895251 + 0.445563i \(0.146996\pi\)
\(152\) 0 0
\(153\) 20.7156 + 35.8804i 1.67476 + 2.90076i
\(154\) 0 0
\(155\) −15.0831 + 5.05023i −1.21151 + 0.405644i
\(156\) 0 0
\(157\) 5.00541 1.34119i 0.399475 0.107039i −0.0534876 0.998569i \(-0.517034\pi\)
0.452963 + 0.891530i \(0.350367\pi\)
\(158\) 0 0
\(159\) −0.639669 −0.0507291
\(160\) 0 0
\(161\) −2.61385 + 9.75503i −0.206000 + 0.768804i
\(162\) 0 0
\(163\) 19.4362 + 11.2215i 1.52236 + 0.878934i 0.999651 + 0.0264223i \(0.00841145\pi\)
0.522708 + 0.852512i \(0.324922\pi\)
\(164\) 0 0
\(165\) −4.11466 3.63881i −0.320326 0.283281i
\(166\) 0 0
\(167\) −6.65984 + 3.84506i −0.515354 + 0.297540i −0.735032 0.678033i \(-0.762833\pi\)
0.219678 + 0.975572i \(0.429499\pi\)
\(168\) 0 0
\(169\) 6.36754 11.0289i 0.489811 0.848378i
\(170\) 0 0
\(171\) −46.6012 46.6012i −3.56368 3.56368i
\(172\) 0 0
\(173\) 4.47400 1.19881i 0.340152 0.0911435i −0.0846993 0.996407i \(-0.526993\pi\)
0.424852 + 0.905263i \(0.360326\pi\)
\(174\) 0 0
\(175\) 6.03497 2.44121i 0.456201 0.184538i
\(176\) 0 0
\(177\) −31.5669 −2.37272
\(178\) 0 0
\(179\) −0.0394269 0.0394269i −0.00294691 0.00294691i 0.705632 0.708579i \(-0.250663\pi\)
−0.708579 + 0.705632i \(0.750663\pi\)
\(180\) 0 0
\(181\) 1.38206 + 2.39380i 0.102728 + 0.177929i 0.912808 0.408390i \(-0.133910\pi\)
−0.810080 + 0.586319i \(0.800576\pi\)
\(182\) 0 0
\(183\) −15.9978 + 27.7090i −1.18259 + 2.04831i
\(184\) 0 0
\(185\) 2.89030 + 13.2908i 0.212499 + 0.977161i
\(186\) 0 0
\(187\) 2.05090 3.55227i 0.149977 0.259768i
\(188\) 0 0
\(189\) 9.78960 + 16.9561i 0.712089 + 1.23337i
\(190\) 0 0
\(191\) −13.5132 13.5132i −0.977783 0.977783i 0.0219752 0.999759i \(-0.493005\pi\)
−0.999759 + 0.0219752i \(0.993005\pi\)
\(192\) 0 0
\(193\) 17.9898 1.29493 0.647467 0.762093i \(-0.275828\pi\)
0.647467 + 0.762093i \(0.275828\pi\)
\(194\) 0 0
\(195\) −3.67465 0.746820i −0.263147 0.0534809i
\(196\) 0 0
\(197\) 1.02074 0.273507i 0.0727249 0.0194866i −0.222273 0.974984i \(-0.571348\pi\)
0.294998 + 0.955498i \(0.404681\pi\)
\(198\) 0 0
\(199\) 18.2309 + 18.2309i 1.29235 + 1.29235i 0.933328 + 0.359024i \(0.116890\pi\)
0.359024 + 0.933328i \(0.383110\pi\)
\(200\) 0 0
\(201\) 1.14626 1.98539i 0.0808511 0.140038i
\(202\) 0 0
\(203\) 2.41695 1.39543i 0.169637 0.0979399i
\(204\) 0 0
\(205\) −13.6444 + 0.837380i −0.952970 + 0.0584851i
\(206\) 0 0
\(207\) 51.1562 + 29.5350i 3.55560 + 2.05283i
\(208\) 0 0
\(209\) −1.68871 + 6.30237i −0.116811 + 0.435944i
\(210\) 0 0
\(211\) 5.17023 0.355933 0.177967 0.984037i \(-0.443048\pi\)
0.177967 + 0.984037i \(0.443048\pi\)
\(212\) 0 0
\(213\) 22.1092 5.92414i 1.51490 0.405916i
\(214\) 0 0
\(215\) 13.5862 + 6.77032i 0.926574 + 0.461732i
\(216\) 0 0
\(217\) −4.63087 8.02090i −0.314364 0.544494i
\(218\) 0 0
\(219\) 9.33215 5.38792i 0.630608 0.364082i
\(220\) 0 0
\(221\) 2.80016i 0.188359i
\(222\) 0 0
\(223\) 3.17253 3.17253i 0.212448 0.212448i −0.592858 0.805307i \(-0.702001\pi\)
0.805307 + 0.592858i \(0.202001\pi\)
\(224\) 0 0
\(225\) −4.65617 37.7915i −0.310411 2.51943i
\(226\) 0 0
\(227\) 7.65611 4.42026i 0.508154 0.293383i −0.223920 0.974607i \(-0.571886\pi\)
0.732075 + 0.681225i \(0.238552\pi\)
\(228\) 0 0
\(229\) 5.31204 3.06691i 0.351030 0.202667i −0.314109 0.949387i \(-0.601706\pi\)
0.665139 + 0.746720i \(0.268372\pi\)
\(230\) 0 0
\(231\) 1.59917 2.76985i 0.105218 0.182242i
\(232\) 0 0
\(233\) 13.2535 + 13.2535i 0.868262 + 0.868262i 0.992280 0.124018i \(-0.0395779\pi\)
−0.124018 + 0.992280i \(0.539578\pi\)
\(234\) 0 0
\(235\) −1.97555 5.90022i −0.128871 0.384888i
\(236\) 0 0
\(237\) −22.2740 + 38.5797i −1.44685 + 2.50602i
\(238\) 0 0
\(239\) 2.67258 + 9.97420i 0.172875 + 0.645177i 0.996904 + 0.0786298i \(0.0250545\pi\)
−0.824029 + 0.566547i \(0.808279\pi\)
\(240\) 0 0
\(241\) −2.32393 + 8.67301i −0.149697 + 0.558678i 0.849804 + 0.527099i \(0.176720\pi\)
−0.999501 + 0.0315789i \(0.989946\pi\)
\(242\) 0 0
\(243\) 38.7168 10.3741i 2.48369 0.665501i
\(244\) 0 0
\(245\) −6.54906 9.89007i −0.418404 0.631854i
\(246\) 0 0
\(247\) 1.15283 + 4.30240i 0.0733526 + 0.273755i
\(248\) 0 0
\(249\) 4.41159 0.279573
\(250\) 0 0
\(251\) 10.4423 10.4423i 0.659111 0.659111i −0.296059 0.955170i \(-0.595672\pi\)
0.955170 + 0.296059i \(0.0956725\pi\)
\(252\) 0 0
\(253\) 5.84811i 0.367668i
\(254\) 0 0
\(255\) 37.5848 12.5844i 2.35365 0.788066i
\(256\) 0 0
\(257\) 10.0055 + 5.77665i 0.624123 + 0.360338i 0.778472 0.627679i \(-0.215995\pi\)
−0.154350 + 0.988016i \(0.549328\pi\)
\(258\) 0 0
\(259\) −7.24868 + 3.19054i −0.450411 + 0.198251i
\(260\) 0 0
\(261\) −4.22490 15.7675i −0.261515 0.975986i
\(262\) 0 0
\(263\) −0.0322467 + 0.120346i −0.00198841 + 0.00742086i −0.966913 0.255107i \(-0.917889\pi\)
0.964924 + 0.262528i \(0.0845561\pi\)
\(264\) 0 0
\(265\) −0.0874344 + 0.430212i −0.00537105 + 0.0264277i
\(266\) 0 0
\(267\) 28.3636i 1.73582i
\(268\) 0 0
\(269\) 19.4827i 1.18788i 0.804510 + 0.593940i \(0.202428\pi\)
−0.804510 + 0.593940i \(0.797572\pi\)
\(270\) 0 0
\(271\) −11.5488 + 20.0031i −0.701541 + 1.21510i 0.266385 + 0.963867i \(0.414171\pi\)
−0.967926 + 0.251237i \(0.919163\pi\)
\(272\) 0 0
\(273\) 2.18340i 0.132145i
\(274\) 0 0
\(275\) −3.00972 + 2.26995i −0.181493 + 0.136883i
\(276\) 0 0
\(277\) 3.16913 + 5.48909i 0.190415 + 0.329808i 0.945388 0.325948i \(-0.105683\pi\)
−0.754973 + 0.655756i \(0.772350\pi\)
\(278\) 0 0
\(279\) −52.3261 + 14.0207i −3.13268 + 0.839400i
\(280\) 0 0
\(281\) 10.9155 2.92479i 0.651163 0.174479i 0.0819083 0.996640i \(-0.473899\pi\)
0.569255 + 0.822161i \(0.307232\pi\)
\(282\) 0 0
\(283\) −6.34817 + 3.66512i −0.377360 + 0.217869i −0.676669 0.736288i \(-0.736577\pi\)
0.299309 + 0.954156i \(0.403244\pi\)
\(284\) 0 0
\(285\) −52.5675 + 34.8094i −3.11383 + 2.06193i
\(286\) 0 0
\(287\) −2.06014 7.68853i −0.121606 0.453840i
\(288\) 0 0
\(289\) 6.29905 + 10.9103i 0.370533 + 0.641781i
\(290\) 0 0
\(291\) −11.2682 3.01931i −0.660554 0.176995i
\(292\) 0 0
\(293\) 7.41855 + 1.98779i 0.433396 + 0.116128i 0.468920 0.883241i \(-0.344643\pi\)
−0.0355238 + 0.999369i \(0.511310\pi\)
\(294\) 0 0
\(295\) −4.31479 + 21.2305i −0.251217 + 1.23609i
\(296\) 0 0
\(297\) −8.01698 8.01698i −0.465192 0.465192i
\(298\) 0 0
\(299\) −1.99615 3.45743i −0.115440 0.199949i
\(300\) 0 0
\(301\) −2.28763 + 8.53757i −0.131857 + 0.492097i
\(302\) 0 0
\(303\) −14.2064 3.80659i −0.816135 0.218683i
\(304\) 0 0
\(305\) 16.4491 + 14.5468i 0.941873 + 0.832949i
\(306\) 0 0
\(307\) −21.7666 + 21.7666i −1.24229 + 1.24229i −0.283234 + 0.959051i \(0.591407\pi\)
−0.959051 + 0.283234i \(0.908593\pi\)
\(308\) 0 0
\(309\) −27.6523 7.40942i −1.57309 0.421507i
\(310\) 0 0
\(311\) −0.626820 2.33932i −0.0355437 0.132651i 0.945874 0.324534i \(-0.105207\pi\)
−0.981418 + 0.191883i \(0.938541\pi\)
\(312\) 0 0
\(313\) 8.06952 13.9768i 0.456116 0.790016i −0.542636 0.839968i \(-0.682574\pi\)
0.998752 + 0.0499522i \(0.0159069\pi\)
\(314\) 0 0
\(315\) 21.0242 7.03945i 1.18458 0.396628i
\(316\) 0 0
\(317\) −3.46889 12.9461i −0.194832 0.727123i −0.992310 0.123776i \(-0.960500\pi\)
0.797478 0.603348i \(-0.206167\pi\)
\(318\) 0 0
\(319\) −1.14276 + 1.14276i −0.0639820 + 0.0639820i
\(320\) 0 0
\(321\) −17.7168 10.2288i −0.988857 0.570917i
\(322\) 0 0
\(323\) −33.2915 33.2915i −1.85239 1.85239i
\(324\) 0 0
\(325\) −1.00455 + 2.36932i −0.0557226 + 0.131426i
\(326\) 0 0
\(327\) −51.2033 −2.83155
\(328\) 0 0
\(329\) 3.13762 1.81150i 0.172982 0.0998714i
\(330\) 0 0
\(331\) −13.4650 + 3.60793i −0.740101 + 0.198310i −0.609123 0.793076i \(-0.708478\pi\)
−0.130978 + 0.991385i \(0.541812\pi\)
\(332\) 0 0
\(333\) 7.05233 + 45.7830i 0.386465 + 2.50889i
\(334\) 0 0
\(335\) −1.17860 1.04230i −0.0643938 0.0569469i
\(336\) 0 0
\(337\) −10.4763 2.80712i −0.570681 0.152913i −0.0380719 0.999275i \(-0.512122\pi\)
−0.532609 + 0.846362i \(0.678788\pi\)
\(338\) 0 0
\(339\) −0.0882947 + 0.0882947i −0.00479551 + 0.00479551i
\(340\) 0 0
\(341\) 3.79235 + 3.79235i 0.205367 + 0.205367i
\(342\) 0 0
\(343\) 11.3285 11.3285i 0.611680 0.611680i
\(344\) 0 0
\(345\) 37.4359 42.3314i 2.01548 2.27904i
\(346\) 0 0
\(347\) −24.3833 −1.30896 −0.654482 0.756078i \(-0.727113\pi\)
−0.654482 + 0.756078i \(0.727113\pi\)
\(348\) 0 0
\(349\) −27.8464 16.0771i −1.49058 0.860588i −0.490640 0.871362i \(-0.663237\pi\)
−0.999942 + 0.0107744i \(0.996570\pi\)
\(350\) 0 0
\(351\) −7.47613 2.00322i −0.399047 0.106924i
\(352\) 0 0
\(353\) 1.81044 + 1.04526i 0.0963598 + 0.0556334i 0.547406 0.836867i \(-0.315616\pi\)
−0.451046 + 0.892501i \(0.648949\pi\)
\(354\) 0 0
\(355\) −0.962266 15.6794i −0.0510718 0.832175i
\(356\) 0 0
\(357\) 11.5394 + 19.9868i 0.610730 + 1.05782i
\(358\) 0 0
\(359\) 6.88791i 0.363530i 0.983342 + 0.181765i \(0.0581810\pi\)
−0.983342 + 0.181765i \(0.941819\pi\)
\(360\) 0 0
\(361\) 48.4036 + 27.9458i 2.54756 + 1.47083i
\(362\) 0 0
\(363\) 8.79659 32.8293i 0.461701 1.72309i
\(364\) 0 0
\(365\) −2.34808 7.01283i −0.122904 0.367068i
\(366\) 0 0
\(367\) 3.16441 11.8097i 0.165181 0.616463i −0.832836 0.553519i \(-0.813284\pi\)
0.998017 0.0629438i \(-0.0200489\pi\)
\(368\) 0 0
\(369\) −46.5567 −2.42365
\(370\) 0 0
\(371\) −0.255622 −0.0132713
\(372\) 0 0
\(373\) 3.22643 12.0412i 0.167058 0.623469i −0.830711 0.556704i \(-0.812066\pi\)
0.997769 0.0667647i \(-0.0212677\pi\)
\(374\) 0 0
\(375\) −36.3165 2.83537i −1.87538 0.146418i
\(376\) 0 0
\(377\) −0.285543 + 1.06566i −0.0147062 + 0.0548844i
\(378\) 0 0
\(379\) −5.31835 3.07055i −0.273186 0.157724i 0.357149 0.934047i \(-0.383749\pi\)
−0.630334 + 0.776324i \(0.717082\pi\)
\(380\) 0 0
\(381\) 24.7418i 1.26756i
\(382\) 0 0
\(383\) 12.0712 + 20.9079i 0.616809 + 1.06834i 0.990064 + 0.140615i \(0.0449081\pi\)
−0.373256 + 0.927728i \(0.621759\pi\)
\(384\) 0 0
\(385\) −1.64428 1.45413i −0.0838005 0.0741093i
\(386\) 0 0
\(387\) 44.7717 + 25.8490i 2.27587 + 1.31398i
\(388\) 0 0
\(389\) 3.49899 + 0.937553i 0.177406 + 0.0475358i 0.346428 0.938076i \(-0.387394\pi\)
−0.169022 + 0.985612i \(0.554061\pi\)
\(390\) 0 0
\(391\) 36.5456 + 21.0996i 1.84819 + 1.06705i
\(392\) 0 0
\(393\) −61.1381 −3.08401
\(394\) 0 0
\(395\) 22.9023 + 20.2538i 1.15234 + 1.01908i
\(396\) 0 0
\(397\) 21.1870 21.1870i 1.06334 1.06334i 0.0654899 0.997853i \(-0.479139\pi\)
0.997853 0.0654899i \(-0.0208610\pi\)
\(398\) 0 0
\(399\) −25.9587 25.9587i −1.29956 1.29956i
\(400\) 0 0
\(401\) 16.8262 16.8262i 0.840263 0.840263i −0.148630 0.988893i \(-0.547486\pi\)
0.988893 + 0.148630i \(0.0474864\pi\)
\(402\) 0 0
\(403\) 3.53651 + 0.947604i 0.176166 + 0.0472035i
\(404\) 0 0
\(405\) −3.58166 58.3603i −0.177974 2.89995i
\(406\) 0 0
\(407\) 3.57629 2.87098i 0.177270 0.142309i
\(408\) 0 0
\(409\) −16.9415 + 4.53946i −0.837702 + 0.224462i −0.652071 0.758158i \(-0.726100\pi\)
−0.185631 + 0.982619i \(0.559433\pi\)
\(410\) 0 0
\(411\) −43.0643 + 24.8632i −2.12421 + 1.22641i
\(412\) 0 0
\(413\) −12.6147 −0.620727
\(414\) 0 0
\(415\) 0.603007 2.96703i 0.0296004 0.145646i
\(416\) 0 0
\(417\) 2.89735 + 2.89735i 0.141884 + 0.141884i
\(418\) 0 0
\(419\) −25.8588 14.9296i −1.26329 0.729359i −0.289577 0.957155i \(-0.593515\pi\)
−0.973709 + 0.227796i \(0.926848\pi\)
\(420\) 0 0
\(421\) −13.8065 + 13.8065i −0.672887 + 0.672887i −0.958381 0.285494i \(-0.907842\pi\)
0.285494 + 0.958381i \(0.407842\pi\)
\(422\) 0 0
\(423\) −5.48464 20.4689i −0.266672 0.995234i
\(424\) 0 0
\(425\) −3.32633 26.9979i −0.161351 1.30959i
\(426\) 0 0
\(427\) −6.39298 + 11.0730i −0.309378 + 0.535859i
\(428\) 0 0
\(429\) 0.327235 + 1.22126i 0.0157990 + 0.0589628i
\(430\) 0 0
\(431\) 3.04036 + 0.814662i 0.146449 + 0.0392409i 0.331299 0.943526i \(-0.392513\pi\)
−0.184850 + 0.982767i \(0.559180\pi\)
\(432\) 0 0
\(433\) 23.0806 23.0806i 1.10918 1.10918i 0.115926 0.993258i \(-0.463016\pi\)
0.993258 0.115926i \(-0.0369836\pi\)
\(434\) 0 0
\(435\) −15.5870 + 0.956597i −0.747340 + 0.0458653i
\(436\) 0 0
\(437\) −64.8385 17.3734i −3.10164 0.831083i
\(438\) 0 0
\(439\) −5.08845 + 18.9904i −0.242859 + 0.906361i 0.731589 + 0.681746i \(0.238779\pi\)
−0.974448 + 0.224615i \(0.927888\pi\)
\(440\) 0 0
\(441\) −20.1991 34.9859i −0.961864 1.66600i
\(442\) 0 0
\(443\) 23.2565 + 23.2565i 1.10495 + 1.10495i 0.993804 + 0.111144i \(0.0354516\pi\)
0.111144 + 0.993804i \(0.464548\pi\)
\(444\) 0 0
\(445\) −19.0760 3.87693i −0.904291 0.183784i
\(446\) 0 0
\(447\) 53.5334 + 14.3442i 2.53204 + 0.678459i
\(448\) 0 0
\(449\) 7.82037 + 2.09546i 0.369066 + 0.0988909i 0.438585 0.898690i \(-0.355480\pi\)
−0.0695191 + 0.997581i \(0.522146\pi\)
\(450\) 0 0
\(451\) 2.30463 + 3.99173i 0.108521 + 0.187963i
\(452\) 0 0
\(453\) −11.4509 42.7352i −0.538009 2.00788i
\(454\) 0 0
\(455\) −1.46845 0.298442i −0.0688420 0.0139912i
\(456\) 0 0
\(457\) 16.6277 9.60001i 0.777811 0.449069i −0.0578430 0.998326i \(-0.518422\pi\)
0.835654 + 0.549256i \(0.185089\pi\)
\(458\) 0 0
\(459\) 79.0239 21.1744i 3.68852 0.988335i
\(460\) 0 0
\(461\) 27.4968 7.36773i 1.28065 0.343150i 0.446549 0.894759i \(-0.352653\pi\)
0.834103 + 0.551609i \(0.185986\pi\)
\(462\) 0 0
\(463\) 6.38352 + 11.0566i 0.296667 + 0.513843i 0.975371 0.220569i \(-0.0707915\pi\)
−0.678704 + 0.734412i \(0.737458\pi\)
\(464\) 0 0
\(465\) 3.17456 + 51.7270i 0.147217 + 2.39878i
\(466\) 0 0
\(467\) 32.7112i 1.51369i 0.653592 + 0.756847i \(0.273261\pi\)
−0.653592 + 0.756847i \(0.726739\pi\)
\(468\) 0 0
\(469\) 0.458065 0.793393i 0.0211515 0.0366355i
\(470\) 0 0
\(471\) 16.8836i 0.777955i
\(472\) 0 0
\(473\) 5.11825i 0.235337i
\(474\) 0 0
\(475\) 16.2259 + 40.1125i 0.744496 + 1.84049i
\(476\) 0 0
\(477\) −0.386970 + 1.44419i −0.0177182 + 0.0661251i
\(478\) 0 0
\(479\) 4.68641 + 17.4899i 0.214127 + 0.799135i 0.986472 + 0.163931i \(0.0524173\pi\)
−0.772344 + 0.635204i \(0.780916\pi\)
\(480\) 0 0
\(481\) 1.13436 2.91804i 0.0517223 0.133051i
\(482\) 0 0
\(483\) 28.4960 + 16.4522i 1.29661 + 0.748601i
\(484\) 0 0
\(485\) −3.57086 + 7.16577i −0.162144 + 0.325381i
\(486\) 0 0
\(487\) 37.4831i 1.69852i 0.527972 + 0.849262i \(0.322953\pi\)
−0.527972 + 0.849262i \(0.677047\pi\)
\(488\) 0 0
\(489\) 51.7052 51.7052i 2.33819 2.33819i
\(490\) 0 0
\(491\) −28.0295 −1.26495 −0.632476 0.774580i \(-0.717961\pi\)
−0.632476 + 0.774580i \(0.717961\pi\)
\(492\) 0 0
\(493\) −3.01824 11.2642i −0.135935 0.507315i
\(494\) 0 0
\(495\) −10.7046 + 7.08842i −0.481136 + 0.318601i
\(496\) 0 0
\(497\) 8.83520 2.36739i 0.396313 0.106192i
\(498\) 0 0
\(499\) −0.445108 + 1.66116i −0.0199258 + 0.0743639i −0.975173 0.221445i \(-0.928923\pi\)
0.955247 + 0.295809i \(0.0955893\pi\)
\(500\) 0 0
\(501\) 6.48483 + 24.2017i 0.289721 + 1.08125i
\(502\) 0 0
\(503\) −12.8565 + 22.2680i −0.573241 + 0.992883i 0.422989 + 0.906135i \(0.360981\pi\)
−0.996230 + 0.0867480i \(0.972353\pi\)
\(504\) 0 0
\(505\) −4.50196 + 9.03425i −0.200335 + 0.402019i
\(506\) 0 0
\(507\) −29.3397 29.3397i −1.30302 1.30302i
\(508\) 0 0
\(509\) −15.7219 + 27.2312i −0.696863 + 1.20700i 0.272686 + 0.962103i \(0.412088\pi\)
−0.969549 + 0.244899i \(0.921245\pi\)
\(510\) 0 0
\(511\) 3.72928 2.15310i 0.164974 0.0952476i
\(512\) 0 0
\(513\) −112.702 + 65.0682i −4.97589 + 2.87283i
\(514\) 0 0
\(515\) −8.76295 + 17.5849i −0.386142 + 0.774884i
\(516\) 0 0
\(517\) −1.48349 + 1.48349i −0.0652439 + 0.0652439i
\(518\) 0 0
\(519\) 15.0911i 0.662427i
\(520\) 0 0
\(521\) 32.4896 18.7579i 1.42340 0.821799i 0.426810 0.904341i \(-0.359637\pi\)
0.996588 + 0.0825427i \(0.0263041\pi\)
\(522\) 0 0
\(523\) −2.14658 3.71799i −0.0938635 0.162576i 0.815270 0.579081i \(-0.196588\pi\)
−0.909134 + 0.416504i \(0.863255\pi\)
\(524\) 0 0
\(525\) −2.59367 21.0514i −0.113197 0.918756i
\(526\) 0 0
\(527\) −37.3814 + 10.0163i −1.62836 + 0.436318i
\(528\) 0 0
\(529\) 37.1651 1.61587
\(530\) 0 0
\(531\) −19.0966 + 71.2693i −0.828720 + 3.09282i
\(532\) 0 0
\(533\) 2.72501 + 1.57329i 0.118033 + 0.0681467i
\(534\) 0 0
\(535\) −9.30109 + 10.5174i −0.402121 + 0.454706i
\(536\) 0 0
\(537\) −0.157328 + 0.0908336i −0.00678923 + 0.00391976i
\(538\) 0 0
\(539\) −1.99978 + 3.46371i −0.0861364 + 0.149193i
\(540\) 0 0
\(541\) −8.80718 8.80718i −0.378650 0.378650i 0.491965 0.870615i \(-0.336279\pi\)
−0.870615 + 0.491965i \(0.836279\pi\)
\(542\) 0 0
\(543\) 8.69900 2.33089i 0.373310 0.100028i
\(544\) 0 0
\(545\) −6.99882 + 34.4370i −0.299797 + 1.47512i
\(546\) 0 0
\(547\) 21.3774 0.914033 0.457016 0.889458i \(-0.348918\pi\)
0.457016 + 0.889458i \(0.348918\pi\)
\(548\) 0 0
\(549\) 52.8812 + 52.8812i 2.25691 + 2.25691i
\(550\) 0 0
\(551\) 9.27495 + 16.0647i 0.395126 + 0.684379i
\(552\) 0 0
\(553\) −8.90105 + 15.4171i −0.378511 + 0.655600i
\(554\) 0 0
\(555\) 44.2651 + 2.11162i 1.87895 + 0.0896331i
\(556\) 0 0
\(557\) 13.5980 23.5525i 0.576167 0.997951i −0.419746 0.907641i \(-0.637881\pi\)
0.995914 0.0903098i \(-0.0287857\pi\)
\(558\) 0 0
\(559\) −1.74702 3.02593i −0.0738912 0.127983i
\(560\) 0 0
\(561\) −9.44995 9.44995i −0.398977 0.398977i
\(562\) 0 0
\(563\) 10.9821 0.462841 0.231420 0.972854i \(-0.425663\pi\)
0.231420 + 0.972854i \(0.425663\pi\)
\(564\) 0 0
\(565\) 0.0473142 + 0.0714516i 0.00199052 + 0.00300599i
\(566\) 0 0
\(567\) 32.8856 8.81166i 1.38106 0.370055i
\(568\) 0 0
\(569\) −25.1669 25.1669i −1.05505 1.05505i −0.998394 0.0566573i \(-0.981956\pi\)
−0.0566573 0.998394i \(-0.518044\pi\)
\(570\) 0 0
\(571\) 13.9041 24.0826i 0.581869 1.00783i −0.413389 0.910555i \(-0.635655\pi\)
0.995258 0.0972719i \(-0.0310117\pi\)
\(572\) 0 0
\(573\) −53.9230 + 31.1325i −2.25267 + 1.30058i
\(574\) 0 0
\(575\) −23.3531 30.9638i −0.973893 1.29128i
\(576\) 0 0
\(577\) −1.39081 0.802984i −0.0579002 0.0334287i 0.470770 0.882256i \(-0.343976\pi\)
−0.528671 + 0.848827i \(0.677309\pi\)
\(578\) 0 0
\(579\) 15.1702 56.6160i 0.630453 2.35288i
\(580\) 0 0
\(581\) 1.76295 0.0731393
\(582\) 0 0
\(583\) 0.142979 0.0383112i 0.00592160 0.00158669i
\(584\) 0 0
\(585\) −3.90910 + 7.84454i −0.161622 + 0.324332i
\(586\) 0 0
\(587\) −10.6945 18.5234i −0.441408 0.764542i 0.556386 0.830924i \(-0.312188\pi\)
−0.997794 + 0.0663823i \(0.978854\pi\)
\(588\) 0 0
\(589\) 53.3123 30.7798i 2.19669 1.26826i
\(590\) 0 0
\(591\) 3.44304i 0.141628i
\(592\) 0 0
\(593\) −9.10270 + 9.10270i −0.373803 + 0.373803i −0.868860 0.495057i \(-0.835147\pi\)
0.495057 + 0.868860i \(0.335147\pi\)
\(594\) 0 0
\(595\) 15.0195 5.02893i 0.615740 0.206166i
\(596\) 0 0
\(597\) 72.7482 42.0012i 2.97739 1.71899i
\(598\) 0 0
\(599\) 8.66526 5.00289i 0.354053 0.204413i −0.312416 0.949945i \(-0.601138\pi\)
0.666469 + 0.745533i \(0.267805\pi\)
\(600\) 0 0
\(601\) −14.7811 + 25.6017i −0.602935 + 1.04431i 0.389439 + 0.921052i \(0.372669\pi\)
−0.992374 + 0.123262i \(0.960664\pi\)
\(602\) 0 0
\(603\) −3.78901 3.78901i −0.154300 0.154300i
\(604\) 0 0
\(605\) −20.8771 10.4035i −0.848775 0.422963i
\(606\) 0 0
\(607\) −9.09854 + 15.7591i −0.369298 + 0.639643i −0.989456 0.144834i \(-0.953735\pi\)
0.620158 + 0.784477i \(0.287069\pi\)
\(608\) 0 0
\(609\) −2.35344 8.78315i −0.0953661 0.355911i
\(610\) 0 0
\(611\) −0.370684 + 1.38341i −0.0149963 + 0.0559668i
\(612\) 0 0
\(613\) 36.8312 9.86890i 1.48760 0.398601i 0.578674 0.815559i \(-0.303571\pi\)
0.908926 + 0.416958i \(0.136904\pi\)
\(614\) 0 0
\(615\) −8.87059 + 43.6468i −0.357697 + 1.76001i
\(616\) 0 0
\(617\) 10.9184 + 40.7482i 0.439560 + 1.64046i 0.729913 + 0.683541i \(0.239561\pi\)
−0.290353 + 0.956920i \(0.593773\pi\)
\(618\) 0 0
\(619\) −22.0237 −0.885206 −0.442603 0.896718i \(-0.645945\pi\)
−0.442603 + 0.896718i \(0.645945\pi\)
\(620\) 0 0
\(621\) 82.4783 82.4783i 3.30974 3.30974i
\(622\) 0 0
\(623\) 11.3346i 0.454109i
\(624\) 0 0
\(625\) −6.87093 + 24.0373i −0.274837 + 0.961491i
\(626\) 0 0
\(627\) 18.4103 + 10.6292i 0.735235 + 0.424488i
\(628\) 0 0
\(629\) 5.03813 + 32.7070i 0.200883 + 1.30411i
\(630\) 0 0
\(631\) 3.15476 + 11.7737i 0.125589 + 0.468705i 0.999860 0.0167336i \(-0.00532672\pi\)
−0.874271 + 0.485438i \(0.838660\pi\)
\(632\) 0 0
\(633\) 4.35988 16.2713i 0.173290 0.646727i
\(634\) 0 0
\(635\) 16.6402 + 3.38188i 0.660345 + 0.134206i
\(636\) 0 0
\(637\) 2.73035i 0.108180i
\(638\) 0 0
\(639\) 53.5002i 2.11644i
\(640\) 0 0
\(641\) 4.64384 8.04337i 0.183421 0.317694i −0.759623 0.650364i \(-0.774616\pi\)
0.943043 + 0.332670i \(0.107950\pi\)
\(642\) 0 0
\(643\) 26.1310i 1.03051i 0.857038 + 0.515253i \(0.172302\pi\)
−0.857038 + 0.515253i \(0.827698\pi\)
\(644\) 0 0
\(645\) 32.7638 37.0483i 1.29007 1.45877i
\(646\) 0 0
\(647\) −17.6918 30.6431i −0.695537 1.20470i −0.969999 0.243107i \(-0.921833\pi\)
0.274463 0.961598i \(-0.411500\pi\)
\(648\) 0 0
\(649\) 7.05587 1.89062i 0.276967 0.0742131i
\(650\) 0 0
\(651\) −29.1478 + 7.81012i −1.14239 + 0.306103i
\(652\) 0 0
\(653\) 41.1928 23.7827i 1.61200 0.930689i 0.623094 0.782147i \(-0.285875\pi\)
0.988906 0.148542i \(-0.0474580\pi\)
\(654\) 0 0
\(655\) −8.35678 + 41.1187i −0.326526 + 1.60664i
\(656\) 0 0
\(657\) −6.51889 24.3288i −0.254326 0.949157i
\(658\) 0 0
\(659\) 17.6445 + 30.5611i 0.687331 + 1.19049i 0.972698 + 0.232074i \(0.0745511\pi\)
−0.285367 + 0.958418i \(0.592116\pi\)
\(660\) 0 0
\(661\) 2.03679 + 0.545758i 0.0792221 + 0.0212275i 0.298212 0.954500i \(-0.403610\pi\)
−0.218990 + 0.975727i \(0.570276\pi\)
\(662\) 0 0
\(663\) −8.81243 2.36128i −0.342246 0.0917047i
\(664\) 0 0
\(665\) −21.0068 + 13.9104i −0.814611 + 0.539423i
\(666\) 0 0
\(667\) −11.7566 11.7566i −0.455218 0.455218i
\(668\) 0 0
\(669\) −7.30903 12.6596i −0.282583 0.489449i
\(670\) 0 0
\(671\) 1.91629 7.15168i 0.0739775 0.276088i
\(672\) 0 0
\(673\) 6.14444 + 1.64640i 0.236851 + 0.0634640i 0.375292 0.926907i \(-0.377542\pi\)
−0.138441 + 0.990371i \(0.544209\pi\)
\(674\) 0 0
\(675\) −74.4613 10.4333i −2.86602 0.401576i
\(676\) 0 0
\(677\) 6.44730 6.44730i 0.247790 0.247790i −0.572273 0.820063i \(-0.693938\pi\)
0.820063 + 0.572273i \(0.193938\pi\)
\(678\) 0 0
\(679\) −4.50296 1.20656i −0.172808 0.0463037i
\(680\) 0 0
\(681\) −7.45492 27.8221i −0.285673 1.06615i
\(682\) 0 0
\(683\) −18.5957 + 32.2087i −0.711545 + 1.23243i 0.252733 + 0.967536i \(0.418671\pi\)
−0.964277 + 0.264895i \(0.914663\pi\)
\(684\) 0 0
\(685\) 10.8355 + 32.3616i 0.414004 + 1.23647i
\(686\) 0 0
\(687\) −5.17245 19.3038i −0.197341 0.736487i
\(688\) 0 0
\(689\) 0.0714533 0.0714533i 0.00272215 0.00272215i
\(690\) 0 0
\(691\) −7.79684 4.50151i −0.296606 0.171245i 0.344311 0.938856i \(-0.388112\pi\)
−0.640917 + 0.767610i \(0.721446\pi\)
\(692\) 0 0
\(693\) −5.28611 5.28611i −0.200803 0.200803i
\(694\) 0 0
\(695\) 2.34465 1.55259i 0.0889377 0.0588932i
\(696\) 0 0
\(697\) −33.2598 −1.25980
\(698\) 0 0
\(699\) 52.8864 30.5340i 2.00035 1.15490i
\(700\) 0 0
\(701\) −19.7448 + 5.29059i −0.745749 + 0.199823i −0.611632 0.791143i \(-0.709487\pi\)
−0.134117 + 0.990965i \(0.542820\pi\)
\(702\) 0 0
\(703\) −21.2065 48.1796i −0.799818 1.81713i
\(704\) 0 0
\(705\) −20.2346 + 1.24183i −0.762079 + 0.0467699i
\(706\) 0 0
\(707\) −5.67711 1.52118i −0.213510 0.0572097i
\(708\) 0 0
\(709\) 5.78446 5.78446i 0.217240 0.217240i −0.590094 0.807334i \(-0.700909\pi\)
0.807334 + 0.590094i \(0.200909\pi\)
\(710\) 0 0
\(711\) 73.6273 + 73.6273i 2.76124 + 2.76124i
\(712\) 0 0
\(713\) −39.0155 + 39.0155i −1.46114 + 1.46114i
\(714\) 0 0
\(715\) 0.866090 0.0531532i 0.0323899 0.00198782i
\(716\) 0 0
\(717\) 33.6437 1.25645
\(718\) 0 0
\(719\) 17.1252 + 9.88723i 0.638662 + 0.368731i 0.784099 0.620636i \(-0.213126\pi\)
−0.145437 + 0.989367i \(0.546459\pi\)
\(720\) 0 0
\(721\) −11.0503 2.96093i −0.411536 0.110271i
\(722\) 0 0
\(723\) 25.3353 + 14.6273i 0.942229 + 0.543996i
\(724\) 0 0
\(725\) −1.48718 + 10.6139i −0.0552324 + 0.394189i
\(726\) 0 0
\(727\) 15.9327 + 27.5963i 0.590911 + 1.02349i 0.994110 + 0.108376i \(0.0345650\pi\)
−0.403199 + 0.915112i \(0.632102\pi\)
\(728\) 0 0
\(729\) 52.1486i 1.93143i
\(730\) 0 0
\(731\) 31.9846 + 18.4663i 1.18299 + 0.683001i
\(732\) 0 0
\(733\) −2.78935 + 10.4100i −0.103027 + 0.384503i −0.998114 0.0613895i \(-0.980447\pi\)
0.895087 + 0.445892i \(0.147113\pi\)
\(734\) 0 0
\(735\) −36.6478 + 12.2707i −1.35178 + 0.452610i
\(736\) 0 0
\(737\) −0.137304 + 0.512427i −0.00505768 + 0.0188755i
\(738\) 0 0
\(739\) 12.8027 0.470956 0.235478 0.971880i \(-0.424334\pi\)
0.235478 + 0.971880i \(0.424334\pi\)
\(740\) 0 0
\(741\) 14.5123 0.533123
\(742\) 0 0
\(743\) 8.58431 32.0371i 0.314928 1.17533i −0.609129 0.793071i \(-0.708481\pi\)
0.924057 0.382255i \(-0.124852\pi\)
\(744\) 0 0
\(745\) 16.9646 34.0434i 0.621534 1.24725i
\(746\) 0 0
\(747\) 2.66881 9.96014i 0.0976467 0.364422i
\(748\) 0 0
\(749\) −7.07994 4.08760i −0.258695 0.149358i
\(750\) 0 0
\(751\) 43.1364i 1.57407i −0.616909 0.787035i \(-0.711615\pi\)
0.616909 0.787035i \(-0.288385\pi\)
\(752\) 0 0
\(753\) −24.0574 41.6687i −0.876702 1.51849i
\(754\) 0 0
\(755\) −30.3069 + 1.85998i −1.10298 + 0.0676916i
\(756\) 0 0
\(757\) −5.91601 3.41561i −0.215021 0.124142i 0.388622 0.921397i \(-0.372951\pi\)
−0.603643 + 0.797255i \(0.706285\pi\)
\(758\) 0 0
\(759\) −18.4047 4.93152i −0.668048 0.179003i
\(760\) 0 0
\(761\) 20.8355 + 12.0294i 0.755287 + 0.436065i 0.827601 0.561317i \(-0.189705\pi\)
−0.0723142 + 0.997382i \(0.523038\pi\)
\(762\) 0 0
\(763\) −20.4617 −0.740763
\(764\) 0 0
\(765\) −5.67495 92.4689i −0.205178 3.34322i
\(766\) 0 0
\(767\) 3.52614 3.52614i 0.127321 0.127321i
\(768\) 0 0
\(769\) 6.18779 + 6.18779i 0.223138 + 0.223138i 0.809818 0.586681i \(-0.199566\pi\)
−0.586681 + 0.809818i \(0.699566\pi\)
\(770\) 0 0
\(771\) 26.6171 26.6171i 0.958590 0.958590i
\(772\) 0 0
\(773\) −13.8332 3.70659i −0.497544 0.133317i 0.00131571 0.999999i \(-0.499581\pi\)
−0.498860 + 0.866683i \(0.666248\pi\)
\(774\) 0 0
\(775\) 35.2231 + 4.93534i 1.26525 + 0.177283i
\(776\) 0 0
\(777\) 3.92843 + 25.5029i 0.140932 + 0.914913i
\(778\) 0 0
\(779\) 51.1032 13.6930i 1.83096 0.490604i
\(780\) 0 0
\(781\) −4.58706 + 2.64834i −0.164138 + 0.0947651i
\(782\) 0 0
\(783\) −32.2335 −1.15193
\(784\) 0 0
\(785\) −11.3551 2.30776i −0.405282 0.0823677i
\(786\) 0 0
\(787\) −31.3313 31.3313i −1.11684 1.11684i −0.992202 0.124638i \(-0.960223\pi\)
−0.124638 0.992202i \(-0.539777\pi\)
\(788\) 0 0
\(789\) 0.351551 + 0.202968i 0.0125155 + 0.00722585i
\(790\) 0 0
\(791\) −0.0352840 + 0.0352840i −0.00125455 + 0.00125455i
\(792\) 0 0
\(793\) −1.30818 4.88220i −0.0464549 0.173372i
\(794\) 0 0
\(795\) 1.28020 + 0.637950i 0.0454039 + 0.0226258i
\(796\) 0 0
\(797\) −5.47530 + 9.48350i −0.193945 + 0.335923i −0.946554 0.322545i \(-0.895462\pi\)
0.752609 + 0.658468i \(0.228795\pi\)
\(798\) 0 0
\(799\) −3.91818 14.6229i −0.138615 0.517320i
\(800\) 0 0
\(801\) −64.0370 17.1587i −2.26264 0.606272i
\(802\) 0 0
\(803\) −1.76324 + 1.76324i −0.0622232 + 0.0622232i
\(804\) 0 0
\(805\) 14.9600 16.9163i 0.527271 0.596222i
\(806\) 0 0
\(807\) 61.3142 + 16.4291i 2.15836 + 0.578332i
\(808\) 0 0
\(809\) 8.59459 32.0755i 0.302170 1.12771i −0.633184 0.774001i \(-0.718253\pi\)
0.935354 0.353712i \(-0.115081\pi\)
\(810\) 0 0
\(811\) −0.563337 0.975729i −0.0197814 0.0342625i 0.855965 0.517033i \(-0.172964\pi\)
−0.875747 + 0.482771i \(0.839630\pi\)
\(812\) 0 0
\(813\) 53.2135 + 53.2135i 1.86628 + 1.86628i
\(814\) 0 0
\(815\) −27.7071 41.8420i −0.970538 1.46566i
\(816\) 0 0
\(817\) −56.7464 15.2052i −1.98531 0.531961i
\(818\) 0 0
\(819\) −4.92949 1.32085i −0.172250 0.0461544i
\(820\) 0 0
\(821\) 7.07122 + 12.2477i 0.246787 + 0.427448i 0.962633 0.270811i \(-0.0872918\pi\)
−0.715845 + 0.698259i \(0.753958\pi\)
\(822\) 0 0
\(823\) −8.87451 33.1201i −0.309346 1.15449i −0.929139 0.369730i \(-0.879450\pi\)
0.619793 0.784765i \(-0.287216\pi\)
\(824\) 0 0
\(825\) 4.60580 + 11.3861i 0.160353 + 0.396413i
\(826\) 0 0
\(827\) 27.2681 15.7432i 0.948204 0.547446i 0.0556815 0.998449i \(-0.482267\pi\)
0.892523 + 0.451003i \(0.148934\pi\)
\(828\) 0 0
\(829\) −48.7282 + 13.0567i −1.69240 + 0.453477i −0.971007 0.239050i \(-0.923164\pi\)
−0.721392 + 0.692527i \(0.756497\pi\)
\(830\) 0 0
\(831\) 19.9472 5.34485i 0.691962 0.185411i
\(832\) 0 0
\(833\) −14.4301 24.9937i −0.499974 0.865980i
\(834\) 0 0
\(835\) 17.1633 1.05334i 0.593962 0.0364523i
\(836\) 0 0
\(837\) 106.970i 3.69743i
\(838\) 0 0
\(839\) 20.9590 36.3021i 0.723585 1.25329i −0.235968 0.971761i \(-0.575826\pi\)
0.959554 0.281526i \(-0.0908406\pi\)
\(840\) 0 0
\(841\) 24.4054i 0.841565i
\(842\) 0 0
\(843\) 36.8187i 1.26810i
\(844\) 0 0
\(845\) −23.7429 + 15.7222i −0.816781 + 0.540860i
\(846\) 0 0
\(847\) 3.51526 13.1191i 0.120786 0.450779i
\(848\) 0 0
\(849\) 6.18135 + 23.0691i 0.212143 + 0.791730i
\(850\) 0 0
\(851\) 29.5365 + 36.7927i 1.01250 + 1.26124i
\(852\) 0 0
\(853\) −36.3669 20.9964i −1.24518 0.718904i −0.275034 0.961434i \(-0.588689\pi\)
−0.970144 + 0.242531i \(0.922022\pi\)
\(854\) 0 0
\(855\) 46.7889 + 139.741i 1.60015 + 4.77903i
\(856\) 0 0
\(857\) 24.4991i 0.836873i 0.908246 + 0.418436i \(0.137422\pi\)
−0.908246 + 0.418436i \(0.862578\pi\)
\(858\) 0 0
\(859\) −27.4252 + 27.4252i −0.935736 + 0.935736i −0.998056 0.0623205i \(-0.980150\pi\)
0.0623205 + 0.998056i \(0.480150\pi\)
\(860\) 0 0
\(861\) −25.9340 −0.883827
\(862\) 0 0
\(863\) −2.71023 10.1147i −0.0922571 0.344308i 0.904332 0.426829i \(-0.140370\pi\)
−0.996589 + 0.0825210i \(0.973703\pi\)
\(864\) 0 0
\(865\) −10.1496 2.06276i −0.345097 0.0701359i
\(866\) 0 0
\(867\) 39.6477 10.6236i 1.34651 0.360795i
\(868\) 0 0
\(869\) 2.66808 9.95740i 0.0905083 0.337782i
\(870\) 0 0
\(871\) 0.0937329 + 0.349816i 0.00317602 + 0.0118531i
\(872\) 0 0
\(873\) −13.6335 + 23.6139i −0.461424 + 0.799209i
\(874\) 0 0
\(875\) −14.5127 1.13306i −0.490618 0.0383044i
\(876\) 0 0
\(877\) 3.38914 + 3.38914i 0.114443 + 0.114443i 0.762009 0.647566i \(-0.224213\pi\)
−0.647566 + 0.762009i \(0.724213\pi\)
\(878\) 0 0
\(879\) 12.5116 21.6708i 0.422007 0.730938i
\(880\) 0 0
\(881\) 32.1757 18.5767i 1.08403 0.625864i 0.152048 0.988373i \(-0.451413\pi\)
0.931980 + 0.362509i \(0.118080\pi\)
\(882\) 0 0
\(883\) 18.2110 10.5141i 0.612850 0.353829i −0.161230 0.986917i \(-0.551546\pi\)
0.774080 + 0.633088i \(0.218213\pi\)
\(884\) 0 0
\(885\) 63.1762 + 31.4821i 2.12365 + 1.05826i
\(886\) 0 0
\(887\) −1.83076 + 1.83076i −0.0614710 + 0.0614710i −0.737174 0.675703i \(-0.763840\pi\)
0.675703 + 0.737174i \(0.263840\pi\)
\(888\) 0 0
\(889\) 9.88723i 0.331607i
\(890\) 0 0
\(891\) −17.0735 + 9.85740i −0.571985 + 0.330235i
\(892\) 0 0
\(893\) 12.0405 + 20.8547i 0.402919 + 0.697876i
\(894\) 0 0
\(895\) 0.0395858 + 0.118228i 0.00132321 + 0.00395191i
\(896\) 0 0
\(897\) −12.5642 + 3.36658i −0.419508 + 0.112407i
\(898\) 0 0
\(899\) 15.2477 0.508540
\(900\) 0 0
\(901\) −0.276449 + 1.03172i −0.00920984 + 0.0343716i
\(902\) 0 0
\(903\) 24.9396 + 14.3989i 0.829939 + 0.479166i
\(904\) 0 0
\(905\) −0.378609 6.16915i −0.0125854 0.205069i
\(906\) 0 0
\(907\) 18.5126 10.6883i 0.614701 0.354898i −0.160102 0.987101i \(-0.551182\pi\)
0.774803 + 0.632202i \(0.217849\pi\)
\(908\) 0 0
\(909\) −17.1884 + 29.7712i −0.570104 + 0.987449i
\(910\) 0 0
\(911\) −23.0946 23.0946i −0.765158 0.765158i 0.212092 0.977250i \(-0.431972\pi\)
−0.977250 + 0.212092i \(0.931972\pi\)
\(912\) 0 0
\(913\) −0.986083 + 0.264220i −0.0326346 + 0.00874441i
\(914\) 0 0
\(915\) 59.6516 39.5004i 1.97202 1.30584i
\(916\) 0 0
\(917\) −24.4318 −0.806809
\(918\) 0 0
\(919\) −7.25445 7.25445i −0.239302 0.239302i 0.577259 0.816561i \(-0.304122\pi\)
−0.816561 + 0.577259i \(0.804122\pi\)
\(920\) 0 0
\(921\) 50.1470 + 86.8571i 1.65240 + 2.86204i
\(922\) 0 0
\(923\) −1.80793 + 3.13142i −0.0595087 + 0.103072i
\(924\) 0 0
\(925\) 7.47063 29.4820i 0.245633 0.969363i
\(926\) 0 0
\(927\) −33.4568 + 57.9488i −1.09886 + 1.90329i
\(928\) 0 0
\(929\) 8.22373 + 14.2439i 0.269812 + 0.467328i 0.968813 0.247793i \(-0.0797052\pi\)
−0.699001 + 0.715120i \(0.746372\pi\)
\(930\) 0 0
\(931\) 32.4616 + 32.4616i 1.06388 + 1.06388i
\(932\) 0 0
\(933\) −7.89070 −0.258330
\(934\) 0 0
\(935\) −7.64728 + 5.06391i −0.250093 + 0.165608i
\(936\) 0 0
\(937\) 40.0915 10.7425i 1.30973 0.350942i 0.464611 0.885515i \(-0.346194\pi\)
0.845122 + 0.534573i \(0.179528\pi\)
\(938\) 0 0
\(939\) −37.1819 37.1819i −1.21339 1.21339i
\(940\) 0 0
\(941\) −10.6572 + 18.4589i −0.347416 + 0.601743i −0.985790 0.167984i \(-0.946274\pi\)
0.638373 + 0.769727i \(0.279608\pi\)
\(942\) 0 0
\(943\) −41.0667 + 23.7099i −1.33732 + 0.772100i
\(944\) 0 0
\(945\) −2.68182 43.6982i −0.0872397 1.42150i
\(946\) 0 0
\(947\) −14.5748 8.41475i −0.473616 0.273443i 0.244136 0.969741i \(-0.421496\pi\)
−0.717752 + 0.696298i \(0.754829\pi\)
\(948\) 0 0
\(949\) −0.440584 + 1.64428i −0.0143020 + 0.0533757i
\(950\) 0 0
\(951\) −43.6680 −1.41603
\(952\) 0 0
\(953\) −26.2583 + 7.03588i −0.850589 + 0.227915i −0.657676 0.753301i \(-0.728460\pi\)
−0.192913 + 0.981216i \(0.561794\pi\)
\(954\) 0 0
\(955\) 13.5677 + 40.5215i 0.439040 + 1.31125i
\(956\) 0 0
\(957\) 2.63274 + 4.56003i 0.0851043 + 0.147405i
\(958\) 0 0
\(959\) −17.2092 + 9.93575i −0.555715 + 0.320842i
\(960\) 0 0
\(961\) 19.6011i 0.632292i
\(962\) 0 0
\(963\) −33.8117 + 33.8117i −1.08957 + 1.08957i
\(964\) 0 0
\(965\) −36.0038 17.9415i −1.15900 0.577556i
\(966\) 0 0
\(967\) 37.7826 21.8138i 1.21501 0.701484i 0.251160 0.967946i \(-0.419188\pi\)
0.963845 + 0.266462i \(0.0858546\pi\)
\(968\) 0 0
\(969\) −132.846 + 76.6986i −4.26763 + 2.46392i
\(970\) 0 0
\(971\) 12.0260 20.8296i 0.385931 0.668453i −0.605967 0.795490i \(-0.707213\pi\)
0.991898 + 0.127037i \(0.0405468\pi\)
\(972\) 0 0
\(973\) 1.15783 + 1.15783i 0.0371183 + 0.0371183i
\(974\) 0 0
\(975\) 6.60942 + 5.15942i 0.211671 + 0.165234i
\(976\) 0 0
\(977\) 22.3270 38.6716i 0.714305 1.23721i −0.248921 0.968524i \(-0.580076\pi\)
0.963227 0.268690i \(-0.0865906\pi\)
\(978\) 0 0
\(979\) 1.69876 + 6.33985i 0.0542926 + 0.202623i
\(980\) 0 0
\(981\) −30.9756 + 115.603i −0.988976 + 3.69091i
\(982\) 0 0
\(983\) 16.9411 4.53936i 0.540338 0.144783i 0.0216802 0.999765i \(-0.493098\pi\)
0.518658 + 0.854982i \(0.326432\pi\)
\(984\) 0 0
\(985\) −2.31563 0.470618i −0.0737820 0.0149951i
\(986\) 0 0
\(987\) −3.05516 11.4020i −0.0972469 0.362930i
\(988\) 0 0
\(989\) 52.6563 1.67437
\(990\) 0 0
\(991\) −8.44357 + 8.44357i −0.268219 + 0.268219i −0.828382 0.560163i \(-0.810738\pi\)
0.560163 + 0.828382i \(0.310738\pi\)
\(992\) 0 0
\(993\) 45.4182i 1.44130i
\(994\) 0 0
\(995\) −18.3043 54.6681i −0.580286 1.73309i
\(996\) 0 0
\(997\) −25.0588 14.4677i −0.793621 0.458197i 0.0476146 0.998866i \(-0.484838\pi\)
−0.841236 + 0.540668i \(0.818171\pi\)
\(998\) 0 0
\(999\) 90.9285 + 9.94718i 2.87685 + 0.314715i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.bf.a.97.19 76
5.3 odd 4 740.2.bi.a.393.19 yes 76
37.29 odd 12 740.2.bi.a.177.19 yes 76
185.103 even 12 inner 740.2.bf.a.473.19 yes 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.bf.a.97.19 76 1.1 even 1 trivial
740.2.bf.a.473.19 yes 76 185.103 even 12 inner
740.2.bi.a.177.19 yes 76 37.29 odd 12
740.2.bi.a.393.19 yes 76 5.3 odd 4