[N,k,chi] = [7400,2,Mod(1,7400)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7400, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7400.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
− 1 -1 − 1
37 37 3 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 7400 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(7400)) S 2 n e w ( Γ 0 ( 7 4 0 0 ) ) :
T 3 16 − 2 T 3 15 − 33 T 3 14 + 66 T 3 13 + 404 T 3 12 − 796 T 3 11 − 2273 T 3 10 + ⋯ + 16 T_{3}^{16} - 2 T_{3}^{15} - 33 T_{3}^{14} + 66 T_{3}^{13} + 404 T_{3}^{12} - 796 T_{3}^{11} - 2273 T_{3}^{10} + \cdots + 16 T 3 1 6 − 2 T 3 1 5 − 3 3 T 3 1 4 + 6 6 T 3 1 3 + 4 0 4 T 3 1 2 − 7 9 6 T 3 1 1 − 2 2 7 3 T 3 1 0 + ⋯ + 1 6
T3^16 - 2*T3^15 - 33*T3^14 + 66*T3^13 + 404*T3^12 - 796*T3^11 - 2273*T3^10 + 4284*T3^9 + 6039*T3^8 - 10158*T3^7 - 7660*T3^6 + 10040*T3^5 + 3914*T3^4 - 3314*T3^3 - 232*T3^2 + 172*T3 + 16
T 7 16 − 9 T 7 15 − 38 T 7 14 + 522 T 7 13 + 41 T 7 12 − 10867 T 7 11 + ⋯ + 1088 T_{7}^{16} - 9 T_{7}^{15} - 38 T_{7}^{14} + 522 T_{7}^{13} + 41 T_{7}^{12} - 10867 T_{7}^{11} + \cdots + 1088 T 7 1 6 − 9 T 7 1 5 − 3 8 T 7 1 4 + 5 2 2 T 7 1 3 + 4 1 T 7 1 2 − 1 0 8 6 7 T 7 1 1 + ⋯ + 1 0 8 8
T7^16 - 9*T7^15 - 38*T7^14 + 522*T7^13 + 41*T7^12 - 10867*T7^11 + 13692*T7^10 + 97426*T7^9 - 184818*T7^8 - 350232*T7^7 + 796050*T7^6 + 368180*T7^5 - 1036948*T7^4 + 109920*T7^3 + 312176*T7^2 - 96960*T7 + 1088
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 T^{16} T 1 6
T^16
3 3 3
T 16 − 2 T 15 + ⋯ + 16 T^{16} - 2 T^{15} + \cdots + 16 T 1 6 − 2 T 1 5 + ⋯ + 1 6
T^16 - 2*T^15 - 33*T^14 + 66*T^13 + 404*T^12 - 796*T^11 - 2273*T^10 + 4284*T^9 + 6039*T^8 - 10158*T^7 - 7660*T^6 + 10040*T^5 + 3914*T^4 - 3314*T^3 - 232*T^2 + 172*T + 16
5 5 5
T 16 T^{16} T 1 6
T^16
7 7 7
T 16 − 9 T 15 + ⋯ + 1088 T^{16} - 9 T^{15} + \cdots + 1088 T 1 6 − 9 T 1 5 + ⋯ + 1 0 8 8
T^16 - 9*T^15 - 38*T^14 + 522*T^13 + 41*T^12 - 10867*T^11 + 13692*T^10 + 97426*T^9 - 184818*T^8 - 350232*T^7 + 796050*T^6 + 368180*T^5 - 1036948*T^4 + 109920*T^3 + 312176*T^2 - 96960*T + 1088
11 11 1 1
T 16 − 3 T 15 + ⋯ − 23763968 T^{16} - 3 T^{15} + \cdots - 23763968 T 1 6 − 3 T 1 5 + ⋯ − 2 3 7 6 3 9 6 8
T^16 - 3*T^15 - 113*T^14 + 349*T^13 + 5066*T^12 - 15802*T^11 - 116365*T^10 + 361121*T^9 + 1467587*T^8 - 4471073*T^7 - 10047264*T^6 + 29740784*T^5 + 33818880*T^4 - 98135744*T^3 - 37439104*T^2 + 124001792*T - 23763968
13 13 1 3
T 16 + 4 T 15 + ⋯ + 29707264 T^{16} + 4 T^{15} + \cdots + 29707264 T 1 6 + 4 T 1 5 + ⋯ + 2 9 7 0 7 2 6 4
T^16 + 4*T^15 - 117*T^14 - 540*T^13 + 4729*T^12 + 27318*T^11 - 67812*T^10 - 620952*T^9 - 190400*T^8 + 5835396*T^7 + 11209048*T^6 - 11578784*T^5 - 52795968*T^4 - 30992848*T^3 + 55616192*T^2 + 80979072*T + 29707264
17 17 1 7
T 16 + 9 T 15 + ⋯ + 97800192 T^{16} + 9 T^{15} + \cdots + 97800192 T 1 6 + 9 T 1 5 + ⋯ + 9 7 8 0 0 1 9 2
T^16 + 9*T^15 - 144*T^14 - 1402*T^13 + 7500*T^12 + 82468*T^11 - 177260*T^10 - 2337384*T^9 + 2141096*T^8 + 34366976*T^7 - 17263216*T^6 - 254827200*T^5 + 136502528*T^4 + 772051712*T^3 - 659290880*T^2 - 135661568*T + 97800192
19 19 1 9
T 16 + ⋯ − 538505216 T^{16} + \cdots - 538505216 T 1 6 + ⋯ − 5 3 8 5 0 5 2 1 6
T^16 - 14*T^15 - 94*T^14 + 2058*T^13 - 442*T^12 - 104222*T^11 + 245128*T^10 + 2289448*T^9 - 7597568*T^8 - 24172032*T^7 + 94585088*T^6 + 121244208*T^5 - 536251200*T^4 - 222264704*T^3 + 1223620864*T^2 - 86984960*T - 538505216
23 23 2 3
T 16 + ⋯ − 174358528 T^{16} + \cdots - 174358528 T 1 6 + ⋯ − 1 7 4 3 5 8 5 2 8
T^16 - 18*T^15 - 79*T^14 + 3246*T^13 - 10437*T^12 - 170964*T^11 + 1241334*T^10 + 970196*T^9 - 33396340*T^8 + 96785360*T^7 + 42913760*T^6 - 595504928*T^5 + 716274432*T^4 + 409911104*T^3 - 1332043520*T^2 + 865875456*T - 174358528
29 29 2 9
T 16 + ⋯ + 49220009984 T^{16} + \cdots + 49220009984 T 1 6 + ⋯ + 4 9 2 2 0 0 0 9 9 8 4
T^16 - T^15 - 261*T^14 + 411*T^13 + 27093*T^12 - 53419*T^11 - 1438888*T^10 + 3140662*T^9 + 42332924*T^8 - 94225700*T^7 - 698132728*T^6 + 1464854176*T^5 + 6235144384*T^4 - 10945479360*T^3 - 27823203200*T^2 + 30603433984*T + 49220009984
31 31 3 1
T 16 + ⋯ − 314427792 T^{16} + \cdots - 314427792 T 1 6 + ⋯ − 3 1 4 4 2 7 7 9 2
T^16 - 23*T^15 + 45*T^14 + 2537*T^13 - 16439*T^12 - 83137*T^11 + 926150*T^10 + 291822*T^9 - 20772228*T^8 + 26446396*T^7 + 205079998*T^6 - 392388892*T^5 - 834290432*T^4 + 1633607888*T^3 + 1070594144*T^2 - 758284576*T - 314427792
37 37 3 7
( T − 1 ) 16 (T - 1)^{16} ( T − 1 ) 1 6
(T - 1)^16
41 41 4 1
T 16 + ⋯ + 31001520832 T^{16} + \cdots + 31001520832 T 1 6 + ⋯ + 3 1 0 0 1 5 2 0 8 3 2
T^16 - 23*T^15 - 95*T^14 + 5301*T^13 - 12440*T^12 - 426646*T^11 + 1603231*T^10 + 17929333*T^9 - 65782735*T^8 - 451526033*T^7 + 1169344846*T^6 + 6754799716*T^5 - 6908846760*T^4 - 48832900320*T^3 - 19126640464*T^2 + 63094264000*T + 31001520832
43 43 4 3
T 16 + ⋯ + 374194176 T^{16} + \cdots + 374194176 T 1 6 + ⋯ + 3 7 4 1 9 4 1 7 6
T^16 + 11*T^15 - 248*T^14 - 2942*T^13 + 16988*T^12 + 230612*T^11 - 401120*T^10 - 6755440*T^9 + 6256640*T^8 + 87082432*T^7 - 81551168*T^6 - 453733888*T^5 + 422958848*T^4 + 920546304*T^3 - 763143168*T^2 - 540123136*T + 374194176
47 47 4 7
T 16 + ⋯ − 7578127104 T^{16} + \cdots - 7578127104 T 1 6 + ⋯ − 7 5 7 8 1 2 7 1 0 4
T^16 - 32*T^15 + 128*T^14 + 5950*T^13 - 70689*T^12 - 92332*T^11 + 5330174*T^10 - 21401812*T^9 - 90100134*T^8 + 822246218*T^7 - 1062722624*T^6 - 6285266196*T^5 + 22776394960*T^4 - 19855233936*T^3 - 16013633024*T^2 + 29465911360*T - 7578127104
53 53 5 3
T 16 + ⋯ + 442116241408 T^{16} + \cdots + 442116241408 T 1 6 + ⋯ + 4 4 2 1 1 6 2 4 1 4 0 8
T^16 - T^15 - 394*T^14 + 492*T^13 + 62827*T^12 - 95179*T^11 - 5191070*T^10 + 9323604*T^9 + 235848344*T^8 - 490045344*T^7 - 5734350656*T^6 + 13275862912*T^5 + 65822813184*T^4 - 156442041088*T^3 - 255719681536*T^2 + 421131531264*T + 442116241408
59 59 5 9
T 16 + ⋯ − 63898386432 T^{16} + \cdots - 63898386432 T 1 6 + ⋯ − 6 3 8 9 8 3 8 6 4 3 2
T^16 - 28*T^15 - 192*T^14 + 11032*T^13 - 24766*T^12 - 1553922*T^11 + 7885136*T^10 + 98890340*T^9 - 628345776*T^8 - 2869231408*T^7 + 19729908352*T^6 + 33022538688*T^5 - 214158722304*T^4 - 102179938304*T^3 + 358871687168*T^2 - 23372300288*T - 63898386432
61 61 6 1
T 16 + ⋯ + 990990761984 T^{16} + \cdots + 990990761984 T 1 6 + ⋯ + 9 9 0 9 9 0 7 6 1 9 8 4
T^16 - 31*T^15 - 23*T^14 + 8981*T^13 - 53797*T^12 - 886077*T^11 + 7586066*T^10 + 42875514*T^9 - 431139568*T^8 - 1248962420*T^7 + 11982642896*T^6 + 25845830336*T^5 - 153554721536*T^4 - 346368773120*T^3 + 582606843904*T^2 + 1753806225408*T + 990990761984
67 67 6 7
T 16 + ⋯ + 147435008 T^{16} + \cdots + 147435008 T 1 6 + ⋯ + 1 4 7 4 3 5 0 0 8
T^16 - 14*T^15 - 367*T^14 + 5356*T^13 + 46269*T^12 - 720538*T^11 - 2392816*T^10 + 40763444*T^9 + 54588718*T^8 - 929137406*T^7 - 835048184*T^6 + 7336091628*T^5 + 3973361136*T^4 - 17097845040*T^3 - 7033230208*T^2 + 7604028096*T + 147435008
71 71 7 1
T 16 + ⋯ + 20551437811712 T^{16} + \cdots + 20551437811712 T 1 6 + ⋯ + 2 0 5 5 1 4 3 7 8 1 1 7 1 2
T^16 - 18*T^15 - 358*T^14 + 8924*T^13 + 16293*T^12 - 1474354*T^11 + 6076824*T^10 + 91389152*T^9 - 733391344*T^8 - 1653185184*T^7 + 30865940992*T^6 - 40388899072*T^5 - 524274391040*T^4 + 1779465951232*T^3 + 1986514718720*T^2 - 16708297818112*T + 20551437811712
73 73 7 3
T 16 + ⋯ − 313851217482752 T^{16} + \cdots - 313851217482752 T 1 6 + ⋯ − 3 1 3 8 5 1 2 1 7 4 8 2 7 5 2
T^16 + 6*T^15 - 759*T^14 - 2904*T^13 + 239236*T^12 + 342992*T^11 - 40286919*T^10 + 37925390*T^9 + 3784501021*T^8 - 12012503896*T^7 - 182100755860*T^6 + 995944655760*T^5 + 2987382347952*T^4 - 30143640830592*T^3 + 36577318944704*T^2 + 149109331016704*T - 313851217482752
79 79 7 9
T 16 + ⋯ − 2447424256 T^{16} + \cdots - 2447424256 T 1 6 + ⋯ − 2 4 4 7 4 2 4 2 5 6
T^16 - 8*T^15 - 361*T^14 + 2608*T^13 + 50243*T^12 - 309862*T^11 - 3526266*T^10 + 16945974*T^9 + 135225150*T^8 - 435047902*T^7 - 2758767700*T^6 + 4382546540*T^5 + 25022650168*T^4 - 3541756040*T^3 - 43169721648*T^2 - 22893682960*T - 2447424256
83 83 8 3
T 16 + ⋯ − 2485440892672 T^{16} + \cdots - 2485440892672 T 1 6 + ⋯ − 2 4 8 5 4 4 0 8 9 2 6 7 2
T^16 - 8*T^15 - 424*T^14 + 3164*T^13 + 71983*T^12 - 512884*T^11 - 6178482*T^10 + 43736714*T^9 + 276719626*T^8 - 2070132906*T^7 - 5807366040*T^6 + 51905536132*T^5 + 31968248656*T^4 - 587993689088*T^3 + 330148717952*T^2 + 2224977836864*T - 2485440892672
89 89 8 9
T 16 + ⋯ + 205458112512 T^{16} + \cdots + 205458112512 T 1 6 + ⋯ + 2 0 5 4 5 8 1 1 2 5 1 2
T^16 - 636*T^14 - 1068*T^13 + 139892*T^12 + 436952*T^11 - 13318256*T^10 - 63131616*T^9 + 515455296*T^8 + 3735248512*T^7 - 2254554368*T^6 - 73708793344*T^5 - 206231160832*T^4 - 121281314816*T^3 + 311259250688*T^2 + 502688088064*T + 205458112512
97 97 9 7
T 16 + ⋯ − 1415820529664 T^{16} + \cdots - 1415820529664 T 1 6 + ⋯ − 1 4 1 5 8 2 0 5 2 9 6 6 4
T^16 + 15*T^15 - 516*T^14 - 8914*T^13 + 77956*T^12 + 1767668*T^11 - 2691448*T^10 - 146153520*T^9 - 156476512*T^8 + 5482203264*T^7 + 9846488896*T^6 - 99276935680*T^5 - 154765252864*T^4 + 810400746496*T^3 + 663369090048*T^2 - 1614542450688*T - 1415820529664
show more
show less