Properties

Label 7400.2.a.be
Level 74007400
Weight 22
Character orbit 7400.a
Self dual yes
Analytic conductor 59.08959.089
Analytic rank 00
Dimension 1616
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7400,2,Mod(1,7400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7400.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7400=235237 7400 = 2^{3} \cdot 5^{2} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 59.089297495759.0892974957
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x162x1533x14+66x13+404x12796x112273x10+4284x9++16 x^{16} - 2 x^{15} - 33 x^{14} + 66 x^{13} + 404 x^{12} - 796 x^{11} - 2273 x^{10} + 4284 x^{9} + \cdots + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 1480)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3+(β8+1)q7+(β2+1)q9+β7q11β14q13+(β6+β5β4)q17+(β11+1)q19+(β15β13++β1)q21++(β15+2β14+2β1)q99+O(q100) q + \beta_1 q^{3} + (\beta_{8} + 1) q^{7} + (\beta_{2} + 1) q^{9} + \beta_{7} q^{11} - \beta_{14} q^{13} + (\beta_{6} + \beta_{5} - \beta_{4}) q^{17} + ( - \beta_{11} + 1) q^{19} + ( - \beta_{15} - \beta_{13} + \cdots + \beta_1) q^{21}+ \cdots + ( - \beta_{15} + 2 \beta_{14} + \cdots - 2 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+2q3+9q7+22q9+3q114q139q17+14q19+8q21+18q234q27+q29+23q3110q33+16q37+23q4111q43+32q47+45q49+15q99+O(q100) 16 q + 2 q^{3} + 9 q^{7} + 22 q^{9} + 3 q^{11} - 4 q^{13} - 9 q^{17} + 14 q^{19} + 8 q^{21} + 18 q^{23} - 4 q^{27} + q^{29} + 23 q^{31} - 10 q^{33} + 16 q^{37} + 23 q^{41} - 11 q^{43} + 32 q^{47} + 45 q^{49}+ \cdots - 15 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x162x1533x14+66x13+404x12796x112273x10+4284x9++16 x^{16} - 2 x^{15} - 33 x^{14} + 66 x^{13} + 404 x^{12} - 796 x^{11} - 2273 x^{10} + 4284 x^{9} + \cdots + 16 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν24 \nu^{2} - 4 Copy content Toggle raw display
β3\beta_{3}== (734038251140ν15+22507424628655ν1466747757257083ν13+71 ⁣ ⁣90)/548023221091718 ( 734038251140 \nu^{15} + 22507424628655 \nu^{14} - 66747757257083 \nu^{13} + \cdots - 71\!\cdots\!90 ) / 548023221091718 Copy content Toggle raw display
β4\beta_{4}== (1978876789657ν1550267633335272ν14+27826535434397ν13++12 ⁣ ⁣12)/10 ⁣ ⁣36 ( 1978876789657 \nu^{15} - 50267633335272 \nu^{14} + 27826535434397 \nu^{13} + \cdots + 12\!\cdots\!12 ) / 10\!\cdots\!36 Copy content Toggle raw display
β5\beta_{5}== (1615550965631ν1510335920720187ν14+81254903921620ν13++48 ⁣ ⁣56)/548023221091718 ( - 1615550965631 \nu^{15} - 10335920720187 \nu^{14} + 81254903921620 \nu^{13} + \cdots + 48\!\cdots\!56 ) / 548023221091718 Copy content Toggle raw display
β6\beta_{6}== (7125784976077ν15+1317200650744ν14+256975318051897ν13++43 ⁣ ⁣24)/548023221091718 ( - 7125784976077 \nu^{15} + 1317200650744 \nu^{14} + 256975318051897 \nu^{13} + \cdots + 43\!\cdots\!24 ) / 548023221091718 Copy content Toggle raw display
β7\beta_{7}== (14399954587895ν15+14637956723222ν14+503531838899579ν13+22 ⁣ ⁣72)/10 ⁣ ⁣36 ( - 14399954587895 \nu^{15} + 14637956723222 \nu^{14} + 503531838899579 \nu^{13} + \cdots - 22\!\cdots\!72 ) / 10\!\cdots\!36 Copy content Toggle raw display
β8\beta_{8}== (30079433014147ν15+40227434856318ν14++52 ⁣ ⁣88)/10 ⁣ ⁣36 ( - 30079433014147 \nu^{15} + 40227434856318 \nu^{14} + \cdots + 52\!\cdots\!88 ) / 10\!\cdots\!36 Copy content Toggle raw display
β9\beta_{9}== (44720099371065ν15+92885284952754ν14+54 ⁣ ⁣52)/10 ⁣ ⁣36 ( - 44720099371065 \nu^{15} + 92885284952754 \nu^{14} + \cdots - 54\!\cdots\!52 ) / 10\!\cdots\!36 Copy content Toggle raw display
β10\beta_{10}== (23630524916430ν15+60147992099071ν14+756186101280111ν13+39 ⁣ ⁣26)/548023221091718 ( - 23630524916430 \nu^{15} + 60147992099071 \nu^{14} + 756186101280111 \nu^{13} + \cdots - 39\!\cdots\!26 ) / 548023221091718 Copy content Toggle raw display
β11\beta_{11}== (30499877110179ν1555597545410478ν14++887908579904830)/548023221091718 ( 30499877110179 \nu^{15} - 55597545410478 \nu^{14} + \cdots + 887908579904830 ) / 548023221091718 Copy content Toggle raw display
β12\beta_{12}== (75348438992069ν15+128912803883594ν14++17 ⁣ ⁣56)/10 ⁣ ⁣36 ( - 75348438992069 \nu^{15} + 128912803883594 \nu^{14} + \cdots + 17\!\cdots\!56 ) / 10\!\cdots\!36 Copy content Toggle raw display
β13\beta_{13}== (38227715756425ν1576049503836810ν14++34 ⁣ ⁣40)/548023221091718 ( 38227715756425 \nu^{15} - 76049503836810 \nu^{14} + \cdots + 34\!\cdots\!40 ) / 548023221091718 Copy content Toggle raw display
β14\beta_{14}== (66124921197320ν15135734026778415ν14++55 ⁣ ⁣84)/548023221091718 ( 66124921197320 \nu^{15} - 135734026778415 \nu^{14} + \cdots + 55\!\cdots\!84 ) / 548023221091718 Copy content Toggle raw display
β15\beta_{15}== (132436574713783ν15+260852429120424ν14+88 ⁣ ⁣08)/10 ⁣ ⁣36 ( - 132436574713783 \nu^{15} + 260852429120424 \nu^{14} + \cdots - 88\!\cdots\!08 ) / 10\!\cdots\!36 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+4 \beta_{2} + 4 Copy content Toggle raw display
ν3\nu^{3}== β15β14β8+2β6+β5+β3+β2+8β11 -\beta_{15} - \beta_{14} - \beta_{8} + 2\beta_{6} + \beta_{5} + \beta_{3} + \beta_{2} + 8\beta _1 - 1 Copy content Toggle raw display
ν4\nu^{4}== β14β13+β12+2β11β102β92β7++33 - \beta_{14} - \beta_{13} + \beta_{12} + 2 \beta_{11} - \beta_{10} - 2 \beta_{9} - 2 \beta_{7} + \cdots + 33 Copy content Toggle raw display
ν5\nu^{5}== 13β1512β142β133β123β11β10β9+16 - 13 \beta_{15} - 12 \beta_{14} - 2 \beta_{13} - 3 \beta_{12} - 3 \beta_{11} - \beta_{10} - \beta_{9} + \cdots - 16 Copy content Toggle raw display
ν6\nu^{6}== 2β1515β1416β13+20β12+32β1121β10++312 2 \beta_{15} - 15 \beta_{14} - 16 \beta_{13} + 20 \beta_{12} + 32 \beta_{11} - 21 \beta_{10} + \cdots + 312 Copy content Toggle raw display
ν7\nu^{7}== 148β15117β1444β1360β1263β117β10+213 - 148 \beta_{15} - 117 \beta_{14} - 44 \beta_{13} - 60 \beta_{12} - 63 \beta_{11} - 7 \beta_{10} + \cdots - 213 Copy content Toggle raw display
ν8\nu^{8}== 56β15176β14189β13+300β12+421β11310β10++3131 56 \beta_{15} - 176 \beta_{14} - 189 \beta_{13} + 300 \beta_{12} + 421 \beta_{11} - 310 \beta_{10} + \cdots + 3131 Copy content Toggle raw display
ν9\nu^{9}== 1661β151067β14701β13876β12962β11+65β10+2691 - 1661 \beta_{15} - 1067 \beta_{14} - 701 \beta_{13} - 876 \beta_{12} - 962 \beta_{11} + 65 \beta_{10} + \cdots - 2691 Copy content Toggle raw display
ν10\nu^{10}== 1048β151927β141954β13+4035β12+5239β114068β10++32571 1048 \beta_{15} - 1927 \beta_{14} - 1954 \beta_{13} + 4035 \beta_{12} + 5239 \beta_{11} - 4068 \beta_{10} + \cdots + 32571 Copy content Toggle raw display
ν11\nu^{11}== 18718β159349β149865β1311457β1213063β11+33456 - 18718 \beta_{15} - 9349 \beta_{14} - 9865 \beta_{13} - 11457 \beta_{12} - 13063 \beta_{11} + \cdots - 33456 Copy content Toggle raw display
ν12\nu^{12}== 16574β1520652β1418433β13+51360β12+63623β11++347406 16574 \beta_{15} - 20652 \beta_{14} - 18433 \beta_{13} + 51360 \beta_{12} + 63623 \beta_{11} + \cdots + 347406 Copy content Toggle raw display
ν13\nu^{13}== 212203β1578720β14130171β13142701β12167732β11+413744 - 212203 \beta_{15} - 78720 \beta_{14} - 130171 \beta_{13} - 142701 \beta_{12} - 167732 \beta_{11} + \cdots - 413744 Copy content Toggle raw display
ν14\nu^{14}== 239591β15220497β14158584β13+633529β12+762358β11++3774216 239591 \beta_{15} - 220497 \beta_{14} - 158584 \beta_{13} + 633529 \beta_{12} + 762358 \beta_{11} + \cdots + 3774216 Copy content Toggle raw display
ν15\nu^{15}== 2418060β15627694β141651946β131735219β122089599β11+5102286 - 2418060 \beta_{15} - 627694 \beta_{14} - 1651946 \beta_{13} - 1735219 \beta_{12} - 2089599 \beta_{11} + \cdots - 5102286 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−3.43243
−3.04373
−2.70502
−1.47399
−1.16696
−0.902602
−0.189778
−0.100725
0.336056
0.444459
1.18682
1.75598
2.38176
2.53062
3.10845
3.27108
0 −3.43243 0 0 0 4.96522 0 8.78154 0
1.2 0 −3.04373 0 0 0 −3.50721 0 6.26427 0
1.3 0 −2.70502 0 0 0 0.533645 0 4.31715 0
1.4 0 −1.47399 0 0 0 0.907297 0 −0.827364 0
1.5 0 −1.16696 0 0 0 −2.23151 0 −1.63819 0
1.6 0 −0.902602 0 0 0 −1.32204 0 −2.18531 0
1.7 0 −0.189778 0 0 0 2.89459 0 −2.96398 0
1.8 0 −0.100725 0 0 0 3.98340 0 −2.98985 0
1.9 0 0.336056 0 0 0 3.02156 0 −2.88707 0
1.10 0 0.444459 0 0 0 −4.10506 0 −2.80246 0
1.11 0 1.18682 0 0 0 0.0116605 0 −1.59145 0
1.12 0 1.75598 0 0 0 −4.69529 0 0.0834815 0
1.13 0 2.38176 0 0 0 5.05491 0 2.67277 0
1.14 0 2.53062 0 0 0 −0.665840 0 3.40405 0
1.15 0 3.10845 0 0 0 3.70694 0 6.66248 0
1.16 0 3.27108 0 0 0 0.447728 0 7.69993 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.16
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 1 -1
3737 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7400.2.a.be 16
5.b even 2 1 7400.2.a.bd 16
5.c odd 4 2 1480.2.d.c 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1480.2.d.c 32 5.c odd 4 2
7400.2.a.bd 16 5.b even 2 1
7400.2.a.be 16 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7400))S_{2}^{\mathrm{new}}(\Gamma_0(7400)):

T3162T31533T314+66T313+404T312796T3112273T310++16 T_{3}^{16} - 2 T_{3}^{15} - 33 T_{3}^{14} + 66 T_{3}^{13} + 404 T_{3}^{12} - 796 T_{3}^{11} - 2273 T_{3}^{10} + \cdots + 16 Copy content Toggle raw display
T7169T71538T714+522T713+41T71210867T711++1088 T_{7}^{16} - 9 T_{7}^{15} - 38 T_{7}^{14} + 522 T_{7}^{13} + 41 T_{7}^{12} - 10867 T_{7}^{11} + \cdots + 1088 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 T162T15++16 T^{16} - 2 T^{15} + \cdots + 16 Copy content Toggle raw display
55 T16 T^{16} Copy content Toggle raw display
77 T169T15++1088 T^{16} - 9 T^{15} + \cdots + 1088 Copy content Toggle raw display
1111 T163T15+23763968 T^{16} - 3 T^{15} + \cdots - 23763968 Copy content Toggle raw display
1313 T16+4T15++29707264 T^{16} + 4 T^{15} + \cdots + 29707264 Copy content Toggle raw display
1717 T16+9T15++97800192 T^{16} + 9 T^{15} + \cdots + 97800192 Copy content Toggle raw display
1919 T16+538505216 T^{16} + \cdots - 538505216 Copy content Toggle raw display
2323 T16+174358528 T^{16} + \cdots - 174358528 Copy content Toggle raw display
2929 T16++49220009984 T^{16} + \cdots + 49220009984 Copy content Toggle raw display
3131 T16+314427792 T^{16} + \cdots - 314427792 Copy content Toggle raw display
3737 (T1)16 (T - 1)^{16} Copy content Toggle raw display
4141 T16++31001520832 T^{16} + \cdots + 31001520832 Copy content Toggle raw display
4343 T16++374194176 T^{16} + \cdots + 374194176 Copy content Toggle raw display
4747 T16+7578127104 T^{16} + \cdots - 7578127104 Copy content Toggle raw display
5353 T16++442116241408 T^{16} + \cdots + 442116241408 Copy content Toggle raw display
5959 T16+63898386432 T^{16} + \cdots - 63898386432 Copy content Toggle raw display
6161 T16++990990761984 T^{16} + \cdots + 990990761984 Copy content Toggle raw display
6767 T16++147435008 T^{16} + \cdots + 147435008 Copy content Toggle raw display
7171 T16++20551437811712 T^{16} + \cdots + 20551437811712 Copy content Toggle raw display
7373 T16+313851217482752 T^{16} + \cdots - 313851217482752 Copy content Toggle raw display
7979 T16+2447424256 T^{16} + \cdots - 2447424256 Copy content Toggle raw display
8383 T16+2485440892672 T^{16} + \cdots - 2485440892672 Copy content Toggle raw display
8989 T16++205458112512 T^{16} + \cdots + 205458112512 Copy content Toggle raw display
9797 T16+1415820529664 T^{16} + \cdots - 1415820529664 Copy content Toggle raw display
show more
show less