Properties

Label 7400.2.a.be.1.14
Level $7400$
Weight $2$
Character 7400.1
Self dual yes
Analytic conductor $59.089$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7400,2,Mod(1,7400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7400.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7400 = 2^{3} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.0892974957\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 33 x^{14} + 66 x^{13} + 404 x^{12} - 796 x^{11} - 2273 x^{10} + 4284 x^{9} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1480)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(2.53062\) of defining polynomial
Character \(\chi\) \(=\) 7400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.53062 q^{3} -0.665840 q^{7} +3.40405 q^{9} +0.212137 q^{11} +4.76390 q^{13} +4.45920 q^{17} +1.83455 q^{19} -1.68499 q^{21} +3.65776 q^{23} +1.02251 q^{27} +3.11206 q^{29} -2.62327 q^{31} +0.536840 q^{33} +1.00000 q^{37} +12.0556 q^{39} -4.61554 q^{41} +12.4107 q^{43} -3.87039 q^{47} -6.55666 q^{49} +11.2846 q^{51} -9.63817 q^{53} +4.64256 q^{57} -6.55947 q^{59} +10.5841 q^{61} -2.26655 q^{63} +2.61116 q^{67} +9.25641 q^{69} -5.49658 q^{71} -13.2091 q^{73} -0.141249 q^{77} +8.46684 q^{79} -7.62458 q^{81} +5.30556 q^{83} +7.87544 q^{87} +1.40902 q^{89} -3.17199 q^{91} -6.63851 q^{93} +1.96770 q^{97} +0.722127 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{3} + 9 q^{7} + 22 q^{9} + 3 q^{11} - 4 q^{13} - 9 q^{17} + 14 q^{19} + 8 q^{21} + 18 q^{23} - 4 q^{27} + q^{29} + 23 q^{31} - 10 q^{33} + 16 q^{37} + 23 q^{41} - 11 q^{43} + 32 q^{47} + 45 q^{49}+ \cdots - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.53062 1.46106 0.730528 0.682883i \(-0.239274\pi\)
0.730528 + 0.682883i \(0.239274\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.665840 −0.251664 −0.125832 0.992052i \(-0.540160\pi\)
−0.125832 + 0.992052i \(0.540160\pi\)
\(8\) 0 0
\(9\) 3.40405 1.13468
\(10\) 0 0
\(11\) 0.212137 0.0639618 0.0319809 0.999488i \(-0.489818\pi\)
0.0319809 + 0.999488i \(0.489818\pi\)
\(12\) 0 0
\(13\) 4.76390 1.32127 0.660634 0.750708i \(-0.270287\pi\)
0.660634 + 0.750708i \(0.270287\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.45920 1.08151 0.540757 0.841179i \(-0.318138\pi\)
0.540757 + 0.841179i \(0.318138\pi\)
\(18\) 0 0
\(19\) 1.83455 0.420875 0.210437 0.977607i \(-0.432511\pi\)
0.210437 + 0.977607i \(0.432511\pi\)
\(20\) 0 0
\(21\) −1.68499 −0.367695
\(22\) 0 0
\(23\) 3.65776 0.762696 0.381348 0.924432i \(-0.375460\pi\)
0.381348 + 0.924432i \(0.375460\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.02251 0.196781
\(28\) 0 0
\(29\) 3.11206 0.577894 0.288947 0.957345i \(-0.406695\pi\)
0.288947 + 0.957345i \(0.406695\pi\)
\(30\) 0 0
\(31\) −2.62327 −0.471154 −0.235577 0.971856i \(-0.575698\pi\)
−0.235577 + 0.971856i \(0.575698\pi\)
\(32\) 0 0
\(33\) 0.536840 0.0934518
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) 12.0556 1.93045
\(40\) 0 0
\(41\) −4.61554 −0.720827 −0.360414 0.932793i \(-0.617364\pi\)
−0.360414 + 0.932793i \(0.617364\pi\)
\(42\) 0 0
\(43\) 12.4107 1.89262 0.946308 0.323268i \(-0.104781\pi\)
0.946308 + 0.323268i \(0.104781\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.87039 −0.564555 −0.282277 0.959333i \(-0.591090\pi\)
−0.282277 + 0.959333i \(0.591090\pi\)
\(48\) 0 0
\(49\) −6.55666 −0.936665
\(50\) 0 0
\(51\) 11.2846 1.58015
\(52\) 0 0
\(53\) −9.63817 −1.32390 −0.661952 0.749546i \(-0.730272\pi\)
−0.661952 + 0.749546i \(0.730272\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.64256 0.614922
\(58\) 0 0
\(59\) −6.55947 −0.853970 −0.426985 0.904259i \(-0.640424\pi\)
−0.426985 + 0.904259i \(0.640424\pi\)
\(60\) 0 0
\(61\) 10.5841 1.35515 0.677576 0.735453i \(-0.263031\pi\)
0.677576 + 0.735453i \(0.263031\pi\)
\(62\) 0 0
\(63\) −2.26655 −0.285559
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.61116 0.319004 0.159502 0.987198i \(-0.449011\pi\)
0.159502 + 0.987198i \(0.449011\pi\)
\(68\) 0 0
\(69\) 9.25641 1.11434
\(70\) 0 0
\(71\) −5.49658 −0.652324 −0.326162 0.945314i \(-0.605756\pi\)
−0.326162 + 0.945314i \(0.605756\pi\)
\(72\) 0 0
\(73\) −13.2091 −1.54601 −0.773003 0.634402i \(-0.781246\pi\)
−0.773003 + 0.634402i \(0.781246\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.141249 −0.0160969
\(78\) 0 0
\(79\) 8.46684 0.952593 0.476297 0.879285i \(-0.341979\pi\)
0.476297 + 0.879285i \(0.341979\pi\)
\(80\) 0 0
\(81\) −7.62458 −0.847176
\(82\) 0 0
\(83\) 5.30556 0.582361 0.291181 0.956668i \(-0.405952\pi\)
0.291181 + 0.956668i \(0.405952\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 7.87544 0.844336
\(88\) 0 0
\(89\) 1.40902 0.149356 0.0746778 0.997208i \(-0.476207\pi\)
0.0746778 + 0.997208i \(0.476207\pi\)
\(90\) 0 0
\(91\) −3.17199 −0.332515
\(92\) 0 0
\(93\) −6.63851 −0.688382
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.96770 0.199790 0.0998950 0.994998i \(-0.468149\pi\)
0.0998950 + 0.994998i \(0.468149\pi\)
\(98\) 0 0
\(99\) 0.722127 0.0725765
\(100\) 0 0
\(101\) 15.1334 1.50583 0.752913 0.658120i \(-0.228648\pi\)
0.752913 + 0.658120i \(0.228648\pi\)
\(102\) 0 0
\(103\) 12.3638 1.21824 0.609120 0.793078i \(-0.291523\pi\)
0.609120 + 0.793078i \(0.291523\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.00842 0.870877 0.435438 0.900219i \(-0.356593\pi\)
0.435438 + 0.900219i \(0.356593\pi\)
\(108\) 0 0
\(109\) 1.33330 0.127707 0.0638535 0.997959i \(-0.479661\pi\)
0.0638535 + 0.997959i \(0.479661\pi\)
\(110\) 0 0
\(111\) 2.53062 0.240196
\(112\) 0 0
\(113\) −5.83790 −0.549184 −0.274592 0.961561i \(-0.588543\pi\)
−0.274592 + 0.961561i \(0.588543\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 16.2166 1.49922
\(118\) 0 0
\(119\) −2.96911 −0.272178
\(120\) 0 0
\(121\) −10.9550 −0.995909
\(122\) 0 0
\(123\) −11.6802 −1.05317
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 13.4120 1.19012 0.595060 0.803682i \(-0.297128\pi\)
0.595060 + 0.803682i \(0.297128\pi\)
\(128\) 0 0
\(129\) 31.4068 2.76522
\(130\) 0 0
\(131\) −4.67076 −0.408086 −0.204043 0.978962i \(-0.565408\pi\)
−0.204043 + 0.978962i \(0.565408\pi\)
\(132\) 0 0
\(133\) −1.22152 −0.105919
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.20240 −0.444471 −0.222236 0.974993i \(-0.571335\pi\)
−0.222236 + 0.974993i \(0.571335\pi\)
\(138\) 0 0
\(139\) −4.69871 −0.398539 −0.199270 0.979945i \(-0.563857\pi\)
−0.199270 + 0.979945i \(0.563857\pi\)
\(140\) 0 0
\(141\) −9.79450 −0.824846
\(142\) 0 0
\(143\) 1.01060 0.0845107
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −16.5924 −1.36852
\(148\) 0 0
\(149\) −4.97695 −0.407727 −0.203864 0.978999i \(-0.565350\pi\)
−0.203864 + 0.978999i \(0.565350\pi\)
\(150\) 0 0
\(151\) −0.121787 −0.00991092 −0.00495546 0.999988i \(-0.501577\pi\)
−0.00495546 + 0.999988i \(0.501577\pi\)
\(152\) 0 0
\(153\) 15.1794 1.22718
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −16.3676 −1.30628 −0.653139 0.757238i \(-0.726548\pi\)
−0.653139 + 0.757238i \(0.726548\pi\)
\(158\) 0 0
\(159\) −24.3906 −1.93430
\(160\) 0 0
\(161\) −2.43548 −0.191943
\(162\) 0 0
\(163\) −5.86638 −0.459490 −0.229745 0.973251i \(-0.573789\pi\)
−0.229745 + 0.973251i \(0.573789\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.24159 0.328224 0.164112 0.986442i \(-0.447524\pi\)
0.164112 + 0.986442i \(0.447524\pi\)
\(168\) 0 0
\(169\) 9.69475 0.745750
\(170\) 0 0
\(171\) 6.24491 0.477560
\(172\) 0 0
\(173\) 13.5657 1.03138 0.515690 0.856775i \(-0.327536\pi\)
0.515690 + 0.856775i \(0.327536\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −16.5995 −1.24770
\(178\) 0 0
\(179\) 8.65357 0.646798 0.323399 0.946263i \(-0.395174\pi\)
0.323399 + 0.946263i \(0.395174\pi\)
\(180\) 0 0
\(181\) 19.5784 1.45525 0.727625 0.685975i \(-0.240624\pi\)
0.727625 + 0.685975i \(0.240624\pi\)
\(182\) 0 0
\(183\) 26.7843 1.97995
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.945963 0.0691756
\(188\) 0 0
\(189\) −0.680825 −0.0495227
\(190\) 0 0
\(191\) 18.6616 1.35030 0.675152 0.737678i \(-0.264078\pi\)
0.675152 + 0.737678i \(0.264078\pi\)
\(192\) 0 0
\(193\) 11.9126 0.857490 0.428745 0.903426i \(-0.358956\pi\)
0.428745 + 0.903426i \(0.358956\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.7536 1.40739 0.703693 0.710504i \(-0.251533\pi\)
0.703693 + 0.710504i \(0.251533\pi\)
\(198\) 0 0
\(199\) −12.5990 −0.893118 −0.446559 0.894754i \(-0.647351\pi\)
−0.446559 + 0.894754i \(0.647351\pi\)
\(200\) 0 0
\(201\) 6.60787 0.466083
\(202\) 0 0
\(203\) −2.07213 −0.145435
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 12.4512 0.865419
\(208\) 0 0
\(209\) 0.389177 0.0269199
\(210\) 0 0
\(211\) 0.549320 0.0378167 0.0189084 0.999821i \(-0.493981\pi\)
0.0189084 + 0.999821i \(0.493981\pi\)
\(212\) 0 0
\(213\) −13.9098 −0.953082
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.74668 0.118572
\(218\) 0 0
\(219\) −33.4272 −2.25880
\(220\) 0 0
\(221\) 21.2432 1.42897
\(222\) 0 0
\(223\) −6.36784 −0.426422 −0.213211 0.977006i \(-0.568392\pi\)
−0.213211 + 0.977006i \(0.568392\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.56839 0.303215 0.151607 0.988441i \(-0.451555\pi\)
0.151607 + 0.988441i \(0.451555\pi\)
\(228\) 0 0
\(229\) 14.4092 0.952186 0.476093 0.879395i \(-0.342053\pi\)
0.476093 + 0.879395i \(0.342053\pi\)
\(230\) 0 0
\(231\) −0.357449 −0.0235184
\(232\) 0 0
\(233\) 6.86619 0.449819 0.224909 0.974380i \(-0.427791\pi\)
0.224909 + 0.974380i \(0.427791\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 21.4264 1.39179
\(238\) 0 0
\(239\) −27.2778 −1.76445 −0.882226 0.470826i \(-0.843956\pi\)
−0.882226 + 0.470826i \(0.843956\pi\)
\(240\) 0 0
\(241\) 11.2625 0.725482 0.362741 0.931890i \(-0.381841\pi\)
0.362741 + 0.931890i \(0.381841\pi\)
\(242\) 0 0
\(243\) −22.3625 −1.43455
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.73962 0.556089
\(248\) 0 0
\(249\) 13.4264 0.850862
\(250\) 0 0
\(251\) 14.4759 0.913710 0.456855 0.889541i \(-0.348976\pi\)
0.456855 + 0.889541i \(0.348976\pi\)
\(252\) 0 0
\(253\) 0.775947 0.0487834
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.87425 −0.366426 −0.183213 0.983073i \(-0.558650\pi\)
−0.183213 + 0.983073i \(0.558650\pi\)
\(258\) 0 0
\(259\) −0.665840 −0.0413733
\(260\) 0 0
\(261\) 10.5936 0.655728
\(262\) 0 0
\(263\) 29.0895 1.79374 0.896869 0.442297i \(-0.145836\pi\)
0.896869 + 0.442297i \(0.145836\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 3.56569 0.218217
\(268\) 0 0
\(269\) −16.9280 −1.03212 −0.516060 0.856552i \(-0.672602\pi\)
−0.516060 + 0.856552i \(0.672602\pi\)
\(270\) 0 0
\(271\) −1.97302 −0.119852 −0.0599262 0.998203i \(-0.519087\pi\)
−0.0599262 + 0.998203i \(0.519087\pi\)
\(272\) 0 0
\(273\) −8.02712 −0.485824
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.88133 0.173123 0.0865613 0.996247i \(-0.472412\pi\)
0.0865613 + 0.996247i \(0.472412\pi\)
\(278\) 0 0
\(279\) −8.92976 −0.534611
\(280\) 0 0
\(281\) 17.8396 1.06422 0.532111 0.846674i \(-0.321399\pi\)
0.532111 + 0.846674i \(0.321399\pi\)
\(282\) 0 0
\(283\) −10.8916 −0.647441 −0.323720 0.946153i \(-0.604934\pi\)
−0.323720 + 0.946153i \(0.604934\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.07321 0.181406
\(288\) 0 0
\(289\) 2.88446 0.169674
\(290\) 0 0
\(291\) 4.97952 0.291904
\(292\) 0 0
\(293\) −17.1425 −1.00148 −0.500738 0.865599i \(-0.666938\pi\)
−0.500738 + 0.865599i \(0.666938\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0.216912 0.0125865
\(298\) 0 0
\(299\) 17.4252 1.00773
\(300\) 0 0
\(301\) −8.26354 −0.476303
\(302\) 0 0
\(303\) 38.2968 2.20010
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.66495 −0.0950234 −0.0475117 0.998871i \(-0.515129\pi\)
−0.0475117 + 0.998871i \(0.515129\pi\)
\(308\) 0 0
\(309\) 31.2881 1.77992
\(310\) 0 0
\(311\) 20.7686 1.17768 0.588840 0.808250i \(-0.299585\pi\)
0.588840 + 0.808250i \(0.299585\pi\)
\(312\) 0 0
\(313\) 11.9556 0.675772 0.337886 0.941187i \(-0.390288\pi\)
0.337886 + 0.941187i \(0.390288\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −30.8309 −1.73164 −0.865818 0.500360i \(-0.833201\pi\)
−0.865818 + 0.500360i \(0.833201\pi\)
\(318\) 0 0
\(319\) 0.660183 0.0369632
\(320\) 0 0
\(321\) 22.7969 1.27240
\(322\) 0 0
\(323\) 8.18063 0.455182
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3.37408 0.186587
\(328\) 0 0
\(329\) 2.57706 0.142078
\(330\) 0 0
\(331\) 26.3314 1.44730 0.723652 0.690165i \(-0.242462\pi\)
0.723652 + 0.690165i \(0.242462\pi\)
\(332\) 0 0
\(333\) 3.40405 0.186541
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.5264 −1.22709 −0.613545 0.789660i \(-0.710257\pi\)
−0.613545 + 0.789660i \(0.710257\pi\)
\(338\) 0 0
\(339\) −14.7735 −0.802388
\(340\) 0 0
\(341\) −0.556494 −0.0301358
\(342\) 0 0
\(343\) 9.02656 0.487389
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.05241 0.163862 0.0819311 0.996638i \(-0.473891\pi\)
0.0819311 + 0.996638i \(0.473891\pi\)
\(348\) 0 0
\(349\) −7.15671 −0.383090 −0.191545 0.981484i \(-0.561350\pi\)
−0.191545 + 0.981484i \(0.561350\pi\)
\(350\) 0 0
\(351\) 4.87111 0.260001
\(352\) 0 0
\(353\) −29.3932 −1.56444 −0.782222 0.622999i \(-0.785914\pi\)
−0.782222 + 0.622999i \(0.785914\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −7.51371 −0.397667
\(358\) 0 0
\(359\) −12.6182 −0.665962 −0.332981 0.942934i \(-0.608054\pi\)
−0.332981 + 0.942934i \(0.608054\pi\)
\(360\) 0 0
\(361\) −15.6344 −0.822864
\(362\) 0 0
\(363\) −27.7230 −1.45508
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −31.0497 −1.62078 −0.810391 0.585890i \(-0.800745\pi\)
−0.810391 + 0.585890i \(0.800745\pi\)
\(368\) 0 0
\(369\) −15.7116 −0.817911
\(370\) 0 0
\(371\) 6.41748 0.333179
\(372\) 0 0
\(373\) −6.90718 −0.357640 −0.178820 0.983882i \(-0.557228\pi\)
−0.178820 + 0.983882i \(0.557228\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.8255 0.763554
\(378\) 0 0
\(379\) −2.35124 −0.120775 −0.0603875 0.998175i \(-0.519234\pi\)
−0.0603875 + 0.998175i \(0.519234\pi\)
\(380\) 0 0
\(381\) 33.9406 1.73883
\(382\) 0 0
\(383\) −20.3865 −1.04170 −0.520850 0.853648i \(-0.674385\pi\)
−0.520850 + 0.853648i \(0.674385\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 42.2467 2.14752
\(388\) 0 0
\(389\) 21.3954 1.08479 0.542395 0.840124i \(-0.317518\pi\)
0.542395 + 0.840124i \(0.317518\pi\)
\(390\) 0 0
\(391\) 16.3107 0.824867
\(392\) 0 0
\(393\) −11.8199 −0.596237
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −10.3406 −0.518981 −0.259490 0.965746i \(-0.583555\pi\)
−0.259490 + 0.965746i \(0.583555\pi\)
\(398\) 0 0
\(399\) −3.09120 −0.154754
\(400\) 0 0
\(401\) −24.0997 −1.20348 −0.601740 0.798692i \(-0.705526\pi\)
−0.601740 + 0.798692i \(0.705526\pi\)
\(402\) 0 0
\(403\) −12.4970 −0.622520
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.212137 0.0105153
\(408\) 0 0
\(409\) 34.5089 1.70635 0.853176 0.521622i \(-0.174673\pi\)
0.853176 + 0.521622i \(0.174673\pi\)
\(410\) 0 0
\(411\) −13.1653 −0.649397
\(412\) 0 0
\(413\) 4.36756 0.214913
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −11.8907 −0.582288
\(418\) 0 0
\(419\) 31.4018 1.53408 0.767039 0.641601i \(-0.221729\pi\)
0.767039 + 0.641601i \(0.221729\pi\)
\(420\) 0 0
\(421\) 33.2638 1.62118 0.810589 0.585615i \(-0.199147\pi\)
0.810589 + 0.585615i \(0.199147\pi\)
\(422\) 0 0
\(423\) −13.1750 −0.640591
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −7.04730 −0.341043
\(428\) 0 0
\(429\) 2.55745 0.123475
\(430\) 0 0
\(431\) −7.53778 −0.363082 −0.181541 0.983383i \(-0.558108\pi\)
−0.181541 + 0.983383i \(0.558108\pi\)
\(432\) 0 0
\(433\) 11.8703 0.570451 0.285225 0.958460i \(-0.407932\pi\)
0.285225 + 0.958460i \(0.407932\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.71035 0.320999
\(438\) 0 0
\(439\) 40.2687 1.92192 0.960959 0.276690i \(-0.0892374\pi\)
0.960959 + 0.276690i \(0.0892374\pi\)
\(440\) 0 0
\(441\) −22.3192 −1.06282
\(442\) 0 0
\(443\) −25.3001 −1.20204 −0.601021 0.799233i \(-0.705239\pi\)
−0.601021 + 0.799233i \(0.705239\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −12.5948 −0.595713
\(448\) 0 0
\(449\) −38.8068 −1.83141 −0.915704 0.401854i \(-0.868366\pi\)
−0.915704 + 0.401854i \(0.868366\pi\)
\(450\) 0 0
\(451\) −0.979129 −0.0461054
\(452\) 0 0
\(453\) −0.308198 −0.0144804
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −21.0818 −0.986165 −0.493083 0.869982i \(-0.664130\pi\)
−0.493083 + 0.869982i \(0.664130\pi\)
\(458\) 0 0
\(459\) 4.55955 0.212822
\(460\) 0 0
\(461\) 19.3748 0.902376 0.451188 0.892429i \(-0.351000\pi\)
0.451188 + 0.892429i \(0.351000\pi\)
\(462\) 0 0
\(463\) −35.9717 −1.67175 −0.835873 0.548923i \(-0.815038\pi\)
−0.835873 + 0.548923i \(0.815038\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.23518 0.195981 0.0979904 0.995187i \(-0.468759\pi\)
0.0979904 + 0.995187i \(0.468759\pi\)
\(468\) 0 0
\(469\) −1.73862 −0.0802819
\(470\) 0 0
\(471\) −41.4203 −1.90855
\(472\) 0 0
\(473\) 2.63277 0.121055
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −32.8088 −1.50221
\(478\) 0 0
\(479\) −16.9389 −0.773957 −0.386979 0.922089i \(-0.626481\pi\)
−0.386979 + 0.922089i \(0.626481\pi\)
\(480\) 0 0
\(481\) 4.76390 0.217215
\(482\) 0 0
\(483\) −6.16329 −0.280439
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −4.79971 −0.217496 −0.108748 0.994069i \(-0.534684\pi\)
−0.108748 + 0.994069i \(0.534684\pi\)
\(488\) 0 0
\(489\) −14.8456 −0.671341
\(490\) 0 0
\(491\) 25.8467 1.16645 0.583223 0.812312i \(-0.301791\pi\)
0.583223 + 0.812312i \(0.301791\pi\)
\(492\) 0 0
\(493\) 13.8773 0.625001
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.65984 0.164166
\(498\) 0 0
\(499\) 9.32675 0.417523 0.208761 0.977967i \(-0.433057\pi\)
0.208761 + 0.977967i \(0.433057\pi\)
\(500\) 0 0
\(501\) 10.7339 0.479554
\(502\) 0 0
\(503\) −6.75244 −0.301077 −0.150538 0.988604i \(-0.548101\pi\)
−0.150538 + 0.988604i \(0.548101\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 24.5338 1.08958
\(508\) 0 0
\(509\) −24.7844 −1.09855 −0.549274 0.835642i \(-0.685096\pi\)
−0.549274 + 0.835642i \(0.685096\pi\)
\(510\) 0 0
\(511\) 8.79514 0.389074
\(512\) 0 0
\(513\) 1.87584 0.0828203
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −0.821054 −0.0361099
\(518\) 0 0
\(519\) 34.3296 1.50690
\(520\) 0 0
\(521\) 24.4210 1.06990 0.534952 0.844882i \(-0.320330\pi\)
0.534952 + 0.844882i \(0.320330\pi\)
\(522\) 0 0
\(523\) −27.7585 −1.21379 −0.606896 0.794781i \(-0.707586\pi\)
−0.606896 + 0.794781i \(0.707586\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11.6977 −0.509560
\(528\) 0 0
\(529\) −9.62079 −0.418295
\(530\) 0 0
\(531\) −22.3288 −0.968986
\(532\) 0 0
\(533\) −21.9880 −0.952406
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 21.8989 0.945009
\(538\) 0 0
\(539\) −1.39091 −0.0599108
\(540\) 0 0
\(541\) 21.9556 0.943944 0.471972 0.881613i \(-0.343542\pi\)
0.471972 + 0.881613i \(0.343542\pi\)
\(542\) 0 0
\(543\) 49.5455 2.12620
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −31.7311 −1.35673 −0.678363 0.734727i \(-0.737310\pi\)
−0.678363 + 0.734727i \(0.737310\pi\)
\(548\) 0 0
\(549\) 36.0287 1.53767
\(550\) 0 0
\(551\) 5.70923 0.243221
\(552\) 0 0
\(553\) −5.63756 −0.239733
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.83522 −0.247246 −0.123623 0.992329i \(-0.539451\pi\)
−0.123623 + 0.992329i \(0.539451\pi\)
\(558\) 0 0
\(559\) 59.1234 2.50065
\(560\) 0 0
\(561\) 2.39388 0.101069
\(562\) 0 0
\(563\) −43.9123 −1.85068 −0.925341 0.379135i \(-0.876222\pi\)
−0.925341 + 0.379135i \(0.876222\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 5.07675 0.213204
\(568\) 0 0
\(569\) −29.3895 −1.23207 −0.616035 0.787719i \(-0.711262\pi\)
−0.616035 + 0.787719i \(0.711262\pi\)
\(570\) 0 0
\(571\) −43.3521 −1.81423 −0.907114 0.420886i \(-0.861719\pi\)
−0.907114 + 0.420886i \(0.861719\pi\)
\(572\) 0 0
\(573\) 47.2254 1.97287
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −12.6707 −0.527487 −0.263744 0.964593i \(-0.584957\pi\)
−0.263744 + 0.964593i \(0.584957\pi\)
\(578\) 0 0
\(579\) 30.1464 1.25284
\(580\) 0 0
\(581\) −3.53266 −0.146559
\(582\) 0 0
\(583\) −2.04462 −0.0846793
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −8.95031 −0.369419 −0.184709 0.982793i \(-0.559134\pi\)
−0.184709 + 0.982793i \(0.559134\pi\)
\(588\) 0 0
\(589\) −4.81253 −0.198297
\(590\) 0 0
\(591\) 49.9889 2.05627
\(592\) 0 0
\(593\) −16.5839 −0.681019 −0.340510 0.940241i \(-0.610600\pi\)
−0.340510 + 0.940241i \(0.610600\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −31.8833 −1.30490
\(598\) 0 0
\(599\) −16.4241 −0.671071 −0.335535 0.942028i \(-0.608917\pi\)
−0.335535 + 0.942028i \(0.608917\pi\)
\(600\) 0 0
\(601\) −9.47752 −0.386596 −0.193298 0.981140i \(-0.561918\pi\)
−0.193298 + 0.981140i \(0.561918\pi\)
\(602\) 0 0
\(603\) 8.88854 0.361969
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 20.4880 0.831583 0.415792 0.909460i \(-0.363505\pi\)
0.415792 + 0.909460i \(0.363505\pi\)
\(608\) 0 0
\(609\) −5.24378 −0.212489
\(610\) 0 0
\(611\) −18.4382 −0.745928
\(612\) 0 0
\(613\) 8.51856 0.344061 0.172031 0.985092i \(-0.444967\pi\)
0.172031 + 0.985092i \(0.444967\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −37.8757 −1.52482 −0.762409 0.647096i \(-0.775983\pi\)
−0.762409 + 0.647096i \(0.775983\pi\)
\(618\) 0 0
\(619\) 20.3246 0.816915 0.408457 0.912777i \(-0.366067\pi\)
0.408457 + 0.912777i \(0.366067\pi\)
\(620\) 0 0
\(621\) 3.74008 0.150084
\(622\) 0 0
\(623\) −0.938180 −0.0375874
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.984860 0.0393315
\(628\) 0 0
\(629\) 4.45920 0.177800
\(630\) 0 0
\(631\) −16.1110 −0.641371 −0.320685 0.947186i \(-0.603913\pi\)
−0.320685 + 0.947186i \(0.603913\pi\)
\(632\) 0 0
\(633\) 1.39012 0.0552523
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −31.2353 −1.23759
\(638\) 0 0
\(639\) −18.7107 −0.740182
\(640\) 0 0
\(641\) −41.9600 −1.65732 −0.828660 0.559752i \(-0.810896\pi\)
−0.828660 + 0.559752i \(0.810896\pi\)
\(642\) 0 0
\(643\) 41.9665 1.65500 0.827499 0.561467i \(-0.189763\pi\)
0.827499 + 0.561467i \(0.189763\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.45946 −0.293262 −0.146631 0.989191i \(-0.546843\pi\)
−0.146631 + 0.989191i \(0.546843\pi\)
\(648\) 0 0
\(649\) −1.39151 −0.0546215
\(650\) 0 0
\(651\) 4.42019 0.173241
\(652\) 0 0
\(653\) −12.0216 −0.470441 −0.235221 0.971942i \(-0.575581\pi\)
−0.235221 + 0.971942i \(0.575581\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −44.9644 −1.75423
\(658\) 0 0
\(659\) 27.3611 1.06584 0.532919 0.846166i \(-0.321095\pi\)
0.532919 + 0.846166i \(0.321095\pi\)
\(660\) 0 0
\(661\) −2.47942 −0.0964384 −0.0482192 0.998837i \(-0.515355\pi\)
−0.0482192 + 0.998837i \(0.515355\pi\)
\(662\) 0 0
\(663\) 53.7585 2.08781
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11.3832 0.440758
\(668\) 0 0
\(669\) −16.1146 −0.623027
\(670\) 0 0
\(671\) 2.24528 0.0866779
\(672\) 0 0
\(673\) −33.4903 −1.29096 −0.645478 0.763779i \(-0.723342\pi\)
−0.645478 + 0.763779i \(0.723342\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.23160 0.239500 0.119750 0.992804i \(-0.461791\pi\)
0.119750 + 0.992804i \(0.461791\pi\)
\(678\) 0 0
\(679\) −1.31018 −0.0502799
\(680\) 0 0
\(681\) 11.5609 0.443013
\(682\) 0 0
\(683\) −28.3438 −1.08455 −0.542274 0.840202i \(-0.682436\pi\)
−0.542274 + 0.840202i \(0.682436\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 36.4642 1.39120
\(688\) 0 0
\(689\) −45.9153 −1.74923
\(690\) 0 0
\(691\) −47.8097 −1.81876 −0.909382 0.415961i \(-0.863445\pi\)
−0.909382 + 0.415961i \(0.863445\pi\)
\(692\) 0 0
\(693\) −0.480821 −0.0182649
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −20.5816 −0.779585
\(698\) 0 0
\(699\) 17.3757 0.657211
\(700\) 0 0
\(701\) −2.20755 −0.0833779 −0.0416890 0.999131i \(-0.513274\pi\)
−0.0416890 + 0.999131i \(0.513274\pi\)
\(702\) 0 0
\(703\) 1.83455 0.0691914
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.0764 −0.378962
\(708\) 0 0
\(709\) −4.52774 −0.170043 −0.0850214 0.996379i \(-0.527096\pi\)
−0.0850214 + 0.996379i \(0.527096\pi\)
\(710\) 0 0
\(711\) 28.8216 1.08089
\(712\) 0 0
\(713\) −9.59530 −0.359347
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −69.0298 −2.57796
\(718\) 0 0
\(719\) −38.5228 −1.43666 −0.718329 0.695703i \(-0.755093\pi\)
−0.718329 + 0.695703i \(0.755093\pi\)
\(720\) 0 0
\(721\) −8.23230 −0.306587
\(722\) 0 0
\(723\) 28.5012 1.05997
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 31.0552 1.15177 0.575887 0.817529i \(-0.304657\pi\)
0.575887 + 0.817529i \(0.304657\pi\)
\(728\) 0 0
\(729\) −33.7172 −1.24879
\(730\) 0 0
\(731\) 55.3418 2.04689
\(732\) 0 0
\(733\) −22.4131 −0.827849 −0.413924 0.910311i \(-0.635842\pi\)
−0.413924 + 0.910311i \(0.635842\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.553925 0.0204041
\(738\) 0 0
\(739\) 17.8141 0.655301 0.327651 0.944799i \(-0.393743\pi\)
0.327651 + 0.944799i \(0.393743\pi\)
\(740\) 0 0
\(741\) 22.1167 0.812476
\(742\) 0 0
\(743\) 11.0836 0.406617 0.203309 0.979115i \(-0.434831\pi\)
0.203309 + 0.979115i \(0.434831\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 18.0604 0.660796
\(748\) 0 0
\(749\) −5.99816 −0.219168
\(750\) 0 0
\(751\) 12.6522 0.461684 0.230842 0.972991i \(-0.425852\pi\)
0.230842 + 0.972991i \(0.425852\pi\)
\(752\) 0 0
\(753\) 36.6330 1.33498
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −27.5485 −1.00127 −0.500634 0.865659i \(-0.666900\pi\)
−0.500634 + 0.865659i \(0.666900\pi\)
\(758\) 0 0
\(759\) 1.96363 0.0712753
\(760\) 0 0
\(761\) −46.5395 −1.68705 −0.843527 0.537086i \(-0.819525\pi\)
−0.843527 + 0.537086i \(0.819525\pi\)
\(762\) 0 0
\(763\) −0.887764 −0.0321392
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −31.2487 −1.12832
\(768\) 0 0
\(769\) 26.4928 0.955355 0.477678 0.878535i \(-0.341479\pi\)
0.477678 + 0.878535i \(0.341479\pi\)
\(770\) 0 0
\(771\) −14.8655 −0.535368
\(772\) 0 0
\(773\) −18.3791 −0.661049 −0.330524 0.943797i \(-0.607226\pi\)
−0.330524 + 0.943797i \(0.607226\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.68499 −0.0604487
\(778\) 0 0
\(779\) −8.46745 −0.303378
\(780\) 0 0
\(781\) −1.16603 −0.0417238
\(782\) 0 0
\(783\) 3.18209 0.113719
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 37.6988 1.34382 0.671909 0.740634i \(-0.265475\pi\)
0.671909 + 0.740634i \(0.265475\pi\)
\(788\) 0 0
\(789\) 73.6146 2.62075
\(790\) 0 0
\(791\) 3.88711 0.138210
\(792\) 0 0
\(793\) 50.4215 1.79052
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −26.7869 −0.948840 −0.474420 0.880299i \(-0.657342\pi\)
−0.474420 + 0.880299i \(0.657342\pi\)
\(798\) 0 0
\(799\) −17.2588 −0.610574
\(800\) 0 0
\(801\) 4.79637 0.169471
\(802\) 0 0
\(803\) −2.80214 −0.0988854
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −42.8385 −1.50799
\(808\) 0 0
\(809\) −25.1772 −0.885182 −0.442591 0.896724i \(-0.645941\pi\)
−0.442591 + 0.896724i \(0.645941\pi\)
\(810\) 0 0
\(811\) −50.4209 −1.77052 −0.885259 0.465099i \(-0.846019\pi\)
−0.885259 + 0.465099i \(0.846019\pi\)
\(812\) 0 0
\(813\) −4.99297 −0.175111
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 22.7681 0.796554
\(818\) 0 0
\(819\) −10.7976 −0.377300
\(820\) 0 0
\(821\) −33.7559 −1.17809 −0.589044 0.808101i \(-0.700496\pi\)
−0.589044 + 0.808101i \(0.700496\pi\)
\(822\) 0 0
\(823\) 28.1656 0.981790 0.490895 0.871219i \(-0.336670\pi\)
0.490895 + 0.871219i \(0.336670\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 20.8109 0.723667 0.361834 0.932243i \(-0.382151\pi\)
0.361834 + 0.932243i \(0.382151\pi\)
\(828\) 0 0
\(829\) −10.1593 −0.352849 −0.176424 0.984314i \(-0.556453\pi\)
−0.176424 + 0.984314i \(0.556453\pi\)
\(830\) 0 0
\(831\) 7.29157 0.252942
\(832\) 0 0
\(833\) −29.2374 −1.01302
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2.68231 −0.0927142
\(838\) 0 0
\(839\) 4.94779 0.170817 0.0854083 0.996346i \(-0.472781\pi\)
0.0854083 + 0.996346i \(0.472781\pi\)
\(840\) 0 0
\(841\) −19.3151 −0.666038
\(842\) 0 0
\(843\) 45.1454 1.55489
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 7.29427 0.250634
\(848\) 0 0
\(849\) −27.5626 −0.945947
\(850\) 0 0
\(851\) 3.65776 0.125386
\(852\) 0 0
\(853\) 1.98923 0.0681099 0.0340550 0.999420i \(-0.489158\pi\)
0.0340550 + 0.999420i \(0.489158\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.281525 0.00961670 0.00480835 0.999988i \(-0.498469\pi\)
0.00480835 + 0.999988i \(0.498469\pi\)
\(858\) 0 0
\(859\) 5.41937 0.184906 0.0924532 0.995717i \(-0.470529\pi\)
0.0924532 + 0.995717i \(0.470529\pi\)
\(860\) 0 0
\(861\) 7.77715 0.265044
\(862\) 0 0
\(863\) 38.2292 1.30134 0.650669 0.759362i \(-0.274489\pi\)
0.650669 + 0.759362i \(0.274489\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 7.29949 0.247904
\(868\) 0 0
\(869\) 1.79613 0.0609296
\(870\) 0 0
\(871\) 12.4393 0.421491
\(872\) 0 0
\(873\) 6.69817 0.226699
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 55.3971 1.87063 0.935314 0.353818i \(-0.115117\pi\)
0.935314 + 0.353818i \(0.115117\pi\)
\(878\) 0 0
\(879\) −43.3812 −1.46321
\(880\) 0 0
\(881\) −0.387591 −0.0130583 −0.00652914 0.999979i \(-0.502078\pi\)
−0.00652914 + 0.999979i \(0.502078\pi\)
\(882\) 0 0
\(883\) −13.7648 −0.463222 −0.231611 0.972808i \(-0.574400\pi\)
−0.231611 + 0.972808i \(0.574400\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 43.5025 1.46067 0.730336 0.683088i \(-0.239364\pi\)
0.730336 + 0.683088i \(0.239364\pi\)
\(888\) 0 0
\(889\) −8.93022 −0.299510
\(890\) 0 0
\(891\) −1.61746 −0.0541869
\(892\) 0 0
\(893\) −7.10043 −0.237607
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 44.0966 1.47234
\(898\) 0 0
\(899\) −8.16377 −0.272277
\(900\) 0 0
\(901\) −42.9785 −1.43182
\(902\) 0 0
\(903\) −20.9119 −0.695905
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −19.1761 −0.636731 −0.318366 0.947968i \(-0.603134\pi\)
−0.318366 + 0.947968i \(0.603134\pi\)
\(908\) 0 0
\(909\) 51.5148 1.70864
\(910\) 0 0
\(911\) −32.8000 −1.08671 −0.543356 0.839502i \(-0.682847\pi\)
−0.543356 + 0.839502i \(0.682847\pi\)
\(912\) 0 0
\(913\) 1.12551 0.0372489
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.10998 0.102701
\(918\) 0 0
\(919\) 56.8859 1.87649 0.938246 0.345970i \(-0.112450\pi\)
0.938246 + 0.345970i \(0.112450\pi\)
\(920\) 0 0
\(921\) −4.21335 −0.138835
\(922\) 0 0
\(923\) −26.1852 −0.861896
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 42.0870 1.38232
\(928\) 0 0
\(929\) 34.5195 1.13255 0.566274 0.824217i \(-0.308384\pi\)
0.566274 + 0.824217i \(0.308384\pi\)
\(930\) 0 0
\(931\) −12.0285 −0.394219
\(932\) 0 0
\(933\) 52.5575 1.72066
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 10.3434 0.337905 0.168953 0.985624i \(-0.445961\pi\)
0.168953 + 0.985624i \(0.445961\pi\)
\(938\) 0 0
\(939\) 30.2552 0.987340
\(940\) 0 0
\(941\) 27.8705 0.908552 0.454276 0.890861i \(-0.349898\pi\)
0.454276 + 0.890861i \(0.349898\pi\)
\(942\) 0 0
\(943\) −16.8826 −0.549772
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.78656 0.0580553 0.0290276 0.999579i \(-0.490759\pi\)
0.0290276 + 0.999579i \(0.490759\pi\)
\(948\) 0 0
\(949\) −62.9268 −2.04269
\(950\) 0 0
\(951\) −78.0214 −2.53002
\(952\) 0 0
\(953\) −54.9360 −1.77955 −0.889776 0.456397i \(-0.849140\pi\)
−0.889776 + 0.456397i \(0.849140\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.67068 0.0540053
\(958\) 0 0
\(959\) 3.46397 0.111857
\(960\) 0 0
\(961\) −24.1184 −0.778014
\(962\) 0 0
\(963\) 30.6651 0.988170
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −10.8335 −0.348383 −0.174192 0.984712i \(-0.555731\pi\)
−0.174192 + 0.984712i \(0.555731\pi\)
\(968\) 0 0
\(969\) 20.7021 0.665047
\(970\) 0 0
\(971\) 36.7131 1.17818 0.589090 0.808067i \(-0.299486\pi\)
0.589090 + 0.808067i \(0.299486\pi\)
\(972\) 0 0
\(973\) 3.12859 0.100298
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10.0633 0.321954 0.160977 0.986958i \(-0.448535\pi\)
0.160977 + 0.986958i \(0.448535\pi\)
\(978\) 0 0
\(979\) 0.298905 0.00955305
\(980\) 0 0
\(981\) 4.53862 0.144907
\(982\) 0 0
\(983\) −7.49574 −0.239077 −0.119538 0.992830i \(-0.538141\pi\)
−0.119538 + 0.992830i \(0.538141\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 6.52157 0.207584
\(988\) 0 0
\(989\) 45.3954 1.44349
\(990\) 0 0
\(991\) 28.6355 0.909635 0.454818 0.890585i \(-0.349704\pi\)
0.454818 + 0.890585i \(0.349704\pi\)
\(992\) 0 0
\(993\) 66.6348 2.11459
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −21.9922 −0.696501 −0.348250 0.937402i \(-0.613224\pi\)
−0.348250 + 0.937402i \(0.613224\pi\)
\(998\) 0 0
\(999\) 1.02251 0.0323506
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7400.2.a.be.1.14 16
5.2 odd 4 1480.2.d.c.889.6 32
5.3 odd 4 1480.2.d.c.889.27 yes 32
5.4 even 2 7400.2.a.bd.1.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1480.2.d.c.889.6 32 5.2 odd 4
1480.2.d.c.889.27 yes 32 5.3 odd 4
7400.2.a.bd.1.3 16 5.4 even 2
7400.2.a.be.1.14 16 1.1 even 1 trivial