Properties

Label 7448.2.a.bd
Level $7448$
Weight $2$
Character orbit 7448.a
Self dual yes
Analytic conductor $59.473$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7448,2,Mod(1,7448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7448.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7448 = 2^{3} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4725794254\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1064)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 2) q^{3} - q^{5} + (4 \beta + 3) q^{9} + ( - 3 \beta + 1) q^{11} + ( - \beta - 2) q^{13} + ( - \beta - 2) q^{15} + ( - 2 \beta - 4) q^{17} - q^{19} + (\beta + 3) q^{23} - 4 q^{25} + (8 \beta + 8) q^{27}+ \cdots + ( - 5 \beta - 21) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} - 2 q^{5} + 6 q^{9} + 2 q^{11} - 4 q^{13} - 4 q^{15} - 8 q^{17} - 2 q^{19} + 6 q^{23} - 8 q^{25} + 16 q^{27} - 16 q^{29} + 12 q^{31} - 8 q^{33} - 16 q^{37} - 12 q^{39} + 2 q^{43} - 6 q^{45}+ \cdots - 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 0.585786 0 −1.00000 0 0 0 −2.65685 0
1.2 0 3.41421 0 −1.00000 0 0 0 8.65685 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7448.2.a.bd 2
7.b odd 2 1 7448.2.a.x 2
7.c even 3 2 1064.2.q.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1064.2.q.k 4 7.c even 3 2
7448.2.a.x 2 7.b odd 2 1
7448.2.a.bd 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7448))\):

\( T_{3}^{2} - 4T_{3} + 2 \) Copy content Toggle raw display
\( T_{5} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 2T_{11} - 17 \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} + 2 \) Copy content Toggle raw display
\( T_{17}^{2} + 8T_{17} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 4T + 2 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 2T - 17 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T + 2 \) Copy content Toggle raw display
$17$ \( T^{2} + 8T + 8 \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 6T + 7 \) Copy content Toggle raw display
$29$ \( T^{2} + 16T + 62 \) Copy content Toggle raw display
$31$ \( T^{2} - 12T + 34 \) Copy content Toggle raw display
$37$ \( T^{2} + 16T + 62 \) Copy content Toggle raw display
$41$ \( T^{2} - 32 \) Copy content Toggle raw display
$43$ \( T^{2} - 2T - 17 \) Copy content Toggle raw display
$47$ \( T^{2} - 6T - 9 \) Copy content Toggle raw display
$53$ \( T^{2} + 8T + 14 \) Copy content Toggle raw display
$59$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$61$ \( (T + 5)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 12T + 28 \) Copy content Toggle raw display
$71$ \( T^{2} + 24T + 126 \) Copy content Toggle raw display
$73$ \( (T + 7)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 12T - 62 \) Copy content Toggle raw display
$83$ \( T^{2} - 10T - 73 \) Copy content Toggle raw display
$89$ \( T^{2} + 4T - 238 \) Copy content Toggle raw display
$97$ \( T^{2} - 32 \) Copy content Toggle raw display
show more
show less