Properties

Label 75.12.b.d.49.3
Level $75$
Weight $12$
Character 75.49
Analytic conductor $57.626$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,12,Mod(49,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.49");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6257385420\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{1801})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 901x^{2} + 202500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.3
Root \(20.7191i\) of defining polynomial
Character \(\chi\) \(=\) 75.49
Dual form 75.12.b.d.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+14.7191i q^{2} +243.000i q^{3} +1831.35 q^{4} -3576.74 q^{6} +79941.2i q^{7} +57100.5i q^{8} -59049.0 q^{9} +805067. q^{11} +445018. i q^{12} +1.19767e6i q^{13} -1.17666e6 q^{14} +2.91013e6 q^{16} +2.63319e6i q^{17} -869148. i q^{18} -1.16061e7 q^{19} -1.94257e7 q^{21} +1.18499e7i q^{22} -1.84216e7i q^{23} -1.38754e7 q^{24} -1.76286e7 q^{26} -1.43489e7i q^{27} +1.46400e8i q^{28} +1.90527e8 q^{29} +1.01127e8 q^{31} +1.59776e8i q^{32} +1.95631e8i q^{33} -3.87581e7 q^{34} -1.08139e8 q^{36} +8.06675e7i q^{37} -1.70831e8i q^{38} -2.91034e8 q^{39} +2.26316e8 q^{41} -2.85929e8i q^{42} -1.67149e9i q^{43} +1.47436e9 q^{44} +2.71150e8 q^{46} +8.58507e8i q^{47} +7.07162e8i q^{48} -4.41327e9 q^{49} -6.39864e8 q^{51} +2.19335e9i q^{52} +3.52750e9i q^{53} +2.11203e8 q^{54} -4.56468e9 q^{56} -2.82028e9i q^{57} +2.80438e9i q^{58} -4.35760e9 q^{59} -1.65393e9 q^{61} +1.48849e9i q^{62} -4.72045e9i q^{63} +3.60819e9 q^{64} -2.87951e9 q^{66} +7.58610e9i q^{67} +4.82228e9i q^{68} +4.47645e9 q^{69} -2.75809e10 q^{71} -3.37173e9i q^{72} -3.22368e10i q^{73} -1.18735e9 q^{74} -2.12548e10 q^{76} +6.43580e10i q^{77} -4.28376e9i q^{78} +2.43149e9 q^{79} +3.48678e9 q^{81} +3.33116e9i q^{82} -1.20729e10i q^{83} -3.55753e10 q^{84} +2.46028e10 q^{86} +4.62981e10i q^{87} +4.59697e10i q^{88} -4.44073e9 q^{89} -9.57433e10 q^{91} -3.37364e10i q^{92} +2.45737e10i q^{93} -1.26364e10 q^{94} -3.88257e10 q^{96} -2.04453e10i q^{97} -6.49594e10i q^{98} -4.75384e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6222 q^{4} + 6318 q^{6} - 236196 q^{9} + 591136 q^{11} - 6353592 q^{14} + 5948130 q^{16} - 35255952 q^{19} - 3783024 q^{21} + 17077554 q^{24} - 138104132 q^{26} + 403763896 q^{29} - 142114016 q^{31}+ \cdots - 34905989664 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 14.7191i 0.325249i 0.986688 + 0.162625i \(0.0519959\pi\)
−0.986688 + 0.162625i \(0.948004\pi\)
\(3\) 243.000i 0.577350i
\(4\) 1831.35 0.894213
\(5\) 0 0
\(6\) −3576.74 −0.187783
\(7\) 79941.2i 1.79776i 0.438195 + 0.898880i \(0.355618\pi\)
−0.438195 + 0.898880i \(0.644382\pi\)
\(8\) 57100.5i 0.616091i
\(9\) −59049.0 −0.333333
\(10\) 0 0
\(11\) 805067. 1.50720 0.753602 0.657331i \(-0.228315\pi\)
0.753602 + 0.657331i \(0.228315\pi\)
\(12\) 445018.i 0.516274i
\(13\) 1.19767e6i 0.894641i 0.894374 + 0.447321i \(0.147622\pi\)
−0.894374 + 0.447321i \(0.852378\pi\)
\(14\) −1.17666e6 −0.584720
\(15\) 0 0
\(16\) 2.91013e6 0.693830
\(17\) 2.63319e6i 0.449793i 0.974383 + 0.224896i \(0.0722044\pi\)
−0.974383 + 0.224896i \(0.927796\pi\)
\(18\) − 869148.i − 0.108416i
\(19\) −1.16061e7 −1.07533 −0.537664 0.843159i \(-0.680693\pi\)
−0.537664 + 0.843159i \(0.680693\pi\)
\(20\) 0 0
\(21\) −1.94257e7 −1.03794
\(22\) 1.18499e7i 0.490217i
\(23\) − 1.84216e7i − 0.596794i −0.954442 0.298397i \(-0.903548\pi\)
0.954442 0.298397i \(-0.0964520\pi\)
\(24\) −1.38754e7 −0.355700
\(25\) 0 0
\(26\) −1.76286e7 −0.290981
\(27\) − 1.43489e7i − 0.192450i
\(28\) 1.46400e8i 1.60758i
\(29\) 1.90527e8 1.72491 0.862457 0.506130i \(-0.168924\pi\)
0.862457 + 0.506130i \(0.168924\pi\)
\(30\) 0 0
\(31\) 1.01127e8 0.634419 0.317209 0.948356i \(-0.397254\pi\)
0.317209 + 0.948356i \(0.397254\pi\)
\(32\) 1.59776e8i 0.841759i
\(33\) 1.95631e8i 0.870185i
\(34\) −3.87581e7 −0.146295
\(35\) 0 0
\(36\) −1.08139e8 −0.298071
\(37\) 8.06675e7i 0.191245i 0.995418 + 0.0956223i \(0.0304841\pi\)
−0.995418 + 0.0956223i \(0.969516\pi\)
\(38\) − 1.70831e8i − 0.349749i
\(39\) −2.91034e8 −0.516522
\(40\) 0 0
\(41\) 2.26316e8 0.305073 0.152537 0.988298i \(-0.451256\pi\)
0.152537 + 0.988298i \(0.451256\pi\)
\(42\) − 2.85929e8i − 0.337588i
\(43\) − 1.67149e9i − 1.73391i −0.498385 0.866956i \(-0.666073\pi\)
0.498385 0.866956i \(-0.333927\pi\)
\(44\) 1.47436e9 1.34776
\(45\) 0 0
\(46\) 2.71150e8 0.194107
\(47\) 8.58507e8i 0.546016i 0.962012 + 0.273008i \(0.0880186\pi\)
−0.962012 + 0.273008i \(0.911981\pi\)
\(48\) 7.07162e8i 0.400583i
\(49\) −4.41327e9 −2.23194
\(50\) 0 0
\(51\) −6.39864e8 −0.259688
\(52\) 2.19335e9i 0.800000i
\(53\) 3.52750e9i 1.15864i 0.815099 + 0.579322i \(0.196683\pi\)
−0.815099 + 0.579322i \(0.803317\pi\)
\(54\) 2.11203e8 0.0625942
\(55\) 0 0
\(56\) −4.56468e9 −1.10758
\(57\) − 2.82028e9i − 0.620841i
\(58\) 2.80438e9i 0.561027i
\(59\) −4.35760e9 −0.793527 −0.396763 0.917921i \(-0.629867\pi\)
−0.396763 + 0.917921i \(0.629867\pi\)
\(60\) 0 0
\(61\) −1.65393e9 −0.250727 −0.125364 0.992111i \(-0.540010\pi\)
−0.125364 + 0.992111i \(0.540010\pi\)
\(62\) 1.48849e9i 0.206344i
\(63\) − 4.72045e9i − 0.599253i
\(64\) 3.60819e9 0.420049
\(65\) 0 0
\(66\) −2.87951e9 −0.283027
\(67\) 7.58610e9i 0.686447i 0.939254 + 0.343224i \(0.111519\pi\)
−0.939254 + 0.343224i \(0.888481\pi\)
\(68\) 4.82228e9i 0.402211i
\(69\) 4.47645e9 0.344559
\(70\) 0 0
\(71\) −2.75809e10 −1.81421 −0.907104 0.420905i \(-0.861712\pi\)
−0.907104 + 0.420905i \(0.861712\pi\)
\(72\) − 3.37173e9i − 0.205364i
\(73\) − 3.22368e10i − 1.82002i −0.414584 0.910011i \(-0.636073\pi\)
0.414584 0.910011i \(-0.363927\pi\)
\(74\) −1.18735e9 −0.0622022
\(75\) 0 0
\(76\) −2.12548e10 −0.961572
\(77\) 6.43580e10i 2.70959i
\(78\) − 4.28376e9i − 0.167998i
\(79\) 2.43149e9 0.0889046 0.0444523 0.999012i \(-0.485846\pi\)
0.0444523 + 0.999012i \(0.485846\pi\)
\(80\) 0 0
\(81\) 3.48678e9 0.111111
\(82\) 3.33116e9i 0.0992247i
\(83\) − 1.20729e10i − 0.336421i −0.985751 0.168210i \(-0.946201\pi\)
0.985751 0.168210i \(-0.0537988\pi\)
\(84\) −3.55753e10 −0.928137
\(85\) 0 0
\(86\) 2.46028e10 0.563953
\(87\) 4.62981e10i 0.995880i
\(88\) 4.59697e10i 0.928575i
\(89\) −4.44073e9 −0.0842964 −0.0421482 0.999111i \(-0.513420\pi\)
−0.0421482 + 0.999111i \(0.513420\pi\)
\(90\) 0 0
\(91\) −9.57433e10 −1.60835
\(92\) − 3.37364e10i − 0.533661i
\(93\) 2.45737e10i 0.366282i
\(94\) −1.26364e10 −0.177591
\(95\) 0 0
\(96\) −3.88257e10 −0.485990
\(97\) − 2.04453e10i − 0.241740i −0.992668 0.120870i \(-0.961432\pi\)
0.992668 0.120870i \(-0.0385684\pi\)
\(98\) − 6.49594e10i − 0.725937i
\(99\) −4.75384e10 −0.502401
\(100\) 0 0
\(101\) −1.55947e11 −1.47642 −0.738209 0.674572i \(-0.764328\pi\)
−0.738209 + 0.674572i \(0.764328\pi\)
\(102\) − 9.41823e9i − 0.0844633i
\(103\) 5.10325e10i 0.433752i 0.976199 + 0.216876i \(0.0695868\pi\)
−0.976199 + 0.216876i \(0.930413\pi\)
\(104\) −6.83876e10 −0.551181
\(105\) 0 0
\(106\) −5.19217e10 −0.376848
\(107\) 1.06665e10i 0.0735207i 0.999324 + 0.0367603i \(0.0117038\pi\)
−0.999324 + 0.0367603i \(0.988296\pi\)
\(108\) − 2.62778e10i − 0.172091i
\(109\) 3.12513e10 0.194546 0.0972729 0.995258i \(-0.468988\pi\)
0.0972729 + 0.995258i \(0.468988\pi\)
\(110\) 0 0
\(111\) −1.96022e10 −0.110415
\(112\) 2.32640e11i 1.24734i
\(113\) 3.96346e10i 0.202369i 0.994868 + 0.101184i \(0.0322632\pi\)
−0.994868 + 0.101184i \(0.967737\pi\)
\(114\) 4.15119e10 0.201928
\(115\) 0 0
\(116\) 3.48921e11 1.54244
\(117\) − 7.07213e10i − 0.298214i
\(118\) − 6.41400e10i − 0.258094i
\(119\) −2.10500e11 −0.808620
\(120\) 0 0
\(121\) 3.62821e11 1.27166
\(122\) − 2.43443e10i − 0.0815489i
\(123\) 5.49948e10i 0.176134i
\(124\) 1.85198e11 0.567305
\(125\) 0 0
\(126\) 6.94808e10 0.194907
\(127\) 2.63460e10i 0.0707611i 0.999374 + 0.0353806i \(0.0112643\pi\)
−0.999374 + 0.0353806i \(0.988736\pi\)
\(128\) 3.80331e11i 0.978379i
\(129\) 4.06172e11 1.00107
\(130\) 0 0
\(131\) −2.19917e11 −0.498044 −0.249022 0.968498i \(-0.580109\pi\)
−0.249022 + 0.968498i \(0.580109\pi\)
\(132\) 3.58269e11i 0.778131i
\(133\) − 9.27805e11i − 1.93318i
\(134\) −1.11661e11 −0.223266
\(135\) 0 0
\(136\) −1.50356e11 −0.277113
\(137\) − 5.54041e11i − 0.980795i −0.871499 0.490398i \(-0.836852\pi\)
0.871499 0.490398i \(-0.163148\pi\)
\(138\) 6.58894e10i 0.112068i
\(139\) 6.17540e11 1.00945 0.504723 0.863281i \(-0.331594\pi\)
0.504723 + 0.863281i \(0.331594\pi\)
\(140\) 0 0
\(141\) −2.08617e11 −0.315243
\(142\) − 4.05966e11i − 0.590070i
\(143\) 9.64205e11i 1.34841i
\(144\) −1.71840e11 −0.231277
\(145\) 0 0
\(146\) 4.74497e11 0.591961
\(147\) − 1.07243e12i − 1.28861i
\(148\) 1.47730e11i 0.171013i
\(149\) 6.68742e11 0.745992 0.372996 0.927833i \(-0.378330\pi\)
0.372996 + 0.927833i \(0.378330\pi\)
\(150\) 0 0
\(151\) 1.38243e12 1.43308 0.716541 0.697545i \(-0.245724\pi\)
0.716541 + 0.697545i \(0.245724\pi\)
\(152\) − 6.62713e11i − 0.662500i
\(153\) − 1.55487e11i − 0.149931i
\(154\) −9.47292e11 −0.881292
\(155\) 0 0
\(156\) −5.32985e11 −0.461880
\(157\) − 7.93661e11i − 0.664029i −0.943274 0.332014i \(-0.892272\pi\)
0.943274 0.332014i \(-0.107728\pi\)
\(158\) 3.57894e10i 0.0289161i
\(159\) −8.57184e11 −0.668944
\(160\) 0 0
\(161\) 1.47265e12 1.07289
\(162\) 5.13223e10i 0.0361388i
\(163\) 4.67399e11i 0.318168i 0.987265 + 0.159084i \(0.0508540\pi\)
−0.987265 + 0.159084i \(0.949146\pi\)
\(164\) 4.14463e11 0.272800
\(165\) 0 0
\(166\) 1.77702e11 0.109421
\(167\) 2.87482e12i 1.71266i 0.516432 + 0.856328i \(0.327260\pi\)
−0.516432 + 0.856328i \(0.672740\pi\)
\(168\) − 1.10922e12i − 0.639464i
\(169\) 3.57745e11 0.199617
\(170\) 0 0
\(171\) 6.85328e11 0.358443
\(172\) − 3.06108e12i − 1.55049i
\(173\) − 1.53085e12i − 0.751068i −0.926809 0.375534i \(-0.877459\pi\)
0.926809 0.375534i \(-0.122541\pi\)
\(174\) −6.81465e11 −0.323909
\(175\) 0 0
\(176\) 2.34285e12 1.04574
\(177\) − 1.05890e12i − 0.458143i
\(178\) − 6.53635e10i − 0.0274173i
\(179\) 1.91337e12 0.778228 0.389114 0.921190i \(-0.372781\pi\)
0.389114 + 0.921190i \(0.372781\pi\)
\(180\) 0 0
\(181\) −1.70819e12 −0.653587 −0.326794 0.945096i \(-0.605968\pi\)
−0.326794 + 0.945096i \(0.605968\pi\)
\(182\) − 1.40925e12i − 0.523115i
\(183\) − 4.01904e11i − 0.144758i
\(184\) 1.05188e12 0.367680
\(185\) 0 0
\(186\) −3.61703e11 −0.119133
\(187\) 2.11989e12i 0.677930i
\(188\) 1.57223e12i 0.488255i
\(189\) 1.14707e12 0.345979
\(190\) 0 0
\(191\) 3.16020e12 0.899562 0.449781 0.893139i \(-0.351502\pi\)
0.449781 + 0.893139i \(0.351502\pi\)
\(192\) 8.76790e11i 0.242515i
\(193\) − 2.77296e12i − 0.745382i −0.927956 0.372691i \(-0.878435\pi\)
0.927956 0.372691i \(-0.121565\pi\)
\(194\) 3.00936e11 0.0786256
\(195\) 0 0
\(196\) −8.08224e12 −1.99583
\(197\) 3.86504e12i 0.928089i 0.885812 + 0.464044i \(0.153602\pi\)
−0.885812 + 0.464044i \(0.846398\pi\)
\(198\) − 6.99722e11i − 0.163406i
\(199\) 1.01839e12 0.231325 0.115663 0.993289i \(-0.463101\pi\)
0.115663 + 0.993289i \(0.463101\pi\)
\(200\) 0 0
\(201\) −1.84342e12 −0.396321
\(202\) − 2.29540e12i − 0.480204i
\(203\) 1.52310e13i 3.10098i
\(204\) −1.17181e12 −0.232216
\(205\) 0 0
\(206\) −7.51152e11 −0.141078
\(207\) 1.08778e12i 0.198931i
\(208\) 3.48538e12i 0.620729i
\(209\) −9.34367e12 −1.62074
\(210\) 0 0
\(211\) 2.05668e12 0.338543 0.169271 0.985569i \(-0.445859\pi\)
0.169271 + 0.985569i \(0.445859\pi\)
\(212\) 6.46009e12i 1.03608i
\(213\) − 6.70216e12i − 1.04743i
\(214\) −1.57001e11 −0.0239125
\(215\) 0 0
\(216\) 8.19330e11 0.118567
\(217\) 8.08418e12i 1.14053i
\(218\) 4.59990e11i 0.0632759i
\(219\) 7.83355e12 1.05079
\(220\) 0 0
\(221\) −3.15369e12 −0.402403
\(222\) − 2.88527e11i − 0.0359124i
\(223\) − 9.99986e12i − 1.21428i −0.794597 0.607138i \(-0.792318\pi\)
0.794597 0.607138i \(-0.207682\pi\)
\(224\) −1.27727e13 −1.51328
\(225\) 0 0
\(226\) −5.83386e11 −0.0658202
\(227\) − 6.77123e12i − 0.745634i −0.927905 0.372817i \(-0.878392\pi\)
0.927905 0.372817i \(-0.121608\pi\)
\(228\) − 5.16491e12i − 0.555164i
\(229\) −1.01933e13 −1.06959 −0.534796 0.844981i \(-0.679611\pi\)
−0.534796 + 0.844981i \(0.679611\pi\)
\(230\) 0 0
\(231\) −1.56390e13 −1.56438
\(232\) 1.08792e13i 1.06270i
\(233\) − 6.74446e12i − 0.643412i −0.946840 0.321706i \(-0.895744\pi\)
0.946840 0.321706i \(-0.104256\pi\)
\(234\) 1.04095e12 0.0969938
\(235\) 0 0
\(236\) −7.98029e12 −0.709582
\(237\) 5.90853e11i 0.0513291i
\(238\) − 3.09837e12i − 0.263003i
\(239\) 1.76501e13 1.46406 0.732030 0.681272i \(-0.238573\pi\)
0.732030 + 0.681272i \(0.238573\pi\)
\(240\) 0 0
\(241\) −1.37662e13 −1.09074 −0.545369 0.838196i \(-0.683611\pi\)
−0.545369 + 0.838196i \(0.683611\pi\)
\(242\) 5.34039e12i 0.413608i
\(243\) 8.47289e11i 0.0641500i
\(244\) −3.02891e12 −0.224204
\(245\) 0 0
\(246\) −8.09473e11 −0.0572874
\(247\) − 1.39003e13i − 0.962033i
\(248\) 5.77438e12i 0.390860i
\(249\) 2.93372e12 0.194233
\(250\) 0 0
\(251\) 3.02252e13 1.91498 0.957490 0.288467i \(-0.0931454\pi\)
0.957490 + 0.288467i \(0.0931454\pi\)
\(252\) − 8.64479e12i − 0.535860i
\(253\) − 1.48306e13i − 0.899491i
\(254\) −3.87790e11 −0.0230150
\(255\) 0 0
\(256\) 1.79144e12 0.101832
\(257\) 6.88263e12i 0.382933i 0.981499 + 0.191466i \(0.0613243\pi\)
−0.981499 + 0.191466i \(0.938676\pi\)
\(258\) 5.97848e12i 0.325599i
\(259\) −6.44866e12 −0.343812
\(260\) 0 0
\(261\) −1.12504e13 −0.574971
\(262\) − 3.23698e12i − 0.161988i
\(263\) 3.29948e13i 1.61692i 0.588549 + 0.808462i \(0.299699\pi\)
−0.588549 + 0.808462i \(0.700301\pi\)
\(264\) −1.11706e13 −0.536113
\(265\) 0 0
\(266\) 1.36564e13 0.628765
\(267\) − 1.07910e12i − 0.0486686i
\(268\) 1.38928e13i 0.613830i
\(269\) 2.97478e13 1.28771 0.643855 0.765148i \(-0.277334\pi\)
0.643855 + 0.765148i \(0.277334\pi\)
\(270\) 0 0
\(271\) −4.30410e13 −1.78876 −0.894378 0.447312i \(-0.852381\pi\)
−0.894378 + 0.447312i \(0.852381\pi\)
\(272\) 7.66293e12i 0.312080i
\(273\) − 2.32656e13i − 0.928582i
\(274\) 8.15498e12 0.319003
\(275\) 0 0
\(276\) 8.19795e12 0.308110
\(277\) 1.46706e13i 0.540518i 0.962788 + 0.270259i \(0.0871094\pi\)
−0.962788 + 0.270259i \(0.912891\pi\)
\(278\) 9.08963e12i 0.328322i
\(279\) −5.97142e12 −0.211473
\(280\) 0 0
\(281\) 4.18378e13 1.42457 0.712286 0.701890i \(-0.247660\pi\)
0.712286 + 0.701890i \(0.247660\pi\)
\(282\) − 3.07066e12i − 0.102532i
\(283\) − 2.34242e13i − 0.767078i −0.923525 0.383539i \(-0.874705\pi\)
0.923525 0.383539i \(-0.125295\pi\)
\(284\) −5.05102e13 −1.62229
\(285\) 0 0
\(286\) −1.41922e13 −0.438568
\(287\) 1.80920e13i 0.548448i
\(288\) − 9.43463e12i − 0.280586i
\(289\) 2.73382e13 0.797686
\(290\) 0 0
\(291\) 4.96820e12 0.139568
\(292\) − 5.90369e13i − 1.62749i
\(293\) 7.31258e12i 0.197833i 0.995096 + 0.0989166i \(0.0315377\pi\)
−0.995096 + 0.0989166i \(0.968462\pi\)
\(294\) 1.57851e13 0.419120
\(295\) 0 0
\(296\) −4.60616e12 −0.117824
\(297\) − 1.15518e13i − 0.290062i
\(298\) 9.84328e12i 0.242633i
\(299\) 2.20630e13 0.533917
\(300\) 0 0
\(301\) 1.33621e14 3.11716
\(302\) 2.03482e13i 0.466109i
\(303\) − 3.78951e13i − 0.852410i
\(304\) −3.37752e13 −0.746094
\(305\) 0 0
\(306\) 2.28863e12 0.0487649
\(307\) − 5.37239e13i − 1.12436i −0.827014 0.562181i \(-0.809962\pi\)
0.827014 0.562181i \(-0.190038\pi\)
\(308\) 1.17862e14i 2.42295i
\(309\) −1.24009e13 −0.250427
\(310\) 0 0
\(311\) 5.41406e13 1.05521 0.527607 0.849489i \(-0.323089\pi\)
0.527607 + 0.849489i \(0.323089\pi\)
\(312\) − 1.66182e13i − 0.318224i
\(313\) 4.29721e12i 0.0808524i 0.999183 + 0.0404262i \(0.0128716\pi\)
−0.999183 + 0.0404262i \(0.987128\pi\)
\(314\) 1.16820e13 0.215975
\(315\) 0 0
\(316\) 4.45291e12 0.0794996
\(317\) − 2.81928e13i − 0.494666i −0.968931 0.247333i \(-0.920446\pi\)
0.968931 0.247333i \(-0.0795541\pi\)
\(318\) − 1.26170e13i − 0.217573i
\(319\) 1.53387e14 2.59980
\(320\) 0 0
\(321\) −2.59195e12 −0.0424472
\(322\) 2.16760e13i 0.348958i
\(323\) − 3.05610e13i − 0.483675i
\(324\) 6.38552e12 0.0993570
\(325\) 0 0
\(326\) −6.87969e12 −0.103484
\(327\) 7.59406e12i 0.112321i
\(328\) 1.29227e13i 0.187953i
\(329\) −6.86301e13 −0.981606
\(330\) 0 0
\(331\) −9.95469e13 −1.37713 −0.688563 0.725176i \(-0.741758\pi\)
−0.688563 + 0.725176i \(0.741758\pi\)
\(332\) − 2.21097e13i − 0.300832i
\(333\) − 4.76334e12i − 0.0637482i
\(334\) −4.23148e13 −0.557040
\(335\) 0 0
\(336\) −5.65314e13 −0.720152
\(337\) − 9.05175e13i − 1.13440i −0.823579 0.567202i \(-0.808026\pi\)
0.823579 0.567202i \(-0.191974\pi\)
\(338\) 5.26568e12i 0.0649251i
\(339\) −9.63121e12 −0.116838
\(340\) 0 0
\(341\) 8.14136e13 0.956198
\(342\) 1.00874e13i 0.116583i
\(343\) − 1.94733e14i − 2.21473i
\(344\) 9.54428e13 1.06825
\(345\) 0 0
\(346\) 2.25327e13 0.244284
\(347\) − 6.36892e13i − 0.679601i −0.940498 0.339801i \(-0.889640\pi\)
0.940498 0.339801i \(-0.110360\pi\)
\(348\) 8.47879e13i 0.890529i
\(349\) −7.08598e13 −0.732588 −0.366294 0.930499i \(-0.619374\pi\)
−0.366294 + 0.930499i \(0.619374\pi\)
\(350\) 0 0
\(351\) 1.71853e13 0.172174
\(352\) 1.28631e14i 1.26870i
\(353\) − 6.62893e13i − 0.643699i −0.946791 0.321849i \(-0.895696\pi\)
0.946791 0.321849i \(-0.104304\pi\)
\(354\) 1.55860e13 0.149011
\(355\) 0 0
\(356\) −8.13252e12 −0.0753790
\(357\) − 5.11516e13i − 0.466857i
\(358\) 2.81630e13i 0.253118i
\(359\) −6.80217e13 −0.602044 −0.301022 0.953617i \(-0.597328\pi\)
−0.301022 + 0.953617i \(0.597328\pi\)
\(360\) 0 0
\(361\) 1.82109e13 0.156330
\(362\) − 2.51430e13i − 0.212579i
\(363\) 8.81654e13i 0.734196i
\(364\) −1.75339e14 −1.43821
\(365\) 0 0
\(366\) 5.91566e12 0.0470823
\(367\) 2.19771e14i 1.72309i 0.507685 + 0.861543i \(0.330501\pi\)
−0.507685 + 0.861543i \(0.669499\pi\)
\(368\) − 5.36094e13i − 0.414074i
\(369\) −1.33637e13 −0.101691
\(370\) 0 0
\(371\) −2.81993e14 −2.08296
\(372\) 4.50031e13i 0.327534i
\(373\) 1.67232e14i 1.19928i 0.800271 + 0.599639i \(0.204689\pi\)
−0.800271 + 0.599639i \(0.795311\pi\)
\(374\) −3.12029e13 −0.220496
\(375\) 0 0
\(376\) −4.90212e13 −0.336396
\(377\) 2.28189e14i 1.54318i
\(378\) 1.68838e13i 0.112529i
\(379\) 1.57778e14 1.03641 0.518205 0.855256i \(-0.326600\pi\)
0.518205 + 0.855256i \(0.326600\pi\)
\(380\) 0 0
\(381\) −6.40209e12 −0.0408540
\(382\) 4.65153e13i 0.292582i
\(383\) − 5.49255e13i − 0.340550i −0.985397 0.170275i \(-0.945534\pi\)
0.985397 0.170275i \(-0.0544655\pi\)
\(384\) −9.24205e13 −0.564867
\(385\) 0 0
\(386\) 4.08155e13 0.242435
\(387\) 9.86997e13i 0.577971i
\(388\) − 3.74424e13i − 0.216167i
\(389\) 2.32940e14 1.32593 0.662965 0.748650i \(-0.269298\pi\)
0.662965 + 0.748650i \(0.269298\pi\)
\(390\) 0 0
\(391\) 4.85076e13 0.268434
\(392\) − 2.52000e14i − 1.37508i
\(393\) − 5.34399e13i − 0.287546i
\(394\) −5.68899e13 −0.301860
\(395\) 0 0
\(396\) −8.70593e13 −0.449254
\(397\) − 4.76134e13i − 0.242316i −0.992633 0.121158i \(-0.961339\pi\)
0.992633 0.121158i \(-0.0386607\pi\)
\(398\) 1.49898e13i 0.0752383i
\(399\) 2.25456e14 1.11612
\(400\) 0 0
\(401\) −2.99074e14 −1.44040 −0.720202 0.693764i \(-0.755951\pi\)
−0.720202 + 0.693764i \(0.755951\pi\)
\(402\) − 2.71335e13i − 0.128903i
\(403\) 1.21116e14i 0.567577i
\(404\) −2.85593e14 −1.32023
\(405\) 0 0
\(406\) −2.24186e14 −1.00859
\(407\) 6.49428e13i 0.288245i
\(408\) − 3.65366e13i − 0.159992i
\(409\) 2.55879e14 1.10550 0.552748 0.833349i \(-0.313579\pi\)
0.552748 + 0.833349i \(0.313579\pi\)
\(410\) 0 0
\(411\) 1.34632e14 0.566262
\(412\) 9.34582e13i 0.387867i
\(413\) − 3.48352e14i − 1.42657i
\(414\) −1.60111e13 −0.0647023
\(415\) 0 0
\(416\) −1.91359e14 −0.753072
\(417\) 1.50062e14i 0.582804i
\(418\) − 1.37530e14i − 0.527144i
\(419\) −2.21825e14 −0.839139 −0.419570 0.907723i \(-0.637819\pi\)
−0.419570 + 0.907723i \(0.637819\pi\)
\(420\) 0 0
\(421\) 9.78949e13 0.360752 0.180376 0.983598i \(-0.442269\pi\)
0.180376 + 0.983598i \(0.442269\pi\)
\(422\) 3.02725e13i 0.110111i
\(423\) − 5.06940e13i − 0.182005i
\(424\) −2.01422e14 −0.713831
\(425\) 0 0
\(426\) 9.86497e13 0.340677
\(427\) − 1.32217e14i − 0.450748i
\(428\) 1.95340e13i 0.0657432i
\(429\) −2.34302e14 −0.778503
\(430\) 0 0
\(431\) 1.11415e14 0.360842 0.180421 0.983589i \(-0.442254\pi\)
0.180421 + 0.983589i \(0.442254\pi\)
\(432\) − 4.17572e13i − 0.133528i
\(433\) 3.42045e14i 1.07994i 0.841684 + 0.539970i \(0.181564\pi\)
−0.841684 + 0.539970i \(0.818436\pi\)
\(434\) −1.18992e14 −0.370957
\(435\) 0 0
\(436\) 5.72320e13 0.173965
\(437\) 2.13803e14i 0.641750i
\(438\) 1.15303e14i 0.341769i
\(439\) −1.20947e14 −0.354029 −0.177015 0.984208i \(-0.556644\pi\)
−0.177015 + 0.984208i \(0.556644\pi\)
\(440\) 0 0
\(441\) 2.60599e14 0.743980
\(442\) − 4.64195e13i − 0.130881i
\(443\) 1.27316e14i 0.354539i 0.984162 + 0.177270i \(0.0567264\pi\)
−0.984162 + 0.177270i \(0.943274\pi\)
\(444\) −3.58985e13 −0.0987347
\(445\) 0 0
\(446\) 1.47189e14 0.394942
\(447\) 1.62504e14i 0.430699i
\(448\) 2.88443e14i 0.755147i
\(449\) 1.61837e14 0.418526 0.209263 0.977859i \(-0.432894\pi\)
0.209263 + 0.977859i \(0.432894\pi\)
\(450\) 0 0
\(451\) 1.82199e14 0.459807
\(452\) 7.25848e13i 0.180961i
\(453\) 3.35931e14i 0.827390i
\(454\) 9.96664e13 0.242517
\(455\) 0 0
\(456\) 1.61039e14 0.382494
\(457\) − 3.49165e14i − 0.819391i −0.912222 0.409696i \(-0.865635\pi\)
0.912222 0.409696i \(-0.134365\pi\)
\(458\) − 1.50036e14i − 0.347884i
\(459\) 3.77834e13 0.0865627
\(460\) 0 0
\(461\) −4.49619e14 −1.00575 −0.502875 0.864359i \(-0.667724\pi\)
−0.502875 + 0.864359i \(0.667724\pi\)
\(462\) − 2.30192e14i − 0.508814i
\(463\) − 4.21098e13i − 0.0919787i −0.998942 0.0459894i \(-0.985356\pi\)
0.998942 0.0459894i \(-0.0146440\pi\)
\(464\) 5.54459e14 1.19680
\(465\) 0 0
\(466\) 9.92723e13 0.209269
\(467\) − 7.91358e13i − 0.164866i −0.996597 0.0824328i \(-0.973731\pi\)
0.996597 0.0824328i \(-0.0262690\pi\)
\(468\) − 1.29515e14i − 0.266667i
\(469\) −6.06442e14 −1.23407
\(470\) 0 0
\(471\) 1.92860e14 0.383377
\(472\) − 2.48821e14i − 0.488885i
\(473\) − 1.34566e15i − 2.61336i
\(474\) −8.69682e12 −0.0166947
\(475\) 0 0
\(476\) −3.85499e14 −0.723078
\(477\) − 2.08296e14i − 0.386215i
\(478\) 2.59794e14i 0.476184i
\(479\) 9.62318e14 1.74371 0.871853 0.489768i \(-0.162919\pi\)
0.871853 + 0.489768i \(0.162919\pi\)
\(480\) 0 0
\(481\) −9.66132e13 −0.171095
\(482\) − 2.02626e14i − 0.354762i
\(483\) 3.57853e14i 0.619435i
\(484\) 6.64451e14 1.13714
\(485\) 0 0
\(486\) −1.24713e13 −0.0208647
\(487\) 4.57117e14i 0.756168i 0.925771 + 0.378084i \(0.123417\pi\)
−0.925771 + 0.378084i \(0.876583\pi\)
\(488\) − 9.44399e13i − 0.154471i
\(489\) −1.13578e14 −0.183694
\(490\) 0 0
\(491\) 4.40122e14 0.696025 0.348013 0.937490i \(-0.386857\pi\)
0.348013 + 0.937490i \(0.386857\pi\)
\(492\) 1.00715e14i 0.157501i
\(493\) 5.01693e14i 0.775854i
\(494\) 2.04599e14 0.312900
\(495\) 0 0
\(496\) 2.94292e14 0.440179
\(497\) − 2.20485e15i − 3.26151i
\(498\) 4.31817e13i 0.0631740i
\(499\) −6.36085e14 −0.920369 −0.460185 0.887823i \(-0.652217\pi\)
−0.460185 + 0.887823i \(0.652217\pi\)
\(500\) 0 0
\(501\) −6.98581e14 −0.988802
\(502\) 4.44888e14i 0.622846i
\(503\) 4.81639e12i 0.00666957i 0.999994 + 0.00333478i \(0.00106150\pi\)
−0.999994 + 0.00333478i \(0.998939\pi\)
\(504\) 2.69540e14 0.369195
\(505\) 0 0
\(506\) 2.18294e14 0.292559
\(507\) 8.69320e13i 0.115249i
\(508\) 4.82488e13i 0.0632755i
\(509\) 5.73829e14 0.744449 0.372224 0.928143i \(-0.378595\pi\)
0.372224 + 0.928143i \(0.378595\pi\)
\(510\) 0 0
\(511\) 2.57705e15 3.27196
\(512\) 8.05287e14i 1.01150i
\(513\) 1.66535e14i 0.206947i
\(514\) −1.01306e14 −0.124548
\(515\) 0 0
\(516\) 7.43842e14 0.895174
\(517\) 6.91155e14i 0.822958i
\(518\) − 9.49185e13i − 0.111825i
\(519\) 3.71997e14 0.433630
\(520\) 0 0
\(521\) 5.14705e14 0.587422 0.293711 0.955894i \(-0.405110\pi\)
0.293711 + 0.955894i \(0.405110\pi\)
\(522\) − 1.65596e14i − 0.187009i
\(523\) − 1.20146e15i − 1.34261i −0.741182 0.671304i \(-0.765735\pi\)
0.741182 0.671304i \(-0.234265\pi\)
\(524\) −4.02745e14 −0.445357
\(525\) 0 0
\(526\) −4.85654e14 −0.525903
\(527\) 2.66285e14i 0.285357i
\(528\) 5.69313e14i 0.603760i
\(529\) 6.13454e14 0.643836
\(530\) 0 0
\(531\) 2.57312e14 0.264509
\(532\) − 1.69913e15i − 1.72868i
\(533\) 2.71052e14i 0.272931i
\(534\) 1.58833e13 0.0158294
\(535\) 0 0
\(536\) −4.33170e14 −0.422914
\(537\) 4.64948e14i 0.449310i
\(538\) 4.37861e14i 0.418826i
\(539\) −3.55298e15 −3.36399
\(540\) 0 0
\(541\) −1.89107e15 −1.75438 −0.877190 0.480143i \(-0.840585\pi\)
−0.877190 + 0.480143i \(0.840585\pi\)
\(542\) − 6.33524e14i − 0.581791i
\(543\) − 4.15090e14i − 0.377349i
\(544\) −4.20721e14 −0.378617
\(545\) 0 0
\(546\) 3.42449e14 0.302020
\(547\) 1.37400e14i 0.119966i 0.998199 + 0.0599830i \(0.0191046\pi\)
−0.998199 + 0.0599830i \(0.980895\pi\)
\(548\) − 1.01464e15i − 0.877040i
\(549\) 9.76626e13 0.0835758
\(550\) 0 0
\(551\) −2.21127e15 −1.85485
\(552\) 2.55608e14i 0.212280i
\(553\) 1.94377e14i 0.159829i
\(554\) −2.15939e14 −0.175803
\(555\) 0 0
\(556\) 1.13093e15 0.902661
\(557\) − 1.18622e15i − 0.937483i −0.883335 0.468742i \(-0.844708\pi\)
0.883335 0.468742i \(-0.155292\pi\)
\(558\) − 8.78939e13i − 0.0687814i
\(559\) 2.00189e15 1.55123
\(560\) 0 0
\(561\) −5.15134e14 −0.391403
\(562\) 6.15815e14i 0.463340i
\(563\) 2.58208e15i 1.92386i 0.273298 + 0.961929i \(0.411885\pi\)
−0.273298 + 0.961929i \(0.588115\pi\)
\(564\) −3.82051e14 −0.281894
\(565\) 0 0
\(566\) 3.44783e14 0.249491
\(567\) 2.78738e14i 0.199751i
\(568\) − 1.57488e15i − 1.11772i
\(569\) −6.86455e13 −0.0482497 −0.0241249 0.999709i \(-0.507680\pi\)
−0.0241249 + 0.999709i \(0.507680\pi\)
\(570\) 0 0
\(571\) −1.48521e15 −1.02397 −0.511986 0.858994i \(-0.671090\pi\)
−0.511986 + 0.858994i \(0.671090\pi\)
\(572\) 1.76579e15i 1.20576i
\(573\) 7.67929e14i 0.519363i
\(574\) −2.66297e14 −0.178382
\(575\) 0 0
\(576\) −2.13060e14 −0.140016
\(577\) − 1.11682e14i − 0.0726966i −0.999339 0.0363483i \(-0.988427\pi\)
0.999339 0.0363483i \(-0.0115726\pi\)
\(578\) 4.02394e14i 0.259447i
\(579\) 6.73830e14 0.430346
\(580\) 0 0
\(581\) 9.65124e14 0.604803
\(582\) 7.31274e13i 0.0453945i
\(583\) 2.83988e15i 1.74631i
\(584\) 1.84074e15 1.12130
\(585\) 0 0
\(586\) −1.07635e14 −0.0643450
\(587\) 1.03228e15i 0.611347i 0.952136 + 0.305673i \(0.0988815\pi\)
−0.952136 + 0.305673i \(0.901118\pi\)
\(588\) − 1.96398e15i − 1.15229i
\(589\) −1.17368e15 −0.682208
\(590\) 0 0
\(591\) −9.39204e14 −0.535832
\(592\) 2.34753e14i 0.132691i
\(593\) − 5.05946e14i − 0.283337i −0.989914 0.141668i \(-0.954753\pi\)
0.989914 0.141668i \(-0.0452467\pi\)
\(594\) 1.70032e14 0.0943423
\(595\) 0 0
\(596\) 1.22470e15 0.667076
\(597\) 2.47469e14i 0.133556i
\(598\) 3.24748e14i 0.173656i
\(599\) 1.86439e14 0.0987846 0.0493923 0.998779i \(-0.484272\pi\)
0.0493923 + 0.998779i \(0.484272\pi\)
\(600\) 0 0
\(601\) −6.39018e14 −0.332433 −0.166216 0.986089i \(-0.553155\pi\)
−0.166216 + 0.986089i \(0.553155\pi\)
\(602\) 1.96678e15i 1.01385i
\(603\) − 4.47952e14i − 0.228816i
\(604\) 2.53172e15 1.28148
\(605\) 0 0
\(606\) 5.57782e14 0.277246
\(607\) 3.07440e15i 1.51434i 0.653219 + 0.757169i \(0.273418\pi\)
−0.653219 + 0.757169i \(0.726582\pi\)
\(608\) − 1.85438e15i − 0.905166i
\(609\) −3.70112e15 −1.79035
\(610\) 0 0
\(611\) −1.02821e15 −0.488489
\(612\) − 2.84751e14i − 0.134070i
\(613\) − 1.45823e15i − 0.680447i −0.940345 0.340223i \(-0.889497\pi\)
0.940345 0.340223i \(-0.110503\pi\)
\(614\) 7.90767e14 0.365698
\(615\) 0 0
\(616\) −3.67488e15 −1.66935
\(617\) 2.52038e15i 1.13474i 0.823462 + 0.567372i \(0.192040\pi\)
−0.823462 + 0.567372i \(0.807960\pi\)
\(618\) − 1.82530e14i − 0.0814512i
\(619\) −2.76117e15 −1.22122 −0.610612 0.791930i \(-0.709076\pi\)
−0.610612 + 0.791930i \(0.709076\pi\)
\(620\) 0 0
\(621\) −2.64330e14 −0.114853
\(622\) 7.96900e14i 0.343207i
\(623\) − 3.54997e14i − 0.151545i
\(624\) −8.46948e14 −0.358378
\(625\) 0 0
\(626\) −6.32511e13 −0.0262972
\(627\) − 2.27051e15i − 0.935734i
\(628\) − 1.45347e15i − 0.593783i
\(629\) −2.12413e14 −0.0860205
\(630\) 0 0
\(631\) −5.89126e14 −0.234448 −0.117224 0.993105i \(-0.537400\pi\)
−0.117224 + 0.993105i \(0.537400\pi\)
\(632\) 1.38839e14i 0.0547733i
\(633\) 4.99774e14i 0.195458i
\(634\) 4.14972e14 0.160890
\(635\) 0 0
\(636\) −1.56980e15 −0.598178
\(637\) − 5.28565e15i − 1.99679i
\(638\) 2.25772e15i 0.845582i
\(639\) 1.62862e15 0.604736
\(640\) 0 0
\(641\) 1.59787e15 0.583208 0.291604 0.956539i \(-0.405811\pi\)
0.291604 + 0.956539i \(0.405811\pi\)
\(642\) − 3.81512e13i − 0.0138059i
\(643\) − 4.44445e15i − 1.59462i −0.603569 0.797310i \(-0.706255\pi\)
0.603569 0.797310i \(-0.293745\pi\)
\(644\) 2.69693e15 0.959395
\(645\) 0 0
\(646\) 4.49830e14 0.157315
\(647\) − 8.54247e14i − 0.296217i −0.988971 0.148108i \(-0.952682\pi\)
0.988971 0.148108i \(-0.0473185\pi\)
\(648\) 1.99097e14i 0.0684546i
\(649\) −3.50816e15 −1.19601
\(650\) 0 0
\(651\) −1.96446e15 −0.658486
\(652\) 8.55971e14i 0.284510i
\(653\) 2.86428e15i 0.944045i 0.881587 + 0.472022i \(0.156476\pi\)
−0.881587 + 0.472022i \(0.843524\pi\)
\(654\) −1.11778e14 −0.0365323
\(655\) 0 0
\(656\) 6.58609e14 0.211669
\(657\) 1.90355e15i 0.606674i
\(658\) − 1.01017e15i − 0.319267i
\(659\) −4.78135e15 −1.49858 −0.749291 0.662241i \(-0.769606\pi\)
−0.749291 + 0.662241i \(0.769606\pi\)
\(660\) 0 0
\(661\) −5.52275e14 −0.170234 −0.0851172 0.996371i \(-0.527126\pi\)
−0.0851172 + 0.996371i \(0.527126\pi\)
\(662\) − 1.46524e15i − 0.447909i
\(663\) − 7.66347e14i − 0.232328i
\(664\) 6.89369e14 0.207266
\(665\) 0 0
\(666\) 7.01120e13 0.0207341
\(667\) − 3.50982e15i − 1.02942i
\(668\) 5.26480e15i 1.53148i
\(669\) 2.42997e15 0.701062
\(670\) 0 0
\(671\) −1.33152e15 −0.377897
\(672\) − 3.10377e15i − 0.873693i
\(673\) 3.31175e15i 0.924645i 0.886712 + 0.462323i \(0.152984\pi\)
−0.886712 + 0.462323i \(0.847016\pi\)
\(674\) 1.33234e15 0.368964
\(675\) 0 0
\(676\) 6.55156e14 0.178500
\(677\) 6.69181e15i 1.80845i 0.427060 + 0.904223i \(0.359549\pi\)
−0.427060 + 0.904223i \(0.640451\pi\)
\(678\) − 1.41763e14i − 0.0380013i
\(679\) 1.63442e15 0.434590
\(680\) 0 0
\(681\) 1.64541e15 0.430492
\(682\) 1.19833e15i 0.311003i
\(683\) 7.20810e15i 1.85570i 0.372959 + 0.927848i \(0.378343\pi\)
−0.372959 + 0.927848i \(0.621657\pi\)
\(684\) 1.25507e15 0.320524
\(685\) 0 0
\(686\) 2.86629e15 0.720340
\(687\) − 2.47696e15i − 0.617529i
\(688\) − 4.86426e15i − 1.20304i
\(689\) −4.22479e15 −1.03657
\(690\) 0 0
\(691\) 7.79467e15 1.88221 0.941106 0.338112i \(-0.109788\pi\)
0.941106 + 0.338112i \(0.109788\pi\)
\(692\) − 2.80352e15i − 0.671615i
\(693\) − 3.80028e15i − 0.903197i
\(694\) 9.37448e14 0.221040
\(695\) 0 0
\(696\) −2.64364e15 −0.613553
\(697\) 5.95932e14i 0.137220i
\(698\) − 1.04299e15i − 0.238274i
\(699\) 1.63890e15 0.371474
\(700\) 0 0
\(701\) 6.71290e15 1.49782 0.748912 0.662669i \(-0.230577\pi\)
0.748912 + 0.662669i \(0.230577\pi\)
\(702\) 2.52952e14i 0.0559994i
\(703\) − 9.36234e14i − 0.205651i
\(704\) 2.90483e15 0.633099
\(705\) 0 0
\(706\) 9.75719e14 0.209362
\(707\) − 1.24666e16i − 2.65424i
\(708\) − 1.93921e15i − 0.409677i
\(709\) 4.10214e15 0.859917 0.429959 0.902849i \(-0.358528\pi\)
0.429959 + 0.902849i \(0.358528\pi\)
\(710\) 0 0
\(711\) −1.43577e14 −0.0296349
\(712\) − 2.53568e14i − 0.0519343i
\(713\) − 1.86291e15i − 0.378617i
\(714\) 7.52905e14 0.151845
\(715\) 0 0
\(716\) 3.50404e15 0.695902
\(717\) 4.28898e15i 0.845276i
\(718\) − 1.00122e15i − 0.195814i
\(719\) 3.31818e15 0.644008 0.322004 0.946738i \(-0.395644\pi\)
0.322004 + 0.946738i \(0.395644\pi\)
\(720\) 0 0
\(721\) −4.07960e15 −0.779783
\(722\) 2.68047e14i 0.0508460i
\(723\) − 3.34519e15i − 0.629738i
\(724\) −3.12829e15 −0.584446
\(725\) 0 0
\(726\) −1.29772e15 −0.238797
\(727\) 3.34273e15i 0.610467i 0.952278 + 0.305233i \(0.0987344\pi\)
−0.952278 + 0.305233i \(0.901266\pi\)
\(728\) − 5.46699e15i − 0.990890i
\(729\) −2.05891e14 −0.0370370
\(730\) 0 0
\(731\) 4.40134e15 0.779901
\(732\) − 7.36026e14i − 0.129444i
\(733\) 6.14966e15i 1.07344i 0.843759 + 0.536722i \(0.180338\pi\)
−0.843759 + 0.536722i \(0.819662\pi\)
\(734\) −3.23483e15 −0.560432
\(735\) 0 0
\(736\) 2.94334e15 0.502357
\(737\) 6.10732e15i 1.03462i
\(738\) − 1.96702e14i − 0.0330749i
\(739\) 4.15701e15 0.693804 0.346902 0.937901i \(-0.387234\pi\)
0.346902 + 0.937901i \(0.387234\pi\)
\(740\) 0 0
\(741\) 3.37776e15 0.555430
\(742\) − 4.15068e15i − 0.677482i
\(743\) 4.90364e15i 0.794474i 0.917716 + 0.397237i \(0.130031\pi\)
−0.917716 + 0.397237i \(0.869969\pi\)
\(744\) −1.40317e15 −0.225663
\(745\) 0 0
\(746\) −2.46150e15 −0.390064
\(747\) 7.12893e14i 0.112140i
\(748\) 3.88226e15i 0.606214i
\(749\) −8.52690e14 −0.132173
\(750\) 0 0
\(751\) −2.00580e15 −0.306385 −0.153192 0.988196i \(-0.548955\pi\)
−0.153192 + 0.988196i \(0.548955\pi\)
\(752\) 2.49837e15i 0.378842i
\(753\) 7.34473e15i 1.10561i
\(754\) −3.35873e15 −0.501918
\(755\) 0 0
\(756\) 2.10068e15 0.309379
\(757\) 2.85016e15i 0.416718i 0.978052 + 0.208359i \(0.0668122\pi\)
−0.978052 + 0.208359i \(0.933188\pi\)
\(758\) 2.32235e15i 0.337091i
\(759\) 3.60384e15 0.519321
\(760\) 0 0
\(761\) 8.65962e15 1.22994 0.614969 0.788551i \(-0.289168\pi\)
0.614969 + 0.788551i \(0.289168\pi\)
\(762\) − 9.42329e13i − 0.0132877i
\(763\) 2.49827e15i 0.349747i
\(764\) 5.78743e15 0.804400
\(765\) 0 0
\(766\) 8.08453e14 0.110763
\(767\) − 5.21897e15i − 0.709922i
\(768\) 4.35320e14i 0.0587925i
\(769\) 7.49727e15 1.00533 0.502665 0.864481i \(-0.332353\pi\)
0.502665 + 0.864481i \(0.332353\pi\)
\(770\) 0 0
\(771\) −1.67248e15 −0.221086
\(772\) − 5.07826e15i − 0.666530i
\(773\) − 2.07867e15i − 0.270894i −0.990785 0.135447i \(-0.956753\pi\)
0.990785 0.135447i \(-0.0432470\pi\)
\(774\) −1.45277e15 −0.187984
\(775\) 0 0
\(776\) 1.16743e15 0.148934
\(777\) − 1.56703e15i − 0.198500i
\(778\) 3.42866e15i 0.431258i
\(779\) −2.62664e15 −0.328053
\(780\) 0 0
\(781\) −2.22045e16 −2.73438
\(782\) 7.13988e14i 0.0873079i
\(783\) − 2.73385e15i − 0.331960i
\(784\) −1.28432e16 −1.54859
\(785\) 0 0
\(786\) 7.86587e14 0.0935239
\(787\) − 1.58421e16i − 1.87047i −0.354026 0.935235i \(-0.615188\pi\)
0.354026 0.935235i \(-0.384812\pi\)
\(788\) 7.07823e15i 0.829909i
\(789\) −8.01774e15 −0.933531
\(790\) 0 0
\(791\) −3.16844e15 −0.363810
\(792\) − 2.71447e15i − 0.309525i
\(793\) − 1.98086e15i − 0.224311i
\(794\) 7.00826e14 0.0788129
\(795\) 0 0
\(796\) 1.86503e15 0.206854
\(797\) − 4.58469e15i − 0.504997i −0.967597 0.252499i \(-0.918748\pi\)
0.967597 0.252499i \(-0.0812523\pi\)
\(798\) 3.31852e15i 0.363018i
\(799\) −2.26061e15 −0.245594
\(800\) 0 0
\(801\) 2.62221e14 0.0280988
\(802\) − 4.40210e15i − 0.468490i
\(803\) − 2.59528e16i − 2.74315i
\(804\) −3.37595e15 −0.354395
\(805\) 0 0
\(806\) −1.78272e15 −0.184604
\(807\) 7.22872e15i 0.743459i
\(808\) − 8.90465e15i − 0.909608i
\(809\) 1.72813e15 0.175331 0.0876656 0.996150i \(-0.472059\pi\)
0.0876656 + 0.996150i \(0.472059\pi\)
\(810\) 0 0
\(811\) 4.24638e14 0.0425015 0.0212507 0.999774i \(-0.493235\pi\)
0.0212507 + 0.999774i \(0.493235\pi\)
\(812\) 2.78932e16i 2.77294i
\(813\) − 1.04590e16i − 1.03274i
\(814\) −9.55899e14 −0.0937514
\(815\) 0 0
\(816\) −1.86209e15 −0.180179
\(817\) 1.93994e16i 1.86452i
\(818\) 3.76631e15i 0.359561i
\(819\) 5.65355e15 0.536117
\(820\) 0 0
\(821\) −1.96517e16 −1.83871 −0.919354 0.393431i \(-0.871288\pi\)
−0.919354 + 0.393431i \(0.871288\pi\)
\(822\) 1.98166e15i 0.184176i
\(823\) − 5.95701e14i − 0.0549957i −0.999622 0.0274979i \(-0.991246\pi\)
0.999622 0.0274979i \(-0.00875394\pi\)
\(824\) −2.91398e15 −0.267231
\(825\) 0 0
\(826\) 5.12743e15 0.463991
\(827\) − 1.40975e16i − 1.26725i −0.773639 0.633626i \(-0.781566\pi\)
0.773639 0.633626i \(-0.218434\pi\)
\(828\) 1.99210e15i 0.177887i
\(829\) 7.87187e15 0.698277 0.349139 0.937071i \(-0.386474\pi\)
0.349139 + 0.937071i \(0.386474\pi\)
\(830\) 0 0
\(831\) −3.56497e15 −0.312068
\(832\) 4.32142e15i 0.375793i
\(833\) − 1.16210e16i − 1.00391i
\(834\) −2.20878e15 −0.189557
\(835\) 0 0
\(836\) −1.71115e16 −1.44929
\(837\) − 1.45106e15i − 0.122094i
\(838\) − 3.26507e15i − 0.272929i
\(839\) −6.12117e15 −0.508327 −0.254164 0.967161i \(-0.581800\pi\)
−0.254164 + 0.967161i \(0.581800\pi\)
\(840\) 0 0
\(841\) 2.41000e16 1.97533
\(842\) 1.44092e15i 0.117334i
\(843\) 1.01666e16i 0.822476i
\(844\) 3.76650e15 0.302729
\(845\) 0 0
\(846\) 7.46170e14 0.0591971
\(847\) 2.90043e16i 2.28615i
\(848\) 1.02655e16i 0.803902i
\(849\) 5.69208e15 0.442873
\(850\) 0 0
\(851\) 1.48603e15 0.114134
\(852\) − 1.22740e16i − 0.936629i
\(853\) − 2.83032e15i − 0.214594i −0.994227 0.107297i \(-0.965781\pi\)
0.994227 0.107297i \(-0.0342195\pi\)
\(854\) 1.94611e15 0.146605
\(855\) 0 0
\(856\) −6.09060e14 −0.0452954
\(857\) − 4.83193e14i − 0.0357048i −0.999841 0.0178524i \(-0.994317\pi\)
0.999841 0.0178524i \(-0.00568289\pi\)
\(858\) − 3.44871e15i − 0.253208i
\(859\) −1.23886e16 −0.903775 −0.451888 0.892075i \(-0.649249\pi\)
−0.451888 + 0.892075i \(0.649249\pi\)
\(860\) 0 0
\(861\) −4.39635e15 −0.316647
\(862\) 1.63992e15i 0.117364i
\(863\) 2.26458e16i 1.61038i 0.593016 + 0.805191i \(0.297937\pi\)
−0.593016 + 0.805191i \(0.702063\pi\)
\(864\) 2.29262e15 0.161997
\(865\) 0 0
\(866\) −5.03459e15 −0.351249
\(867\) 6.64319e15i 0.460544i
\(868\) 1.48050e16i 1.01988i
\(869\) 1.95751e15 0.133997
\(870\) 0 0
\(871\) −9.08565e15 −0.614124
\(872\) 1.78446e15i 0.119858i
\(873\) 1.20727e15i 0.0805799i
\(874\) −3.14698e15 −0.208728
\(875\) 0 0
\(876\) 1.43460e16 0.939630
\(877\) − 8.89622e15i − 0.579039i −0.957172 0.289519i \(-0.906505\pi\)
0.957172 0.289519i \(-0.0934955\pi\)
\(878\) − 1.78023e15i − 0.115148i
\(879\) −1.77696e15 −0.114219
\(880\) 0 0
\(881\) −1.82720e16 −1.15989 −0.579946 0.814655i \(-0.696927\pi\)
−0.579946 + 0.814655i \(0.696927\pi\)
\(882\) 3.83579e15i 0.241979i
\(883\) − 8.75758e15i − 0.549035i −0.961582 0.274518i \(-0.911482\pi\)
0.961582 0.274518i \(-0.0885182\pi\)
\(884\) −5.77551e15 −0.359834
\(885\) 0 0
\(886\) −1.87398e15 −0.115314
\(887\) 8.52159e15i 0.521124i 0.965457 + 0.260562i \(0.0839078\pi\)
−0.965457 + 0.260562i \(0.916092\pi\)
\(888\) − 1.11930e15i − 0.0680258i
\(889\) −2.10613e15 −0.127212
\(890\) 0 0
\(891\) 2.80709e15 0.167467
\(892\) − 1.83132e16i − 1.08582i
\(893\) − 9.96390e15i − 0.587146i
\(894\) −2.39192e15 −0.140084
\(895\) 0 0
\(896\) −3.04042e16 −1.75889
\(897\) 5.36132e15i 0.308257i
\(898\) 2.38209e15i 0.136125i
\(899\) 1.92673e16 1.09432
\(900\) 0 0
\(901\) −9.28858e15 −0.521150
\(902\) 2.68181e15i 0.149552i
\(903\) 3.24699e16i 1.79969i
\(904\) −2.26316e15 −0.124677
\(905\) 0 0
\(906\) −4.94461e15 −0.269108
\(907\) 2.10550e16i 1.13898i 0.821998 + 0.569490i \(0.192859\pi\)
−0.821998 + 0.569490i \(0.807141\pi\)
\(908\) − 1.24005e16i − 0.666756i
\(909\) 9.20851e15 0.492139
\(910\) 0 0
\(911\) 3.04479e16 1.60771 0.803854 0.594827i \(-0.202780\pi\)
0.803854 + 0.594827i \(0.202780\pi\)
\(912\) − 8.20739e15i − 0.430758i
\(913\) − 9.71950e15i − 0.507055i
\(914\) 5.13939e15 0.266506
\(915\) 0 0
\(916\) −1.86674e16 −0.956443
\(917\) − 1.75805e16i − 0.895363i
\(918\) 5.56137e14i 0.0281544i
\(919\) 4.47695e15 0.225293 0.112646 0.993635i \(-0.464067\pi\)
0.112646 + 0.993635i \(0.464067\pi\)
\(920\) 0 0
\(921\) 1.30549e16 0.649151
\(922\) − 6.61799e15i − 0.327119i
\(923\) − 3.30328e16i − 1.62307i
\(924\) −2.86405e16 −1.39889
\(925\) 0 0
\(926\) 6.19818e14 0.0299160
\(927\) − 3.01342e15i − 0.144584i
\(928\) 3.04417e16i 1.45196i
\(929\) −2.63310e16 −1.24848 −0.624238 0.781234i \(-0.714591\pi\)
−0.624238 + 0.781234i \(0.714591\pi\)
\(930\) 0 0
\(931\) 5.12208e16 2.40007
\(932\) − 1.23515e16i − 0.575348i
\(933\) 1.31562e16i 0.609228i
\(934\) 1.16481e15 0.0536224
\(935\) 0 0
\(936\) 4.03822e15 0.183727
\(937\) 1.18259e16i 0.534894i 0.963573 + 0.267447i \(0.0861800\pi\)
−0.963573 + 0.267447i \(0.913820\pi\)
\(938\) − 8.92628e15i − 0.401379i
\(939\) −1.04422e15 −0.0466802
\(940\) 0 0
\(941\) 6.96003e15 0.307517 0.153758 0.988108i \(-0.450862\pi\)
0.153758 + 0.988108i \(0.450862\pi\)
\(942\) 2.83872e15i 0.124693i
\(943\) − 4.16911e15i − 0.182066i
\(944\) −1.26812e16 −0.550573
\(945\) 0 0
\(946\) 1.98069e16 0.849993
\(947\) − 3.38501e16i − 1.44423i −0.691775 0.722113i \(-0.743171\pi\)
0.691775 0.722113i \(-0.256829\pi\)
\(948\) 1.08206e15i 0.0458991i
\(949\) 3.86091e16 1.62827
\(950\) 0 0
\(951\) 6.85084e15 0.285595
\(952\) − 1.20197e16i − 0.498183i
\(953\) − 4.50062e16i − 1.85465i −0.374262 0.927323i \(-0.622104\pi\)
0.374262 0.927323i \(-0.377896\pi\)
\(954\) 3.06592e15 0.125616
\(955\) 0 0
\(956\) 3.23235e16 1.30918
\(957\) 3.72730e16i 1.50099i
\(958\) 1.41644e16i 0.567139i
\(959\) 4.42907e16 1.76323
\(960\) 0 0
\(961\) −1.51819e16 −0.597513
\(962\) − 1.42206e15i − 0.0556486i
\(963\) − 6.29844e14i − 0.0245069i
\(964\) −2.52107e16 −0.975353
\(965\) 0 0
\(966\) −5.26728e15 −0.201471
\(967\) − 1.48359e16i − 0.564246i −0.959378 0.282123i \(-0.908961\pi\)
0.959378 0.282123i \(-0.0910386\pi\)
\(968\) 2.07172e16i 0.783461i
\(969\) 7.42632e15 0.279250
\(970\) 0 0
\(971\) 1.14414e16 0.425378 0.212689 0.977120i \(-0.431778\pi\)
0.212689 + 0.977120i \(0.431778\pi\)
\(972\) 1.55168e15i 0.0573638i
\(973\) 4.93669e16i 1.81474i
\(974\) −6.72835e15 −0.245943
\(975\) 0 0
\(976\) −4.81314e15 −0.173962
\(977\) − 2.64437e16i − 0.950390i −0.879881 0.475195i \(-0.842378\pi\)
0.879881 0.475195i \(-0.157622\pi\)
\(978\) − 1.67177e15i − 0.0597464i
\(979\) −3.57508e15 −0.127052
\(980\) 0 0
\(981\) −1.84536e15 −0.0648486
\(982\) 6.47820e15i 0.226382i
\(983\) − 3.63656e16i − 1.26371i −0.775088 0.631854i \(-0.782294\pi\)
0.775088 0.631854i \(-0.217706\pi\)
\(984\) −3.14023e15 −0.108515
\(985\) 0 0
\(986\) −7.38447e15 −0.252346
\(987\) − 1.66771e16i − 0.566731i
\(988\) − 2.54562e16i − 0.860262i
\(989\) −3.07915e16 −1.03479
\(990\) 0 0
\(991\) 5.09067e16 1.69188 0.845941 0.533276i \(-0.179039\pi\)
0.845941 + 0.533276i \(0.179039\pi\)
\(992\) 1.61576e16i 0.534027i
\(993\) − 2.41899e16i − 0.795084i
\(994\) 3.24534e16 1.06080
\(995\) 0 0
\(996\) 5.37266e15 0.173685
\(997\) − 4.28291e16i − 1.37694i −0.725264 0.688471i \(-0.758282\pi\)
0.725264 0.688471i \(-0.241718\pi\)
\(998\) − 9.36259e15i − 0.299349i
\(999\) 1.15749e15 0.0368051
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.12.b.d.49.3 4
3.2 odd 2 225.12.b.i.199.2 4
5.2 odd 4 75.12.a.c.1.1 2
5.3 odd 4 15.12.a.c.1.2 2
5.4 even 2 inner 75.12.b.d.49.2 4
15.2 even 4 225.12.a.i.1.2 2
15.8 even 4 45.12.a.c.1.1 2
15.14 odd 2 225.12.b.i.199.3 4
20.3 even 4 240.12.a.m.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.12.a.c.1.2 2 5.3 odd 4
45.12.a.c.1.1 2 15.8 even 4
75.12.a.c.1.1 2 5.2 odd 4
75.12.b.d.49.2 4 5.4 even 2 inner
75.12.b.d.49.3 4 1.1 even 1 trivial
225.12.a.i.1.2 2 15.2 even 4
225.12.b.i.199.2 4 3.2 odd 2
225.12.b.i.199.3 4 15.14 odd 2
240.12.a.m.1.1 2 20.3 even 4