Properties

Label 750.2.g.e.601.1
Level $750$
Weight $2$
Character 750.601
Analytic conductor $5.989$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [750,2,Mod(151,750)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(750, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("750.151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 750.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.98878015160\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 150)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 601.1
Root \(-0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 750.601
Dual form 750.2.g.e.151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.951057i) q^{2} +(-0.809017 - 0.587785i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(0.809017 - 0.587785i) q^{6} -2.07768 q^{7} +(0.809017 - 0.587785i) q^{8} +(0.309017 + 0.951057i) q^{9} +(0.160734 - 0.494689i) q^{11} +(0.309017 + 0.951057i) q^{12} +(0.675571 + 2.07919i) q^{13} +(0.642040 - 1.97599i) q^{14} +(0.309017 + 0.951057i) q^{16} +(-2.18088 + 1.58450i) q^{17} -1.00000 q^{18} +(5.55899 - 4.03884i) q^{19} +(1.68088 + 1.22123i) q^{21} +(0.420808 + 0.305735i) q^{22} +(1.19301 - 3.67171i) q^{23} -1.00000 q^{24} -2.18619 q^{26} +(0.309017 - 0.951057i) q^{27} +(1.68088 + 1.22123i) q^{28} +(7.30844 + 5.30989i) q^{29} +(5.99083 - 4.35259i) q^{31} -1.00000 q^{32} +(-0.420808 + 0.305735i) q^{33} +(-0.833023 - 2.56378i) q^{34} +(0.309017 - 0.951057i) q^{36} +(-1.64001 - 5.04743i) q^{37} +(2.12334 + 6.53498i) q^{38} +(0.675571 - 2.07919i) q^{39} +(-0.996141 - 3.06581i) q^{41} +(-1.68088 + 1.22123i) q^{42} +9.53920 q^{43} +(-0.420808 + 0.305735i) q^{44} +(3.12334 + 2.26924i) q^{46} +(7.49614 + 5.44627i) q^{47} +(0.309017 - 0.951057i) q^{48} -2.68323 q^{49} +2.69572 q^{51} +(0.675571 - 2.07919i) q^{52} +(1.97271 + 1.43326i) q^{53} +(0.809017 + 0.587785i) q^{54} +(-1.68088 + 1.22123i) q^{56} -6.87129 q^{57} +(-7.30844 + 5.30989i) q^{58} +(2.67261 + 8.22545i) q^{59} +(3.88998 - 11.9721i) q^{61} +(2.28829 + 7.04264i) q^{62} +(-0.642040 - 1.97599i) q^{63} +(0.309017 - 0.951057i) q^{64} +(-0.160734 - 0.494689i) q^{66} +(-5.41544 + 3.93455i) q^{67} +2.69572 q^{68} +(-3.12334 + 2.26924i) q^{69} +(6.60886 + 4.80162i) q^{71} +(0.809017 + 0.587785i) q^{72} +(1.18770 - 3.65537i) q^{73} +5.30719 q^{74} -6.87129 q^{76} +(-0.333955 + 1.02781i) q^{77} +(1.76867 + 1.28501i) q^{78} +(-2.84162 - 2.06455i) q^{79} +(-0.809017 + 0.587785i) q^{81} +3.22358 q^{82} +(10.6233 - 7.71827i) q^{83} +(-0.642040 - 1.97599i) q^{84} +(-2.94777 + 9.07232i) q^{86} +(-2.79158 - 8.59159i) q^{87} +(-0.160734 - 0.494689i) q^{88} +(-3.04654 + 9.37628i) q^{89} +(-1.40362 - 4.31990i) q^{91} +(-3.12334 + 2.26924i) q^{92} -7.40507 q^{93} +(-7.49614 + 5.44627i) q^{94} +(0.809017 + 0.587785i) q^{96} +(8.70483 + 6.32443i) q^{97} +(0.829164 - 2.55190i) q^{98} +0.520147 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 2 q^{6} + 8 q^{7} + 2 q^{8} - 2 q^{9} + 10 q^{11} - 2 q^{12} - 4 q^{13} + 2 q^{14} - 2 q^{16} - 2 q^{17} - 8 q^{18} + 8 q^{19} - 2 q^{21} + 10 q^{23} - 8 q^{24} + 4 q^{26}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/750\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 + 0.951057i −0.218508 + 0.672499i
\(3\) −0.809017 0.587785i −0.467086 0.339358i
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) 0 0
\(6\) 0.809017 0.587785i 0.330280 0.239962i
\(7\) −2.07768 −0.785291 −0.392645 0.919690i \(-0.628440\pi\)
−0.392645 + 0.919690i \(0.628440\pi\)
\(8\) 0.809017 0.587785i 0.286031 0.207813i
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) 0 0
\(11\) 0.160734 0.494689i 0.0484632 0.149154i −0.923896 0.382643i \(-0.875014\pi\)
0.972360 + 0.233488i \(0.0750140\pi\)
\(12\) 0.309017 + 0.951057i 0.0892055 + 0.274546i
\(13\) 0.675571 + 2.07919i 0.187370 + 0.576664i 0.999981 0.00614146i \(-0.00195490\pi\)
−0.812612 + 0.582806i \(0.801955\pi\)
\(14\) 0.642040 1.97599i 0.171592 0.528107i
\(15\) 0 0
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −2.18088 + 1.58450i −0.528941 + 0.384298i −0.819962 0.572418i \(-0.806005\pi\)
0.291020 + 0.956717i \(0.406005\pi\)
\(18\) −1.00000 −0.235702
\(19\) 5.55899 4.03884i 1.27532 0.926574i 0.275919 0.961181i \(-0.411018\pi\)
0.999401 + 0.0346072i \(0.0110180\pi\)
\(20\) 0 0
\(21\) 1.68088 + 1.22123i 0.366798 + 0.266495i
\(22\) 0.420808 + 0.305735i 0.0897165 + 0.0651829i
\(23\) 1.19301 3.67171i 0.248760 0.765605i −0.746235 0.665682i \(-0.768141\pi\)
0.994995 0.0999224i \(-0.0318595\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −2.18619 −0.428748
\(27\) 0.309017 0.951057i 0.0594703 0.183031i
\(28\) 1.68088 + 1.22123i 0.317657 + 0.230791i
\(29\) 7.30844 + 5.30989i 1.35714 + 0.986022i 0.998621 + 0.0525013i \(0.0167194\pi\)
0.358523 + 0.933521i \(0.383281\pi\)
\(30\) 0 0
\(31\) 5.99083 4.35259i 1.07598 0.781749i 0.0990065 0.995087i \(-0.468434\pi\)
0.976978 + 0.213338i \(0.0684335\pi\)
\(32\) −1.00000 −0.176777
\(33\) −0.420808 + 0.305735i −0.0732532 + 0.0532216i
\(34\) −0.833023 2.56378i −0.142862 0.439685i
\(35\) 0 0
\(36\) 0.309017 0.951057i 0.0515028 0.158509i
\(37\) −1.64001 5.04743i −0.269616 0.829793i −0.990594 0.136835i \(-0.956307\pi\)
0.720978 0.692958i \(-0.243693\pi\)
\(38\) 2.12334 + 6.53498i 0.344452 + 1.06011i
\(39\) 0.675571 2.07919i 0.108178 0.332937i
\(40\) 0 0
\(41\) −0.996141 3.06581i −0.155571 0.478799i 0.842647 0.538466i \(-0.180996\pi\)
−0.998218 + 0.0596673i \(0.980996\pi\)
\(42\) −1.68088 + 1.22123i −0.259366 + 0.188440i
\(43\) 9.53920 1.45471 0.727357 0.686259i \(-0.240748\pi\)
0.727357 + 0.686259i \(0.240748\pi\)
\(44\) −0.420808 + 0.305735i −0.0634392 + 0.0460912i
\(45\) 0 0
\(46\) 3.12334 + 2.26924i 0.460512 + 0.334582i
\(47\) 7.49614 + 5.44627i 1.09342 + 0.794419i 0.979974 0.199124i \(-0.0638097\pi\)
0.113450 + 0.993544i \(0.463810\pi\)
\(48\) 0.309017 0.951057i 0.0446028 0.137273i
\(49\) −2.68323 −0.383319
\(50\) 0 0
\(51\) 2.69572 0.377476
\(52\) 0.675571 2.07919i 0.0936848 0.288332i
\(53\) 1.97271 + 1.43326i 0.270973 + 0.196873i 0.714970 0.699155i \(-0.246440\pi\)
−0.443998 + 0.896028i \(0.646440\pi\)
\(54\) 0.809017 + 0.587785i 0.110093 + 0.0799874i
\(55\) 0 0
\(56\) −1.68088 + 1.22123i −0.224617 + 0.163194i
\(57\) −6.87129 −0.910124
\(58\) −7.30844 + 5.30989i −0.959645 + 0.697223i
\(59\) 2.67261 + 8.22545i 0.347944 + 1.07086i 0.959989 + 0.280039i \(0.0903473\pi\)
−0.612045 + 0.790823i \(0.709653\pi\)
\(60\) 0 0
\(61\) 3.88998 11.9721i 0.498061 1.53287i −0.314070 0.949400i \(-0.601693\pi\)
0.812131 0.583475i \(-0.198307\pi\)
\(62\) 2.28829 + 7.04264i 0.290614 + 0.894417i
\(63\) −0.642040 1.97599i −0.0808894 0.248952i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) 0 0
\(66\) −0.160734 0.494689i −0.0197850 0.0608920i
\(67\) −5.41544 + 3.93455i −0.661601 + 0.480682i −0.867203 0.497954i \(-0.834085\pi\)
0.205602 + 0.978636i \(0.434085\pi\)
\(68\) 2.69572 0.326904
\(69\) −3.12334 + 2.26924i −0.376007 + 0.273185i
\(70\) 0 0
\(71\) 6.60886 + 4.80162i 0.784328 + 0.569848i 0.906275 0.422689i \(-0.138914\pi\)
−0.121947 + 0.992537i \(0.538914\pi\)
\(72\) 0.809017 + 0.587785i 0.0953436 + 0.0692712i
\(73\) 1.18770 3.65537i 0.139010 0.427828i −0.857182 0.515013i \(-0.827787\pi\)
0.996192 + 0.0871848i \(0.0277870\pi\)
\(74\) 5.30719 0.616948
\(75\) 0 0
\(76\) −6.87129 −0.788191
\(77\) −0.333955 + 1.02781i −0.0380577 + 0.117130i
\(78\) 1.76867 + 1.28501i 0.200262 + 0.145499i
\(79\) −2.84162 2.06455i −0.319707 0.232281i 0.416344 0.909207i \(-0.363311\pi\)
−0.736050 + 0.676927i \(0.763311\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) 3.22358 0.355985
\(83\) 10.6233 7.71827i 1.16606 0.847190i 0.175526 0.984475i \(-0.443837\pi\)
0.990532 + 0.137285i \(0.0438375\pi\)
\(84\) −0.642040 1.97599i −0.0700523 0.215599i
\(85\) 0 0
\(86\) −2.94777 + 9.07232i −0.317867 + 0.978293i
\(87\) −2.79158 8.59159i −0.299288 0.921115i
\(88\) −0.160734 0.494689i −0.0171343 0.0527340i
\(89\) −3.04654 + 9.37628i −0.322932 + 0.993883i 0.649433 + 0.760419i \(0.275006\pi\)
−0.972365 + 0.233465i \(0.924994\pi\)
\(90\) 0 0
\(91\) −1.40362 4.31990i −0.147140 0.452849i
\(92\) −3.12334 + 2.26924i −0.325631 + 0.236585i
\(93\) −7.40507 −0.767870
\(94\) −7.49614 + 5.44627i −0.773168 + 0.561739i
\(95\) 0 0
\(96\) 0.809017 + 0.587785i 0.0825700 + 0.0599906i
\(97\) 8.70483 + 6.32443i 0.883842 + 0.642149i 0.934265 0.356579i \(-0.116057\pi\)
−0.0504234 + 0.998728i \(0.516057\pi\)
\(98\) 0.829164 2.55190i 0.0837582 0.257781i
\(99\) 0.520147 0.0522767
\(100\) 0 0
\(101\) −17.6400 −1.75524 −0.877622 0.479353i \(-0.840871\pi\)
−0.877622 + 0.479353i \(0.840871\pi\)
\(102\) −0.833023 + 2.56378i −0.0824815 + 0.253852i
\(103\) −7.03649 5.11231i −0.693326 0.503731i 0.184426 0.982846i \(-0.440957\pi\)
−0.877752 + 0.479116i \(0.840957\pi\)
\(104\) 1.76867 + 1.28501i 0.173432 + 0.126006i
\(105\) 0 0
\(106\) −1.97271 + 1.43326i −0.191607 + 0.139210i
\(107\) 5.40977 0.522983 0.261491 0.965206i \(-0.415786\pi\)
0.261491 + 0.965206i \(0.415786\pi\)
\(108\) −0.809017 + 0.587785i −0.0778477 + 0.0565597i
\(109\) 0.891135 + 2.74263i 0.0853553 + 0.262697i 0.984620 0.174707i \(-0.0558980\pi\)
−0.899265 + 0.437404i \(0.855898\pi\)
\(110\) 0 0
\(111\) −1.64001 + 5.04743i −0.155663 + 0.479081i
\(112\) −0.642040 1.97599i −0.0606670 0.186714i
\(113\) 1.96830 + 6.05780i 0.185162 + 0.569870i 0.999951 0.00988741i \(-0.00314731\pi\)
−0.814789 + 0.579757i \(0.803147\pi\)
\(114\) 2.12334 6.53498i 0.198869 0.612057i
\(115\) 0 0
\(116\) −2.79158 8.59159i −0.259191 0.797709i
\(117\) −1.76867 + 1.28501i −0.163513 + 0.118799i
\(118\) −8.64875 −0.796182
\(119\) 4.53118 3.29210i 0.415373 0.301786i
\(120\) 0 0
\(121\) 8.68031 + 6.30661i 0.789119 + 0.573328i
\(122\) 10.1841 + 7.39919i 0.922026 + 0.669891i
\(123\) −0.996141 + 3.06581i −0.0898191 + 0.276435i
\(124\) −7.40507 −0.664995
\(125\) 0 0
\(126\) 2.07768 0.185095
\(127\) 4.62515 14.2348i 0.410416 1.26313i −0.505871 0.862609i \(-0.668829\pi\)
0.916287 0.400522i \(-0.131171\pi\)
\(128\) 0.809017 + 0.587785i 0.0715077 + 0.0519534i
\(129\) −7.71737 5.60700i −0.679477 0.493669i
\(130\) 0 0
\(131\) −11.2090 + 8.14385i −0.979339 + 0.711531i −0.957561 0.288232i \(-0.906933\pi\)
−0.0217781 + 0.999763i \(0.506933\pi\)
\(132\) 0.520147 0.0452730
\(133\) −11.5498 + 8.39144i −1.00150 + 0.727630i
\(134\) −2.06851 6.36623i −0.178692 0.549959i
\(135\) 0 0
\(136\) −0.833023 + 2.56378i −0.0714311 + 0.219842i
\(137\) −6.14755 18.9202i −0.525221 1.61646i −0.763879 0.645359i \(-0.776708\pi\)
0.238659 0.971103i \(-0.423292\pi\)
\(138\) −1.19301 3.67171i −0.101556 0.312557i
\(139\) 1.74398 5.36743i 0.147923 0.455259i −0.849453 0.527665i \(-0.823068\pi\)
0.997375 + 0.0724056i \(0.0230676\pi\)
\(140\) 0 0
\(141\) −2.86327 8.81224i −0.241131 0.742125i
\(142\) −6.60886 + 4.80162i −0.554604 + 0.402943i
\(143\) 1.13714 0.0950925
\(144\) −0.809017 + 0.587785i −0.0674181 + 0.0489821i
\(145\) 0 0
\(146\) 3.10944 + 2.25914i 0.257339 + 0.186968i
\(147\) 2.17078 + 1.57716i 0.179043 + 0.130082i
\(148\) −1.64001 + 5.04743i −0.134808 + 0.414897i
\(149\) −15.0956 −1.23668 −0.618339 0.785911i \(-0.712194\pi\)
−0.618339 + 0.785911i \(0.712194\pi\)
\(150\) 0 0
\(151\) −20.9353 −1.70369 −0.851847 0.523791i \(-0.824517\pi\)
−0.851847 + 0.523791i \(0.824517\pi\)
\(152\) 2.12334 6.53498i 0.172226 0.530057i
\(153\) −2.18088 1.58450i −0.176314 0.128099i
\(154\) −0.874305 0.635220i −0.0704535 0.0511875i
\(155\) 0 0
\(156\) −1.76867 + 1.28501i −0.141607 + 0.102883i
\(157\) −5.71998 −0.456504 −0.228252 0.973602i \(-0.573301\pi\)
−0.228252 + 0.973602i \(0.573301\pi\)
\(158\) 2.84162 2.06455i 0.226067 0.164247i
\(159\) −0.753509 2.31906i −0.0597572 0.183914i
\(160\) 0 0
\(161\) −2.47870 + 7.62866i −0.195349 + 0.601222i
\(162\) −0.309017 0.951057i −0.0242787 0.0747221i
\(163\) −3.67577 11.3129i −0.287908 0.886091i −0.985512 0.169607i \(-0.945750\pi\)
0.697603 0.716484i \(-0.254250\pi\)
\(164\) −0.996141 + 3.06581i −0.0777856 + 0.239399i
\(165\) 0 0
\(166\) 4.05774 + 12.4884i 0.314941 + 0.969290i
\(167\) 7.23607 5.25731i 0.559944 0.406823i −0.271495 0.962440i \(-0.587518\pi\)
0.831438 + 0.555617i \(0.187518\pi\)
\(168\) 2.07768 0.160297
\(169\) 6.65058 4.83193i 0.511583 0.371687i
\(170\) 0 0
\(171\) 5.55899 + 4.03884i 0.425106 + 0.308858i
\(172\) −7.71737 5.60700i −0.588444 0.427530i
\(173\) −5.04904 + 15.5394i −0.383872 + 1.18144i 0.553424 + 0.832900i \(0.313321\pi\)
−0.937295 + 0.348536i \(0.886679\pi\)
\(174\) 9.03373 0.684845
\(175\) 0 0
\(176\) 0.520147 0.0392076
\(177\) 2.67261 8.22545i 0.200886 0.618262i
\(178\) −7.97594 5.79486i −0.597822 0.434343i
\(179\) −2.97599 2.16219i −0.222436 0.161609i 0.470986 0.882140i \(-0.343898\pi\)
−0.693423 + 0.720531i \(0.743898\pi\)
\(180\) 0 0
\(181\) 18.6472 13.5480i 1.38604 1.00702i 0.389751 0.920920i \(-0.372561\pi\)
0.996287 0.0860956i \(-0.0274391\pi\)
\(182\) 4.54222 0.336691
\(183\) −10.1841 + 7.39919i −0.752831 + 0.546964i
\(184\) −1.19301 3.67171i −0.0879500 0.270682i
\(185\) 0 0
\(186\) 2.28829 7.04264i 0.167786 0.516392i
\(187\) 0.433294 + 1.33354i 0.0316856 + 0.0975183i
\(188\) −2.86327 8.81224i −0.208826 0.642699i
\(189\) −0.642040 + 1.97599i −0.0467015 + 0.143732i
\(190\) 0 0
\(191\) −0.552424 1.70019i −0.0399720 0.123021i 0.929079 0.369881i \(-0.120601\pi\)
−0.969051 + 0.246859i \(0.920601\pi\)
\(192\) −0.809017 + 0.587785i −0.0583858 + 0.0424197i
\(193\) 6.60138 0.475178 0.237589 0.971366i \(-0.423643\pi\)
0.237589 + 0.971366i \(0.423643\pi\)
\(194\) −8.70483 + 6.32443i −0.624970 + 0.454068i
\(195\) 0 0
\(196\) 2.17078 + 1.57716i 0.155056 + 0.112655i
\(197\) 10.2401 + 7.43989i 0.729579 + 0.530070i 0.889430 0.457071i \(-0.151101\pi\)
−0.159851 + 0.987141i \(0.551101\pi\)
\(198\) −0.160734 + 0.494689i −0.0114229 + 0.0351560i
\(199\) 6.24148 0.442447 0.221223 0.975223i \(-0.428995\pi\)
0.221223 + 0.975223i \(0.428995\pi\)
\(200\) 0 0
\(201\) 6.69385 0.472148
\(202\) 5.45106 16.7766i 0.383535 1.18040i
\(203\) −15.1846 11.0323i −1.06575 0.774314i
\(204\) −2.18088 1.58450i −0.152692 0.110937i
\(205\) 0 0
\(206\) 7.03649 5.11231i 0.490256 0.356192i
\(207\) 3.86067 0.268335
\(208\) −1.76867 + 1.28501i −0.122635 + 0.0890995i
\(209\) −1.10445 3.39915i −0.0763965 0.235124i
\(210\) 0 0
\(211\) −6.94607 + 21.3778i −0.478187 + 1.47171i 0.363424 + 0.931624i \(0.381608\pi\)
−0.841611 + 0.540084i \(0.818392\pi\)
\(212\) −0.753509 2.31906i −0.0517512 0.159274i
\(213\) −2.52436 7.76919i −0.172966 0.532336i
\(214\) −1.67171 + 5.14500i −0.114276 + 0.351705i
\(215\) 0 0
\(216\) −0.309017 0.951057i −0.0210259 0.0647112i
\(217\) −12.4471 + 9.04331i −0.844961 + 0.613900i
\(218\) −2.88377 −0.195314
\(219\) −3.10944 + 2.25914i −0.210117 + 0.152659i
\(220\) 0 0
\(221\) −4.76783 3.46403i −0.320719 0.233016i
\(222\) −4.29360 3.11949i −0.288168 0.209366i
\(223\) 5.54065 17.0524i 0.371029 1.14191i −0.575089 0.818091i \(-0.695033\pi\)
0.946119 0.323820i \(-0.104967\pi\)
\(224\) 2.07768 0.138821
\(225\) 0 0
\(226\) −6.36955 −0.423696
\(227\) 2.73716 8.42412i 0.181672 0.559129i −0.818203 0.574929i \(-0.805030\pi\)
0.999875 + 0.0158003i \(0.00502961\pi\)
\(228\) 5.55899 + 4.03884i 0.368153 + 0.267479i
\(229\) −17.8490 12.9681i −1.17950 0.856953i −0.187380 0.982287i \(-0.560000\pi\)
−0.992115 + 0.125334i \(0.960000\pi\)
\(230\) 0 0
\(231\) 0.874305 0.635220i 0.0575251 0.0417944i
\(232\) 9.03373 0.593093
\(233\) 9.33828 6.78466i 0.611771 0.444478i −0.238267 0.971200i \(-0.576579\pi\)
0.850037 + 0.526722i \(0.176579\pi\)
\(234\) −0.675571 2.07919i −0.0441634 0.135921i
\(235\) 0 0
\(236\) 2.67261 8.22545i 0.173972 0.535431i
\(237\) 1.08540 + 3.34052i 0.0705043 + 0.216990i
\(238\) 1.73076 + 5.32672i 0.112188 + 0.345280i
\(239\) −0.273457 + 0.841616i −0.0176885 + 0.0544396i −0.959511 0.281671i \(-0.909111\pi\)
0.941823 + 0.336110i \(0.109111\pi\)
\(240\) 0 0
\(241\) 3.91637 + 12.0534i 0.252276 + 0.776425i 0.994354 + 0.106112i \(0.0338402\pi\)
−0.742078 + 0.670313i \(0.766160\pi\)
\(242\) −8.68031 + 6.30661i −0.557991 + 0.405404i
\(243\) 1.00000 0.0641500
\(244\) −10.1841 + 7.39919i −0.651971 + 0.473684i
\(245\) 0 0
\(246\) −2.60793 1.89477i −0.166276 0.120806i
\(247\) 12.1530 + 8.82968i 0.773278 + 0.561819i
\(248\) 2.28829 7.04264i 0.145307 0.447208i
\(249\) −13.1311 −0.832150
\(250\) 0 0
\(251\) 18.0966 1.14225 0.571124 0.820864i \(-0.306507\pi\)
0.571124 + 0.820864i \(0.306507\pi\)
\(252\) −0.642040 + 1.97599i −0.0404447 + 0.124476i
\(253\) −1.62460 1.18034i −0.102138 0.0742073i
\(254\) 12.1088 + 8.79756i 0.759774 + 0.552008i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −1.28053 −0.0798774 −0.0399387 0.999202i \(-0.512716\pi\)
−0.0399387 + 0.999202i \(0.512716\pi\)
\(258\) 7.71737 5.60700i 0.480463 0.349077i
\(259\) 3.40742 + 10.4870i 0.211727 + 0.651629i
\(260\) 0 0
\(261\) −2.79158 + 8.59159i −0.172794 + 0.531806i
\(262\) −4.28147 13.1770i −0.264510 0.814079i
\(263\) 2.19842 + 6.76605i 0.135561 + 0.417213i 0.995677 0.0928855i \(-0.0296091\pi\)
−0.860116 + 0.510098i \(0.829609\pi\)
\(264\) −0.160734 + 0.494689i −0.00989251 + 0.0304460i
\(265\) 0 0
\(266\) −4.41164 13.5776i −0.270495 0.832498i
\(267\) 7.97594 5.79486i 0.488119 0.354640i
\(268\) 6.69385 0.408892
\(269\) 7.62892 5.54274i 0.465143 0.337947i −0.330402 0.943840i \(-0.607184\pi\)
0.795546 + 0.605894i \(0.207184\pi\)
\(270\) 0 0
\(271\) −1.11231 0.808141i −0.0675681 0.0490911i 0.553488 0.832857i \(-0.313296\pi\)
−0.621057 + 0.783766i \(0.713296\pi\)
\(272\) −2.18088 1.58450i −0.132235 0.0960746i
\(273\) −1.40362 + 4.31990i −0.0849511 + 0.261452i
\(274\) 19.8939 1.20183
\(275\) 0 0
\(276\) 3.86067 0.232385
\(277\) −6.05571 + 18.6375i −0.363852 + 1.11982i 0.586845 + 0.809700i \(0.300370\pi\)
−0.950697 + 0.310122i \(0.899630\pi\)
\(278\) 4.56581 + 3.31725i 0.273839 + 0.198956i
\(279\) 5.99083 + 4.35259i 0.358662 + 0.260583i
\(280\) 0 0
\(281\) 2.29605 1.66817i 0.136971 0.0995150i −0.517190 0.855871i \(-0.673022\pi\)
0.654161 + 0.756356i \(0.273022\pi\)
\(282\) 9.26574 0.551767
\(283\) −1.80699 + 1.31285i −0.107414 + 0.0780411i −0.640196 0.768212i \(-0.721147\pi\)
0.532781 + 0.846253i \(0.321147\pi\)
\(284\) −2.52436 7.76919i −0.149793 0.461016i
\(285\) 0 0
\(286\) −0.351396 + 1.08149i −0.0207785 + 0.0639496i
\(287\) 2.06967 + 6.36978i 0.122169 + 0.375996i
\(288\) −0.309017 0.951057i −0.0182090 0.0560415i
\(289\) −3.00770 + 9.25673i −0.176923 + 0.544514i
\(290\) 0 0
\(291\) −3.32495 10.2331i −0.194912 0.599877i
\(292\) −3.10944 + 2.25914i −0.181966 + 0.132206i
\(293\) −24.0260 −1.40361 −0.701807 0.712367i \(-0.747623\pi\)
−0.701807 + 0.712367i \(0.747623\pi\)
\(294\) −2.17078 + 1.57716i −0.126602 + 0.0919821i
\(295\) 0 0
\(296\) −4.29360 3.11949i −0.249561 0.181316i
\(297\) −0.420808 0.305735i −0.0244177 0.0177405i
\(298\) 4.66479 14.3568i 0.270224 0.831664i
\(299\) 8.44016 0.488107
\(300\) 0 0
\(301\) −19.8194 −1.14237
\(302\) 6.46937 19.9107i 0.372271 1.14573i
\(303\) 14.2711 + 10.3685i 0.819850 + 0.595656i
\(304\) 5.55899 + 4.03884i 0.318830 + 0.231643i
\(305\) 0 0
\(306\) 2.18088 1.58450i 0.124673 0.0905800i
\(307\) −17.1204 −0.977111 −0.488556 0.872533i \(-0.662476\pi\)
−0.488556 + 0.872533i \(0.662476\pi\)
\(308\) 0.874305 0.635220i 0.0498182 0.0361950i
\(309\) 2.68770 + 8.27189i 0.152898 + 0.470572i
\(310\) 0 0
\(311\) −6.22754 + 19.1664i −0.353131 + 1.08683i 0.603954 + 0.797020i \(0.293591\pi\)
−0.957085 + 0.289807i \(0.906409\pi\)
\(312\) −0.675571 2.07919i −0.0382466 0.117711i
\(313\) 7.88127 + 24.2560i 0.445476 + 1.37103i 0.881961 + 0.471322i \(0.156223\pi\)
−0.436486 + 0.899711i \(0.643777\pi\)
\(314\) 1.76757 5.44002i 0.0997498 0.306998i
\(315\) 0 0
\(316\) 1.08540 + 3.34052i 0.0610586 + 0.187919i
\(317\) −25.4988 + 18.5260i −1.43215 + 1.04052i −0.442544 + 0.896747i \(0.645924\pi\)
−0.989610 + 0.143775i \(0.954076\pi\)
\(318\) 2.43841 0.136739
\(319\) 3.80146 2.76193i 0.212841 0.154638i
\(320\) 0 0
\(321\) −4.37660 3.17979i −0.244278 0.177478i
\(322\) −6.48932 4.71477i −0.361636 0.262744i
\(323\) −5.72394 + 17.6165i −0.318488 + 0.980207i
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 11.8950 0.658805
\(327\) 0.891135 2.74263i 0.0492799 0.151668i
\(328\) −2.60793 1.89477i −0.143999 0.104621i
\(329\) −15.5746 11.3156i −0.858656 0.623850i
\(330\) 0 0
\(331\) 5.90633 4.29120i 0.324641 0.235866i −0.413512 0.910499i \(-0.635698\pi\)
0.738153 + 0.674633i \(0.235698\pi\)
\(332\) −13.1311 −0.720663
\(333\) 4.29360 3.11949i 0.235288 0.170947i
\(334\) 2.76393 + 8.50651i 0.151236 + 0.465455i
\(335\) 0 0
\(336\) −0.642040 + 1.97599i −0.0350261 + 0.107799i
\(337\) 8.26459 + 25.4358i 0.450201 + 1.38558i 0.876678 + 0.481077i \(0.159754\pi\)
−0.426477 + 0.904498i \(0.640246\pi\)
\(338\) 2.54029 + 7.81822i 0.138174 + 0.425255i
\(339\) 1.96830 6.05780i 0.106903 0.329015i
\(340\) 0 0
\(341\) −1.19025 3.66321i −0.0644556 0.198374i
\(342\) −5.55899 + 4.03884i −0.300596 + 0.218396i
\(343\) 20.1187 1.08631
\(344\) 7.71737 5.60700i 0.416093 0.302309i
\(345\) 0 0
\(346\) −13.2186 9.60385i −0.710635 0.516306i
\(347\) −3.94095 2.86327i −0.211562 0.153708i 0.476958 0.878926i \(-0.341739\pi\)
−0.688520 + 0.725217i \(0.741739\pi\)
\(348\) −2.79158 + 8.59159i −0.149644 + 0.460557i
\(349\) 16.7173 0.894855 0.447428 0.894320i \(-0.352340\pi\)
0.447428 + 0.894320i \(0.352340\pi\)
\(350\) 0 0
\(351\) 2.18619 0.116690
\(352\) −0.160734 + 0.494689i −0.00856717 + 0.0263670i
\(353\) 21.9086 + 15.9175i 1.16608 + 0.847203i 0.990534 0.137269i \(-0.0438324\pi\)
0.175541 + 0.984472i \(0.443832\pi\)
\(354\) 6.99698 + 5.08361i 0.371885 + 0.270191i
\(355\) 0 0
\(356\) 7.97594 5.79486i 0.422724 0.307127i
\(357\) −5.60085 −0.296428
\(358\) 2.97599 2.16219i 0.157286 0.114275i
\(359\) −2.62299 8.07273i −0.138436 0.426062i 0.857673 0.514196i \(-0.171910\pi\)
−0.996109 + 0.0881339i \(0.971910\pi\)
\(360\) 0 0
\(361\) 8.71879 26.8337i 0.458884 1.41230i
\(362\) 7.12261 + 21.9211i 0.374356 + 1.15215i
\(363\) −3.31558 10.2043i −0.174023 0.535587i
\(364\) −1.40362 + 4.31990i −0.0735698 + 0.226424i
\(365\) 0 0
\(366\) −3.88998 11.9721i −0.203333 0.625794i
\(367\) 10.3131 7.49289i 0.538339 0.391126i −0.285129 0.958489i \(-0.592036\pi\)
0.823468 + 0.567363i \(0.192036\pi\)
\(368\) 3.86067 0.201251
\(369\) 2.60793 1.89477i 0.135764 0.0986380i
\(370\) 0 0
\(371\) −4.09867 2.97786i −0.212792 0.154603i
\(372\) 5.99083 + 4.35259i 0.310610 + 0.225671i
\(373\) −3.38081 + 10.4051i −0.175052 + 0.538754i −0.999636 0.0269853i \(-0.991409\pi\)
0.824584 + 0.565740i \(0.191409\pi\)
\(374\) −1.40217 −0.0725045
\(375\) 0 0
\(376\) 9.26574 0.477844
\(377\) −6.10292 + 18.7829i −0.314316 + 0.967367i
\(378\) −1.68088 1.22123i −0.0864552 0.0628134i
\(379\) 11.5124 + 8.36427i 0.591354 + 0.429644i 0.842799 0.538228i \(-0.180906\pi\)
−0.251446 + 0.967871i \(0.580906\pi\)
\(380\) 0 0
\(381\) −12.1088 + 8.79756i −0.620353 + 0.450713i
\(382\) 1.78768 0.0914658
\(383\) −5.79595 + 4.21101i −0.296159 + 0.215172i −0.725935 0.687763i \(-0.758593\pi\)
0.429776 + 0.902936i \(0.358593\pi\)
\(384\) −0.309017 0.951057i −0.0157695 0.0485334i
\(385\) 0 0
\(386\) −2.03994 + 6.27828i −0.103830 + 0.319556i
\(387\) 2.94777 + 9.07232i 0.149844 + 0.461172i
\(388\) −3.32495 10.2331i −0.168799 0.519509i
\(389\) −0.283978 + 0.873994i −0.0143982 + 0.0443133i −0.957998 0.286776i \(-0.907416\pi\)
0.943599 + 0.331090i \(0.107416\pi\)
\(390\) 0 0
\(391\) 3.21602 + 9.89790i 0.162641 + 0.500558i
\(392\) −2.17078 + 1.57716i −0.109641 + 0.0796588i
\(393\) 13.8551 0.698899
\(394\) −10.2401 + 7.43989i −0.515891 + 0.374816i
\(395\) 0 0
\(396\) −0.420808 0.305735i −0.0211464 0.0153637i
\(397\) 17.6381 + 12.8148i 0.885232 + 0.643159i 0.934630 0.355620i \(-0.115730\pi\)
−0.0493984 + 0.998779i \(0.515730\pi\)
\(398\) −1.92872 + 5.93600i −0.0966782 + 0.297545i
\(399\) 14.2764 0.714712
\(400\) 0 0
\(401\) 22.8035 1.13875 0.569375 0.822078i \(-0.307185\pi\)
0.569375 + 0.822078i \(0.307185\pi\)
\(402\) −2.06851 + 6.36623i −0.103168 + 0.317519i
\(403\) 13.0971 + 9.51560i 0.652413 + 0.474006i
\(404\) 14.2711 + 10.3685i 0.710011 + 0.515853i
\(405\) 0 0
\(406\) 15.1846 11.0323i 0.753600 0.547523i
\(407\) −2.76052 −0.136834
\(408\) 2.18088 1.58450i 0.107970 0.0784446i
\(409\) 1.54554 + 4.75668i 0.0764220 + 0.235203i 0.981969 0.189044i \(-0.0605389\pi\)
−0.905547 + 0.424247i \(0.860539\pi\)
\(410\) 0 0
\(411\) −6.14755 + 18.9202i −0.303236 + 0.933265i
\(412\) 2.68770 + 8.27189i 0.132414 + 0.407527i
\(413\) −5.55284 17.0899i −0.273237 0.840938i
\(414\) −1.19301 + 3.67171i −0.0586333 + 0.180455i
\(415\) 0 0
\(416\) −0.675571 2.07919i −0.0331226 0.101941i
\(417\) −4.56581 + 3.31725i −0.223589 + 0.162447i
\(418\) 3.57408 0.174814
\(419\) 18.4661 13.4164i 0.902128 0.655434i −0.0368836 0.999320i \(-0.511743\pi\)
0.939012 + 0.343885i \(0.111743\pi\)
\(420\) 0 0
\(421\) −12.7124 9.23612i −0.619566 0.450141i 0.233204 0.972428i \(-0.425079\pi\)
−0.852770 + 0.522287i \(0.825079\pi\)
\(422\) −18.1850 13.2122i −0.885234 0.643160i
\(423\) −2.86327 + 8.81224i −0.139217 + 0.428466i
\(424\) 2.43841 0.118419
\(425\) 0 0
\(426\) 8.16901 0.395790
\(427\) −8.08215 + 24.8743i −0.391123 + 1.20375i
\(428\) −4.37660 3.17979i −0.211551 0.153701i
\(429\) −0.919967 0.668395i −0.0444164 0.0322704i
\(430\) 0 0
\(431\) 7.73154 5.61729i 0.372415 0.270576i −0.385796 0.922584i \(-0.626073\pi\)
0.758212 + 0.652008i \(0.226073\pi\)
\(432\) 1.00000 0.0481125
\(433\) 6.57096 4.77408i 0.315780 0.229428i −0.418593 0.908174i \(-0.637476\pi\)
0.734373 + 0.678747i \(0.237476\pi\)
\(434\) −4.75435 14.6324i −0.228216 0.702377i
\(435\) 0 0
\(436\) 0.891135 2.74263i 0.0426776 0.131348i
\(437\) −8.19753 25.2294i −0.392141 1.20689i
\(438\) −1.18770 3.65537i −0.0567505 0.174660i
\(439\) 2.84899 8.76829i 0.135975 0.418488i −0.859766 0.510689i \(-0.829390\pi\)
0.995740 + 0.0922014i \(0.0293904\pi\)
\(440\) 0 0
\(441\) −0.829164 2.55190i −0.0394840 0.121519i
\(442\) 4.76783 3.46403i 0.226782 0.164767i
\(443\) −9.63232 −0.457645 −0.228823 0.973468i \(-0.573488\pi\)
−0.228823 + 0.973468i \(0.573488\pi\)
\(444\) 4.29360 3.11949i 0.203765 0.148044i
\(445\) 0 0
\(446\) 14.5056 + 10.5389i 0.686861 + 0.499033i
\(447\) 12.2126 + 8.87296i 0.577635 + 0.419677i
\(448\) −0.642040 + 1.97599i −0.0303335 + 0.0933570i
\(449\) −21.3096 −1.00566 −0.502831 0.864385i \(-0.667708\pi\)
−0.502831 + 0.864385i \(0.667708\pi\)
\(450\) 0 0
\(451\) −1.67674 −0.0789544
\(452\) 1.96830 6.05780i 0.0925810 0.284935i
\(453\) 16.9370 + 12.3055i 0.795772 + 0.578162i
\(454\) 7.16599 + 5.20640i 0.336317 + 0.244348i
\(455\) 0 0
\(456\) −5.55899 + 4.03884i −0.260324 + 0.189136i
\(457\) 13.4662 0.629923 0.314961 0.949104i \(-0.398008\pi\)
0.314961 + 0.949104i \(0.398008\pi\)
\(458\) 17.8490 12.9681i 0.834029 0.605958i
\(459\) 0.833023 + 2.56378i 0.0388822 + 0.119667i
\(460\) 0 0
\(461\) 10.1468 31.2286i 0.472582 1.45446i −0.376608 0.926373i \(-0.622910\pi\)
0.849191 0.528086i \(-0.177090\pi\)
\(462\) 0.333955 + 1.02781i 0.0155370 + 0.0478179i
\(463\) 7.08596 + 21.8083i 0.329312 + 1.01352i 0.969456 + 0.245264i \(0.0788747\pi\)
−0.640144 + 0.768255i \(0.721125\pi\)
\(464\) −2.79158 + 8.59159i −0.129596 + 0.398854i
\(465\) 0 0
\(466\) 3.56690 + 10.9778i 0.165234 + 0.508537i
\(467\) 16.8551 12.2459i 0.779960 0.566674i −0.125007 0.992156i \(-0.539895\pi\)
0.904967 + 0.425482i \(0.139895\pi\)
\(468\) 2.18619 0.101057
\(469\) 11.2516 8.17475i 0.519549 0.377475i
\(470\) 0 0
\(471\) 4.62756 + 3.36212i 0.213227 + 0.154918i
\(472\) 6.99698 + 5.08361i 0.322062 + 0.233992i
\(473\) 1.53328 4.71894i 0.0705001 0.216977i
\(474\) −3.51243 −0.161331
\(475\) 0 0
\(476\) −5.60085 −0.256714
\(477\) −0.753509 + 2.31906i −0.0345008 + 0.106183i
\(478\) −0.715921 0.520147i −0.0327455 0.0237910i
\(479\) −10.9401 7.94842i −0.499864 0.363172i 0.309101 0.951029i \(-0.399972\pi\)
−0.808965 + 0.587857i \(0.799972\pi\)
\(480\) 0 0
\(481\) 9.38664 6.81980i 0.427994 0.310956i
\(482\) −12.6736 −0.577269
\(483\) 6.48932 4.71477i 0.295274 0.214529i
\(484\) −3.31558 10.2043i −0.150708 0.463832i
\(485\) 0 0
\(486\) −0.309017 + 0.951057i −0.0140173 + 0.0431408i
\(487\) −8.22690 25.3198i −0.372796 1.14735i −0.944953 0.327205i \(-0.893893\pi\)
0.572157 0.820144i \(-0.306107\pi\)
\(488\) −3.88998 11.9721i −0.176091 0.541953i
\(489\) −3.67577 + 11.3129i −0.166224 + 0.511585i
\(490\) 0 0
\(491\) −3.71521 11.4342i −0.167665 0.516020i 0.831558 0.555438i \(-0.187449\pi\)
−0.999223 + 0.0394184i \(0.987449\pi\)
\(492\) 2.60793 1.89477i 0.117575 0.0854230i
\(493\) −24.3524 −1.09678
\(494\) −12.1530 + 8.82968i −0.546790 + 0.397266i
\(495\) 0 0
\(496\) 5.99083 + 4.35259i 0.268996 + 0.195437i
\(497\) −13.7311 9.97625i −0.615925 0.447496i
\(498\) 4.05774 12.4884i 0.181831 0.559620i
\(499\) −27.3600 −1.22480 −0.612400 0.790548i \(-0.709796\pi\)
−0.612400 + 0.790548i \(0.709796\pi\)
\(500\) 0 0
\(501\) −8.94427 −0.399601
\(502\) −5.59216 + 17.2109i −0.249590 + 0.768161i
\(503\) −7.41268 5.38563i −0.330515 0.240133i 0.410134 0.912025i \(-0.365482\pi\)
−0.740649 + 0.671892i \(0.765482\pi\)
\(504\) −1.68088 1.22123i −0.0748724 0.0543980i
\(505\) 0 0
\(506\) 1.62460 1.18034i 0.0722222 0.0524725i
\(507\) −8.22056 −0.365088
\(508\) −12.1088 + 8.79756i −0.537241 + 0.390329i
\(509\) −0.725667 2.23337i −0.0321646 0.0989925i 0.933685 0.358094i \(-0.116573\pi\)
−0.965850 + 0.259102i \(0.916573\pi\)
\(510\) 0 0
\(511\) −2.46767 + 7.59470i −0.109163 + 0.335970i
\(512\) −0.309017 0.951057i −0.0136568 0.0420312i
\(513\) −2.12334 6.53498i −0.0937480 0.288527i
\(514\) 0.395706 1.21786i 0.0174538 0.0537174i
\(515\) 0 0
\(516\) 2.94777 + 9.07232i 0.129769 + 0.399386i
\(517\) 3.89910 2.83286i 0.171482 0.124589i
\(518\) −11.0267 −0.484483
\(519\) 13.2186 9.60385i 0.580231 0.421562i
\(520\) 0 0
\(521\) 1.24129 + 0.901848i 0.0543818 + 0.0395107i 0.614644 0.788805i \(-0.289300\pi\)
−0.560262 + 0.828315i \(0.689300\pi\)
\(522\) −7.30844 5.30989i −0.319882 0.232408i
\(523\) 12.8508 39.5506i 0.561926 1.72943i −0.114988 0.993367i \(-0.536683\pi\)
0.676914 0.736062i \(-0.263317\pi\)
\(524\) 13.8551 0.605265
\(525\) 0 0
\(526\) −7.11425 −0.310196
\(527\) −6.16859 + 18.9850i −0.268708 + 0.826999i
\(528\) −0.420808 0.305735i −0.0183133 0.0133054i
\(529\) 6.54920 + 4.75827i 0.284748 + 0.206881i
\(530\) 0 0
\(531\) −6.99698 + 5.08361i −0.303643 + 0.220610i
\(532\) 14.2764 0.618959
\(533\) 5.70144 4.14234i 0.246957 0.179425i
\(534\) 3.04654 + 9.37628i 0.131837 + 0.405751i
\(535\) 0 0
\(536\) −2.06851 + 6.36623i −0.0893462 + 0.274979i
\(537\) 1.13673 + 3.49849i 0.0490535 + 0.150971i
\(538\) 2.91399 + 8.96833i 0.125631 + 0.386652i
\(539\) −0.431287 + 1.32737i −0.0185769 + 0.0571737i
\(540\) 0 0
\(541\) 5.88428 + 18.1100i 0.252985 + 0.778608i 0.994220 + 0.107362i \(0.0342404\pi\)
−0.741235 + 0.671246i \(0.765760\pi\)
\(542\) 1.11231 0.808141i 0.0477778 0.0347126i
\(543\) −23.0493 −0.989138
\(544\) 2.18088 1.58450i 0.0935045 0.0679350i
\(545\) 0 0
\(546\) −3.67473 2.66985i −0.157264 0.114259i
\(547\) −22.1030 16.0588i −0.945057 0.686624i 0.00457542 0.999990i \(-0.498544\pi\)
−0.949633 + 0.313365i \(0.898544\pi\)
\(548\) −6.14755 + 18.9202i −0.262610 + 0.808231i
\(549\) 12.5882 0.537253
\(550\) 0 0
\(551\) 62.0734 2.64441
\(552\) −1.19301 + 3.67171i −0.0507779 + 0.156278i
\(553\) 5.90398 + 4.28949i 0.251063 + 0.182408i
\(554\) −15.8540 11.5186i −0.673574 0.489380i
\(555\) 0 0
\(556\) −4.56581 + 3.31725i −0.193633 + 0.140683i
\(557\) −9.89921 −0.419443 −0.209721 0.977761i \(-0.567256\pi\)
−0.209721 + 0.977761i \(0.567256\pi\)
\(558\) −5.99083 + 4.35259i −0.253612 + 0.184260i
\(559\) 6.44440 + 19.8338i 0.272569 + 0.838881i
\(560\) 0 0
\(561\) 0.433294 1.33354i 0.0182937 0.0563022i
\(562\) 0.877011 + 2.69916i 0.0369945 + 0.113857i
\(563\) 0.621694 + 1.91338i 0.0262013 + 0.0806392i 0.963302 0.268420i \(-0.0865013\pi\)
−0.937101 + 0.349059i \(0.886501\pi\)
\(564\) −2.86327 + 8.81224i −0.120565 + 0.371062i
\(565\) 0 0
\(566\) −0.690208 2.12424i −0.0290116 0.0892886i
\(567\) 1.68088 1.22123i 0.0705904 0.0512869i
\(568\) 8.16901 0.342764
\(569\) −19.0969 + 13.8747i −0.800585 + 0.581659i −0.911086 0.412217i \(-0.864755\pi\)
0.110501 + 0.993876i \(0.464755\pi\)
\(570\) 0 0
\(571\) −17.1782 12.4807i −0.718886 0.522301i 0.167142 0.985933i \(-0.446546\pi\)
−0.886028 + 0.463631i \(0.846546\pi\)
\(572\) −0.919967 0.668395i −0.0384657 0.0279470i
\(573\) −0.552424 + 1.70019i −0.0230779 + 0.0710263i
\(574\) −6.69758 −0.279552
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 14.0095 43.1167i 0.583222 1.79497i −0.0230749 0.999734i \(-0.507346\pi\)
0.606297 0.795238i \(-0.292654\pi\)
\(578\) −7.87425 5.72098i −0.327526 0.237961i
\(579\) −5.34063 3.88019i −0.221949 0.161255i
\(580\) 0 0
\(581\) −22.0718 + 16.0361i −0.915694 + 0.665291i
\(582\) 10.7598 0.446006
\(583\) 1.02610 0.745506i 0.0424967 0.0308757i
\(584\) −1.18770 3.65537i −0.0491474 0.151260i
\(585\) 0 0
\(586\) 7.42445 22.8501i 0.306701 0.943929i
\(587\) −5.04421 15.5245i −0.208197 0.640764i −0.999567 0.0294265i \(-0.990632\pi\)
0.791370 0.611337i \(-0.209368\pi\)
\(588\) −0.829164 2.55190i −0.0341941 0.105239i
\(589\) 15.7235 48.3920i 0.647877 1.99396i
\(590\) 0 0
\(591\) −3.91138 12.0380i −0.160893 0.495177i
\(592\) 4.29360 3.11949i 0.176466 0.128210i
\(593\) −32.8357 −1.34840 −0.674199 0.738549i \(-0.735511\pi\)
−0.674199 + 0.738549i \(0.735511\pi\)
\(594\) 0.420808 0.305735i 0.0172660 0.0125444i
\(595\) 0 0
\(596\) 12.2126 + 8.87296i 0.500247 + 0.363451i
\(597\) −5.04946 3.66865i −0.206661 0.150148i
\(598\) −2.60815 + 8.02707i −0.106655 + 0.328251i
\(599\) −13.1905 −0.538947 −0.269474 0.963008i \(-0.586850\pi\)
−0.269474 + 0.963008i \(0.586850\pi\)
\(600\) 0 0
\(601\) −19.1992 −0.783152 −0.391576 0.920146i \(-0.628070\pi\)
−0.391576 + 0.920146i \(0.628070\pi\)
\(602\) 6.12454 18.8494i 0.249618 0.768244i
\(603\) −5.41544 3.93455i −0.220534 0.160227i
\(604\) 16.9370 + 12.3055i 0.689158 + 0.500703i
\(605\) 0 0
\(606\) −14.2711 + 10.3685i −0.579722 + 0.421193i
\(607\) 6.54268 0.265559 0.132779 0.991146i \(-0.457610\pi\)
0.132779 + 0.991146i \(0.457610\pi\)
\(608\) −5.55899 + 4.03884i −0.225447 + 0.163797i
\(609\) 5.80001 + 17.8506i 0.235028 + 0.723343i
\(610\) 0 0
\(611\) −6.25966 + 19.2653i −0.253239 + 0.779389i
\(612\) 0.833023 + 2.56378i 0.0336729 + 0.103635i
\(613\) −2.88375 8.87528i −0.116474 0.358469i 0.875778 0.482714i \(-0.160349\pi\)
−0.992252 + 0.124245i \(0.960349\pi\)
\(614\) 5.29049 16.2824i 0.213507 0.657106i
\(615\) 0 0
\(616\) 0.333955 + 1.02781i 0.0134554 + 0.0414115i
\(617\) 26.6989 19.3979i 1.07486 0.780929i 0.0980778 0.995179i \(-0.468731\pi\)
0.976779 + 0.214250i \(0.0687306\pi\)
\(618\) −8.69758 −0.349868
\(619\) −22.7569 + 16.5339i −0.914678 + 0.664553i −0.942194 0.335069i \(-0.891240\pi\)
0.0275155 + 0.999621i \(0.491240\pi\)
\(620\) 0 0
\(621\) −3.12334 2.26924i −0.125336 0.0910616i
\(622\) −16.3039 11.8455i −0.653727 0.474961i
\(623\) 6.32974 19.4809i 0.253596 0.780487i
\(624\) 2.18619 0.0875177
\(625\) 0 0
\(626\) −25.5043 −1.01936
\(627\) −1.10445 + 3.39915i −0.0441075 + 0.135749i
\(628\) 4.62756 + 3.36212i 0.184660 + 0.134163i
\(629\) 11.5743 + 8.40925i 0.461499 + 0.335299i
\(630\) 0 0
\(631\) 1.93909 1.40883i 0.0771940 0.0560847i −0.548519 0.836138i \(-0.684808\pi\)
0.625713 + 0.780053i \(0.284808\pi\)
\(632\) −3.51243 −0.139717
\(633\) 18.1850 13.2122i 0.722790 0.525138i
\(634\) −9.73967 29.9756i −0.386812 1.19048i
\(635\) 0 0
\(636\) −0.753509 + 2.31906i −0.0298786 + 0.0919568i
\(637\) −1.81271 5.57895i −0.0718223 0.221046i
\(638\) 1.45203 + 4.46889i 0.0574864 + 0.176925i
\(639\) −2.52436 + 7.76919i −0.0998622 + 0.307344i
\(640\) 0 0
\(641\) 3.76246 + 11.5797i 0.148608 + 0.457370i 0.997457 0.0712658i \(-0.0227039\pi\)
−0.848849 + 0.528635i \(0.822704\pi\)
\(642\) 4.37660 3.17979i 0.172731 0.125496i
\(643\) 27.0249 1.06576 0.532878 0.846192i \(-0.321110\pi\)
0.532878 + 0.846192i \(0.321110\pi\)
\(644\) 6.48932 4.71477i 0.255715 0.185788i
\(645\) 0 0
\(646\) −14.9855 10.8876i −0.589595 0.428366i
\(647\) −27.4417 19.9375i −1.07884 0.783826i −0.101363 0.994850i \(-0.532320\pi\)
−0.977481 + 0.211024i \(0.932320\pi\)
\(648\) −0.309017 + 0.951057i −0.0121393 + 0.0373610i
\(649\) 4.49862 0.176586
\(650\) 0 0
\(651\) 15.3854 0.603001
\(652\) −3.67577 + 11.3129i −0.143954 + 0.443046i
\(653\) −12.0163 8.73039i −0.470236 0.341646i 0.327297 0.944921i \(-0.393862\pi\)
−0.797533 + 0.603275i \(0.793862\pi\)
\(654\) 2.33302 + 1.69504i 0.0912284 + 0.0662813i
\(655\) 0 0
\(656\) 2.60793 1.89477i 0.101823 0.0739785i
\(657\) 3.84348 0.149948
\(658\) 15.5746 11.3156i 0.607162 0.441129i
\(659\) 1.45835 + 4.48835i 0.0568094 + 0.174841i 0.975435 0.220288i \(-0.0706997\pi\)
−0.918625 + 0.395129i \(0.870700\pi\)
\(660\) 0 0
\(661\) 1.08059 3.32571i 0.0420300 0.129355i −0.927840 0.372979i \(-0.878336\pi\)
0.969870 + 0.243624i \(0.0783363\pi\)
\(662\) 2.25602 + 6.94330i 0.0876826 + 0.269859i
\(663\) 1.82115 + 5.60491i 0.0707275 + 0.217677i
\(664\) 4.05774 12.4884i 0.157471 0.484645i
\(665\) 0 0
\(666\) 1.64001 + 5.04743i 0.0635491 + 0.195584i
\(667\) 28.2155 20.4997i 1.09251 0.793753i
\(668\) −8.94427 −0.346064
\(669\) −14.5056 + 10.5389i −0.560819 + 0.407459i
\(670\) 0 0
\(671\) −5.29723 3.84867i −0.204497 0.148576i
\(672\) −1.68088 1.22123i −0.0648414 0.0471100i
\(673\) −7.61244 + 23.4287i −0.293438 + 0.903110i 0.690303 + 0.723520i \(0.257477\pi\)
−0.983742 + 0.179590i \(0.942523\pi\)
\(674\) −26.7448 −1.03017
\(675\) 0 0
\(676\) −8.22056 −0.316176
\(677\) −9.21651 + 28.3655i −0.354219 + 1.09017i 0.602242 + 0.798314i \(0.294274\pi\)
−0.956461 + 0.291861i \(0.905726\pi\)
\(678\) 5.15307 + 3.74393i 0.197903 + 0.143785i
\(679\) −18.0859 13.1402i −0.694072 0.504273i
\(680\) 0 0
\(681\) −7.16599 + 5.20640i −0.274601 + 0.199510i
\(682\) 3.85173 0.147490
\(683\) −21.0776 + 15.3138i −0.806511 + 0.585964i −0.912817 0.408369i \(-0.866098\pi\)
0.106306 + 0.994333i \(0.466098\pi\)
\(684\) −2.12334 6.53498i −0.0811881 0.249871i
\(685\) 0 0
\(686\) −6.21702 + 19.1340i −0.237367 + 0.730540i
\(687\) 6.81771 + 20.9828i 0.260112 + 0.800542i
\(688\) 2.94777 + 9.07232i 0.112383 + 0.345879i
\(689\) −1.64732 + 5.06992i −0.0627577 + 0.193148i
\(690\) 0 0
\(691\) 10.6313 + 32.7197i 0.404432 + 1.24471i 0.921368 + 0.388690i \(0.127072\pi\)
−0.516936 + 0.856024i \(0.672928\pi\)
\(692\) 13.2186 9.60385i 0.502495 0.365084i
\(693\) −1.08070 −0.0410524
\(694\) 3.94095 2.86327i 0.149597 0.108688i
\(695\) 0 0
\(696\) −7.30844 5.30989i −0.277026 0.201271i
\(697\) 7.03025 + 5.10777i 0.266290 + 0.193471i
\(698\) −5.16592 + 15.8991i −0.195533 + 0.601789i
\(699\) −11.5427 −0.436587
\(700\) 0 0
\(701\) 13.2937 0.502095 0.251047 0.967975i \(-0.419225\pi\)
0.251047 + 0.967975i \(0.419225\pi\)
\(702\) −0.675571 + 2.07919i −0.0254978 + 0.0784741i
\(703\) −29.5026 21.4349i −1.11271 0.808432i
\(704\) −0.420808 0.305735i −0.0158598 0.0115228i
\(705\) 0 0
\(706\) −21.9086 + 15.9175i −0.824540 + 0.599063i
\(707\) 36.6503 1.37838
\(708\) −6.99698 + 5.08361i −0.262963 + 0.191054i
\(709\) −2.24820 6.91924i −0.0844329 0.259858i 0.899923 0.436049i \(-0.143622\pi\)
−0.984356 + 0.176191i \(0.943622\pi\)
\(710\) 0 0
\(711\) 1.08540 3.34052i 0.0407057 0.125279i
\(712\) 3.04654 + 9.37628i 0.114174 + 0.351391i
\(713\) −8.83434 27.1893i −0.330849 1.01825i
\(714\) 1.73076 5.32672i 0.0647720 0.199348i
\(715\) 0 0
\(716\) 1.13673 + 3.49849i 0.0424815 + 0.130745i
\(717\) 0.715921 0.520147i 0.0267366 0.0194252i
\(718\) 8.48817 0.316776
\(719\) 26.0071 18.8953i 0.969902 0.704675i 0.0144727 0.999895i \(-0.495393\pi\)
0.955429 + 0.295220i \(0.0953930\pi\)
\(720\) 0 0
\(721\) 14.6196 + 10.6218i 0.544462 + 0.395575i
\(722\) 22.8261 + 16.5841i 0.849499 + 0.617197i
\(723\) 3.91637 12.0534i 0.145651 0.448269i
\(724\) −23.0493 −0.856619
\(725\) 0 0
\(726\) 10.7294 0.398207
\(727\) −0.965858 + 2.97260i −0.0358217 + 0.110248i −0.967369 0.253374i \(-0.918460\pi\)
0.931547 + 0.363621i \(0.118460\pi\)
\(728\) −3.67473 2.66985i −0.136195 0.0989511i
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) 0 0
\(731\) −20.8039 + 15.1149i −0.769458 + 0.559044i
\(732\) 12.5882 0.465275
\(733\) −37.5047 + 27.2488i −1.38527 + 1.00646i −0.388902 + 0.921279i \(0.627146\pi\)
−0.996366 + 0.0851773i \(0.972854\pi\)
\(734\) 3.93925 + 12.1238i 0.145400 + 0.447496i
\(735\) 0 0
\(736\) −1.19301 + 3.67171i −0.0439750 + 0.135341i
\(737\) 1.07593 + 3.31138i 0.0396324 + 0.121976i
\(738\) 0.996141 + 3.06581i 0.0366685 + 0.112854i
\(739\) −14.8417 + 45.6779i −0.545959 + 1.68029i 0.172739 + 0.984968i \(0.444738\pi\)
−0.718698 + 0.695322i \(0.755262\pi\)
\(740\) 0 0
\(741\) −4.64204 14.2867i −0.170530 0.524836i
\(742\) 4.09867 2.97786i 0.150467 0.109321i
\(743\) 2.88963 0.106010 0.0530051 0.998594i \(-0.483120\pi\)
0.0530051 + 0.998594i \(0.483120\pi\)
\(744\) −5.99083 + 4.35259i −0.219635 + 0.159574i
\(745\) 0 0
\(746\) −8.85108 6.43069i −0.324061 0.235444i
\(747\) 10.6233 + 7.71827i 0.388686 + 0.282397i
\(748\) 0.433294 1.33354i 0.0158428 0.0487591i
\(749\) −11.2398 −0.410693
\(750\) 0 0
\(751\) −39.4965 −1.44125 −0.720624 0.693326i \(-0.756144\pi\)
−0.720624 + 0.693326i \(0.756144\pi\)
\(752\) −2.86327 + 8.81224i −0.104413 + 0.321349i
\(753\) −14.6405 10.6369i −0.533529 0.387631i
\(754\) −15.9777 11.6084i −0.581872 0.422755i
\(755\) 0 0
\(756\) 1.68088 1.22123i 0.0611331 0.0444158i
\(757\) −25.4654 −0.925555 −0.462777 0.886475i \(-0.653147\pi\)
−0.462777 + 0.886475i \(0.653147\pi\)
\(758\) −11.5124 + 8.36427i −0.418150 + 0.303804i
\(759\) 0.620541 + 1.90983i 0.0225242 + 0.0693224i
\(760\) 0 0
\(761\) 12.8769 39.6310i 0.466787 1.43662i −0.389934 0.920843i \(-0.627502\pi\)
0.856721 0.515780i \(-0.172498\pi\)
\(762\) −4.62515 14.2348i −0.167552 0.515671i
\(763\) −1.85150 5.69832i −0.0670287 0.206293i
\(764\) −0.552424 + 1.70019i −0.0199860 + 0.0615106i
\(765\) 0 0
\(766\) −2.21386 6.81355i −0.0799899 0.246184i
\(767\) −15.2967 + 11.1137i −0.552334 + 0.401294i
\(768\) 1.00000 0.0360844
\(769\) −1.67667 + 1.21817i −0.0604621 + 0.0439283i −0.617606 0.786488i \(-0.711897\pi\)
0.557144 + 0.830416i \(0.311897\pi\)
\(770\) 0 0
\(771\) 1.03597 + 0.752678i 0.0373096 + 0.0271070i
\(772\) −5.34063 3.88019i −0.192213 0.139651i
\(773\) 2.46892 7.59855i 0.0888009 0.273301i −0.896788 0.442461i \(-0.854105\pi\)
0.985589 + 0.169160i \(0.0541055\pi\)
\(774\) −9.53920 −0.342879
\(775\) 0 0
\(776\) 10.7598 0.386253
\(777\) 3.40742 10.4870i 0.122241 0.376218i
\(778\) −0.743464 0.540158i −0.0266545 0.0193656i
\(779\) −17.9199 13.0195i −0.642045 0.466473i
\(780\) 0 0
\(781\) 3.43758 2.49755i 0.123006 0.0893693i
\(782\) −10.4073 −0.372163
\(783\) 7.30844 5.30989i 0.261182 0.189760i
\(784\) −0.829164 2.55190i −0.0296130 0.0911394i
\(785\) 0 0
\(786\) −4.28147 + 13.1770i −0.152715 + 0.470009i
\(787\) 5.53459 + 17.0337i 0.197287 + 0.607186i 0.999942 + 0.0107432i \(0.00341974\pi\)
−0.802656 + 0.596443i \(0.796580\pi\)
\(788\) −3.91138 12.0380i −0.139337 0.428836i
\(789\) 2.19842 6.76605i 0.0782659 0.240878i
\(790\) 0 0
\(791\) −4.08950 12.5862i −0.145406 0.447514i
\(792\) 0.420808 0.305735i 0.0149528 0.0108638i
\(793\) 27.5203 0.977276
\(794\) −17.6381 + 12.8148i −0.625954 + 0.454782i
\(795\) 0 0
\(796\) −5.04946 3.66865i −0.178973 0.130032i
\(797\) −21.2401 15.4319i −0.752364 0.546625i 0.144195 0.989549i \(-0.453941\pi\)
−0.896559 + 0.442925i \(0.853941\pi\)
\(798\) −4.41164 + 13.5776i −0.156170 + 0.480643i
\(799\) −24.9778 −0.883652
\(800\) 0 0
\(801\) −9.85880 −0.348344
\(802\) −7.04666 + 21.6874i −0.248826 + 0.765808i
\(803\) −1.61737 1.17509i −0.0570756 0.0414679i
\(804\) −5.41544 3.93455i −0.190988 0.138761i
\(805\) 0 0
\(806\) −13.0971 + 9.51560i −0.461326 + 0.335173i
\(807\) −9.42986 −0.331947
\(808\) −14.2711 + 10.3685i −0.502054 + 0.364763i
\(809\) 9.12577 + 28.0862i 0.320845 + 0.987459i 0.973281 + 0.229616i \(0.0737470\pi\)
−0.652436 + 0.757844i \(0.726253\pi\)
\(810\) 0 0
\(811\) 9.10810 28.0318i 0.319829 0.984331i −0.653893 0.756587i \(-0.726865\pi\)
0.973721 0.227744i \(-0.0731348\pi\)
\(812\) 5.80001 + 17.8506i 0.203540 + 0.626433i
\(813\) 0.424865 + 1.30760i 0.0149007 + 0.0458595i
\(814\) 0.853047 2.62541i 0.0298993 0.0920205i
\(815\) 0 0
\(816\) 0.833023 + 2.56378i 0.0291616 + 0.0897502i
\(817\) 53.0283 38.5273i 1.85523 1.34790i
\(818\) −5.00147 −0.174872
\(819\) 3.67473 2.66985i 0.128405 0.0932920i
\(820\) 0 0
\(821\) −36.2580 26.3430i −1.26541 0.919377i −0.266404 0.963862i \(-0.585835\pi\)
−0.999010 + 0.0444846i \(0.985835\pi\)
\(822\) −16.0945 11.6933i −0.561360 0.407852i
\(823\) 6.72529 20.6983i 0.234429 0.721498i −0.762768 0.646673i \(-0.776160\pi\)
0.997197 0.0748255i \(-0.0238400\pi\)
\(824\) −8.69758 −0.302995
\(825\) 0 0
\(826\) 17.9694 0.625234
\(827\) −5.90446 + 18.1721i −0.205318 + 0.631905i 0.794382 + 0.607419i \(0.207795\pi\)
−0.999700 + 0.0244861i \(0.992205\pi\)
\(828\) −3.12334 2.26924i −0.108544 0.0788616i
\(829\) 29.3862 + 21.3503i 1.02063 + 0.741528i 0.966411 0.257001i \(-0.0827345\pi\)
0.0542146 + 0.998529i \(0.482735\pi\)
\(830\) 0 0
\(831\) 15.8540 11.5186i 0.549971 0.399577i
\(832\) 2.18619 0.0757926
\(833\) 5.85181 4.25159i 0.202753 0.147309i
\(834\) −1.74398 5.36743i −0.0603892 0.185859i
\(835\) 0 0
\(836\) −1.10445 + 3.39915i −0.0381983 + 0.117562i
\(837\) −2.28829 7.04264i −0.0790950 0.243429i
\(838\) 7.05342 + 21.7082i 0.243656 + 0.749897i
\(839\) 6.13673 18.8869i 0.211863 0.652049i −0.787498 0.616317i \(-0.788624\pi\)
0.999361 0.0357313i \(-0.0113761\pi\)
\(840\) 0 0
\(841\) 16.2568 + 50.0334i 0.560581 + 1.72529i
\(842\) 12.7124 9.23612i 0.438099 0.318298i
\(843\) −2.83807 −0.0977483
\(844\) 18.1850 13.2122i 0.625955 0.454783i
\(845\) 0 0
\(846\) −7.49614 5.44627i −0.257723 0.187246i
\(847\) −18.0349 13.1031i −0.619687 0.450229i
\(848\) −0.753509 + 2.31906i −0.0258756 + 0.0796369i
\(849\) 2.23356 0.0766556
\(850\) 0 0
\(851\) −20.4893 −0.702363
\(852\) −2.52436 + 7.76919i −0.0864832 + 0.266168i
\(853\) −21.0621 15.3025i −0.721153 0.523948i 0.165600 0.986193i \(-0.447044\pi\)
−0.886752 + 0.462245i \(0.847044\pi\)
\(854\) −21.1594 15.3732i −0.724058 0.526059i
\(855\) 0 0
\(856\) 4.37660 3.17979i 0.149589 0.108683i
\(857\) 34.8614 1.19084 0.595421 0.803414i \(-0.296985\pi\)
0.595421 + 0.803414i \(0.296985\pi\)
\(858\) 0.919967 0.668395i 0.0314071 0.0228186i
\(859\) −4.67229 14.3798i −0.159417 0.490634i 0.839165 0.543877i \(-0.183044\pi\)
−0.998582 + 0.0532431i \(0.983044\pi\)
\(860\) 0 0
\(861\) 2.06967 6.36978i 0.0705341 0.217081i
\(862\) 2.95319 + 9.08897i 0.100586 + 0.309572i
\(863\) 7.07738 + 21.7819i 0.240917 + 0.741466i 0.996281 + 0.0861610i \(0.0274599\pi\)
−0.755364 + 0.655305i \(0.772540\pi\)
\(864\) −0.309017 + 0.951057i −0.0105130 + 0.0323556i
\(865\) 0 0
\(866\) 2.50988 + 7.72462i 0.0852892 + 0.262493i
\(867\) 7.87425 5.72098i 0.267424 0.194295i
\(868\) 15.3854 0.522215
\(869\) −1.47806 + 1.07387i −0.0501397 + 0.0364286i
\(870\) 0 0
\(871\) −11.8392 8.60168i −0.401156 0.291457i
\(872\) 2.33302 + 1.69504i 0.0790061 + 0.0574013i
\(873\) −3.32495 + 10.2331i −0.112532 + 0.346339i
\(874\) 26.5278 0.897315
\(875\) 0 0
\(876\) 3.84348 0.129859
\(877\) −5.09493 + 15.6806i −0.172043 + 0.529495i −0.999486 0.0320550i \(-0.989795\pi\)
0.827443 + 0.561550i \(0.189795\pi\)
\(878\) 7.45875 + 5.41910i 0.251721 + 0.182886i
\(879\) 19.4375 + 14.1221i 0.655609 + 0.476328i
\(880\) 0 0
\(881\) −18.7621 + 13.6315i −0.632112 + 0.459257i −0.857131 0.515098i \(-0.827756\pi\)
0.225019 + 0.974354i \(0.427756\pi\)
\(882\) 2.68323 0.0903491
\(883\) −19.7980 + 14.3841i −0.666254 + 0.484062i −0.868769 0.495217i \(-0.835089\pi\)
0.202515 + 0.979279i \(0.435089\pi\)
\(884\) 1.82115 + 5.60491i 0.0612518 + 0.188514i
\(885\) 0 0
\(886\) 2.97655 9.16088i 0.0999991 0.307766i
\(887\) 1.22048 + 3.75624i 0.0409796 + 0.126122i 0.969453 0.245276i \(-0.0788785\pi\)
−0.928474 + 0.371398i \(0.878879\pi\)
\(888\) 1.64001 + 5.04743i 0.0550352 + 0.169381i
\(889\) −9.60960 + 29.5753i −0.322296 + 0.991924i
\(890\) 0 0
\(891\) 0.160734 + 0.494689i 0.00538480 + 0.0165727i
\(892\) −14.5056 + 10.5389i −0.485684 + 0.352870i
\(893\) 63.6676 2.13055
\(894\) −12.2126 + 8.87296i −0.408450 + 0.296756i
\(895\) 0 0
\(896\) −1.68088 1.22123i −0.0561543 0.0407985i
\(897\) −6.82823 4.96100i −0.227988 0.165643i
\(898\) 6.58502 20.2666i 0.219745 0.676306i
\(899\) 66.8954 2.23109
\(900\) 0 0
\(901\) −6.57325 −0.218987
\(902\) 0.518140 1.59467i 0.0172522 0.0530967i
\(903\) 16.0343 + 11.6496i 0.533587 + 0.387673i
\(904\) 5.15307 + 3.74393i 0.171389 + 0.124521i
\(905\) 0 0
\(906\) −16.9370 + 12.3055i −0.562695 + 0.408822i
\(907\) −52.8637 −1.75531 −0.877656 0.479291i \(-0.840894\pi\)
−0.877656 + 0.479291i \(0.840894\pi\)
\(908\) −7.16599 + 5.20640i −0.237812 + 0.172780i
\(909\) −5.45106 16.7766i −0.180800 0.556446i
\(910\) 0 0
\(911\) 3.55654 10.9459i 0.117833 0.362654i −0.874694 0.484676i \(-0.838938\pi\)
0.992527 + 0.122021i \(0.0389377\pi\)
\(912\) −2.12334 6.53498i −0.0703110 0.216395i
\(913\) −2.11062 6.49582i −0.0698513 0.214980i
\(914\) −4.16129 + 12.8071i −0.137643 + 0.423622i
\(915\) 0 0
\(916\) 6.81771 + 20.9828i 0.225264 + 0.693290i
\(917\) 23.2888 16.9203i 0.769066 0.558759i
\(918\) −2.69572 −0.0889719
\(919\) −25.1008 + 18.2368i −0.828000 + 0.601577i −0.918993 0.394274i \(-0.870996\pi\)
0.0909927 + 0.995852i \(0.470996\pi\)
\(920\) 0 0
\(921\) 13.8507 + 10.0631i 0.456395 + 0.331590i
\(922\) 26.5646 + 19.3003i 0.874858 + 0.635622i
\(923\) −5.51874 + 16.9849i −0.181652 + 0.559066i
\(924\) −1.08070 −0.0355524
\(925\) 0 0
\(926\) −22.9306 −0.753547
\(927\) 2.68770 8.27189i 0.0882757 0.271685i
\(928\) −7.30844 5.30989i −0.239911 0.174306i
\(929\) 9.67177 + 7.02695i 0.317320 + 0.230547i 0.735031 0.678033i \(-0.237167\pi\)
−0.417711 + 0.908580i \(0.637167\pi\)
\(930\) 0 0
\(931\) −14.9161 + 10.8371i −0.488854 + 0.355173i
\(932\) −11.5427 −0.378095
\(933\) 16.3039 11.8455i 0.533766 0.387804i
\(934\) 6.43806 + 19.8143i 0.210660 + 0.648344i
\(935\) 0 0
\(936\) −0.675571 + 2.07919i −0.0220817 + 0.0679605i
\(937\) −4.54042 13.9740i −0.148329 0.456510i 0.849095 0.528240i \(-0.177148\pi\)
−0.997424 + 0.0717304i \(0.977148\pi\)
\(938\) 4.29772 + 13.2270i 0.140325 + 0.431877i
\(939\) 7.88127 24.2560i 0.257195 0.791566i
\(940\) 0 0
\(941\) 15.6185 + 48.0688i 0.509149 + 1.56700i 0.793682 + 0.608333i \(0.208162\pi\)
−0.284533 + 0.958666i \(0.591838\pi\)
\(942\) −4.62756 + 3.36212i −0.150774 + 0.109544i
\(943\) −12.4452 −0.405271
\(944\) −6.99698 + 5.08361i −0.227732 + 0.165457i
\(945\) 0 0
\(946\) 4.01417 + 2.91646i 0.130512 + 0.0948224i
\(947\) −32.1037 23.3247i −1.04323 0.757952i −0.0723177 0.997382i \(-0.523040\pi\)
−0.970914 + 0.239430i \(0.923040\pi\)
\(948\) 1.08540 3.34052i 0.0352522 0.108495i
\(949\) 8.40259 0.272759
\(950\) 0 0
\(951\) 31.5182 1.02205
\(952\) 1.73076 5.32672i 0.0560942 0.172640i
\(953\) 40.9560 + 29.7563i 1.32670 + 0.963901i 0.999823 + 0.0188330i \(0.00599509\pi\)
0.326873 + 0.945068i \(0.394005\pi\)
\(954\) −1.97271 1.43326i −0.0638689 0.0464035i
\(955\) 0 0
\(956\) 0.715921 0.520147i 0.0231545 0.0168228i
\(957\) −4.69887 −0.151893
\(958\) 10.9401 7.94842i 0.353457 0.256802i
\(959\) 12.7727 + 39.3102i 0.412451 + 1.26939i
\(960\) 0 0
\(961\) 7.36546 22.6685i 0.237595 0.731243i
\(962\) 3.58538 + 11.0347i 0.115597 + 0.355772i
\(963\) 1.67171 + 5.14500i 0.0538702 + 0.165795i
\(964\) 3.91637 12.0534i 0.126138 0.388212i
\(965\) 0 0
\(966\) 2.47870 + 7.62866i 0.0797509 + 0.245448i
\(967\) −8.94137 + 6.49628i −0.287535 + 0.208906i −0.722197 0.691687i \(-0.756868\pi\)
0.434662 + 0.900594i \(0.356868\pi\)
\(968\) 10.7294 0.344857
\(969\) 14.9855 10.8876i 0.481402 0.349759i
\(970\) 0 0
\(971\) −19.9495 14.4942i −0.640211 0.465140i 0.219712 0.975565i \(-0.429488\pi\)
−0.859923 + 0.510424i \(0.829488\pi\)
\(972\) −0.809017 0.587785i −0.0259492 0.0188532i
\(973\) −3.62345 + 11.1518i −0.116162 + 0.357511i
\(974\) 26.6228 0.853050
\(975\) 0 0
\(976\) 12.5882 0.402940
\(977\) −2.50827 + 7.71967i −0.0802467 + 0.246974i −0.983129 0.182914i \(-0.941447\pi\)
0.902882 + 0.429888i \(0.141447\pi\)
\(978\) −9.62329 6.99173i −0.307719 0.223571i
\(979\) 4.14866 + 3.01418i 0.132592 + 0.0963336i
\(980\) 0 0
\(981\) −2.33302 + 1.69504i −0.0744877 + 0.0541185i
\(982\) 12.0227 0.383659
\(983\) 21.6028 15.6954i 0.689023 0.500605i −0.187316 0.982300i \(-0.559979\pi\)
0.876339 + 0.481695i \(0.159979\pi\)
\(984\) 0.996141 + 3.06581i 0.0317558 + 0.0977344i
\(985\) 0 0
\(986\) 7.52530 23.1605i 0.239654 0.737580i
\(987\) 5.94897 + 18.3091i 0.189358 + 0.582784i
\(988\) −4.64204 14.2867i −0.147683 0.454521i
\(989\) 11.3804 35.0252i 0.361875 1.11374i
\(990\) 0 0
\(991\) −16.3515 50.3248i −0.519423 1.59862i −0.775088 0.631854i \(-0.782294\pi\)
0.255665 0.966765i \(-0.417706\pi\)
\(992\) −5.99083 + 4.35259i −0.190209 + 0.138195i
\(993\) −7.30062 −0.231678
\(994\) 13.7311 9.97625i 0.435525 0.316427i
\(995\) 0 0
\(996\) 10.6233 + 7.71827i 0.336612 + 0.244563i
\(997\) −22.8712 16.6169i −0.724337 0.526262i 0.163430 0.986555i \(-0.447744\pi\)
−0.887767 + 0.460293i \(0.847744\pi\)
\(998\) 8.45469 26.0209i 0.267629 0.823676i
\(999\) −5.30719 −0.167912
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 750.2.g.e.601.1 8
5.2 odd 4 750.2.h.c.649.1 8
5.3 odd 4 150.2.h.a.79.2 yes 8
5.4 even 2 750.2.g.c.601.2 8
15.8 even 4 450.2.l.a.379.1 8
25.6 even 5 inner 750.2.g.e.151.1 8
25.8 odd 20 750.2.h.c.349.1 8
25.9 even 10 3750.2.a.o.1.4 4
25.12 odd 20 3750.2.c.e.1249.1 8
25.13 odd 20 3750.2.c.e.1249.8 8
25.16 even 5 3750.2.a.m.1.1 4
25.17 odd 20 150.2.h.a.19.2 8
25.19 even 10 750.2.g.c.151.2 8
75.17 even 20 450.2.l.a.19.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.h.a.19.2 8 25.17 odd 20
150.2.h.a.79.2 yes 8 5.3 odd 4
450.2.l.a.19.1 8 75.17 even 20
450.2.l.a.379.1 8 15.8 even 4
750.2.g.c.151.2 8 25.19 even 10
750.2.g.c.601.2 8 5.4 even 2
750.2.g.e.151.1 8 25.6 even 5 inner
750.2.g.e.601.1 8 1.1 even 1 trivial
750.2.h.c.349.1 8 25.8 odd 20
750.2.h.c.649.1 8 5.2 odd 4
3750.2.a.m.1.1 4 25.16 even 5
3750.2.a.o.1.4 4 25.9 even 10
3750.2.c.e.1249.1 8 25.12 odd 20
3750.2.c.e.1249.8 8 25.13 odd 20