Properties

Label 750.2.h.c.649.1
Level $750$
Weight $2$
Character 750.649
Analytic conductor $5.989$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [750,2,Mod(49,750)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(750, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("750.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 750.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.98878015160\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 649.1
Root \(-0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 750.649
Dual form 750.2.h.c.349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.951057 - 0.309017i) q^{2} +(-0.587785 + 0.809017i) q^{3} +(0.809017 + 0.587785i) q^{4} +(0.809017 - 0.587785i) q^{6} -2.07768i q^{7} +(-0.587785 - 0.809017i) q^{8} +(-0.309017 - 0.951057i) q^{9} +(0.160734 - 0.494689i) q^{11} +(-0.951057 + 0.309017i) q^{12} +(2.07919 - 0.675571i) q^{13} +(-0.642040 + 1.97599i) q^{14} +(0.309017 + 0.951057i) q^{16} +(-1.58450 - 2.18088i) q^{17} +1.00000i q^{18} +(-5.55899 + 4.03884i) q^{19} +(1.68088 + 1.22123i) q^{21} +(-0.305735 + 0.420808i) q^{22} +(-3.67171 - 1.19301i) q^{23} +1.00000 q^{24} -2.18619 q^{26} +(0.951057 + 0.309017i) q^{27} +(1.22123 - 1.68088i) q^{28} +(-7.30844 - 5.30989i) q^{29} +(5.99083 - 4.35259i) q^{31} -1.00000i q^{32} +(0.305735 + 0.420808i) q^{33} +(0.833023 + 2.56378i) q^{34} +(0.309017 - 0.951057i) q^{36} +(5.04743 - 1.64001i) q^{37} +(6.53498 - 2.12334i) q^{38} +(-0.675571 + 2.07919i) q^{39} +(-0.996141 - 3.06581i) q^{41} +(-1.22123 - 1.68088i) q^{42} -9.53920i q^{43} +(0.420808 - 0.305735i) q^{44} +(3.12334 + 2.26924i) q^{46} +(-5.44627 + 7.49614i) q^{47} +(-0.951057 - 0.309017i) q^{48} +2.68323 q^{49} +2.69572 q^{51} +(2.07919 + 0.675571i) q^{52} +(1.43326 - 1.97271i) q^{53} +(-0.809017 - 0.587785i) q^{54} +(-1.68088 + 1.22123i) q^{56} -6.87129i q^{57} +(5.30989 + 7.30844i) q^{58} +(-2.67261 - 8.22545i) q^{59} +(3.88998 - 11.9721i) q^{61} +(-7.04264 + 2.28829i) q^{62} +(-1.97599 + 0.642040i) q^{63} +(-0.309017 + 0.951057i) q^{64} +(-0.160734 - 0.494689i) q^{66} +(-3.93455 - 5.41544i) q^{67} -2.69572i q^{68} +(3.12334 - 2.26924i) q^{69} +(6.60886 + 4.80162i) q^{71} +(-0.587785 + 0.809017i) q^{72} +(-3.65537 - 1.18770i) q^{73} -5.30719 q^{74} -6.87129 q^{76} +(-1.02781 - 0.333955i) q^{77} +(1.28501 - 1.76867i) q^{78} +(2.84162 + 2.06455i) q^{79} +(-0.809017 + 0.587785i) q^{81} +3.22358i q^{82} +(-7.71827 - 10.6233i) q^{83} +(0.642040 + 1.97599i) q^{84} +(-2.94777 + 9.07232i) q^{86} +(8.59159 - 2.79158i) q^{87} +(-0.494689 + 0.160734i) q^{88} +(3.04654 - 9.37628i) q^{89} +(-1.40362 - 4.31990i) q^{91} +(-2.26924 - 3.12334i) q^{92} +7.40507i q^{93} +(7.49614 - 5.44627i) q^{94} +(0.809017 + 0.587785i) q^{96} +(-6.32443 + 8.70483i) q^{97} +(-2.55190 - 0.829164i) q^{98} -0.520147 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} + 2 q^{6} + 2 q^{9} + 10 q^{11} + 20 q^{13} - 2 q^{14} - 2 q^{16} - 10 q^{17} - 8 q^{19} - 2 q^{21} + 10 q^{23} + 8 q^{24} + 4 q^{26} + 10 q^{28} - 22 q^{29} + 24 q^{31} + 8 q^{34} - 2 q^{36}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/750\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.951057 0.309017i −0.672499 0.218508i
\(3\) −0.587785 + 0.809017i −0.339358 + 0.467086i
\(4\) 0.809017 + 0.587785i 0.404508 + 0.293893i
\(5\) 0 0
\(6\) 0.809017 0.587785i 0.330280 0.239962i
\(7\) 2.07768i 0.785291i −0.919690 0.392645i \(-0.871560\pi\)
0.919690 0.392645i \(-0.128440\pi\)
\(8\) −0.587785 0.809017i −0.207813 0.286031i
\(9\) −0.309017 0.951057i −0.103006 0.317019i
\(10\) 0 0
\(11\) 0.160734 0.494689i 0.0484632 0.149154i −0.923896 0.382643i \(-0.875014\pi\)
0.972360 + 0.233488i \(0.0750140\pi\)
\(12\) −0.951057 + 0.309017i −0.274546 + 0.0892055i
\(13\) 2.07919 0.675571i 0.576664 0.187370i −0.00614146 0.999981i \(-0.501955\pi\)
0.582806 + 0.812612i \(0.301955\pi\)
\(14\) −0.642040 + 1.97599i −0.171592 + 0.528107i
\(15\) 0 0
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −1.58450 2.18088i −0.384298 0.528941i 0.572418 0.819962i \(-0.306005\pi\)
−0.956717 + 0.291020i \(0.906005\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −5.55899 + 4.03884i −1.27532 + 0.926574i −0.999401 0.0346072i \(-0.988982\pi\)
−0.275919 + 0.961181i \(0.588982\pi\)
\(20\) 0 0
\(21\) 1.68088 + 1.22123i 0.366798 + 0.266495i
\(22\) −0.305735 + 0.420808i −0.0651829 + 0.0897165i
\(23\) −3.67171 1.19301i −0.765605 0.248760i −0.0999224 0.994995i \(-0.531859\pi\)
−0.665682 + 0.746235i \(0.731859\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) −2.18619 −0.428748
\(27\) 0.951057 + 0.309017i 0.183031 + 0.0594703i
\(28\) 1.22123 1.68088i 0.230791 0.317657i
\(29\) −7.30844 5.30989i −1.35714 0.986022i −0.998621 0.0525013i \(-0.983281\pi\)
−0.358523 0.933521i \(-0.616719\pi\)
\(30\) 0 0
\(31\) 5.99083 4.35259i 1.07598 0.781749i 0.0990065 0.995087i \(-0.468434\pi\)
0.976978 + 0.213338i \(0.0684335\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.305735 + 0.420808i 0.0532216 + 0.0732532i
\(34\) 0.833023 + 2.56378i 0.142862 + 0.439685i
\(35\) 0 0
\(36\) 0.309017 0.951057i 0.0515028 0.158509i
\(37\) 5.04743 1.64001i 0.829793 0.269616i 0.136835 0.990594i \(-0.456307\pi\)
0.692958 + 0.720978i \(0.256307\pi\)
\(38\) 6.53498 2.12334i 1.06011 0.344452i
\(39\) −0.675571 + 2.07919i −0.108178 + 0.332937i
\(40\) 0 0
\(41\) −0.996141 3.06581i −0.155571 0.478799i 0.842647 0.538466i \(-0.180996\pi\)
−0.998218 + 0.0596673i \(0.980996\pi\)
\(42\) −1.22123 1.68088i −0.188440 0.259366i
\(43\) 9.53920i 1.45471i −0.686259 0.727357i \(-0.740748\pi\)
0.686259 0.727357i \(-0.259252\pi\)
\(44\) 0.420808 0.305735i 0.0634392 0.0460912i
\(45\) 0 0
\(46\) 3.12334 + 2.26924i 0.460512 + 0.334582i
\(47\) −5.44627 + 7.49614i −0.794419 + 1.09342i 0.199124 + 0.979974i \(0.436190\pi\)
−0.993544 + 0.113450i \(0.963810\pi\)
\(48\) −0.951057 0.309017i −0.137273 0.0446028i
\(49\) 2.68323 0.383319
\(50\) 0 0
\(51\) 2.69572 0.377476
\(52\) 2.07919 + 0.675571i 0.288332 + 0.0936848i
\(53\) 1.43326 1.97271i 0.196873 0.270973i −0.699155 0.714970i \(-0.746440\pi\)
0.896028 + 0.443998i \(0.146440\pi\)
\(54\) −0.809017 0.587785i −0.110093 0.0799874i
\(55\) 0 0
\(56\) −1.68088 + 1.22123i −0.224617 + 0.163194i
\(57\) 6.87129i 0.910124i
\(58\) 5.30989 + 7.30844i 0.697223 + 0.959645i
\(59\) −2.67261 8.22545i −0.347944 1.07086i −0.959989 0.280039i \(-0.909653\pi\)
0.612045 0.790823i \(-0.290347\pi\)
\(60\) 0 0
\(61\) 3.88998 11.9721i 0.498061 1.53287i −0.314070 0.949400i \(-0.601693\pi\)
0.812131 0.583475i \(-0.198307\pi\)
\(62\) −7.04264 + 2.28829i −0.894417 + 0.290614i
\(63\) −1.97599 + 0.642040i −0.248952 + 0.0808894i
\(64\) −0.309017 + 0.951057i −0.0386271 + 0.118882i
\(65\) 0 0
\(66\) −0.160734 0.494689i −0.0197850 0.0608920i
\(67\) −3.93455 5.41544i −0.480682 0.661601i 0.497954 0.867203i \(-0.334085\pi\)
−0.978636 + 0.205602i \(0.934085\pi\)
\(68\) 2.69572i 0.326904i
\(69\) 3.12334 2.26924i 0.376007 0.273185i
\(70\) 0 0
\(71\) 6.60886 + 4.80162i 0.784328 + 0.569848i 0.906275 0.422689i \(-0.138914\pi\)
−0.121947 + 0.992537i \(0.538914\pi\)
\(72\) −0.587785 + 0.809017i −0.0692712 + 0.0953436i
\(73\) −3.65537 1.18770i −0.427828 0.139010i 0.0871848 0.996192i \(-0.472213\pi\)
−0.515013 + 0.857182i \(0.672213\pi\)
\(74\) −5.30719 −0.616948
\(75\) 0 0
\(76\) −6.87129 −0.788191
\(77\) −1.02781 0.333955i −0.117130 0.0380577i
\(78\) 1.28501 1.76867i 0.145499 0.200262i
\(79\) 2.84162 + 2.06455i 0.319707 + 0.232281i 0.736050 0.676927i \(-0.236689\pi\)
−0.416344 + 0.909207i \(0.636689\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) 3.22358i 0.355985i
\(83\) −7.71827 10.6233i −0.847190 1.16606i −0.984475 0.175526i \(-0.943837\pi\)
0.137285 0.990532i \(-0.456163\pi\)
\(84\) 0.642040 + 1.97599i 0.0700523 + 0.215599i
\(85\) 0 0
\(86\) −2.94777 + 9.07232i −0.317867 + 0.978293i
\(87\) 8.59159 2.79158i 0.921115 0.299288i
\(88\) −0.494689 + 0.160734i −0.0527340 + 0.0171343i
\(89\) 3.04654 9.37628i 0.322932 0.993883i −0.649433 0.760419i \(-0.724994\pi\)
0.972365 0.233465i \(-0.0750063\pi\)
\(90\) 0 0
\(91\) −1.40362 4.31990i −0.147140 0.452849i
\(92\) −2.26924 3.12334i −0.236585 0.325631i
\(93\) 7.40507i 0.767870i
\(94\) 7.49614 5.44627i 0.773168 0.561739i
\(95\) 0 0
\(96\) 0.809017 + 0.587785i 0.0825700 + 0.0599906i
\(97\) −6.32443 + 8.70483i −0.642149 + 0.883842i −0.998728 0.0504234i \(-0.983943\pi\)
0.356579 + 0.934265i \(0.383943\pi\)
\(98\) −2.55190 0.829164i −0.257781 0.0837582i
\(99\) −0.520147 −0.0522767
\(100\) 0 0
\(101\) −17.6400 −1.75524 −0.877622 0.479353i \(-0.840871\pi\)
−0.877622 + 0.479353i \(0.840871\pi\)
\(102\) −2.56378 0.833023i −0.253852 0.0824815i
\(103\) −5.11231 + 7.03649i −0.503731 + 0.693326i −0.982846 0.184426i \(-0.940957\pi\)
0.479116 + 0.877752i \(0.340957\pi\)
\(104\) −1.76867 1.28501i −0.173432 0.126006i
\(105\) 0 0
\(106\) −1.97271 + 1.43326i −0.191607 + 0.139210i
\(107\) 5.40977i 0.522983i 0.965206 + 0.261491i \(0.0842143\pi\)
−0.965206 + 0.261491i \(0.915786\pi\)
\(108\) 0.587785 + 0.809017i 0.0565597 + 0.0778477i
\(109\) −0.891135 2.74263i −0.0853553 0.262697i 0.899265 0.437404i \(-0.144102\pi\)
−0.984620 + 0.174707i \(0.944102\pi\)
\(110\) 0 0
\(111\) −1.64001 + 5.04743i −0.155663 + 0.479081i
\(112\) 1.97599 0.642040i 0.186714 0.0606670i
\(113\) 6.05780 1.96830i 0.569870 0.185162i −0.00988741 0.999951i \(-0.503147\pi\)
0.579757 + 0.814789i \(0.303147\pi\)
\(114\) −2.12334 + 6.53498i −0.198869 + 0.612057i
\(115\) 0 0
\(116\) −2.79158 8.59159i −0.259191 0.797709i
\(117\) −1.28501 1.76867i −0.118799 0.163513i
\(118\) 8.64875i 0.796182i
\(119\) −4.53118 + 3.29210i −0.415373 + 0.301786i
\(120\) 0 0
\(121\) 8.68031 + 6.30661i 0.789119 + 0.573328i
\(122\) −7.39919 + 10.1841i −0.669891 + 0.922026i
\(123\) 3.06581 + 0.996141i 0.276435 + 0.0898191i
\(124\) 7.40507 0.664995
\(125\) 0 0
\(126\) 2.07768 0.185095
\(127\) 14.2348 + 4.62515i 1.26313 + 0.410416i 0.862609 0.505871i \(-0.168829\pi\)
0.400522 + 0.916287i \(0.368829\pi\)
\(128\) 0.587785 0.809017i 0.0519534 0.0715077i
\(129\) 7.71737 + 5.60700i 0.679477 + 0.493669i
\(130\) 0 0
\(131\) −11.2090 + 8.14385i −0.979339 + 0.711531i −0.957561 0.288232i \(-0.906933\pi\)
−0.0217781 + 0.999763i \(0.506933\pi\)
\(132\) 0.520147i 0.0452730i
\(133\) 8.39144 + 11.5498i 0.727630 + 1.00150i
\(134\) 2.06851 + 6.36623i 0.178692 + 0.549959i
\(135\) 0 0
\(136\) −0.833023 + 2.56378i −0.0714311 + 0.219842i
\(137\) 18.9202 6.14755i 1.61646 0.525221i 0.645359 0.763879i \(-0.276708\pi\)
0.971103 + 0.238659i \(0.0767077\pi\)
\(138\) −3.67171 + 1.19301i −0.312557 + 0.101556i
\(139\) −1.74398 + 5.36743i −0.147923 + 0.455259i −0.997375 0.0724056i \(-0.976932\pi\)
0.849453 + 0.527665i \(0.176932\pi\)
\(140\) 0 0
\(141\) −2.86327 8.81224i −0.241131 0.742125i
\(142\) −4.80162 6.60886i −0.402943 0.554604i
\(143\) 1.13714i 0.0950925i
\(144\) 0.809017 0.587785i 0.0674181 0.0489821i
\(145\) 0 0
\(146\) 3.10944 + 2.25914i 0.257339 + 0.186968i
\(147\) −1.57716 + 2.17078i −0.130082 + 0.179043i
\(148\) 5.04743 + 1.64001i 0.414897 + 0.134808i
\(149\) 15.0956 1.23668 0.618339 0.785911i \(-0.287806\pi\)
0.618339 + 0.785911i \(0.287806\pi\)
\(150\) 0 0
\(151\) −20.9353 −1.70369 −0.851847 0.523791i \(-0.824517\pi\)
−0.851847 + 0.523791i \(0.824517\pi\)
\(152\) 6.53498 + 2.12334i 0.530057 + 0.172226i
\(153\) −1.58450 + 2.18088i −0.128099 + 0.176314i
\(154\) 0.874305 + 0.635220i 0.0704535 + 0.0511875i
\(155\) 0 0
\(156\) −1.76867 + 1.28501i −0.141607 + 0.102883i
\(157\) 5.71998i 0.456504i −0.973602 0.228252i \(-0.926699\pi\)
0.973602 0.228252i \(-0.0733010\pi\)
\(158\) −2.06455 2.84162i −0.164247 0.226067i
\(159\) 0.753509 + 2.31906i 0.0597572 + 0.183914i
\(160\) 0 0
\(161\) −2.47870 + 7.62866i −0.195349 + 0.601222i
\(162\) 0.951057 0.309017i 0.0747221 0.0242787i
\(163\) −11.3129 + 3.67577i −0.886091 + 0.287908i −0.716484 0.697603i \(-0.754250\pi\)
−0.169607 + 0.985512i \(0.554250\pi\)
\(164\) 0.996141 3.06581i 0.0777856 0.239399i
\(165\) 0 0
\(166\) 4.05774 + 12.4884i 0.314941 + 0.969290i
\(167\) 5.25731 + 7.23607i 0.406823 + 0.559944i 0.962440 0.271495i \(-0.0875179\pi\)
−0.555617 + 0.831438i \(0.687518\pi\)
\(168\) 2.07768i 0.160297i
\(169\) −6.65058 + 4.83193i −0.511583 + 0.371687i
\(170\) 0 0
\(171\) 5.55899 + 4.03884i 0.425106 + 0.308858i
\(172\) 5.60700 7.71737i 0.427530 0.588444i
\(173\) 15.5394 + 5.04904i 1.18144 + 0.383872i 0.832900 0.553424i \(-0.186679\pi\)
0.348536 + 0.937295i \(0.386679\pi\)
\(174\) −9.03373 −0.684845
\(175\) 0 0
\(176\) 0.520147 0.0392076
\(177\) 8.22545 + 2.67261i 0.618262 + 0.200886i
\(178\) −5.79486 + 7.97594i −0.434343 + 0.597822i
\(179\) 2.97599 + 2.16219i 0.222436 + 0.161609i 0.693423 0.720531i \(-0.256102\pi\)
−0.470986 + 0.882140i \(0.656102\pi\)
\(180\) 0 0
\(181\) 18.6472 13.5480i 1.38604 1.00702i 0.389751 0.920920i \(-0.372561\pi\)
0.996287 0.0860956i \(-0.0274391\pi\)
\(182\) 4.54222i 0.336691i
\(183\) 7.39919 + 10.1841i 0.546964 + 0.752831i
\(184\) 1.19301 + 3.67171i 0.0879500 + 0.270682i
\(185\) 0 0
\(186\) 2.28829 7.04264i 0.167786 0.516392i
\(187\) −1.33354 + 0.433294i −0.0975183 + 0.0316856i
\(188\) −8.81224 + 2.86327i −0.642699 + 0.208826i
\(189\) 0.642040 1.97599i 0.0467015 0.143732i
\(190\) 0 0
\(191\) −0.552424 1.70019i −0.0399720 0.123021i 0.929079 0.369881i \(-0.120601\pi\)
−0.969051 + 0.246859i \(0.920601\pi\)
\(192\) −0.587785 0.809017i −0.0424197 0.0583858i
\(193\) 6.60138i 0.475178i −0.971366 0.237589i \(-0.923643\pi\)
0.971366 0.237589i \(-0.0763571\pi\)
\(194\) 8.70483 6.32443i 0.624970 0.454068i
\(195\) 0 0
\(196\) 2.17078 + 1.57716i 0.155056 + 0.112655i
\(197\) −7.43989 + 10.2401i −0.530070 + 0.729579i −0.987141 0.159851i \(-0.948899\pi\)
0.457071 + 0.889430i \(0.348899\pi\)
\(198\) 0.494689 + 0.160734i 0.0351560 + 0.0114229i
\(199\) −6.24148 −0.442447 −0.221223 0.975223i \(-0.571005\pi\)
−0.221223 + 0.975223i \(0.571005\pi\)
\(200\) 0 0
\(201\) 6.69385 0.472148
\(202\) 16.7766 + 5.45106i 1.18040 + 0.383535i
\(203\) −11.0323 + 15.1846i −0.774314 + 1.06575i
\(204\) 2.18088 + 1.58450i 0.152692 + 0.110937i
\(205\) 0 0
\(206\) 7.03649 5.11231i 0.490256 0.356192i
\(207\) 3.86067i 0.268335i
\(208\) 1.28501 + 1.76867i 0.0890995 + 0.122635i
\(209\) 1.10445 + 3.39915i 0.0763965 + 0.235124i
\(210\) 0 0
\(211\) −6.94607 + 21.3778i −0.478187 + 1.47171i 0.363424 + 0.931624i \(0.381608\pi\)
−0.841611 + 0.540084i \(0.818392\pi\)
\(212\) 2.31906 0.753509i 0.159274 0.0517512i
\(213\) −7.76919 + 2.52436i −0.532336 + 0.172966i
\(214\) 1.67171 5.14500i 0.114276 0.351705i
\(215\) 0 0
\(216\) −0.309017 0.951057i −0.0210259 0.0647112i
\(217\) −9.04331 12.4471i −0.613900 0.844961i
\(218\) 2.88377i 0.195314i
\(219\) 3.10944 2.25914i 0.210117 0.152659i
\(220\) 0 0
\(221\) −4.76783 3.46403i −0.320719 0.233016i
\(222\) 3.11949 4.29360i 0.209366 0.288168i
\(223\) −17.0524 5.54065i −1.14191 0.371029i −0.323820 0.946119i \(-0.604967\pi\)
−0.818091 + 0.575089i \(0.804967\pi\)
\(224\) −2.07768 −0.138821
\(225\) 0 0
\(226\) −6.36955 −0.423696
\(227\) 8.42412 + 2.73716i 0.559129 + 0.181672i 0.574929 0.818203i \(-0.305030\pi\)
−0.0158003 + 0.999875i \(0.505030\pi\)
\(228\) 4.03884 5.55899i 0.267479 0.368153i
\(229\) 17.8490 + 12.9681i 1.17950 + 0.856953i 0.992115 0.125334i \(-0.0400003\pi\)
0.187380 + 0.982287i \(0.440000\pi\)
\(230\) 0 0
\(231\) 0.874305 0.635220i 0.0575251 0.0417944i
\(232\) 9.03373i 0.593093i
\(233\) −6.78466 9.33828i −0.444478 0.611771i 0.526722 0.850037i \(-0.323421\pi\)
−0.971200 + 0.238267i \(0.923421\pi\)
\(234\) 0.675571 + 2.07919i 0.0441634 + 0.135921i
\(235\) 0 0
\(236\) 2.67261 8.22545i 0.173972 0.535431i
\(237\) −3.34052 + 1.08540i −0.216990 + 0.0705043i
\(238\) 5.32672 1.73076i 0.345280 0.112188i
\(239\) 0.273457 0.841616i 0.0176885 0.0544396i −0.941823 0.336110i \(-0.890889\pi\)
0.959511 + 0.281671i \(0.0908885\pi\)
\(240\) 0 0
\(241\) 3.91637 + 12.0534i 0.252276 + 0.776425i 0.994354 + 0.106112i \(0.0338402\pi\)
−0.742078 + 0.670313i \(0.766160\pi\)
\(242\) −6.30661 8.68031i −0.405404 0.557991i
\(243\) 1.00000i 0.0641500i
\(244\) 10.1841 7.39919i 0.651971 0.473684i
\(245\) 0 0
\(246\) −2.60793 1.89477i −0.166276 0.120806i
\(247\) −8.82968 + 12.1530i −0.561819 + 0.773278i
\(248\) −7.04264 2.28829i −0.447208 0.145307i
\(249\) 13.1311 0.832150
\(250\) 0 0
\(251\) 18.0966 1.14225 0.571124 0.820864i \(-0.306507\pi\)
0.571124 + 0.820864i \(0.306507\pi\)
\(252\) −1.97599 0.642040i −0.124476 0.0404447i
\(253\) −1.18034 + 1.62460i −0.0742073 + 0.102138i
\(254\) −12.1088 8.79756i −0.759774 0.552008i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) 1.28053i 0.0798774i −0.999202 0.0399387i \(-0.987284\pi\)
0.999202 0.0399387i \(-0.0127163\pi\)
\(258\) −5.60700 7.71737i −0.349077 0.480463i
\(259\) −3.40742 10.4870i −0.211727 0.651629i
\(260\) 0 0
\(261\) −2.79158 + 8.59159i −0.172794 + 0.531806i
\(262\) 13.1770 4.28147i 0.814079 0.264510i
\(263\) 6.76605 2.19842i 0.417213 0.135561i −0.0928855 0.995677i \(-0.529609\pi\)
0.510098 + 0.860116i \(0.329609\pi\)
\(264\) 0.160734 0.494689i 0.00989251 0.0304460i
\(265\) 0 0
\(266\) −4.41164 13.5776i −0.270495 0.832498i
\(267\) 5.79486 + 7.97594i 0.354640 + 0.488119i
\(268\) 6.69385i 0.408892i
\(269\) −7.62892 + 5.54274i −0.465143 + 0.337947i −0.795546 0.605894i \(-0.792816\pi\)
0.330402 + 0.943840i \(0.392816\pi\)
\(270\) 0 0
\(271\) −1.11231 0.808141i −0.0675681 0.0490911i 0.553488 0.832857i \(-0.313296\pi\)
−0.621057 + 0.783766i \(0.713296\pi\)
\(272\) 1.58450 2.18088i 0.0960746 0.132235i
\(273\) 4.31990 + 1.40362i 0.261452 + 0.0849511i
\(274\) −19.8939 −1.20183
\(275\) 0 0
\(276\) 3.86067 0.232385
\(277\) −18.6375 6.05571i −1.11982 0.363852i −0.310122 0.950697i \(-0.600370\pi\)
−0.809700 + 0.586845i \(0.800370\pi\)
\(278\) 3.31725 4.56581i 0.198956 0.273839i
\(279\) −5.99083 4.35259i −0.358662 0.260583i
\(280\) 0 0
\(281\) 2.29605 1.66817i 0.136971 0.0995150i −0.517190 0.855871i \(-0.673022\pi\)
0.654161 + 0.756356i \(0.273022\pi\)
\(282\) 9.26574i 0.551767i
\(283\) 1.31285 + 1.80699i 0.0780411 + 0.107414i 0.846253 0.532781i \(-0.178853\pi\)
−0.768212 + 0.640196i \(0.778853\pi\)
\(284\) 2.52436 + 7.76919i 0.149793 + 0.461016i
\(285\) 0 0
\(286\) −0.351396 + 1.08149i −0.0207785 + 0.0639496i
\(287\) −6.36978 + 2.06967i −0.375996 + 0.122169i
\(288\) −0.951057 + 0.309017i −0.0560415 + 0.0182090i
\(289\) 3.00770 9.25673i 0.176923 0.544514i
\(290\) 0 0
\(291\) −3.32495 10.2331i −0.194912 0.599877i
\(292\) −2.25914 3.10944i −0.132206 0.181966i
\(293\) 24.0260i 1.40361i 0.712367 + 0.701807i \(0.247623\pi\)
−0.712367 + 0.701807i \(0.752377\pi\)
\(294\) 2.17078 1.57716i 0.126602 0.0919821i
\(295\) 0 0
\(296\) −4.29360 3.11949i −0.249561 0.181316i
\(297\) 0.305735 0.420808i 0.0177405 0.0244177i
\(298\) −14.3568 4.66479i −0.831664 0.270224i
\(299\) −8.44016 −0.488107
\(300\) 0 0
\(301\) −19.8194 −1.14237
\(302\) 19.9107 + 6.46937i 1.14573 + 0.372271i
\(303\) 10.3685 14.2711i 0.595656 0.819850i
\(304\) −5.55899 4.03884i −0.318830 0.231643i
\(305\) 0 0
\(306\) 2.18088 1.58450i 0.124673 0.0905800i
\(307\) 17.1204i 0.977111i −0.872533 0.488556i \(-0.837524\pi\)
0.872533 0.488556i \(-0.162476\pi\)
\(308\) −0.635220 0.874305i −0.0361950 0.0498182i
\(309\) −2.68770 8.27189i −0.152898 0.470572i
\(310\) 0 0
\(311\) −6.22754 + 19.1664i −0.353131 + 1.08683i 0.603954 + 0.797020i \(0.293591\pi\)
−0.957085 + 0.289807i \(0.906409\pi\)
\(312\) 2.07919 0.675571i 0.117711 0.0382466i
\(313\) 24.2560 7.88127i 1.37103 0.445476i 0.471322 0.881961i \(-0.343777\pi\)
0.899711 + 0.436486i \(0.143777\pi\)
\(314\) −1.76757 + 5.44002i −0.0997498 + 0.306998i
\(315\) 0 0
\(316\) 1.08540 + 3.34052i 0.0610586 + 0.187919i
\(317\) −18.5260 25.4988i −1.04052 1.43215i −0.896747 0.442544i \(-0.854076\pi\)
−0.143775 0.989610i \(-0.545924\pi\)
\(318\) 2.43841i 0.136739i
\(319\) −3.80146 + 2.76193i −0.212841 + 0.154638i
\(320\) 0 0
\(321\) −4.37660 3.17979i −0.244278 0.177478i
\(322\) 4.71477 6.48932i 0.262744 0.361636i
\(323\) 17.6165 + 5.72394i 0.980207 + 0.318488i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 11.8950 0.658805
\(327\) 2.74263 + 0.891135i 0.151668 + 0.0492799i
\(328\) −1.89477 + 2.60793i −0.104621 + 0.143999i
\(329\) 15.5746 + 11.3156i 0.858656 + 0.623850i
\(330\) 0 0
\(331\) 5.90633 4.29120i 0.324641 0.235866i −0.413512 0.910499i \(-0.635698\pi\)
0.738153 + 0.674633i \(0.235698\pi\)
\(332\) 13.1311i 0.720663i
\(333\) −3.11949 4.29360i −0.170947 0.235288i
\(334\) −2.76393 8.50651i −0.151236 0.465455i
\(335\) 0 0
\(336\) −0.642040 + 1.97599i −0.0350261 + 0.107799i
\(337\) −25.4358 + 8.26459i −1.38558 + 0.450201i −0.904498 0.426477i \(-0.859754\pi\)
−0.481077 + 0.876678i \(0.659754\pi\)
\(338\) 7.81822 2.54029i 0.425255 0.138174i
\(339\) −1.96830 + 6.05780i −0.106903 + 0.329015i
\(340\) 0 0
\(341\) −1.19025 3.66321i −0.0644556 0.198374i
\(342\) −4.03884 5.55899i −0.218396 0.300596i
\(343\) 20.1187i 1.08631i
\(344\) −7.71737 + 5.60700i −0.416093 + 0.302309i
\(345\) 0 0
\(346\) −13.2186 9.60385i −0.710635 0.516306i
\(347\) 2.86327 3.94095i 0.153708 0.211562i −0.725217 0.688520i \(-0.758261\pi\)
0.878926 + 0.476958i \(0.158261\pi\)
\(348\) 8.59159 + 2.79158i 0.460557 + 0.149644i
\(349\) −16.7173 −0.894855 −0.447428 0.894320i \(-0.647660\pi\)
−0.447428 + 0.894320i \(0.647660\pi\)
\(350\) 0 0
\(351\) 2.18619 0.116690
\(352\) −0.494689 0.160734i −0.0263670 0.00856717i
\(353\) 15.9175 21.9086i 0.847203 1.16608i −0.137269 0.990534i \(-0.543832\pi\)
0.984472 0.175541i \(-0.0561676\pi\)
\(354\) −6.99698 5.08361i −0.371885 0.270191i
\(355\) 0 0
\(356\) 7.97594 5.79486i 0.422724 0.307127i
\(357\) 5.60085i 0.296428i
\(358\) −2.16219 2.97599i −0.114275 0.157286i
\(359\) 2.62299 + 8.07273i 0.138436 + 0.426062i 0.996109 0.0881339i \(-0.0280903\pi\)
−0.857673 + 0.514196i \(0.828090\pi\)
\(360\) 0 0
\(361\) 8.71879 26.8337i 0.458884 1.41230i
\(362\) −21.9211 + 7.12261i −1.15215 + 0.374356i
\(363\) −10.2043 + 3.31558i −0.535587 + 0.174023i
\(364\) 1.40362 4.31990i 0.0735698 0.226424i
\(365\) 0 0
\(366\) −3.88998 11.9721i −0.203333 0.625794i
\(367\) 7.49289 + 10.3131i 0.391126 + 0.538339i 0.958489 0.285129i \(-0.0920365\pi\)
−0.567363 + 0.823468i \(0.692036\pi\)
\(368\) 3.86067i 0.201251i
\(369\) −2.60793 + 1.89477i −0.135764 + 0.0986380i
\(370\) 0 0
\(371\) −4.09867 2.97786i −0.212792 0.154603i
\(372\) −4.35259 + 5.99083i −0.225671 + 0.310610i
\(373\) 10.4051 + 3.38081i 0.538754 + 0.175052i 0.565740 0.824584i \(-0.308591\pi\)
−0.0269853 + 0.999636i \(0.508591\pi\)
\(374\) 1.40217 0.0725045
\(375\) 0 0
\(376\) 9.26574 0.477844
\(377\) −18.7829 6.10292i −0.967367 0.314316i
\(378\) −1.22123 + 1.68088i −0.0628134 + 0.0864552i
\(379\) −11.5124 8.36427i −0.591354 0.429644i 0.251446 0.967871i \(-0.419094\pi\)
−0.842799 + 0.538228i \(0.819094\pi\)
\(380\) 0 0
\(381\) −12.1088 + 8.79756i −0.620353 + 0.450713i
\(382\) 1.78768i 0.0914658i
\(383\) 4.21101 + 5.79595i 0.215172 + 0.296159i 0.902936 0.429776i \(-0.141407\pi\)
−0.687763 + 0.725935i \(0.741407\pi\)
\(384\) 0.309017 + 0.951057i 0.0157695 + 0.0485334i
\(385\) 0 0
\(386\) −2.03994 + 6.27828i −0.103830 + 0.319556i
\(387\) −9.07232 + 2.94777i −0.461172 + 0.149844i
\(388\) −10.2331 + 3.32495i −0.519509 + 0.168799i
\(389\) 0.283978 0.873994i 0.0143982 0.0443133i −0.943599 0.331090i \(-0.892584\pi\)
0.957998 + 0.286776i \(0.0925837\pi\)
\(390\) 0 0
\(391\) 3.21602 + 9.89790i 0.162641 + 0.500558i
\(392\) −1.57716 2.17078i −0.0796588 0.109641i
\(393\) 13.8551i 0.698899i
\(394\) 10.2401 7.43989i 0.515891 0.374816i
\(395\) 0 0
\(396\) −0.420808 0.305735i −0.0211464 0.0153637i
\(397\) −12.8148 + 17.6381i −0.643159 + 0.885232i −0.998779 0.0493984i \(-0.984270\pi\)
0.355620 + 0.934630i \(0.384270\pi\)
\(398\) 5.93600 + 1.92872i 0.297545 + 0.0966782i
\(399\) −14.2764 −0.714712
\(400\) 0 0
\(401\) 22.8035 1.13875 0.569375 0.822078i \(-0.307185\pi\)
0.569375 + 0.822078i \(0.307185\pi\)
\(402\) −6.36623 2.06851i −0.317519 0.103168i
\(403\) 9.51560 13.0971i 0.474006 0.652413i
\(404\) −14.2711 10.3685i −0.710011 0.515853i
\(405\) 0 0
\(406\) 15.1846 11.0323i 0.753600 0.547523i
\(407\) 2.76052i 0.136834i
\(408\) −1.58450 2.18088i −0.0784446 0.107970i
\(409\) −1.54554 4.75668i −0.0764220 0.235203i 0.905547 0.424247i \(-0.139461\pi\)
−0.981969 + 0.189044i \(0.939461\pi\)
\(410\) 0 0
\(411\) −6.14755 + 18.9202i −0.303236 + 0.933265i
\(412\) −8.27189 + 2.68770i −0.407527 + 0.132414i
\(413\) −17.0899 + 5.55284i −0.840938 + 0.273237i
\(414\) 1.19301 3.67171i 0.0586333 0.180455i
\(415\) 0 0
\(416\) −0.675571 2.07919i −0.0331226 0.101941i
\(417\) −3.31725 4.56581i −0.162447 0.223589i
\(418\) 3.57408i 0.174814i
\(419\) −18.4661 + 13.4164i −0.902128 + 0.655434i −0.939012 0.343885i \(-0.888257\pi\)
0.0368836 + 0.999320i \(0.488257\pi\)
\(420\) 0 0
\(421\) −12.7124 9.23612i −0.619566 0.450141i 0.233204 0.972428i \(-0.425079\pi\)
−0.852770 + 0.522287i \(0.825079\pi\)
\(422\) 13.2122 18.1850i 0.643160 0.885234i
\(423\) 8.81224 + 2.86327i 0.428466 + 0.139217i
\(424\) −2.43841 −0.118419
\(425\) 0 0
\(426\) 8.16901 0.395790
\(427\) −24.8743 8.08215i −1.20375 0.391123i
\(428\) −3.17979 + 4.37660i −0.153701 + 0.211551i
\(429\) 0.919967 + 0.668395i 0.0444164 + 0.0322704i
\(430\) 0 0
\(431\) 7.73154 5.61729i 0.372415 0.270576i −0.385796 0.922584i \(-0.626073\pi\)
0.758212 + 0.652008i \(0.226073\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) −4.77408 6.57096i −0.229428 0.315780i 0.678747 0.734373i \(-0.262524\pi\)
−0.908174 + 0.418593i \(0.862524\pi\)
\(434\) 4.75435 + 14.6324i 0.228216 + 0.702377i
\(435\) 0 0
\(436\) 0.891135 2.74263i 0.0426776 0.131348i
\(437\) 25.2294 8.19753i 1.20689 0.392141i
\(438\) −3.65537 + 1.18770i −0.174660 + 0.0567505i
\(439\) −2.84899 + 8.76829i −0.135975 + 0.418488i −0.995740 0.0922014i \(-0.970610\pi\)
0.859766 + 0.510689i \(0.170610\pi\)
\(440\) 0 0
\(441\) −0.829164 2.55190i −0.0394840 0.121519i
\(442\) 3.46403 + 4.76783i 0.164767 + 0.226782i
\(443\) 9.63232i 0.457645i 0.973468 + 0.228823i \(0.0734876\pi\)
−0.973468 + 0.228823i \(0.926512\pi\)
\(444\) −4.29360 + 3.11949i −0.203765 + 0.148044i
\(445\) 0 0
\(446\) 14.5056 + 10.5389i 0.686861 + 0.499033i
\(447\) −8.87296 + 12.2126i −0.419677 + 0.577635i
\(448\) 1.97599 + 0.642040i 0.0933570 + 0.0303335i
\(449\) 21.3096 1.00566 0.502831 0.864385i \(-0.332292\pi\)
0.502831 + 0.864385i \(0.332292\pi\)
\(450\) 0 0
\(451\) −1.67674 −0.0789544
\(452\) 6.05780 + 1.96830i 0.284935 + 0.0925810i
\(453\) 12.3055 16.9370i 0.578162 0.795772i
\(454\) −7.16599 5.20640i −0.336317 0.244348i
\(455\) 0 0
\(456\) −5.55899 + 4.03884i −0.260324 + 0.189136i
\(457\) 13.4662i 0.629923i 0.949104 + 0.314961i \(0.101992\pi\)
−0.949104 + 0.314961i \(0.898008\pi\)
\(458\) −12.9681 17.8490i −0.605958 0.834029i
\(459\) −0.833023 2.56378i −0.0388822 0.119667i
\(460\) 0 0
\(461\) 10.1468 31.2286i 0.472582 1.45446i −0.376608 0.926373i \(-0.622910\pi\)
0.849191 0.528086i \(-0.177090\pi\)
\(462\) −1.02781 + 0.333955i −0.0478179 + 0.0155370i
\(463\) 21.8083 7.08596i 1.01352 0.329312i 0.245264 0.969456i \(-0.421125\pi\)
0.768255 + 0.640144i \(0.221125\pi\)
\(464\) 2.79158 8.59159i 0.129596 0.398854i
\(465\) 0 0
\(466\) 3.56690 + 10.9778i 0.165234 + 0.508537i
\(467\) 12.2459 + 16.8551i 0.566674 + 0.779960i 0.992156 0.125007i \(-0.0398954\pi\)
−0.425482 + 0.904967i \(0.639895\pi\)
\(468\) 2.18619i 0.101057i
\(469\) −11.2516 + 8.17475i −0.519549 + 0.377475i
\(470\) 0 0
\(471\) 4.62756 + 3.36212i 0.213227 + 0.154918i
\(472\) −5.08361 + 6.99698i −0.233992 + 0.322062i
\(473\) −4.71894 1.53328i −0.216977 0.0705001i
\(474\) 3.51243 0.161331
\(475\) 0 0
\(476\) −5.60085 −0.256714
\(477\) −2.31906 0.753509i −0.106183 0.0345008i
\(478\) −0.520147 + 0.715921i −0.0237910 + 0.0327455i
\(479\) 10.9401 + 7.94842i 0.499864 + 0.363172i 0.808965 0.587857i \(-0.200028\pi\)
−0.309101 + 0.951029i \(0.600028\pi\)
\(480\) 0 0
\(481\) 9.38664 6.81980i 0.427994 0.310956i
\(482\) 12.6736i 0.577269i
\(483\) −4.71477 6.48932i −0.214529 0.295274i
\(484\) 3.31558 + 10.2043i 0.150708 + 0.463832i
\(485\) 0 0
\(486\) −0.309017 + 0.951057i −0.0140173 + 0.0431408i
\(487\) 25.3198 8.22690i 1.14735 0.372796i 0.327205 0.944953i \(-0.393893\pi\)
0.820144 + 0.572157i \(0.193893\pi\)
\(488\) −11.9721 + 3.88998i −0.541953 + 0.176091i
\(489\) 3.67577 11.3129i 0.166224 0.511585i
\(490\) 0 0
\(491\) −3.71521 11.4342i −0.167665 0.516020i 0.831558 0.555438i \(-0.187449\pi\)
−0.999223 + 0.0394184i \(0.987449\pi\)
\(492\) 1.89477 + 2.60793i 0.0854230 + 0.117575i
\(493\) 24.3524i 1.09678i
\(494\) 12.1530 8.82968i 0.546790 0.397266i
\(495\) 0 0
\(496\) 5.99083 + 4.35259i 0.268996 + 0.195437i
\(497\) 9.97625 13.7311i 0.447496 0.615925i
\(498\) −12.4884 4.05774i −0.559620 0.181831i
\(499\) 27.3600 1.22480 0.612400 0.790548i \(-0.290204\pi\)
0.612400 + 0.790548i \(0.290204\pi\)
\(500\) 0 0
\(501\) −8.94427 −0.399601
\(502\) −17.2109 5.59216i −0.768161 0.249590i
\(503\) −5.38563 + 7.41268i −0.240133 + 0.330515i −0.912025 0.410134i \(-0.865482\pi\)
0.671892 + 0.740649i \(0.265482\pi\)
\(504\) 1.68088 + 1.22123i 0.0748724 + 0.0543980i
\(505\) 0 0
\(506\) 1.62460 1.18034i 0.0722222 0.0524725i
\(507\) 8.22056i 0.365088i
\(508\) 8.79756 + 12.1088i 0.390329 + 0.537241i
\(509\) 0.725667 + 2.23337i 0.0321646 + 0.0989925i 0.965850 0.259102i \(-0.0834266\pi\)
−0.933685 + 0.358094i \(0.883427\pi\)
\(510\) 0 0
\(511\) −2.46767 + 7.59470i −0.109163 + 0.335970i
\(512\) 0.951057 0.309017i 0.0420312 0.0136568i
\(513\) −6.53498 + 2.12334i −0.288527 + 0.0937480i
\(514\) −0.395706 + 1.21786i −0.0174538 + 0.0537174i
\(515\) 0 0
\(516\) 2.94777 + 9.07232i 0.129769 + 0.399386i
\(517\) 2.83286 + 3.89910i 0.124589 + 0.171482i
\(518\) 11.0267i 0.484483i
\(519\) −13.2186 + 9.60385i −0.580231 + 0.421562i
\(520\) 0 0
\(521\) 1.24129 + 0.901848i 0.0543818 + 0.0395107i 0.614644 0.788805i \(-0.289300\pi\)
−0.560262 + 0.828315i \(0.689300\pi\)
\(522\) 5.30989 7.30844i 0.232408 0.319882i
\(523\) −39.5506 12.8508i −1.72943 0.561926i −0.736062 0.676914i \(-0.763317\pi\)
−0.993367 + 0.114988i \(0.963317\pi\)
\(524\) −13.8551 −0.605265
\(525\) 0 0
\(526\) −7.11425 −0.310196
\(527\) −18.9850 6.16859i −0.826999 0.268708i
\(528\) −0.305735 + 0.420808i −0.0133054 + 0.0183133i
\(529\) −6.54920 4.75827i −0.284748 0.206881i
\(530\) 0 0
\(531\) −6.99698 + 5.08361i −0.303643 + 0.220610i
\(532\) 14.2764i 0.618959i
\(533\) −4.14234 5.70144i −0.179425 0.246957i
\(534\) −3.04654 9.37628i −0.131837 0.405751i
\(535\) 0 0
\(536\) −2.06851 + 6.36623i −0.0893462 + 0.274979i
\(537\) −3.49849 + 1.13673i −0.150971 + 0.0490535i
\(538\) 8.96833 2.91399i 0.386652 0.125631i
\(539\) 0.431287 1.32737i 0.0185769 0.0571737i
\(540\) 0 0
\(541\) 5.88428 + 18.1100i 0.252985 + 0.778608i 0.994220 + 0.107362i \(0.0342404\pi\)
−0.741235 + 0.671246i \(0.765760\pi\)
\(542\) 0.808141 + 1.11231i 0.0347126 + 0.0477778i
\(543\) 23.0493i 0.989138i
\(544\) −2.18088 + 1.58450i −0.0935045 + 0.0679350i
\(545\) 0 0
\(546\) −3.67473 2.66985i −0.157264 0.114259i
\(547\) 16.0588 22.1030i 0.686624 0.945057i −0.313365 0.949633i \(-0.601456\pi\)
0.999990 + 0.00457542i \(0.00145641\pi\)
\(548\) 18.9202 + 6.14755i 0.808231 + 0.262610i
\(549\) −12.5882 −0.537253
\(550\) 0 0
\(551\) 62.0734 2.64441
\(552\) −3.67171 1.19301i −0.156278 0.0507779i
\(553\) 4.28949 5.90398i 0.182408 0.251063i
\(554\) 15.8540 + 11.5186i 0.673574 + 0.489380i
\(555\) 0 0
\(556\) −4.56581 + 3.31725i −0.193633 + 0.140683i
\(557\) 9.89921i 0.419443i −0.977761 0.209721i \(-0.932744\pi\)
0.977761 0.209721i \(-0.0672557\pi\)
\(558\) 4.35259 + 5.99083i 0.184260 + 0.253612i
\(559\) −6.44440 19.8338i −0.272569 0.838881i
\(560\) 0 0
\(561\) 0.433294 1.33354i 0.0182937 0.0563022i
\(562\) −2.69916 + 0.877011i −0.113857 + 0.0369945i
\(563\) 1.91338 0.621694i 0.0806392 0.0262013i −0.268420 0.963302i \(-0.586501\pi\)
0.349059 + 0.937101i \(0.386501\pi\)
\(564\) 2.86327 8.81224i 0.120565 0.371062i
\(565\) 0 0
\(566\) −0.690208 2.12424i −0.0290116 0.0892886i
\(567\) 1.22123 + 1.68088i 0.0512869 + 0.0705904i
\(568\) 8.16901i 0.342764i
\(569\) 19.0969 13.8747i 0.800585 0.581659i −0.110501 0.993876i \(-0.535245\pi\)
0.911086 + 0.412217i \(0.135245\pi\)
\(570\) 0 0
\(571\) −17.1782 12.4807i −0.718886 0.522301i 0.167142 0.985933i \(-0.446546\pi\)
−0.886028 + 0.463631i \(0.846546\pi\)
\(572\) 0.668395 0.919967i 0.0279470 0.0384657i
\(573\) 1.70019 + 0.552424i 0.0710263 + 0.0230779i
\(574\) 6.69758 0.279552
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 43.1167 + 14.0095i 1.79497 + 0.583222i 0.999734 0.0230749i \(-0.00734563\pi\)
0.795238 + 0.606297i \(0.207346\pi\)
\(578\) −5.72098 + 7.87425i −0.237961 + 0.327526i
\(579\) 5.34063 + 3.88019i 0.221949 + 0.161255i
\(580\) 0 0
\(581\) −22.0718 + 16.0361i −0.915694 + 0.665291i
\(582\) 10.7598i 0.446006i
\(583\) −0.745506 1.02610i −0.0308757 0.0424967i
\(584\) 1.18770 + 3.65537i 0.0491474 + 0.151260i
\(585\) 0 0
\(586\) 7.42445 22.8501i 0.306701 0.943929i
\(587\) 15.5245 5.04421i 0.640764 0.208197i 0.0294265 0.999567i \(-0.490632\pi\)
0.611337 + 0.791370i \(0.290632\pi\)
\(588\) −2.55190 + 0.829164i −0.105239 + 0.0341941i
\(589\) −15.7235 + 48.3920i −0.647877 + 1.99396i
\(590\) 0 0
\(591\) −3.91138 12.0380i −0.160893 0.495177i
\(592\) 3.11949 + 4.29360i 0.128210 + 0.176466i
\(593\) 32.8357i 1.34840i 0.738549 + 0.674199i \(0.235511\pi\)
−0.738549 + 0.674199i \(0.764489\pi\)
\(594\) −0.420808 + 0.305735i −0.0172660 + 0.0125444i
\(595\) 0 0
\(596\) 12.2126 + 8.87296i 0.500247 + 0.363451i
\(597\) 3.66865 5.04946i 0.150148 0.206661i
\(598\) 8.02707 + 2.60815i 0.328251 + 0.106655i
\(599\) 13.1905 0.538947 0.269474 0.963008i \(-0.413150\pi\)
0.269474 + 0.963008i \(0.413150\pi\)
\(600\) 0 0
\(601\) −19.1992 −0.783152 −0.391576 0.920146i \(-0.628070\pi\)
−0.391576 + 0.920146i \(0.628070\pi\)
\(602\) 18.8494 + 6.12454i 0.768244 + 0.249618i
\(603\) −3.93455 + 5.41544i −0.160227 + 0.220534i
\(604\) −16.9370 12.3055i −0.689158 0.500703i
\(605\) 0 0
\(606\) −14.2711 + 10.3685i −0.579722 + 0.421193i
\(607\) 6.54268i 0.265559i 0.991146 + 0.132779i \(0.0423902\pi\)
−0.991146 + 0.132779i \(0.957610\pi\)
\(608\) 4.03884 + 5.55899i 0.163797 + 0.225447i
\(609\) −5.80001 17.8506i −0.235028 0.723343i
\(610\) 0 0
\(611\) −6.25966 + 19.2653i −0.253239 + 0.779389i
\(612\) −2.56378 + 0.833023i −0.103635 + 0.0336729i
\(613\) −8.87528 + 2.88375i −0.358469 + 0.116474i −0.482714 0.875778i \(-0.660349\pi\)
0.124245 + 0.992252i \(0.460349\pi\)
\(614\) −5.29049 + 16.2824i −0.213507 + 0.657106i
\(615\) 0 0
\(616\) 0.333955 + 1.02781i 0.0134554 + 0.0414115i
\(617\) 19.3979 + 26.6989i 0.780929 + 1.07486i 0.995179 + 0.0980778i \(0.0312694\pi\)
−0.214250 + 0.976779i \(0.568731\pi\)
\(618\) 8.69758i 0.349868i
\(619\) 22.7569 16.5339i 0.914678 0.664553i −0.0275155 0.999621i \(-0.508760\pi\)
0.942194 + 0.335069i \(0.108760\pi\)
\(620\) 0 0
\(621\) −3.12334 2.26924i −0.125336 0.0910616i
\(622\) 11.8455 16.3039i 0.474961 0.653727i
\(623\) −19.4809 6.32974i −0.780487 0.253596i
\(624\) −2.18619 −0.0875177
\(625\) 0 0
\(626\) −25.5043 −1.01936
\(627\) −3.39915 1.10445i −0.135749 0.0441075i
\(628\) 3.36212 4.62756i 0.134163 0.184660i
\(629\) −11.5743 8.40925i −0.461499 0.335299i
\(630\) 0 0
\(631\) 1.93909 1.40883i 0.0771940 0.0560847i −0.548519 0.836138i \(-0.684808\pi\)
0.625713 + 0.780053i \(0.284808\pi\)
\(632\) 3.51243i 0.139717i
\(633\) −13.2122 18.1850i −0.525138 0.722790i
\(634\) 9.73967 + 29.9756i 0.386812 + 1.19048i
\(635\) 0 0
\(636\) −0.753509 + 2.31906i −0.0298786 + 0.0919568i
\(637\) 5.57895 1.81271i 0.221046 0.0718223i
\(638\) 4.46889 1.45203i 0.176925 0.0574864i
\(639\) 2.52436 7.76919i 0.0998622 0.307344i
\(640\) 0 0
\(641\) 3.76246 + 11.5797i 0.148608 + 0.457370i 0.997457 0.0712658i \(-0.0227039\pi\)
−0.848849 + 0.528635i \(0.822704\pi\)
\(642\) 3.17979 + 4.37660i 0.125496 + 0.172731i
\(643\) 27.0249i 1.06576i −0.846192 0.532878i \(-0.821110\pi\)
0.846192 0.532878i \(-0.178890\pi\)
\(644\) −6.48932 + 4.71477i −0.255715 + 0.185788i
\(645\) 0 0
\(646\) −14.9855 10.8876i −0.589595 0.428366i
\(647\) 19.9375 27.4417i 0.783826 1.07884i −0.211024 0.977481i \(-0.567680\pi\)
0.994850 0.101363i \(-0.0323203\pi\)
\(648\) 0.951057 + 0.309017i 0.0373610 + 0.0121393i
\(649\) −4.49862 −0.176586
\(650\) 0 0
\(651\) 15.3854 0.603001
\(652\) −11.3129 3.67577i −0.443046 0.143954i
\(653\) −8.73039 + 12.0163i −0.341646 + 0.470236i −0.944921 0.327297i \(-0.893862\pi\)
0.603275 + 0.797533i \(0.293862\pi\)
\(654\) −2.33302 1.69504i −0.0912284 0.0662813i
\(655\) 0 0
\(656\) 2.60793 1.89477i 0.101823 0.0739785i
\(657\) 3.84348i 0.149948i
\(658\) −11.3156 15.5746i −0.441129 0.607162i
\(659\) −1.45835 4.48835i −0.0568094 0.174841i 0.918625 0.395129i \(-0.129300\pi\)
−0.975435 + 0.220288i \(0.929300\pi\)
\(660\) 0 0
\(661\) 1.08059 3.32571i 0.0420300 0.129355i −0.927840 0.372979i \(-0.878336\pi\)
0.969870 + 0.243624i \(0.0783363\pi\)
\(662\) −6.94330 + 2.25602i −0.269859 + 0.0876826i
\(663\) 5.60491 1.82115i 0.217677 0.0707275i
\(664\) −4.05774 + 12.4884i −0.157471 + 0.484645i
\(665\) 0 0
\(666\) 1.64001 + 5.04743i 0.0635491 + 0.195584i
\(667\) 20.4997 + 28.2155i 0.793753 + 1.09251i
\(668\) 8.94427i 0.346064i
\(669\) 14.5056 10.5389i 0.560819 0.407459i
\(670\) 0 0
\(671\) −5.29723 3.84867i −0.204497 0.148576i
\(672\) 1.22123 1.68088i 0.0471100 0.0648414i
\(673\) 23.4287 + 7.61244i 0.903110 + 0.293438i 0.723520 0.690303i \(-0.242523\pi\)
0.179590 + 0.983742i \(0.442523\pi\)
\(674\) 26.7448 1.03017
\(675\) 0 0
\(676\) −8.22056 −0.316176
\(677\) −28.3655 9.21651i −1.09017 0.354219i −0.291861 0.956461i \(-0.594274\pi\)
−0.798314 + 0.602242i \(0.794274\pi\)
\(678\) 3.74393 5.15307i 0.143785 0.197903i
\(679\) 18.0859 + 13.1402i 0.694072 + 0.504273i
\(680\) 0 0
\(681\) −7.16599 + 5.20640i −0.274601 + 0.199510i
\(682\) 3.85173i 0.147490i
\(683\) 15.3138 + 21.0776i 0.585964 + 0.806511i 0.994333 0.106306i \(-0.0339023\pi\)
−0.408369 + 0.912817i \(0.633902\pi\)
\(684\) 2.12334 + 6.53498i 0.0811881 + 0.249871i
\(685\) 0 0
\(686\) −6.21702 + 19.1340i −0.237367 + 0.730540i
\(687\) −20.9828 + 6.81771i −0.800542 + 0.260112i
\(688\) 9.07232 2.94777i 0.345879 0.112383i
\(689\) 1.64732 5.06992i 0.0627577 0.193148i
\(690\) 0 0
\(691\) 10.6313 + 32.7197i 0.404432 + 1.24471i 0.921368 + 0.388690i \(0.127072\pi\)
−0.516936 + 0.856024i \(0.672928\pi\)
\(692\) 9.60385 + 13.2186i 0.365084 + 0.502495i
\(693\) 1.08070i 0.0410524i
\(694\) −3.94095 + 2.86327i −0.149597 + 0.108688i
\(695\) 0 0
\(696\) −7.30844 5.30989i −0.277026 0.201271i
\(697\) −5.10777 + 7.03025i −0.193471 + 0.266290i
\(698\) 15.8991 + 5.16592i 0.601789 + 0.195533i
\(699\) 11.5427 0.436587
\(700\) 0 0
\(701\) 13.2937 0.502095 0.251047 0.967975i \(-0.419225\pi\)
0.251047 + 0.967975i \(0.419225\pi\)
\(702\) −2.07919 0.675571i −0.0784741 0.0254978i
\(703\) −21.4349 + 29.5026i −0.808432 + 1.11271i
\(704\) 0.420808 + 0.305735i 0.0158598 + 0.0115228i
\(705\) 0 0
\(706\) −21.9086 + 15.9175i −0.824540 + 0.599063i
\(707\) 36.6503i 1.37838i
\(708\) 5.08361 + 6.99698i 0.191054 + 0.262963i
\(709\) 2.24820 + 6.91924i 0.0844329 + 0.259858i 0.984356 0.176191i \(-0.0563776\pi\)
−0.899923 + 0.436049i \(0.856378\pi\)
\(710\) 0 0
\(711\) 1.08540 3.34052i 0.0407057 0.125279i
\(712\) −9.37628 + 3.04654i −0.351391 + 0.114174i
\(713\) −27.1893 + 8.83434i −1.01825 + 0.330849i
\(714\) −1.73076 + 5.32672i −0.0647720 + 0.199348i
\(715\) 0 0
\(716\) 1.13673 + 3.49849i 0.0424815 + 0.130745i
\(717\) 0.520147 + 0.715921i 0.0194252 + 0.0267366i
\(718\) 8.48817i 0.316776i
\(719\) −26.0071 + 18.8953i −0.969902 + 0.704675i −0.955429 0.295220i \(-0.904607\pi\)
−0.0144727 + 0.999895i \(0.504607\pi\)
\(720\) 0 0
\(721\) 14.6196 + 10.6218i 0.544462 + 0.395575i
\(722\) −16.5841 + 22.8261i −0.617197 + 0.849499i
\(723\) −12.0534 3.91637i −0.448269 0.145651i
\(724\) 23.0493 0.856619
\(725\) 0 0
\(726\) 10.7294 0.398207
\(727\) −2.97260 0.965858i −0.110248 0.0358217i 0.253374 0.967369i \(-0.418460\pi\)
−0.363621 + 0.931547i \(0.618460\pi\)
\(728\) −2.66985 + 3.67473i −0.0989511 + 0.136195i
\(729\) 0.809017 + 0.587785i 0.0299636 + 0.0217698i
\(730\) 0 0
\(731\) −20.8039 + 15.1149i −0.769458 + 0.559044i
\(732\) 12.5882i 0.465275i
\(733\) 27.2488 + 37.5047i 1.00646 + 1.38527i 0.921279 + 0.388902i \(0.127146\pi\)
0.0851773 + 0.996366i \(0.472854\pi\)
\(734\) −3.93925 12.1238i −0.145400 0.447496i
\(735\) 0 0
\(736\) −1.19301 + 3.67171i −0.0439750 + 0.135341i
\(737\) −3.31138 + 1.07593i −0.121976 + 0.0396324i
\(738\) 3.06581 0.996141i 0.112854 0.0366685i
\(739\) 14.8417 45.6779i 0.545959 1.68029i −0.172739 0.984968i \(-0.555262\pi\)
0.718698 0.695322i \(-0.244738\pi\)
\(740\) 0 0
\(741\) −4.64204 14.2867i −0.170530 0.524836i
\(742\) 2.97786 + 4.09867i 0.109321 + 0.150467i
\(743\) 2.88963i 0.106010i −0.998594 0.0530051i \(-0.983120\pi\)
0.998594 0.0530051i \(-0.0168799\pi\)
\(744\) 5.99083 4.35259i 0.219635 0.159574i
\(745\) 0 0
\(746\) −8.85108 6.43069i −0.324061 0.235444i
\(747\) −7.71827 + 10.6233i −0.282397 + 0.388686i
\(748\) −1.33354 0.433294i −0.0487591 0.0158428i
\(749\) 11.2398 0.410693
\(750\) 0 0
\(751\) −39.4965 −1.44125 −0.720624 0.693326i \(-0.756144\pi\)
−0.720624 + 0.693326i \(0.756144\pi\)
\(752\) −8.81224 2.86327i −0.321349 0.104413i
\(753\) −10.6369 + 14.6405i −0.387631 + 0.533529i
\(754\) 15.9777 + 11.6084i 0.581872 + 0.422755i
\(755\) 0 0
\(756\) 1.68088 1.22123i 0.0611331 0.0444158i
\(757\) 25.4654i 0.925555i −0.886475 0.462777i \(-0.846853\pi\)
0.886475 0.462777i \(-0.153147\pi\)
\(758\) 8.36427 + 11.5124i 0.303804 + 0.418150i
\(759\) −0.620541 1.90983i −0.0225242 0.0693224i
\(760\) 0 0
\(761\) 12.8769 39.6310i 0.466787 1.43662i −0.389934 0.920843i \(-0.627502\pi\)
0.856721 0.515780i \(-0.172498\pi\)
\(762\) 14.2348 4.62515i 0.515671 0.167552i
\(763\) −5.69832 + 1.85150i −0.206293 + 0.0670287i
\(764\) 0.552424 1.70019i 0.0199860 0.0615106i
\(765\) 0 0
\(766\) −2.21386 6.81355i −0.0799899 0.246184i
\(767\) −11.1137 15.2967i −0.401294 0.552334i
\(768\) 1.00000i 0.0360844i
\(769\) 1.67667 1.21817i 0.0604621 0.0439283i −0.557144 0.830416i \(-0.688103\pi\)
0.617606 + 0.786488i \(0.288103\pi\)
\(770\) 0 0
\(771\) 1.03597 + 0.752678i 0.0373096 + 0.0271070i
\(772\) 3.88019 5.34063i 0.139651 0.192213i
\(773\) −7.59855 2.46892i −0.273301 0.0888009i 0.169160 0.985589i \(-0.445895\pi\)
−0.442461 + 0.896788i \(0.645895\pi\)
\(774\) 9.53920 0.342879
\(775\) 0 0
\(776\) 10.7598 0.386253
\(777\) 10.4870 + 3.40742i 0.376218 + 0.122241i
\(778\) −0.540158 + 0.743464i −0.0193656 + 0.0266545i
\(779\) 17.9199 + 13.0195i 0.642045 + 0.466473i
\(780\) 0 0
\(781\) 3.43758 2.49755i 0.123006 0.0893693i
\(782\) 10.4073i 0.372163i
\(783\) −5.30989 7.30844i −0.189760 0.261182i
\(784\) 0.829164 + 2.55190i 0.0296130 + 0.0911394i
\(785\) 0 0
\(786\) −4.28147 + 13.1770i −0.152715 + 0.470009i
\(787\) −17.0337 + 5.53459i −0.607186 + 0.197287i −0.596443 0.802656i \(-0.703420\pi\)
−0.0107432 + 0.999942i \(0.503420\pi\)
\(788\) −12.0380 + 3.91138i −0.428836 + 0.139337i
\(789\) −2.19842 + 6.76605i −0.0782659 + 0.240878i
\(790\) 0 0
\(791\) −4.08950 12.5862i −0.145406 0.447514i
\(792\) 0.305735 + 0.420808i 0.0108638 + 0.0149528i
\(793\) 27.5203i 0.977276i
\(794\) 17.6381 12.8148i 0.625954 0.454782i
\(795\) 0 0
\(796\) −5.04946 3.66865i −0.178973 0.130032i
\(797\) 15.4319 21.2401i 0.546625 0.752364i −0.442925 0.896559i \(-0.646059\pi\)
0.989549 + 0.144195i \(0.0460591\pi\)
\(798\) 13.5776 + 4.41164i 0.480643 + 0.156170i
\(799\) 24.9778 0.883652
\(800\) 0 0
\(801\) −9.85880 −0.348344
\(802\) −21.6874 7.04666i −0.765808 0.248826i
\(803\) −1.17509 + 1.61737i −0.0414679 + 0.0570756i
\(804\) 5.41544 + 3.93455i 0.190988 + 0.138761i
\(805\) 0 0
\(806\) −13.0971 + 9.51560i −0.461326 + 0.335173i
\(807\) 9.42986i 0.331947i
\(808\) 10.3685 + 14.2711i 0.364763 + 0.502054i
\(809\) −9.12577 28.0862i −0.320845 0.987459i −0.973281 0.229616i \(-0.926253\pi\)
0.652436 0.757844i \(-0.273747\pi\)
\(810\) 0 0
\(811\) 9.10810 28.0318i 0.319829 0.984331i −0.653893 0.756587i \(-0.726865\pi\)
0.973721 0.227744i \(-0.0731348\pi\)
\(812\) −17.8506 + 5.80001i −0.626433 + 0.203540i
\(813\) 1.30760 0.424865i 0.0458595 0.0149007i
\(814\) −0.853047 + 2.62541i −0.0298993 + 0.0920205i
\(815\) 0 0
\(816\) 0.833023 + 2.56378i 0.0291616 + 0.0897502i
\(817\) 38.5273 + 53.0283i 1.34790 + 1.85523i
\(818\) 5.00147i 0.174872i
\(819\) −3.67473 + 2.66985i −0.128405 + 0.0932920i
\(820\) 0 0
\(821\) −36.2580 26.3430i −1.26541 0.919377i −0.266404 0.963862i \(-0.585835\pi\)
−0.999010 + 0.0444846i \(0.985835\pi\)
\(822\) 11.6933 16.0945i 0.407852 0.561360i
\(823\) −20.6983 6.72529i −0.721498 0.234429i −0.0748255 0.997197i \(-0.523840\pi\)
−0.646673 + 0.762768i \(0.723840\pi\)
\(824\) 8.69758 0.302995
\(825\) 0 0
\(826\) 17.9694 0.625234
\(827\) −18.1721 5.90446i −0.631905 0.205318i −0.0244861 0.999700i \(-0.507795\pi\)
−0.607419 + 0.794382i \(0.707795\pi\)
\(828\) −2.26924 + 3.12334i −0.0788616 + 0.108544i
\(829\) −29.3862 21.3503i −1.02063 0.741528i −0.0542146 0.998529i \(-0.517265\pi\)
−0.966411 + 0.257001i \(0.917265\pi\)
\(830\) 0 0
\(831\) 15.8540 11.5186i 0.549971 0.399577i
\(832\) 2.18619i 0.0757926i
\(833\) −4.25159 5.85181i −0.147309 0.202753i
\(834\) 1.74398 + 5.36743i 0.0603892 + 0.185859i
\(835\) 0 0
\(836\) −1.10445 + 3.39915i −0.0381983 + 0.117562i
\(837\) 7.04264 2.28829i 0.243429 0.0790950i
\(838\) 21.7082 7.05342i 0.749897 0.243656i
\(839\) −6.13673 + 18.8869i −0.211863 + 0.652049i 0.787498 + 0.616317i \(0.211376\pi\)
−0.999361 + 0.0357313i \(0.988624\pi\)
\(840\) 0 0
\(841\) 16.2568 + 50.0334i 0.560581 + 1.72529i
\(842\) 9.23612 + 12.7124i 0.318298 + 0.438099i
\(843\) 2.83807i 0.0977483i
\(844\) −18.1850 + 13.2122i −0.625955 + 0.454783i
\(845\) 0 0
\(846\) −7.49614 5.44627i −0.257723 0.187246i
\(847\) 13.1031 18.0349i 0.450229 0.619687i
\(848\) 2.31906 + 0.753509i 0.0796369 + 0.0258756i
\(849\) −2.23356 −0.0766556
\(850\) 0 0
\(851\) −20.4893 −0.702363
\(852\) −7.76919 2.52436i −0.266168 0.0864832i
\(853\) −15.3025 + 21.0621i −0.523948 + 0.721153i −0.986193 0.165600i \(-0.947044\pi\)
0.462245 + 0.886752i \(0.347044\pi\)
\(854\) 21.1594 + 15.3732i 0.724058 + 0.526059i
\(855\) 0 0
\(856\) 4.37660 3.17979i 0.149589 0.108683i
\(857\) 34.8614i 1.19084i 0.803414 + 0.595421i \(0.203015\pi\)
−0.803414 + 0.595421i \(0.796985\pi\)
\(858\) −0.668395 0.919967i −0.0228186 0.0314071i
\(859\) 4.67229 + 14.3798i 0.159417 + 0.490634i 0.998582 0.0532431i \(-0.0169558\pi\)
−0.839165 + 0.543877i \(0.816956\pi\)
\(860\) 0 0
\(861\) 2.06967 6.36978i 0.0705341 0.217081i
\(862\) −9.08897 + 2.95319i −0.309572 + 0.100586i
\(863\) 21.7819 7.07738i 0.741466 0.240917i 0.0861610 0.996281i \(-0.472540\pi\)
0.655305 + 0.755364i \(0.272540\pi\)
\(864\) 0.309017 0.951057i 0.0105130 0.0323556i
\(865\) 0 0
\(866\) 2.50988 + 7.72462i 0.0852892 + 0.262493i
\(867\) 5.72098 + 7.87425i 0.194295 + 0.267424i
\(868\) 15.3854i 0.522215i
\(869\) 1.47806 1.07387i 0.0501397 0.0364286i
\(870\) 0 0
\(871\) −11.8392 8.60168i −0.401156 0.291457i
\(872\) −1.69504 + 2.33302i −0.0574013 + 0.0790061i
\(873\) 10.2331 + 3.32495i 0.346339 + 0.112532i
\(874\) −26.5278 −0.897315
\(875\) 0 0
\(876\) 3.84348 0.129859
\(877\) −15.6806 5.09493i −0.529495 0.172043i 0.0320550 0.999486i \(-0.489795\pi\)
−0.561550 + 0.827443i \(0.689795\pi\)
\(878\) 5.41910 7.45875i 0.182886 0.251721i
\(879\) −19.4375 14.1221i −0.655609 0.476328i
\(880\) 0 0
\(881\) −18.7621 + 13.6315i −0.632112 + 0.459257i −0.857131 0.515098i \(-0.827756\pi\)
0.225019 + 0.974354i \(0.427756\pi\)
\(882\) 2.68323i 0.0903491i
\(883\) 14.3841 + 19.7980i 0.484062 + 0.666254i 0.979279 0.202515i \(-0.0649114\pi\)
−0.495217 + 0.868769i \(0.664911\pi\)
\(884\) −1.82115 5.60491i −0.0612518 0.188514i
\(885\) 0 0
\(886\) 2.97655 9.16088i 0.0999991 0.307766i
\(887\) −3.75624 + 1.22048i −0.126122 + 0.0409796i −0.371398 0.928474i \(-0.621121\pi\)
0.245276 + 0.969453i \(0.421121\pi\)
\(888\) 5.04743 1.64001i 0.169381 0.0550352i
\(889\) 9.60960 29.5753i 0.322296 0.991924i
\(890\) 0 0
\(891\) 0.160734 + 0.494689i 0.00538480 + 0.0165727i
\(892\) −10.5389 14.5056i −0.352870 0.485684i
\(893\) 63.6676i 2.13055i
\(894\) 12.2126 8.87296i 0.408450 0.296756i
\(895\) 0 0
\(896\) −1.68088 1.22123i −0.0561543 0.0407985i
\(897\) 4.96100 6.82823i 0.165643 0.227988i
\(898\) −20.2666 6.58502i −0.676306 0.219745i
\(899\) −66.8954 −2.23109
\(900\) 0 0
\(901\) −6.57325 −0.218987
\(902\) 1.59467 + 0.518140i 0.0530967 + 0.0172522i
\(903\) 11.6496 16.0343i 0.387673 0.533587i
\(904\) −5.15307 3.74393i −0.171389 0.124521i
\(905\) 0 0
\(906\) −16.9370 + 12.3055i −0.562695 + 0.408822i
\(907\) 52.8637i 1.75531i −0.479291 0.877656i \(-0.659106\pi\)
0.479291 0.877656i \(-0.340894\pi\)
\(908\) 5.20640 + 7.16599i 0.172780 + 0.237812i
\(909\) 5.45106 + 16.7766i 0.180800 + 0.556446i
\(910\) 0 0
\(911\) 3.55654 10.9459i 0.117833 0.362654i −0.874694 0.484676i \(-0.838938\pi\)
0.992527 + 0.122021i \(0.0389377\pi\)
\(912\) 6.53498 2.12334i 0.216395 0.0703110i
\(913\) −6.49582 + 2.11062i −0.214980 + 0.0698513i
\(914\) 4.16129 12.8071i 0.137643 0.423622i
\(915\) 0 0
\(916\) 6.81771 + 20.9828i 0.225264 + 0.693290i
\(917\) 16.9203 + 23.2888i 0.558759 + 0.769066i
\(918\) 2.69572i 0.0889719i
\(919\) 25.1008 18.2368i 0.828000 0.601577i −0.0909927 0.995852i \(-0.529004\pi\)
0.918993 + 0.394274i \(0.129004\pi\)
\(920\) 0 0
\(921\) 13.8507 + 10.0631i 0.456395 + 0.331590i
\(922\) −19.3003 + 26.5646i −0.635622 + 0.874858i
\(923\) 16.9849 + 5.51874i 0.559066 + 0.181652i
\(924\) 1.08070 0.0355524
\(925\) 0 0
\(926\) −22.9306 −0.753547
\(927\) 8.27189 + 2.68770i 0.271685 + 0.0882757i
\(928\) −5.30989 + 7.30844i −0.174306 + 0.239911i
\(929\) −9.67177 7.02695i −0.317320 0.230547i 0.417711 0.908580i \(-0.362833\pi\)
−0.735031 + 0.678033i \(0.762833\pi\)
\(930\) 0 0
\(931\) −14.9161 + 10.8371i −0.488854 + 0.355173i
\(932\) 11.5427i 0.378095i
\(933\) −11.8455 16.3039i −0.387804 0.533766i
\(934\) −6.43806 19.8143i −0.210660 0.648344i
\(935\) 0 0
\(936\) −0.675571 + 2.07919i −0.0220817 + 0.0679605i
\(937\) 13.9740 4.54042i 0.456510 0.148329i −0.0717304 0.997424i \(-0.522852\pi\)
0.528240 + 0.849095i \(0.322852\pi\)
\(938\) 13.2270 4.29772i 0.431877 0.140325i
\(939\) −7.88127 + 24.2560i −0.257195 + 0.791566i
\(940\) 0 0
\(941\) 15.6185 + 48.0688i 0.509149 + 1.56700i 0.793682 + 0.608333i \(0.208162\pi\)
−0.284533 + 0.958666i \(0.591838\pi\)
\(942\) −3.36212 4.62756i −0.109544 0.150774i
\(943\) 12.4452i 0.405271i
\(944\) 6.99698 5.08361i 0.227732 0.165457i
\(945\) 0 0
\(946\) 4.01417 + 2.91646i 0.130512 + 0.0948224i
\(947\) 23.3247 32.1037i 0.757952 1.04323i −0.239430 0.970914i \(-0.576960\pi\)
0.997382 0.0723177i \(-0.0230395\pi\)
\(948\) −3.34052 1.08540i −0.108495 0.0352522i
\(949\) −8.40259 −0.272759
\(950\) 0 0
\(951\) 31.5182 1.02205
\(952\) 5.32672 + 1.73076i 0.172640 + 0.0560942i
\(953\) 29.7563 40.9560i 0.963901 1.32670i 0.0188330 0.999823i \(-0.494005\pi\)
0.945068 0.326873i \(-0.105995\pi\)
\(954\) 1.97271 + 1.43326i 0.0638689 + 0.0464035i
\(955\) 0 0
\(956\) 0.715921 0.520147i 0.0231545 0.0168228i
\(957\) 4.69887i 0.151893i
\(958\) −7.94842 10.9401i −0.256802 0.353457i
\(959\) −12.7727 39.3102i −0.412451 1.26939i
\(960\) 0 0
\(961\) 7.36546 22.6685i 0.237595 0.731243i
\(962\) −11.0347 + 3.58538i −0.355772 + 0.115597i
\(963\) 5.14500 1.67171i 0.165795 0.0538702i
\(964\) −3.91637 + 12.0534i −0.126138 + 0.388212i
\(965\) 0 0
\(966\) 2.47870 + 7.62866i 0.0797509 + 0.245448i
\(967\) −6.49628 8.94137i −0.208906 0.287535i 0.691687 0.722197i \(-0.256868\pi\)
−0.900594 + 0.434662i \(0.856868\pi\)
\(968\) 10.7294i 0.344857i
\(969\) −14.9855 + 10.8876i −0.481402 + 0.349759i
\(970\) 0 0
\(971\) −19.9495 14.4942i −0.640211 0.465140i 0.219712 0.975565i \(-0.429488\pi\)
−0.859923 + 0.510424i \(0.829488\pi\)
\(972\) 0.587785 0.809017i 0.0188532 0.0259492i
\(973\) 11.1518 + 3.62345i 0.357511 + 0.116162i
\(974\) −26.6228 −0.853050
\(975\) 0 0
\(976\) 12.5882 0.402940
\(977\) −7.71967 2.50827i −0.246974 0.0802467i 0.182914 0.983129i \(-0.441447\pi\)
−0.429888 + 0.902882i \(0.641447\pi\)
\(978\) −6.99173 + 9.62329i −0.223571 + 0.307719i
\(979\) −4.14866 3.01418i −0.132592 0.0963336i
\(980\) 0 0
\(981\) −2.33302 + 1.69504i −0.0744877 + 0.0541185i
\(982\) 12.0227i 0.383659i
\(983\) −15.6954 21.6028i −0.500605 0.689023i 0.481695 0.876339i \(-0.340021\pi\)
−0.982300 + 0.187316i \(0.940021\pi\)
\(984\) −0.996141 3.06581i −0.0317558 0.0977344i
\(985\) 0 0
\(986\) 7.52530 23.1605i 0.239654 0.737580i
\(987\) −18.3091 + 5.94897i −0.582784 + 0.189358i
\(988\) −14.2867 + 4.64204i −0.454521 + 0.147683i
\(989\) −11.3804 + 35.0252i −0.361875 + 1.11374i
\(990\) 0 0
\(991\) −16.3515 50.3248i −0.519423 1.59862i −0.775088 0.631854i \(-0.782294\pi\)
0.255665 0.966765i \(-0.417706\pi\)
\(992\) −4.35259 5.99083i −0.138195 0.190209i
\(993\) 7.30062i 0.231678i
\(994\) −13.7311 + 9.97625i −0.435525 + 0.316427i
\(995\) 0 0
\(996\) 10.6233 + 7.71827i 0.336612 + 0.244563i
\(997\) 16.6169 22.8712i 0.526262 0.724337i −0.460293 0.887767i \(-0.652256\pi\)
0.986555 + 0.163430i \(0.0522557\pi\)
\(998\) −26.0209 8.45469i −0.823676 0.267629i
\(999\) 5.30719 0.167912
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 750.2.h.c.649.1 8
5.2 odd 4 750.2.g.c.601.2 8
5.3 odd 4 750.2.g.e.601.1 8
5.4 even 2 150.2.h.a.79.2 yes 8
15.14 odd 2 450.2.l.a.379.1 8
25.6 even 5 150.2.h.a.19.2 8
25.8 odd 20 750.2.g.e.151.1 8
25.9 even 10 3750.2.c.e.1249.8 8
25.12 odd 20 3750.2.a.o.1.4 4
25.13 odd 20 3750.2.a.m.1.1 4
25.16 even 5 3750.2.c.e.1249.1 8
25.17 odd 20 750.2.g.c.151.2 8
25.19 even 10 inner 750.2.h.c.349.1 8
75.56 odd 10 450.2.l.a.19.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.h.a.19.2 8 25.6 even 5
150.2.h.a.79.2 yes 8 5.4 even 2
450.2.l.a.19.1 8 75.56 odd 10
450.2.l.a.379.1 8 15.14 odd 2
750.2.g.c.151.2 8 25.17 odd 20
750.2.g.c.601.2 8 5.2 odd 4
750.2.g.e.151.1 8 25.8 odd 20
750.2.g.e.601.1 8 5.3 odd 4
750.2.h.c.349.1 8 25.19 even 10 inner
750.2.h.c.649.1 8 1.1 even 1 trivial
3750.2.a.m.1.1 4 25.13 odd 20
3750.2.a.o.1.4 4 25.12 odd 20
3750.2.c.e.1249.1 8 25.16 even 5
3750.2.c.e.1249.8 8 25.9 even 10