Properties

Label 759.1
Level 759
Weight 1
Dimension 30
Nonzero newspaces 2
Newform subspaces 10
Sturm bound 42240
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 759 = 3 \cdot 11 \cdot 23 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 10 \)
Sturm bound: \(42240\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(759))\).

Total New Old
Modular forms 934 410 524
Cusp forms 54 30 24
Eisenstein series 880 380 500

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 30 0 0 0

Trace form

\( 30 q + 8 q^{4} + 8 q^{9} - 8 q^{12} - 11 q^{15} - 8 q^{31} - 11 q^{33} + 8 q^{36} - 8 q^{48} + 8 q^{49} - 8 q^{58} + 11 q^{60} + 11 q^{69} - 16 q^{70} - 11 q^{75} + 8 q^{81} - 8 q^{82} - 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(759))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
759.1.c \(\chi_{759}(254, \cdot)\) None 0 1
759.1.d \(\chi_{759}(208, \cdot)\) None 0 1
759.1.g \(\chi_{759}(298, \cdot)\) None 0 1
759.1.h \(\chi_{759}(758, \cdot)\) 759.1.h.a 1 1
759.1.h.b 1
759.1.h.c 1
759.1.h.d 1
759.1.h.e 1
759.1.h.f 1
759.1.h.g 2
759.1.h.h 2
759.1.j \(\chi_{759}(68, \cdot)\) None 0 4
759.1.k \(\chi_{759}(91, \cdot)\) None 0 4
759.1.n \(\chi_{759}(139, \cdot)\) None 0 4
759.1.o \(\chi_{759}(47, \cdot)\) None 0 4
759.1.r \(\chi_{759}(65, \cdot)\) 759.1.r.a 10 10
759.1.r.b 10
759.1.s \(\chi_{759}(34, \cdot)\) None 0 10
759.1.v \(\chi_{759}(142, \cdot)\) None 0 10
759.1.w \(\chi_{759}(188, \cdot)\) None 0 10
759.1.ba \(\chi_{759}(26, \cdot)\) None 0 40
759.1.bb \(\chi_{759}(13, \cdot)\) None 0 40
759.1.be \(\chi_{759}(37, \cdot)\) None 0 40
759.1.bf \(\chi_{759}(17, \cdot)\) None 0 40

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(759))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(759)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(253))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(759))\)\(^{\oplus 1}\)