Properties

Label 765.2.a.k.1.1
Level $765$
Weight $2$
Character 765.1
Self dual yes
Analytic conductor $6.109$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(1,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.14510\) of defining polynomial
Character \(\chi\) \(=\) 765.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.14510 q^{2} +2.60147 q^{4} -1.00000 q^{5} +2.74657 q^{7} -1.29021 q^{8} +2.14510 q^{10} +0.746568 q^{11} +2.00000 q^{13} -5.89167 q^{14} -2.43531 q^{16} +1.00000 q^{17} +1.25343 q^{19} -2.60147 q^{20} -1.60147 q^{22} +1.00000 q^{25} -4.29021 q^{26} +7.14510 q^{28} -2.45636 q^{29} -5.49314 q^{31} +7.80440 q^{32} -2.14510 q^{34} -2.74657 q^{35} -0.456363 q^{37} -2.68874 q^{38} +1.29021 q^{40} +3.94950 q^{41} +10.5804 q^{43} +1.94217 q^{44} +0.340706 q^{47} +0.543637 q^{49} -2.14510 q^{50} +5.20293 q^{52} +11.0368 q^{53} -0.746568 q^{55} -3.54364 q^{56} +5.26915 q^{58} -1.49314 q^{59} -5.08727 q^{61} +11.7833 q^{62} -11.8706 q^{64} -2.00000 q^{65} -8.07355 q^{67} +2.60147 q^{68} +5.89167 q^{70} +1.08727 q^{71} +13.0368 q^{73} +0.978945 q^{74} +3.26076 q^{76} +2.05050 q^{77} +8.00000 q^{79} +2.43531 q^{80} -8.47208 q^{82} +14.9863 q^{83} -1.00000 q^{85} -22.6961 q^{86} -0.963226 q^{88} +10.0735 q^{89} +5.49314 q^{91} -0.730849 q^{94} -1.25343 q^{95} +0.912726 q^{97} -1.16616 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} - 3 q^{5} + 9 q^{8} - 6 q^{11} + 6 q^{13} - 3 q^{14} + 12 q^{16} + 3 q^{17} + 12 q^{19} - 6 q^{20} - 3 q^{22} + 3 q^{25} + 15 q^{28} - 12 q^{29} + 18 q^{32} - 6 q^{37} + 3 q^{38} - 9 q^{40}+ \cdots - 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.14510 −1.51682 −0.758408 0.651780i \(-0.774023\pi\)
−0.758408 + 0.651780i \(0.774023\pi\)
\(3\) 0 0
\(4\) 2.60147 1.30073
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 2.74657 1.03811 0.519053 0.854742i \(-0.326285\pi\)
0.519053 + 0.854742i \(0.326285\pi\)
\(8\) −1.29021 −0.456156
\(9\) 0 0
\(10\) 2.14510 0.678341
\(11\) 0.746568 0.225099 0.112549 0.993646i \(-0.464098\pi\)
0.112549 + 0.993646i \(0.464098\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −5.89167 −1.57462
\(15\) 0 0
\(16\) −2.43531 −0.608827
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 1.25343 0.287557 0.143778 0.989610i \(-0.454075\pi\)
0.143778 + 0.989610i \(0.454075\pi\)
\(20\) −2.60147 −0.581705
\(21\) 0 0
\(22\) −1.60147 −0.341434
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −4.29021 −0.841378
\(27\) 0 0
\(28\) 7.14510 1.35030
\(29\) −2.45636 −0.456135 −0.228068 0.973645i \(-0.573241\pi\)
−0.228068 + 0.973645i \(0.573241\pi\)
\(30\) 0 0
\(31\) −5.49314 −0.986596 −0.493298 0.869860i \(-0.664209\pi\)
−0.493298 + 0.869860i \(0.664209\pi\)
\(32\) 7.80440 1.37964
\(33\) 0 0
\(34\) −2.14510 −0.367882
\(35\) −2.74657 −0.464255
\(36\) 0 0
\(37\) −0.456363 −0.0750256 −0.0375128 0.999296i \(-0.511943\pi\)
−0.0375128 + 0.999296i \(0.511943\pi\)
\(38\) −2.68874 −0.436171
\(39\) 0 0
\(40\) 1.29021 0.203999
\(41\) 3.94950 0.616808 0.308404 0.951255i \(-0.400205\pi\)
0.308404 + 0.951255i \(0.400205\pi\)
\(42\) 0 0
\(43\) 10.5804 1.61350 0.806749 0.590895i \(-0.201225\pi\)
0.806749 + 0.590895i \(0.201225\pi\)
\(44\) 1.94217 0.292793
\(45\) 0 0
\(46\) 0 0
\(47\) 0.340706 0.0496971 0.0248485 0.999691i \(-0.492090\pi\)
0.0248485 + 0.999691i \(0.492090\pi\)
\(48\) 0 0
\(49\) 0.543637 0.0776624
\(50\) −2.14510 −0.303363
\(51\) 0 0
\(52\) 5.20293 0.721517
\(53\) 11.0368 1.51602 0.758009 0.652244i \(-0.226172\pi\)
0.758009 + 0.652244i \(0.226172\pi\)
\(54\) 0 0
\(55\) −0.746568 −0.100667
\(56\) −3.54364 −0.473538
\(57\) 0 0
\(58\) 5.26915 0.691873
\(59\) −1.49314 −0.194390 −0.0971949 0.995265i \(-0.530987\pi\)
−0.0971949 + 0.995265i \(0.530987\pi\)
\(60\) 0 0
\(61\) −5.08727 −0.651359 −0.325679 0.945480i \(-0.605593\pi\)
−0.325679 + 0.945480i \(0.605593\pi\)
\(62\) 11.7833 1.49649
\(63\) 0 0
\(64\) −11.8706 −1.48383
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) −8.07355 −0.986341 −0.493170 0.869933i \(-0.664162\pi\)
−0.493170 + 0.869933i \(0.664162\pi\)
\(68\) 2.60147 0.315474
\(69\) 0 0
\(70\) 5.89167 0.704189
\(71\) 1.08727 0.129036 0.0645179 0.997917i \(-0.479449\pi\)
0.0645179 + 0.997917i \(0.479449\pi\)
\(72\) 0 0
\(73\) 13.0368 1.52584 0.762919 0.646494i \(-0.223765\pi\)
0.762919 + 0.646494i \(0.223765\pi\)
\(74\) 0.978945 0.113800
\(75\) 0 0
\(76\) 3.26076 0.374035
\(77\) 2.05050 0.233676
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 2.43531 0.272276
\(81\) 0 0
\(82\) −8.47208 −0.935585
\(83\) 14.9863 1.64496 0.822479 0.568796i \(-0.192591\pi\)
0.822479 + 0.568796i \(0.192591\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) −22.6961 −2.44738
\(87\) 0 0
\(88\) −0.963226 −0.102680
\(89\) 10.0735 1.06779 0.533897 0.845550i \(-0.320727\pi\)
0.533897 + 0.845550i \(0.320727\pi\)
\(90\) 0 0
\(91\) 5.49314 0.575837
\(92\) 0 0
\(93\) 0 0
\(94\) −0.730849 −0.0753814
\(95\) −1.25343 −0.128599
\(96\) 0 0
\(97\) 0.912726 0.0926733 0.0463366 0.998926i \(-0.485245\pi\)
0.0463366 + 0.998926i \(0.485245\pi\)
\(98\) −1.16616 −0.117800
\(99\) 0 0
\(100\) 2.60147 0.260147
\(101\) 14.9863 1.49119 0.745595 0.666399i \(-0.232165\pi\)
0.745595 + 0.666399i \(0.232165\pi\)
\(102\) 0 0
\(103\) 9.08727 0.895396 0.447698 0.894185i \(-0.352244\pi\)
0.447698 + 0.894185i \(0.352244\pi\)
\(104\) −2.58041 −0.253030
\(105\) 0 0
\(106\) −23.6750 −2.29952
\(107\) 13.4931 1.30443 0.652215 0.758034i \(-0.273840\pi\)
0.652215 + 0.758034i \(0.273840\pi\)
\(108\) 0 0
\(109\) 12.0735 1.15644 0.578218 0.815882i \(-0.303748\pi\)
0.578218 + 0.815882i \(0.303748\pi\)
\(110\) 1.60147 0.152694
\(111\) 0 0
\(112\) −6.68874 −0.632027
\(113\) 1.08727 0.102282 0.0511411 0.998691i \(-0.483714\pi\)
0.0511411 + 0.998691i \(0.483714\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.39014 −0.593310
\(117\) 0 0
\(118\) 3.20293 0.294854
\(119\) 2.74657 0.251777
\(120\) 0 0
\(121\) −10.4426 −0.949331
\(122\) 10.9127 0.987992
\(123\) 0 0
\(124\) −14.2902 −1.28330
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −8.07355 −0.716411 −0.358206 0.933643i \(-0.616611\pi\)
−0.358206 + 0.933643i \(0.616611\pi\)
\(128\) 9.85490 0.871058
\(129\) 0 0
\(130\) 4.29021 0.376276
\(131\) −16.0735 −1.40435 −0.702176 0.712003i \(-0.747788\pi\)
−0.702176 + 0.712003i \(0.747788\pi\)
\(132\) 0 0
\(133\) 3.44264 0.298514
\(134\) 17.3186 1.49610
\(135\) 0 0
\(136\) −1.29021 −0.110634
\(137\) −5.44264 −0.464996 −0.232498 0.972597i \(-0.574690\pi\)
−0.232498 + 0.972597i \(0.574690\pi\)
\(138\) 0 0
\(139\) 9.49314 0.805197 0.402599 0.915377i \(-0.368107\pi\)
0.402599 + 0.915377i \(0.368107\pi\)
\(140\) −7.14510 −0.603871
\(141\) 0 0
\(142\) −2.33231 −0.195724
\(143\) 1.49314 0.124862
\(144\) 0 0
\(145\) 2.45636 0.203990
\(146\) −27.9652 −2.31442
\(147\) 0 0
\(148\) −1.18721 −0.0975882
\(149\) −10.0735 −0.825257 −0.412629 0.910899i \(-0.635389\pi\)
−0.412629 + 0.910899i \(0.635389\pi\)
\(150\) 0 0
\(151\) −4.34071 −0.353242 −0.176621 0.984279i \(-0.556517\pi\)
−0.176621 + 0.984279i \(0.556517\pi\)
\(152\) −1.61718 −0.131171
\(153\) 0 0
\(154\) −4.39853 −0.354444
\(155\) 5.49314 0.441219
\(156\) 0 0
\(157\) −12.1745 −0.971635 −0.485817 0.874060i \(-0.661478\pi\)
−0.485817 + 0.874060i \(0.661478\pi\)
\(158\) −17.1608 −1.36524
\(159\) 0 0
\(160\) −7.80440 −0.616992
\(161\) 0 0
\(162\) 0 0
\(163\) −22.3133 −1.74771 −0.873854 0.486188i \(-0.838387\pi\)
−0.873854 + 0.486188i \(0.838387\pi\)
\(164\) 10.2745 0.802303
\(165\) 0 0
\(166\) −32.1471 −2.49510
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 2.14510 0.164522
\(171\) 0 0
\(172\) 27.5246 2.09873
\(173\) −19.0598 −1.44909 −0.724546 0.689227i \(-0.757950\pi\)
−0.724546 + 0.689227i \(0.757950\pi\)
\(174\) 0 0
\(175\) 2.74657 0.207621
\(176\) −1.81812 −0.137046
\(177\) 0 0
\(178\) −21.6088 −1.61965
\(179\) 17.1608 1.28266 0.641330 0.767265i \(-0.278383\pi\)
0.641330 + 0.767265i \(0.278383\pi\)
\(180\) 0 0
\(181\) 12.0735 0.897420 0.448710 0.893677i \(-0.351884\pi\)
0.448710 + 0.893677i \(0.351884\pi\)
\(182\) −11.7833 −0.873439
\(183\) 0 0
\(184\) 0 0
\(185\) 0.456363 0.0335525
\(186\) 0 0
\(187\) 0.746568 0.0545945
\(188\) 0.886335 0.0646426
\(189\) 0 0
\(190\) 2.68874 0.195062
\(191\) −14.1745 −1.02563 −0.512817 0.858498i \(-0.671398\pi\)
−0.512817 + 0.858498i \(0.671398\pi\)
\(192\) 0 0
\(193\) 3.08727 0.222227 0.111113 0.993808i \(-0.464558\pi\)
0.111113 + 0.993808i \(0.464558\pi\)
\(194\) −1.95789 −0.140568
\(195\) 0 0
\(196\) 1.41425 0.101018
\(197\) 8.98627 0.640245 0.320123 0.947376i \(-0.396276\pi\)
0.320123 + 0.947376i \(0.396276\pi\)
\(198\) 0 0
\(199\) 11.6677 0.827100 0.413550 0.910481i \(-0.364289\pi\)
0.413550 + 0.910481i \(0.364289\pi\)
\(200\) −1.29021 −0.0912313
\(201\) 0 0
\(202\) −32.1471 −2.26186
\(203\) −6.74657 −0.473516
\(204\) 0 0
\(205\) −3.94950 −0.275845
\(206\) −19.4931 −1.35815
\(207\) 0 0
\(208\) −4.87062 −0.337716
\(209\) 0.935772 0.0647287
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 28.7118 1.97193
\(213\) 0 0
\(214\) −28.9442 −1.97858
\(215\) −10.5804 −0.721578
\(216\) 0 0
\(217\) −15.0873 −1.02419
\(218\) −25.8990 −1.75410
\(219\) 0 0
\(220\) −1.94217 −0.130941
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) 24.8853 1.66644 0.833221 0.552941i \(-0.186494\pi\)
0.833221 + 0.552941i \(0.186494\pi\)
\(224\) 21.4353 1.43221
\(225\) 0 0
\(226\) −2.33231 −0.155143
\(227\) −17.9725 −1.19288 −0.596440 0.802658i \(-0.703419\pi\)
−0.596440 + 0.802658i \(0.703419\pi\)
\(228\) 0 0
\(229\) −3.03677 −0.200676 −0.100338 0.994953i \(-0.531992\pi\)
−0.100338 + 0.994953i \(0.531992\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.16921 0.208069
\(233\) −4.07355 −0.266867 −0.133433 0.991058i \(-0.542600\pi\)
−0.133433 + 0.991058i \(0.542600\pi\)
\(234\) 0 0
\(235\) −0.340706 −0.0222252
\(236\) −3.88434 −0.252849
\(237\) 0 0
\(238\) −5.89167 −0.381900
\(239\) −15.6677 −1.01346 −0.506729 0.862105i \(-0.669146\pi\)
−0.506729 + 0.862105i \(0.669146\pi\)
\(240\) 0 0
\(241\) −8.07355 −0.520063 −0.260031 0.965600i \(-0.583733\pi\)
−0.260031 + 0.965600i \(0.583733\pi\)
\(242\) 22.4005 1.43996
\(243\) 0 0
\(244\) −13.2344 −0.847244
\(245\) −0.543637 −0.0347317
\(246\) 0 0
\(247\) 2.50686 0.159508
\(248\) 7.08727 0.450042
\(249\) 0 0
\(250\) 2.14510 0.135668
\(251\) −13.4931 −0.851679 −0.425840 0.904799i \(-0.640021\pi\)
−0.425840 + 0.904799i \(0.640021\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 17.3186 1.08666
\(255\) 0 0
\(256\) 2.60147 0.162592
\(257\) −8.17455 −0.509914 −0.254957 0.966952i \(-0.582061\pi\)
−0.254957 + 0.966952i \(0.582061\pi\)
\(258\) 0 0
\(259\) −1.25343 −0.0778845
\(260\) −5.20293 −0.322672
\(261\) 0 0
\(262\) 34.4794 2.13015
\(263\) 13.8338 0.853031 0.426516 0.904480i \(-0.359741\pi\)
0.426516 + 0.904480i \(0.359741\pi\)
\(264\) 0 0
\(265\) −11.0368 −0.677984
\(266\) −7.38481 −0.452792
\(267\) 0 0
\(268\) −21.0031 −1.28297
\(269\) −12.5299 −0.763962 −0.381981 0.924170i \(-0.624758\pi\)
−0.381981 + 0.924170i \(0.624758\pi\)
\(270\) 0 0
\(271\) 13.1608 0.799463 0.399731 0.916632i \(-0.369103\pi\)
0.399731 + 0.916632i \(0.369103\pi\)
\(272\) −2.43531 −0.147662
\(273\) 0 0
\(274\) 11.6750 0.705313
\(275\) 0.746568 0.0450198
\(276\) 0 0
\(277\) 3.08727 0.185496 0.0927482 0.995690i \(-0.470435\pi\)
0.0927482 + 0.995690i \(0.470435\pi\)
\(278\) −20.3638 −1.22134
\(279\) 0 0
\(280\) 3.54364 0.211773
\(281\) −2.98627 −0.178146 −0.0890731 0.996025i \(-0.528390\pi\)
−0.0890731 + 0.996025i \(0.528390\pi\)
\(282\) 0 0
\(283\) 23.3270 1.38664 0.693322 0.720627i \(-0.256146\pi\)
0.693322 + 0.720627i \(0.256146\pi\)
\(284\) 2.82851 0.167841
\(285\) 0 0
\(286\) −3.20293 −0.189393
\(287\) 10.8476 0.640312
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −5.26915 −0.309415
\(291\) 0 0
\(292\) 33.9147 1.98471
\(293\) −24.0966 −1.40774 −0.703869 0.710330i \(-0.748546\pi\)
−0.703869 + 0.710330i \(0.748546\pi\)
\(294\) 0 0
\(295\) 1.49314 0.0869338
\(296\) 0.588802 0.0342234
\(297\) 0 0
\(298\) 21.6088 1.25176
\(299\) 0 0
\(300\) 0 0
\(301\) 29.0598 1.67498
\(302\) 9.31126 0.535803
\(303\) 0 0
\(304\) −3.05249 −0.175072
\(305\) 5.08727 0.291296
\(306\) 0 0
\(307\) 24.0735 1.37395 0.686975 0.726681i \(-0.258938\pi\)
0.686975 + 0.726681i \(0.258938\pi\)
\(308\) 5.33431 0.303950
\(309\) 0 0
\(310\) −11.7833 −0.669249
\(311\) −4.84757 −0.274880 −0.137440 0.990510i \(-0.543888\pi\)
−0.137440 + 0.990510i \(0.543888\pi\)
\(312\) 0 0
\(313\) −31.9220 −1.80434 −0.902170 0.431380i \(-0.858027\pi\)
−0.902170 + 0.431380i \(0.858027\pi\)
\(314\) 26.1157 1.47379
\(315\) 0 0
\(316\) 20.8117 1.17075
\(317\) 23.1608 1.30084 0.650421 0.759574i \(-0.274593\pi\)
0.650421 + 0.759574i \(0.274593\pi\)
\(318\) 0 0
\(319\) −1.83384 −0.102675
\(320\) 11.8706 0.663588
\(321\) 0 0
\(322\) 0 0
\(323\) 1.25343 0.0697428
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 47.8642 2.65095
\(327\) 0 0
\(328\) −5.09567 −0.281361
\(329\) 0.935772 0.0515908
\(330\) 0 0
\(331\) 19.2260 1.05676 0.528378 0.849009i \(-0.322801\pi\)
0.528378 + 0.849009i \(0.322801\pi\)
\(332\) 38.9863 2.13965
\(333\) 0 0
\(334\) 25.7412 1.40850
\(335\) 8.07355 0.441105
\(336\) 0 0
\(337\) −31.1103 −1.69469 −0.847344 0.531045i \(-0.821799\pi\)
−0.847344 + 0.531045i \(0.821799\pi\)
\(338\) 19.3059 1.05010
\(339\) 0 0
\(340\) −2.60147 −0.141084
\(341\) −4.10100 −0.222082
\(342\) 0 0
\(343\) −17.7328 −0.957483
\(344\) −13.6509 −0.736007
\(345\) 0 0
\(346\) 40.8853 2.19801
\(347\) 0.811724 0.0435757 0.0217878 0.999763i \(-0.493064\pi\)
0.0217878 + 0.999763i \(0.493064\pi\)
\(348\) 0 0
\(349\) 17.1103 0.915894 0.457947 0.888979i \(-0.348585\pi\)
0.457947 + 0.888979i \(0.348585\pi\)
\(350\) −5.89167 −0.314923
\(351\) 0 0
\(352\) 5.82651 0.310554
\(353\) 26.7045 1.42133 0.710667 0.703528i \(-0.248393\pi\)
0.710667 + 0.703528i \(0.248393\pi\)
\(354\) 0 0
\(355\) −1.08727 −0.0577065
\(356\) 26.2060 1.38891
\(357\) 0 0
\(358\) −36.8117 −1.94556
\(359\) −1.49314 −0.0788047 −0.0394024 0.999223i \(-0.512545\pi\)
−0.0394024 + 0.999223i \(0.512545\pi\)
\(360\) 0 0
\(361\) −17.4289 −0.917311
\(362\) −25.8990 −1.36122
\(363\) 0 0
\(364\) 14.2902 0.749010
\(365\) −13.0368 −0.682376
\(366\) 0 0
\(367\) −12.1471 −0.634073 −0.317037 0.948413i \(-0.602688\pi\)
−0.317037 + 0.948413i \(0.602688\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −0.978945 −0.0508929
\(371\) 30.3133 1.57379
\(372\) 0 0
\(373\) 0.0735473 0.00380813 0.00190407 0.999998i \(-0.499394\pi\)
0.00190407 + 0.999998i \(0.499394\pi\)
\(374\) −1.60147 −0.0828098
\(375\) 0 0
\(376\) −0.439581 −0.0226696
\(377\) −4.91273 −0.253018
\(378\) 0 0
\(379\) 23.6677 1.21573 0.607864 0.794041i \(-0.292027\pi\)
0.607864 + 0.794041i \(0.292027\pi\)
\(380\) −3.26076 −0.167273
\(381\) 0 0
\(382\) 30.4059 1.55570
\(383\) 23.6593 1.20893 0.604467 0.796630i \(-0.293386\pi\)
0.604467 + 0.796630i \(0.293386\pi\)
\(384\) 0 0
\(385\) −2.05050 −0.104503
\(386\) −6.62252 −0.337077
\(387\) 0 0
\(388\) 2.37442 0.120543
\(389\) −22.8853 −1.16033 −0.580165 0.814499i \(-0.697012\pi\)
−0.580165 + 0.814499i \(0.697012\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.701404 −0.0354262
\(393\) 0 0
\(394\) −19.2765 −0.971135
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) −3.44264 −0.172781 −0.0863905 0.996261i \(-0.527533\pi\)
−0.0863905 + 0.996261i \(0.527533\pi\)
\(398\) −25.0284 −1.25456
\(399\) 0 0
\(400\) −2.43531 −0.121765
\(401\) −6.12405 −0.305820 −0.152910 0.988240i \(-0.548865\pi\)
−0.152910 + 0.988240i \(0.548865\pi\)
\(402\) 0 0
\(403\) −10.9863 −0.547265
\(404\) 38.9863 1.93964
\(405\) 0 0
\(406\) 14.4721 0.718237
\(407\) −0.340706 −0.0168882
\(408\) 0 0
\(409\) 32.7780 1.62077 0.810384 0.585899i \(-0.199258\pi\)
0.810384 + 0.585899i \(0.199258\pi\)
\(410\) 8.47208 0.418406
\(411\) 0 0
\(412\) 23.6402 1.16467
\(413\) −4.10100 −0.201797
\(414\) 0 0
\(415\) −14.9863 −0.735647
\(416\) 15.6088 0.765284
\(417\) 0 0
\(418\) −2.00733 −0.0981816
\(419\) −18.7191 −0.914489 −0.457244 0.889341i \(-0.651163\pi\)
−0.457244 + 0.889341i \(0.651163\pi\)
\(420\) 0 0
\(421\) −22.9358 −1.11782 −0.558911 0.829228i \(-0.688781\pi\)
−0.558911 + 0.829228i \(0.688781\pi\)
\(422\) −42.9021 −2.08844
\(423\) 0 0
\(424\) −14.2397 −0.691541
\(425\) 1.00000 0.0485071
\(426\) 0 0
\(427\) −13.9725 −0.676179
\(428\) 35.1019 1.69672
\(429\) 0 0
\(430\) 22.6961 1.09450
\(431\) −12.3133 −0.593108 −0.296554 0.955016i \(-0.595838\pi\)
−0.296554 + 0.955016i \(0.595838\pi\)
\(432\) 0 0
\(433\) −35.0598 −1.68487 −0.842434 0.538800i \(-0.818878\pi\)
−0.842434 + 0.538800i \(0.818878\pi\)
\(434\) 32.3638 1.55351
\(435\) 0 0
\(436\) 31.4089 1.50421
\(437\) 0 0
\(438\) 0 0
\(439\) −18.9863 −0.906165 −0.453083 0.891468i \(-0.649676\pi\)
−0.453083 + 0.891468i \(0.649676\pi\)
\(440\) 0.963226 0.0459200
\(441\) 0 0
\(442\) −4.29021 −0.204064
\(443\) 17.9725 0.853901 0.426951 0.904275i \(-0.359588\pi\)
0.426951 + 0.904275i \(0.359588\pi\)
\(444\) 0 0
\(445\) −10.0735 −0.477532
\(446\) −53.3815 −2.52769
\(447\) 0 0
\(448\) −32.6035 −1.54037
\(449\) −38.1471 −1.80027 −0.900136 0.435608i \(-0.856533\pi\)
−0.900136 + 0.435608i \(0.856533\pi\)
\(450\) 0 0
\(451\) 2.94857 0.138843
\(452\) 2.82851 0.133042
\(453\) 0 0
\(454\) 38.5530 1.80938
\(455\) −5.49314 −0.257522
\(456\) 0 0
\(457\) −20.0735 −0.939001 −0.469500 0.882932i \(-0.655566\pi\)
−0.469500 + 0.882932i \(0.655566\pi\)
\(458\) 6.51419 0.304388
\(459\) 0 0
\(460\) 0 0
\(461\) 29.1608 1.35815 0.679077 0.734067i \(-0.262380\pi\)
0.679077 + 0.734067i \(0.262380\pi\)
\(462\) 0 0
\(463\) 9.89900 0.460045 0.230023 0.973185i \(-0.426120\pi\)
0.230023 + 0.973185i \(0.426120\pi\)
\(464\) 5.98200 0.277707
\(465\) 0 0
\(466\) 8.73818 0.404788
\(467\) −11.9074 −0.551008 −0.275504 0.961300i \(-0.588845\pi\)
−0.275504 + 0.961300i \(0.588845\pi\)
\(468\) 0 0
\(469\) −22.1745 −1.02393
\(470\) 0.730849 0.0337116
\(471\) 0 0
\(472\) 1.92645 0.0886722
\(473\) 7.89900 0.363196
\(474\) 0 0
\(475\) 1.25343 0.0575114
\(476\) 7.14510 0.327495
\(477\) 0 0
\(478\) 33.6088 1.53723
\(479\) −25.8990 −1.18336 −0.591678 0.806175i \(-0.701534\pi\)
−0.591678 + 0.806175i \(0.701534\pi\)
\(480\) 0 0
\(481\) −0.912726 −0.0416167
\(482\) 17.3186 0.788840
\(483\) 0 0
\(484\) −27.1662 −1.23483
\(485\) −0.912726 −0.0414447
\(486\) 0 0
\(487\) −3.18828 −0.144475 −0.0722373 0.997387i \(-0.523014\pi\)
−0.0722373 + 0.997387i \(0.523014\pi\)
\(488\) 6.56363 0.297122
\(489\) 0 0
\(490\) 1.16616 0.0526816
\(491\) −4.47941 −0.202153 −0.101076 0.994879i \(-0.532229\pi\)
−0.101076 + 0.994879i \(0.532229\pi\)
\(492\) 0 0
\(493\) −2.45636 −0.110629
\(494\) −5.37748 −0.241944
\(495\) 0 0
\(496\) 13.3775 0.600667
\(497\) 2.98627 0.133953
\(498\) 0 0
\(499\) 40.8285 1.82773 0.913867 0.406013i \(-0.133081\pi\)
0.913867 + 0.406013i \(0.133081\pi\)
\(500\) −2.60147 −0.116341
\(501\) 0 0
\(502\) 28.9442 1.29184
\(503\) 11.3186 0.504671 0.252335 0.967640i \(-0.418801\pi\)
0.252335 + 0.967640i \(0.418801\pi\)
\(504\) 0 0
\(505\) −14.9863 −0.666880
\(506\) 0 0
\(507\) 0 0
\(508\) −21.0031 −0.931860
\(509\) −38.9863 −1.72804 −0.864018 0.503461i \(-0.832060\pi\)
−0.864018 + 0.503461i \(0.832060\pi\)
\(510\) 0 0
\(511\) 35.8064 1.58398
\(512\) −25.2902 −1.11768
\(513\) 0 0
\(514\) 17.5352 0.773447
\(515\) −9.08727 −0.400433
\(516\) 0 0
\(517\) 0.254360 0.0111868
\(518\) 2.68874 0.118136
\(519\) 0 0
\(520\) 2.58041 0.113158
\(521\) −6.12405 −0.268299 −0.134150 0.990961i \(-0.542830\pi\)
−0.134150 + 0.990961i \(0.542830\pi\)
\(522\) 0 0
\(523\) −3.59414 −0.157161 −0.0785803 0.996908i \(-0.525039\pi\)
−0.0785803 + 0.996908i \(0.525039\pi\)
\(524\) −41.8148 −1.82669
\(525\) 0 0
\(526\) −29.6750 −1.29389
\(527\) −5.49314 −0.239285
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 23.6750 1.02838
\(531\) 0 0
\(532\) 8.95590 0.388287
\(533\) 7.89900 0.342144
\(534\) 0 0
\(535\) −13.4931 −0.583359
\(536\) 10.4165 0.449926
\(537\) 0 0
\(538\) 26.8779 1.15879
\(539\) 0.405862 0.0174817
\(540\) 0 0
\(541\) −42.1471 −1.81205 −0.906023 0.423229i \(-0.860896\pi\)
−0.906023 + 0.423229i \(0.860896\pi\)
\(542\) −28.2313 −1.21264
\(543\) 0 0
\(544\) 7.80440 0.334611
\(545\) −12.0735 −0.517174
\(546\) 0 0
\(547\) 21.1524 0.904413 0.452206 0.891913i \(-0.350637\pi\)
0.452206 + 0.891913i \(0.350637\pi\)
\(548\) −14.1588 −0.604835
\(549\) 0 0
\(550\) −1.60147 −0.0682867
\(551\) −3.07888 −0.131165
\(552\) 0 0
\(553\) 21.9725 0.934368
\(554\) −6.62252 −0.281364
\(555\) 0 0
\(556\) 24.6961 1.04735
\(557\) 35.9725 1.52421 0.762103 0.647456i \(-0.224167\pi\)
0.762103 + 0.647456i \(0.224167\pi\)
\(558\) 0 0
\(559\) 21.1608 0.895007
\(560\) 6.68874 0.282651
\(561\) 0 0
\(562\) 6.40586 0.270215
\(563\) −11.2260 −0.473119 −0.236559 0.971617i \(-0.576020\pi\)
−0.236559 + 0.971617i \(0.576020\pi\)
\(564\) 0 0
\(565\) −1.08727 −0.0457420
\(566\) −50.0388 −2.10329
\(567\) 0 0
\(568\) −1.40281 −0.0588605
\(569\) −4.91273 −0.205952 −0.102976 0.994684i \(-0.532837\pi\)
−0.102976 + 0.994684i \(0.532837\pi\)
\(570\) 0 0
\(571\) 22.3049 0.933429 0.466715 0.884408i \(-0.345437\pi\)
0.466715 + 0.884408i \(0.345437\pi\)
\(572\) 3.88434 0.162413
\(573\) 0 0
\(574\) −23.2692 −0.971236
\(575\) 0 0
\(576\) 0 0
\(577\) 7.16082 0.298109 0.149054 0.988829i \(-0.452377\pi\)
0.149054 + 0.988829i \(0.452377\pi\)
\(578\) −2.14510 −0.0892245
\(579\) 0 0
\(580\) 6.39014 0.265336
\(581\) 41.1608 1.70764
\(582\) 0 0
\(583\) 8.23970 0.341254
\(584\) −16.8201 −0.696021
\(585\) 0 0
\(586\) 51.6897 2.13528
\(587\) 19.4280 0.801879 0.400939 0.916105i \(-0.368684\pi\)
0.400939 + 0.916105i \(0.368684\pi\)
\(588\) 0 0
\(589\) −6.88527 −0.283703
\(590\) −3.20293 −0.131863
\(591\) 0 0
\(592\) 1.11138 0.0456776
\(593\) −32.4289 −1.33170 −0.665848 0.746088i \(-0.731930\pi\)
−0.665848 + 0.746088i \(0.731930\pi\)
\(594\) 0 0
\(595\) −2.74657 −0.112598
\(596\) −26.2060 −1.07344
\(597\) 0 0
\(598\) 0 0
\(599\) 8.14709 0.332881 0.166441 0.986051i \(-0.446773\pi\)
0.166441 + 0.986051i \(0.446773\pi\)
\(600\) 0 0
\(601\) 13.1334 0.535721 0.267861 0.963458i \(-0.413683\pi\)
0.267861 + 0.963458i \(0.413683\pi\)
\(602\) −62.3363 −2.54064
\(603\) 0 0
\(604\) −11.2922 −0.459473
\(605\) 10.4426 0.424554
\(606\) 0 0
\(607\) −6.26716 −0.254376 −0.127188 0.991879i \(-0.540595\pi\)
−0.127188 + 0.991879i \(0.540595\pi\)
\(608\) 9.78228 0.396724
\(609\) 0 0
\(610\) −10.9127 −0.441843
\(611\) 0.681412 0.0275670
\(612\) 0 0
\(613\) −19.0137 −0.767957 −0.383979 0.923342i \(-0.625446\pi\)
−0.383979 + 0.923342i \(0.625446\pi\)
\(614\) −51.6402 −2.08403
\(615\) 0 0
\(616\) −2.64557 −0.106593
\(617\) −25.0873 −1.00998 −0.504988 0.863126i \(-0.668503\pi\)
−0.504988 + 0.863126i \(0.668503\pi\)
\(618\) 0 0
\(619\) 8.81172 0.354173 0.177087 0.984195i \(-0.443333\pi\)
0.177087 + 0.984195i \(0.443333\pi\)
\(620\) 14.2902 0.573908
\(621\) 0 0
\(622\) 10.3985 0.416943
\(623\) 27.6677 1.10848
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 68.4761 2.73685
\(627\) 0 0
\(628\) −31.6717 −1.26384
\(629\) −0.456363 −0.0181964
\(630\) 0 0
\(631\) −34.3133 −1.36599 −0.682994 0.730424i \(-0.739323\pi\)
−0.682994 + 0.730424i \(0.739323\pi\)
\(632\) −10.3216 −0.410573
\(633\) 0 0
\(634\) −49.6823 −1.97314
\(635\) 8.07355 0.320389
\(636\) 0 0
\(637\) 1.08727 0.0430794
\(638\) 3.93378 0.155740
\(639\) 0 0
\(640\) −9.85490 −0.389549
\(641\) 47.0368 1.85784 0.928920 0.370279i \(-0.120738\pi\)
0.928920 + 0.370279i \(0.120738\pi\)
\(642\) 0 0
\(643\) 18.1662 0.716403 0.358202 0.933644i \(-0.383390\pi\)
0.358202 + 0.933644i \(0.383390\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.68874 −0.105787
\(647\) 32.9588 1.29574 0.647872 0.761749i \(-0.275659\pi\)
0.647872 + 0.761749i \(0.275659\pi\)
\(648\) 0 0
\(649\) −1.11473 −0.0437569
\(650\) −4.29021 −0.168276
\(651\) 0 0
\(652\) −58.0472 −2.27330
\(653\) 28.0735 1.09860 0.549301 0.835624i \(-0.314894\pi\)
0.549301 + 0.835624i \(0.314894\pi\)
\(654\) 0 0
\(655\) 16.0735 0.628045
\(656\) −9.61825 −0.375529
\(657\) 0 0
\(658\) −2.00733 −0.0782538
\(659\) −15.6677 −0.610326 −0.305163 0.952300i \(-0.598711\pi\)
−0.305163 + 0.952300i \(0.598711\pi\)
\(660\) 0 0
\(661\) −12.8622 −0.500283 −0.250141 0.968209i \(-0.580477\pi\)
−0.250141 + 0.968209i \(0.580477\pi\)
\(662\) −41.2417 −1.60290
\(663\) 0 0
\(664\) −19.3354 −0.750358
\(665\) −3.44264 −0.133500
\(666\) 0 0
\(667\) 0 0
\(668\) −31.2176 −1.20784
\(669\) 0 0
\(670\) −17.3186 −0.669075
\(671\) −3.79800 −0.146620
\(672\) 0 0
\(673\) −35.0873 −1.35252 −0.676258 0.736665i \(-0.736399\pi\)
−0.676258 + 0.736665i \(0.736399\pi\)
\(674\) 66.7348 2.57053
\(675\) 0 0
\(676\) −23.4132 −0.900507
\(677\) −49.3354 −1.89611 −0.948056 0.318103i \(-0.896954\pi\)
−0.948056 + 0.318103i \(0.896954\pi\)
\(678\) 0 0
\(679\) 2.50686 0.0962046
\(680\) 1.29021 0.0494771
\(681\) 0 0
\(682\) 8.79707 0.336857
\(683\) −1.49314 −0.0571333 −0.0285666 0.999592i \(-0.509094\pi\)
−0.0285666 + 0.999592i \(0.509094\pi\)
\(684\) 0 0
\(685\) 5.44264 0.207952
\(686\) 38.0388 1.45233
\(687\) 0 0
\(688\) −25.7666 −0.982341
\(689\) 22.0735 0.840935
\(690\) 0 0
\(691\) −40.6265 −1.54551 −0.772753 0.634707i \(-0.781121\pi\)
−0.772753 + 0.634707i \(0.781121\pi\)
\(692\) −49.5835 −1.88488
\(693\) 0 0
\(694\) −1.74123 −0.0660963
\(695\) −9.49314 −0.360095
\(696\) 0 0
\(697\) 3.94950 0.149598
\(698\) −36.7034 −1.38924
\(699\) 0 0
\(700\) 7.14510 0.270059
\(701\) −41.1608 −1.55462 −0.777311 0.629116i \(-0.783417\pi\)
−0.777311 + 0.629116i \(0.783417\pi\)
\(702\) 0 0
\(703\) −0.572020 −0.0215741
\(704\) −8.86223 −0.334008
\(705\) 0 0
\(706\) −57.2838 −2.15590
\(707\) 41.1608 1.54801
\(708\) 0 0
\(709\) −43.2069 −1.62267 −0.811335 0.584582i \(-0.801259\pi\)
−0.811335 + 0.584582i \(0.801259\pi\)
\(710\) 2.33231 0.0875302
\(711\) 0 0
\(712\) −12.9969 −0.487081
\(713\) 0 0
\(714\) 0 0
\(715\) −1.49314 −0.0558401
\(716\) 44.6433 1.66840
\(717\) 0 0
\(718\) 3.20293 0.119532
\(719\) −48.3133 −1.80178 −0.900890 0.434047i \(-0.857085\pi\)
−0.900890 + 0.434047i \(0.857085\pi\)
\(720\) 0 0
\(721\) 24.9588 0.929515
\(722\) 37.3868 1.39139
\(723\) 0 0
\(724\) 31.4089 1.16730
\(725\) −2.45636 −0.0912270
\(726\) 0 0
\(727\) −2.91273 −0.108027 −0.0540135 0.998540i \(-0.517201\pi\)
−0.0540135 + 0.998540i \(0.517201\pi\)
\(728\) −7.08727 −0.262672
\(729\) 0 0
\(730\) 27.9652 1.03504
\(731\) 10.5804 0.391331
\(732\) 0 0
\(733\) 14.8117 0.547084 0.273542 0.961860i \(-0.411805\pi\)
0.273542 + 0.961860i \(0.411805\pi\)
\(734\) 26.0568 0.961773
\(735\) 0 0
\(736\) 0 0
\(737\) −6.02745 −0.222024
\(738\) 0 0
\(739\) −35.3354 −1.29983 −0.649916 0.760006i \(-0.725196\pi\)
−0.649916 + 0.760006i \(0.725196\pi\)
\(740\) 1.18721 0.0436428
\(741\) 0 0
\(742\) −65.0250 −2.38714
\(743\) −2.98627 −0.109556 −0.0547779 0.998499i \(-0.517445\pi\)
−0.0547779 + 0.998499i \(0.517445\pi\)
\(744\) 0 0
\(745\) 10.0735 0.369066
\(746\) −0.157766 −0.00577624
\(747\) 0 0
\(748\) 1.94217 0.0710128
\(749\) 37.0598 1.35414
\(750\) 0 0
\(751\) −9.34604 −0.341042 −0.170521 0.985354i \(-0.554545\pi\)
−0.170521 + 0.985354i \(0.554545\pi\)
\(752\) −0.829724 −0.0302569
\(753\) 0 0
\(754\) 10.5383 0.383782
\(755\) 4.34071 0.157974
\(756\) 0 0
\(757\) −19.8255 −0.720568 −0.360284 0.932843i \(-0.617320\pi\)
−0.360284 + 0.932843i \(0.617320\pi\)
\(758\) −50.7696 −1.84404
\(759\) 0 0
\(760\) 1.61718 0.0586614
\(761\) 46.0735 1.67016 0.835082 0.550125i \(-0.185420\pi\)
0.835082 + 0.550125i \(0.185420\pi\)
\(762\) 0 0
\(763\) 33.1608 1.20050
\(764\) −36.8746 −1.33408
\(765\) 0 0
\(766\) −50.7516 −1.83373
\(767\) −2.98627 −0.107828
\(768\) 0 0
\(769\) −9.44264 −0.340510 −0.170255 0.985400i \(-0.554459\pi\)
−0.170255 + 0.985400i \(0.554459\pi\)
\(770\) 4.39853 0.158512
\(771\) 0 0
\(772\) 8.03144 0.289058
\(773\) 11.2849 0.405889 0.202944 0.979190i \(-0.434949\pi\)
0.202944 + 0.979190i \(0.434949\pi\)
\(774\) 0 0
\(775\) −5.49314 −0.197319
\(776\) −1.17760 −0.0422735
\(777\) 0 0
\(778\) 49.0913 1.76001
\(779\) 4.95043 0.177367
\(780\) 0 0
\(781\) 0.811724 0.0290458
\(782\) 0 0
\(783\) 0 0
\(784\) −1.32392 −0.0472830
\(785\) 12.1745 0.434528
\(786\) 0 0
\(787\) −21.6318 −0.771092 −0.385546 0.922689i \(-0.625987\pi\)
−0.385546 + 0.922689i \(0.625987\pi\)
\(788\) 23.3775 0.832788
\(789\) 0 0
\(790\) 17.1608 0.610555
\(791\) 2.98627 0.106180
\(792\) 0 0
\(793\) −10.1745 −0.361309
\(794\) 7.38481 0.262077
\(795\) 0 0
\(796\) 30.3531 1.07584
\(797\) 18.9358 0.670739 0.335370 0.942087i \(-0.391139\pi\)
0.335370 + 0.942087i \(0.391139\pi\)
\(798\) 0 0
\(799\) 0.340706 0.0120533
\(800\) 7.80440 0.275927
\(801\) 0 0
\(802\) 13.1367 0.463873
\(803\) 9.73284 0.343465
\(804\) 0 0
\(805\) 0 0
\(806\) 23.5667 0.830101
\(807\) 0 0
\(808\) −19.3354 −0.680216
\(809\) 40.3216 1.41763 0.708817 0.705393i \(-0.249229\pi\)
0.708817 + 0.705393i \(0.249229\pi\)
\(810\) 0 0
\(811\) −8.34910 −0.293176 −0.146588 0.989198i \(-0.546829\pi\)
−0.146588 + 0.989198i \(0.546829\pi\)
\(812\) −17.5510 −0.615918
\(813\) 0 0
\(814\) 0.730849 0.0256163
\(815\) 22.3133 0.781599
\(816\) 0 0
\(817\) 13.2618 0.463972
\(818\) −70.3122 −2.45841
\(819\) 0 0
\(820\) −10.2745 −0.358801
\(821\) −21.7980 −0.760755 −0.380378 0.924831i \(-0.624206\pi\)
−0.380378 + 0.924831i \(0.624206\pi\)
\(822\) 0 0
\(823\) −53.5308 −1.86597 −0.932984 0.359918i \(-0.882805\pi\)
−0.932984 + 0.359918i \(0.882805\pi\)
\(824\) −11.7245 −0.408441
\(825\) 0 0
\(826\) 8.79707 0.306089
\(827\) 20.1471 0.700583 0.350292 0.936641i \(-0.386083\pi\)
0.350292 + 0.936641i \(0.386083\pi\)
\(828\) 0 0
\(829\) 12.1976 0.423640 0.211820 0.977309i \(-0.432061\pi\)
0.211820 + 0.977309i \(0.432061\pi\)
\(830\) 32.1471 1.11584
\(831\) 0 0
\(832\) −23.7412 −0.823079
\(833\) 0.543637 0.0188359
\(834\) 0 0
\(835\) 12.0000 0.415277
\(836\) 2.43438 0.0841948
\(837\) 0 0
\(838\) 40.1544 1.38711
\(839\) 24.9947 0.862912 0.431456 0.902134i \(-0.358000\pi\)
0.431456 + 0.902134i \(0.358000\pi\)
\(840\) 0 0
\(841\) −22.9663 −0.791941
\(842\) 49.1996 1.69553
\(843\) 0 0
\(844\) 52.0293 1.79092
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) −28.6814 −0.985505
\(848\) −26.8779 −0.922992
\(849\) 0 0
\(850\) −2.14510 −0.0735764
\(851\) 0 0
\(852\) 0 0
\(853\) −6.73818 −0.230711 −0.115355 0.993324i \(-0.536801\pi\)
−0.115355 + 0.993324i \(0.536801\pi\)
\(854\) 29.9725 1.02564
\(855\) 0 0
\(856\) −17.4089 −0.595025
\(857\) −30.8117 −1.05251 −0.526254 0.850327i \(-0.676404\pi\)
−0.526254 + 0.850327i \(0.676404\pi\)
\(858\) 0 0
\(859\) 17.7328 0.605037 0.302518 0.953144i \(-0.402173\pi\)
0.302518 + 0.953144i \(0.402173\pi\)
\(860\) −27.5246 −0.938580
\(861\) 0 0
\(862\) 26.4132 0.899637
\(863\) 10.8476 0.369256 0.184628 0.982809i \(-0.440892\pi\)
0.184628 + 0.982809i \(0.440892\pi\)
\(864\) 0 0
\(865\) 19.0598 0.648053
\(866\) 75.2069 2.55563
\(867\) 0 0
\(868\) −39.2490 −1.33220
\(869\) 5.97255 0.202605
\(870\) 0 0
\(871\) −16.1471 −0.547123
\(872\) −15.5774 −0.527516
\(873\) 0 0
\(874\) 0 0
\(875\) −2.74657 −0.0928510
\(876\) 0 0
\(877\) 9.36909 0.316372 0.158186 0.987409i \(-0.449435\pi\)
0.158186 + 0.987409i \(0.449435\pi\)
\(878\) 40.7275 1.37449
\(879\) 0 0
\(880\) 1.81812 0.0612889
\(881\) 49.4594 1.66633 0.833165 0.553024i \(-0.186526\pi\)
0.833165 + 0.553024i \(0.186526\pi\)
\(882\) 0 0
\(883\) 40.5530 1.36472 0.682358 0.731018i \(-0.260955\pi\)
0.682358 + 0.731018i \(0.260955\pi\)
\(884\) 5.20293 0.174994
\(885\) 0 0
\(886\) −38.5530 −1.29521
\(887\) −17.1608 −0.576204 −0.288102 0.957600i \(-0.593024\pi\)
−0.288102 + 0.957600i \(0.593024\pi\)
\(888\) 0 0
\(889\) −22.1745 −0.743710
\(890\) 21.6088 0.724328
\(891\) 0 0
\(892\) 64.7382 2.16759
\(893\) 0.427052 0.0142907
\(894\) 0 0
\(895\) −17.1608 −0.573623
\(896\) 27.0671 0.904250
\(897\) 0 0
\(898\) 81.8294 2.73068
\(899\) 13.4931 0.450021
\(900\) 0 0
\(901\) 11.0368 0.367688
\(902\) −6.32499 −0.210599
\(903\) 0 0
\(904\) −1.40281 −0.0466567
\(905\) −12.0735 −0.401338
\(906\) 0 0
\(907\) 36.1387 1.19997 0.599983 0.800013i \(-0.295174\pi\)
0.599983 + 0.800013i \(0.295174\pi\)
\(908\) −46.7550 −1.55162
\(909\) 0 0
\(910\) 11.7833 0.390614
\(911\) −37.8064 −1.25258 −0.626291 0.779590i \(-0.715428\pi\)
−0.626291 + 0.779590i \(0.715428\pi\)
\(912\) 0 0
\(913\) 11.1883 0.370278
\(914\) 43.0598 1.42429
\(915\) 0 0
\(916\) −7.90006 −0.261025
\(917\) −44.1471 −1.45787
\(918\) 0 0
\(919\) −46.3133 −1.52773 −0.763867 0.645374i \(-0.776701\pi\)
−0.763867 + 0.645374i \(0.776701\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −62.5530 −2.06007
\(923\) 2.17455 0.0715761
\(924\) 0 0
\(925\) −0.456363 −0.0150051
\(926\) −21.2344 −0.697805
\(927\) 0 0
\(928\) −19.1704 −0.629300
\(929\) 4.76122 0.156211 0.0781053 0.996945i \(-0.475113\pi\)
0.0781053 + 0.996945i \(0.475113\pi\)
\(930\) 0 0
\(931\) 0.681412 0.0223324
\(932\) −10.5972 −0.347123
\(933\) 0 0
\(934\) 25.5426 0.835779
\(935\) −0.746568 −0.0244154
\(936\) 0 0
\(937\) −10.2481 −0.334791 −0.167395 0.985890i \(-0.553536\pi\)
−0.167395 + 0.985890i \(0.553536\pi\)
\(938\) 47.5667 1.55311
\(939\) 0 0
\(940\) −0.886335 −0.0289091
\(941\) 35.9725 1.17267 0.586336 0.810068i \(-0.300570\pi\)
0.586336 + 0.810068i \(0.300570\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 3.63625 0.118350
\(945\) 0 0
\(946\) −16.9442 −0.550902
\(947\) 44.9588 1.46097 0.730483 0.682931i \(-0.239295\pi\)
0.730483 + 0.682931i \(0.239295\pi\)
\(948\) 0 0
\(949\) 26.0735 0.846383
\(950\) −2.68874 −0.0872342
\(951\) 0 0
\(952\) −3.54364 −0.114850
\(953\) −12.7780 −0.413920 −0.206960 0.978349i \(-0.566357\pi\)
−0.206960 + 0.978349i \(0.566357\pi\)
\(954\) 0 0
\(955\) 14.1745 0.458678
\(956\) −40.7589 −1.31824
\(957\) 0 0
\(958\) 55.5560 1.79493
\(959\) −14.9486 −0.482715
\(960\) 0 0
\(961\) −0.825451 −0.0266275
\(962\) 1.95789 0.0631249
\(963\) 0 0
\(964\) −21.0031 −0.676463
\(965\) −3.08727 −0.0993829
\(966\) 0 0
\(967\) −27.5941 −0.887368 −0.443684 0.896183i \(-0.646329\pi\)
−0.443684 + 0.896183i \(0.646329\pi\)
\(968\) 13.4731 0.433043
\(969\) 0 0
\(970\) 1.95789 0.0628641
\(971\) 21.8255 0.700412 0.350206 0.936673i \(-0.386112\pi\)
0.350206 + 0.936673i \(0.386112\pi\)
\(972\) 0 0
\(973\) 26.0735 0.835880
\(974\) 6.83918 0.219141
\(975\) 0 0
\(976\) 12.3891 0.396565
\(977\) −51.7705 −1.65629 −0.828143 0.560517i \(-0.810603\pi\)
−0.828143 + 0.560517i \(0.810603\pi\)
\(978\) 0 0
\(979\) 7.52059 0.240359
\(980\) −1.41425 −0.0451767
\(981\) 0 0
\(982\) 9.60879 0.306629
\(983\) 19.4657 0.620859 0.310429 0.950596i \(-0.399527\pi\)
0.310429 + 0.950596i \(0.399527\pi\)
\(984\) 0 0
\(985\) −8.98627 −0.286326
\(986\) 5.26915 0.167804
\(987\) 0 0
\(988\) 6.52152 0.207477
\(989\) 0 0
\(990\) 0 0
\(991\) −28.8117 −0.915235 −0.457617 0.889149i \(-0.651297\pi\)
−0.457617 + 0.889149i \(0.651297\pi\)
\(992\) −42.8706 −1.36114
\(993\) 0 0
\(994\) −6.40586 −0.203182
\(995\) −11.6677 −0.369890
\(996\) 0 0
\(997\) −56.8516 −1.80051 −0.900253 0.435366i \(-0.856619\pi\)
−0.900253 + 0.435366i \(0.856619\pi\)
\(998\) −87.5813 −2.77234
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.a.k.1.1 3
3.2 odd 2 765.2.a.l.1.3 yes 3
5.4 even 2 3825.2.a.be.1.3 3
15.14 odd 2 3825.2.a.bf.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
765.2.a.k.1.1 3 1.1 even 1 trivial
765.2.a.l.1.3 yes 3 3.2 odd 2
3825.2.a.be.1.3 3 5.4 even 2
3825.2.a.bf.1.1 3 15.14 odd 2