Properties

Label 3825.2.a.be.1.3
Level $3825$
Weight $2$
Character 3825.1
Self dual yes
Analytic conductor $30.543$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3825,2,Mod(1,3825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3825.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.5427787731\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 765)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.14510\) of defining polynomial
Character \(\chi\) \(=\) 3825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.14510 q^{2} +2.60147 q^{4} -2.74657 q^{7} +1.29021 q^{8} +0.746568 q^{11} -2.00000 q^{13} -5.89167 q^{14} -2.43531 q^{16} -1.00000 q^{17} +1.25343 q^{19} +1.60147 q^{22} -4.29021 q^{26} -7.14510 q^{28} -2.45636 q^{29} -5.49314 q^{31} -7.80440 q^{32} -2.14510 q^{34} +0.456363 q^{37} +2.68874 q^{38} +3.94950 q^{41} -10.5804 q^{43} +1.94217 q^{44} -0.340706 q^{47} +0.543637 q^{49} -5.20293 q^{52} -11.0368 q^{53} -3.54364 q^{56} -5.26915 q^{58} -1.49314 q^{59} -5.08727 q^{61} -11.7833 q^{62} -11.8706 q^{64} +8.07355 q^{67} -2.60147 q^{68} +1.08727 q^{71} -13.0368 q^{73} +0.978945 q^{74} +3.26076 q^{76} -2.05050 q^{77} +8.00000 q^{79} +8.47208 q^{82} -14.9863 q^{83} -22.6961 q^{86} +0.963226 q^{88} +10.0735 q^{89} +5.49314 q^{91} -0.730849 q^{94} -0.912726 q^{97} +1.16616 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} - 9 q^{8} - 6 q^{11} - 6 q^{13} - 3 q^{14} + 12 q^{16} - 3 q^{17} + 12 q^{19} + 3 q^{22} - 15 q^{28} - 12 q^{29} - 18 q^{32} + 6 q^{37} - 3 q^{38} - 6 q^{43} + 3 q^{44} - 3 q^{49} - 12 q^{52}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.14510 1.51682 0.758408 0.651780i \(-0.225977\pi\)
0.758408 + 0.651780i \(0.225977\pi\)
\(3\) 0 0
\(4\) 2.60147 1.30073
\(5\) 0 0
\(6\) 0 0
\(7\) −2.74657 −1.03811 −0.519053 0.854742i \(-0.673715\pi\)
−0.519053 + 0.854742i \(0.673715\pi\)
\(8\) 1.29021 0.456156
\(9\) 0 0
\(10\) 0 0
\(11\) 0.746568 0.225099 0.112549 0.993646i \(-0.464098\pi\)
0.112549 + 0.993646i \(0.464098\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −5.89167 −1.57462
\(15\) 0 0
\(16\) −2.43531 −0.608827
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 1.25343 0.287557 0.143778 0.989610i \(-0.454075\pi\)
0.143778 + 0.989610i \(0.454075\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.60147 0.341434
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −4.29021 −0.841378
\(27\) 0 0
\(28\) −7.14510 −1.35030
\(29\) −2.45636 −0.456135 −0.228068 0.973645i \(-0.573241\pi\)
−0.228068 + 0.973645i \(0.573241\pi\)
\(30\) 0 0
\(31\) −5.49314 −0.986596 −0.493298 0.869860i \(-0.664209\pi\)
−0.493298 + 0.869860i \(0.664209\pi\)
\(32\) −7.80440 −1.37964
\(33\) 0 0
\(34\) −2.14510 −0.367882
\(35\) 0 0
\(36\) 0 0
\(37\) 0.456363 0.0750256 0.0375128 0.999296i \(-0.488057\pi\)
0.0375128 + 0.999296i \(0.488057\pi\)
\(38\) 2.68874 0.436171
\(39\) 0 0
\(40\) 0 0
\(41\) 3.94950 0.616808 0.308404 0.951255i \(-0.400205\pi\)
0.308404 + 0.951255i \(0.400205\pi\)
\(42\) 0 0
\(43\) −10.5804 −1.61350 −0.806749 0.590895i \(-0.798775\pi\)
−0.806749 + 0.590895i \(0.798775\pi\)
\(44\) 1.94217 0.292793
\(45\) 0 0
\(46\) 0 0
\(47\) −0.340706 −0.0496971 −0.0248485 0.999691i \(-0.507910\pi\)
−0.0248485 + 0.999691i \(0.507910\pi\)
\(48\) 0 0
\(49\) 0.543637 0.0776624
\(50\) 0 0
\(51\) 0 0
\(52\) −5.20293 −0.721517
\(53\) −11.0368 −1.51602 −0.758009 0.652244i \(-0.773828\pi\)
−0.758009 + 0.652244i \(0.773828\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −3.54364 −0.473538
\(57\) 0 0
\(58\) −5.26915 −0.691873
\(59\) −1.49314 −0.194390 −0.0971949 0.995265i \(-0.530987\pi\)
−0.0971949 + 0.995265i \(0.530987\pi\)
\(60\) 0 0
\(61\) −5.08727 −0.651359 −0.325679 0.945480i \(-0.605593\pi\)
−0.325679 + 0.945480i \(0.605593\pi\)
\(62\) −11.7833 −1.49649
\(63\) 0 0
\(64\) −11.8706 −1.48383
\(65\) 0 0
\(66\) 0 0
\(67\) 8.07355 0.986341 0.493170 0.869933i \(-0.335838\pi\)
0.493170 + 0.869933i \(0.335838\pi\)
\(68\) −2.60147 −0.315474
\(69\) 0 0
\(70\) 0 0
\(71\) 1.08727 0.129036 0.0645179 0.997917i \(-0.479449\pi\)
0.0645179 + 0.997917i \(0.479449\pi\)
\(72\) 0 0
\(73\) −13.0368 −1.52584 −0.762919 0.646494i \(-0.776235\pi\)
−0.762919 + 0.646494i \(0.776235\pi\)
\(74\) 0.978945 0.113800
\(75\) 0 0
\(76\) 3.26076 0.374035
\(77\) −2.05050 −0.233676
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 8.47208 0.935585
\(83\) −14.9863 −1.64496 −0.822479 0.568796i \(-0.807409\pi\)
−0.822479 + 0.568796i \(0.807409\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −22.6961 −2.44738
\(87\) 0 0
\(88\) 0.963226 0.102680
\(89\) 10.0735 1.06779 0.533897 0.845550i \(-0.320727\pi\)
0.533897 + 0.845550i \(0.320727\pi\)
\(90\) 0 0
\(91\) 5.49314 0.575837
\(92\) 0 0
\(93\) 0 0
\(94\) −0.730849 −0.0753814
\(95\) 0 0
\(96\) 0 0
\(97\) −0.912726 −0.0926733 −0.0463366 0.998926i \(-0.514755\pi\)
−0.0463366 + 0.998926i \(0.514755\pi\)
\(98\) 1.16616 0.117800
\(99\) 0 0
\(100\) 0 0
\(101\) 14.9863 1.49119 0.745595 0.666399i \(-0.232165\pi\)
0.745595 + 0.666399i \(0.232165\pi\)
\(102\) 0 0
\(103\) −9.08727 −0.895396 −0.447698 0.894185i \(-0.647756\pi\)
−0.447698 + 0.894185i \(0.647756\pi\)
\(104\) −2.58041 −0.253030
\(105\) 0 0
\(106\) −23.6750 −2.29952
\(107\) −13.4931 −1.30443 −0.652215 0.758034i \(-0.726160\pi\)
−0.652215 + 0.758034i \(0.726160\pi\)
\(108\) 0 0
\(109\) 12.0735 1.15644 0.578218 0.815882i \(-0.303748\pi\)
0.578218 + 0.815882i \(0.303748\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 6.68874 0.632027
\(113\) −1.08727 −0.102282 −0.0511411 0.998691i \(-0.516286\pi\)
−0.0511411 + 0.998691i \(0.516286\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.39014 −0.593310
\(117\) 0 0
\(118\) −3.20293 −0.294854
\(119\) 2.74657 0.251777
\(120\) 0 0
\(121\) −10.4426 −0.949331
\(122\) −10.9127 −0.987992
\(123\) 0 0
\(124\) −14.2902 −1.28330
\(125\) 0 0
\(126\) 0 0
\(127\) 8.07355 0.716411 0.358206 0.933643i \(-0.383389\pi\)
0.358206 + 0.933643i \(0.383389\pi\)
\(128\) −9.85490 −0.871058
\(129\) 0 0
\(130\) 0 0
\(131\) −16.0735 −1.40435 −0.702176 0.712003i \(-0.747788\pi\)
−0.702176 + 0.712003i \(0.747788\pi\)
\(132\) 0 0
\(133\) −3.44264 −0.298514
\(134\) 17.3186 1.49610
\(135\) 0 0
\(136\) −1.29021 −0.110634
\(137\) 5.44264 0.464996 0.232498 0.972597i \(-0.425310\pi\)
0.232498 + 0.972597i \(0.425310\pi\)
\(138\) 0 0
\(139\) 9.49314 0.805197 0.402599 0.915377i \(-0.368107\pi\)
0.402599 + 0.915377i \(0.368107\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.33231 0.195724
\(143\) −1.49314 −0.124862
\(144\) 0 0
\(145\) 0 0
\(146\) −27.9652 −2.31442
\(147\) 0 0
\(148\) 1.18721 0.0975882
\(149\) −10.0735 −0.825257 −0.412629 0.910899i \(-0.635389\pi\)
−0.412629 + 0.910899i \(0.635389\pi\)
\(150\) 0 0
\(151\) −4.34071 −0.353242 −0.176621 0.984279i \(-0.556517\pi\)
−0.176621 + 0.984279i \(0.556517\pi\)
\(152\) 1.61718 0.131171
\(153\) 0 0
\(154\) −4.39853 −0.354444
\(155\) 0 0
\(156\) 0 0
\(157\) 12.1745 0.971635 0.485817 0.874060i \(-0.338522\pi\)
0.485817 + 0.874060i \(0.338522\pi\)
\(158\) 17.1608 1.36524
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 22.3133 1.74771 0.873854 0.486188i \(-0.161613\pi\)
0.873854 + 0.486188i \(0.161613\pi\)
\(164\) 10.2745 0.802303
\(165\) 0 0
\(166\) −32.1471 −2.49510
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) −27.5246 −2.09873
\(173\) 19.0598 1.44909 0.724546 0.689227i \(-0.242050\pi\)
0.724546 + 0.689227i \(0.242050\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.81812 −0.137046
\(177\) 0 0
\(178\) 21.6088 1.61965
\(179\) 17.1608 1.28266 0.641330 0.767265i \(-0.278383\pi\)
0.641330 + 0.767265i \(0.278383\pi\)
\(180\) 0 0
\(181\) 12.0735 0.897420 0.448710 0.893677i \(-0.351884\pi\)
0.448710 + 0.893677i \(0.351884\pi\)
\(182\) 11.7833 0.873439
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.746568 −0.0545945
\(188\) −0.886335 −0.0646426
\(189\) 0 0
\(190\) 0 0
\(191\) −14.1745 −1.02563 −0.512817 0.858498i \(-0.671398\pi\)
−0.512817 + 0.858498i \(0.671398\pi\)
\(192\) 0 0
\(193\) −3.08727 −0.222227 −0.111113 0.993808i \(-0.535442\pi\)
−0.111113 + 0.993808i \(0.535442\pi\)
\(194\) −1.95789 −0.140568
\(195\) 0 0
\(196\) 1.41425 0.101018
\(197\) −8.98627 −0.640245 −0.320123 0.947376i \(-0.603724\pi\)
−0.320123 + 0.947376i \(0.603724\pi\)
\(198\) 0 0
\(199\) 11.6677 0.827100 0.413550 0.910481i \(-0.364289\pi\)
0.413550 + 0.910481i \(0.364289\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 32.1471 2.26186
\(203\) 6.74657 0.473516
\(204\) 0 0
\(205\) 0 0
\(206\) −19.4931 −1.35815
\(207\) 0 0
\(208\) 4.87062 0.337716
\(209\) 0.935772 0.0647287
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) −28.7118 −1.97193
\(213\) 0 0
\(214\) −28.9442 −1.97858
\(215\) 0 0
\(216\) 0 0
\(217\) 15.0873 1.02419
\(218\) 25.8990 1.75410
\(219\) 0 0
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) −24.8853 −1.66644 −0.833221 0.552941i \(-0.813506\pi\)
−0.833221 + 0.552941i \(0.813506\pi\)
\(224\) 21.4353 1.43221
\(225\) 0 0
\(226\) −2.33231 −0.155143
\(227\) 17.9725 1.19288 0.596440 0.802658i \(-0.296581\pi\)
0.596440 + 0.802658i \(0.296581\pi\)
\(228\) 0 0
\(229\) −3.03677 −0.200676 −0.100338 0.994953i \(-0.531992\pi\)
−0.100338 + 0.994953i \(0.531992\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.16921 −0.208069
\(233\) 4.07355 0.266867 0.133433 0.991058i \(-0.457400\pi\)
0.133433 + 0.991058i \(0.457400\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −3.88434 −0.252849
\(237\) 0 0
\(238\) 5.89167 0.381900
\(239\) −15.6677 −1.01346 −0.506729 0.862105i \(-0.669146\pi\)
−0.506729 + 0.862105i \(0.669146\pi\)
\(240\) 0 0
\(241\) −8.07355 −0.520063 −0.260031 0.965600i \(-0.583733\pi\)
−0.260031 + 0.965600i \(0.583733\pi\)
\(242\) −22.4005 −1.43996
\(243\) 0 0
\(244\) −13.2344 −0.847244
\(245\) 0 0
\(246\) 0 0
\(247\) −2.50686 −0.159508
\(248\) −7.08727 −0.450042
\(249\) 0 0
\(250\) 0 0
\(251\) −13.4931 −0.851679 −0.425840 0.904799i \(-0.640021\pi\)
−0.425840 + 0.904799i \(0.640021\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 17.3186 1.08666
\(255\) 0 0
\(256\) 2.60147 0.162592
\(257\) 8.17455 0.509914 0.254957 0.966952i \(-0.417939\pi\)
0.254957 + 0.966952i \(0.417939\pi\)
\(258\) 0 0
\(259\) −1.25343 −0.0778845
\(260\) 0 0
\(261\) 0 0
\(262\) −34.4794 −2.13015
\(263\) −13.8338 −0.853031 −0.426516 0.904480i \(-0.640259\pi\)
−0.426516 + 0.904480i \(0.640259\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −7.38481 −0.452792
\(267\) 0 0
\(268\) 21.0031 1.28297
\(269\) −12.5299 −0.763962 −0.381981 0.924170i \(-0.624758\pi\)
−0.381981 + 0.924170i \(0.624758\pi\)
\(270\) 0 0
\(271\) 13.1608 0.799463 0.399731 0.916632i \(-0.369103\pi\)
0.399731 + 0.916632i \(0.369103\pi\)
\(272\) 2.43531 0.147662
\(273\) 0 0
\(274\) 11.6750 0.705313
\(275\) 0 0
\(276\) 0 0
\(277\) −3.08727 −0.185496 −0.0927482 0.995690i \(-0.529565\pi\)
−0.0927482 + 0.995690i \(0.529565\pi\)
\(278\) 20.3638 1.22134
\(279\) 0 0
\(280\) 0 0
\(281\) −2.98627 −0.178146 −0.0890731 0.996025i \(-0.528390\pi\)
−0.0890731 + 0.996025i \(0.528390\pi\)
\(282\) 0 0
\(283\) −23.3270 −1.38664 −0.693322 0.720627i \(-0.743854\pi\)
−0.693322 + 0.720627i \(0.743854\pi\)
\(284\) 2.82851 0.167841
\(285\) 0 0
\(286\) −3.20293 −0.189393
\(287\) −10.8476 −0.640312
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) −33.9147 −1.98471
\(293\) 24.0966 1.40774 0.703869 0.710330i \(-0.251454\pi\)
0.703869 + 0.710330i \(0.251454\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.588802 0.0342234
\(297\) 0 0
\(298\) −21.6088 −1.25176
\(299\) 0 0
\(300\) 0 0
\(301\) 29.0598 1.67498
\(302\) −9.31126 −0.535803
\(303\) 0 0
\(304\) −3.05249 −0.175072
\(305\) 0 0
\(306\) 0 0
\(307\) −24.0735 −1.37395 −0.686975 0.726681i \(-0.741062\pi\)
−0.686975 + 0.726681i \(0.741062\pi\)
\(308\) −5.33431 −0.303950
\(309\) 0 0
\(310\) 0 0
\(311\) −4.84757 −0.274880 −0.137440 0.990510i \(-0.543888\pi\)
−0.137440 + 0.990510i \(0.543888\pi\)
\(312\) 0 0
\(313\) 31.9220 1.80434 0.902170 0.431380i \(-0.141973\pi\)
0.902170 + 0.431380i \(0.141973\pi\)
\(314\) 26.1157 1.47379
\(315\) 0 0
\(316\) 20.8117 1.17075
\(317\) −23.1608 −1.30084 −0.650421 0.759574i \(-0.725407\pi\)
−0.650421 + 0.759574i \(0.725407\pi\)
\(318\) 0 0
\(319\) −1.83384 −0.102675
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.25343 −0.0697428
\(324\) 0 0
\(325\) 0 0
\(326\) 47.8642 2.65095
\(327\) 0 0
\(328\) 5.09567 0.281361
\(329\) 0.935772 0.0515908
\(330\) 0 0
\(331\) 19.2260 1.05676 0.528378 0.849009i \(-0.322801\pi\)
0.528378 + 0.849009i \(0.322801\pi\)
\(332\) −38.9863 −2.13965
\(333\) 0 0
\(334\) 25.7412 1.40850
\(335\) 0 0
\(336\) 0 0
\(337\) 31.1103 1.69469 0.847344 0.531045i \(-0.178201\pi\)
0.847344 + 0.531045i \(0.178201\pi\)
\(338\) −19.3059 −1.05010
\(339\) 0 0
\(340\) 0 0
\(341\) −4.10100 −0.222082
\(342\) 0 0
\(343\) 17.7328 0.957483
\(344\) −13.6509 −0.736007
\(345\) 0 0
\(346\) 40.8853 2.19801
\(347\) −0.811724 −0.0435757 −0.0217878 0.999763i \(-0.506936\pi\)
−0.0217878 + 0.999763i \(0.506936\pi\)
\(348\) 0 0
\(349\) 17.1103 0.915894 0.457947 0.888979i \(-0.348585\pi\)
0.457947 + 0.888979i \(0.348585\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5.82651 −0.310554
\(353\) −26.7045 −1.42133 −0.710667 0.703528i \(-0.751607\pi\)
−0.710667 + 0.703528i \(0.751607\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 26.2060 1.38891
\(357\) 0 0
\(358\) 36.8117 1.94556
\(359\) −1.49314 −0.0788047 −0.0394024 0.999223i \(-0.512545\pi\)
−0.0394024 + 0.999223i \(0.512545\pi\)
\(360\) 0 0
\(361\) −17.4289 −0.917311
\(362\) 25.8990 1.36122
\(363\) 0 0
\(364\) 14.2902 0.749010
\(365\) 0 0
\(366\) 0 0
\(367\) 12.1471 0.634073 0.317037 0.948413i \(-0.397312\pi\)
0.317037 + 0.948413i \(0.397312\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 30.3133 1.57379
\(372\) 0 0
\(373\) −0.0735473 −0.00380813 −0.00190407 0.999998i \(-0.500606\pi\)
−0.00190407 + 0.999998i \(0.500606\pi\)
\(374\) −1.60147 −0.0828098
\(375\) 0 0
\(376\) −0.439581 −0.0226696
\(377\) 4.91273 0.253018
\(378\) 0 0
\(379\) 23.6677 1.21573 0.607864 0.794041i \(-0.292027\pi\)
0.607864 + 0.794041i \(0.292027\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −30.4059 −1.55570
\(383\) −23.6593 −1.20893 −0.604467 0.796630i \(-0.706614\pi\)
−0.604467 + 0.796630i \(0.706614\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6.62252 −0.337077
\(387\) 0 0
\(388\) −2.37442 −0.120543
\(389\) −22.8853 −1.16033 −0.580165 0.814499i \(-0.697012\pi\)
−0.580165 + 0.814499i \(0.697012\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.701404 0.0354262
\(393\) 0 0
\(394\) −19.2765 −0.971135
\(395\) 0 0
\(396\) 0 0
\(397\) 3.44264 0.172781 0.0863905 0.996261i \(-0.472467\pi\)
0.0863905 + 0.996261i \(0.472467\pi\)
\(398\) 25.0284 1.25456
\(399\) 0 0
\(400\) 0 0
\(401\) −6.12405 −0.305820 −0.152910 0.988240i \(-0.548865\pi\)
−0.152910 + 0.988240i \(0.548865\pi\)
\(402\) 0 0
\(403\) 10.9863 0.547265
\(404\) 38.9863 1.93964
\(405\) 0 0
\(406\) 14.4721 0.718237
\(407\) 0.340706 0.0168882
\(408\) 0 0
\(409\) 32.7780 1.62077 0.810384 0.585899i \(-0.199258\pi\)
0.810384 + 0.585899i \(0.199258\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −23.6402 −1.16467
\(413\) 4.10100 0.201797
\(414\) 0 0
\(415\) 0 0
\(416\) 15.6088 0.765284
\(417\) 0 0
\(418\) 2.00733 0.0981816
\(419\) −18.7191 −0.914489 −0.457244 0.889341i \(-0.651163\pi\)
−0.457244 + 0.889341i \(0.651163\pi\)
\(420\) 0 0
\(421\) −22.9358 −1.11782 −0.558911 0.829228i \(-0.688781\pi\)
−0.558911 + 0.829228i \(0.688781\pi\)
\(422\) 42.9021 2.08844
\(423\) 0 0
\(424\) −14.2397 −0.691541
\(425\) 0 0
\(426\) 0 0
\(427\) 13.9725 0.676179
\(428\) −35.1019 −1.69672
\(429\) 0 0
\(430\) 0 0
\(431\) −12.3133 −0.593108 −0.296554 0.955016i \(-0.595838\pi\)
−0.296554 + 0.955016i \(0.595838\pi\)
\(432\) 0 0
\(433\) 35.0598 1.68487 0.842434 0.538800i \(-0.181122\pi\)
0.842434 + 0.538800i \(0.181122\pi\)
\(434\) 32.3638 1.55351
\(435\) 0 0
\(436\) 31.4089 1.50421
\(437\) 0 0
\(438\) 0 0
\(439\) −18.9863 −0.906165 −0.453083 0.891468i \(-0.649676\pi\)
−0.453083 + 0.891468i \(0.649676\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4.29021 0.204064
\(443\) −17.9725 −0.853901 −0.426951 0.904275i \(-0.640412\pi\)
−0.426951 + 0.904275i \(0.640412\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −53.3815 −2.52769
\(447\) 0 0
\(448\) 32.6035 1.54037
\(449\) −38.1471 −1.80027 −0.900136 0.435608i \(-0.856533\pi\)
−0.900136 + 0.435608i \(0.856533\pi\)
\(450\) 0 0
\(451\) 2.94857 0.138843
\(452\) −2.82851 −0.133042
\(453\) 0 0
\(454\) 38.5530 1.80938
\(455\) 0 0
\(456\) 0 0
\(457\) 20.0735 0.939001 0.469500 0.882932i \(-0.344434\pi\)
0.469500 + 0.882932i \(0.344434\pi\)
\(458\) −6.51419 −0.304388
\(459\) 0 0
\(460\) 0 0
\(461\) 29.1608 1.35815 0.679077 0.734067i \(-0.262380\pi\)
0.679077 + 0.734067i \(0.262380\pi\)
\(462\) 0 0
\(463\) −9.89900 −0.460045 −0.230023 0.973185i \(-0.573880\pi\)
−0.230023 + 0.973185i \(0.573880\pi\)
\(464\) 5.98200 0.277707
\(465\) 0 0
\(466\) 8.73818 0.404788
\(467\) 11.9074 0.551008 0.275504 0.961300i \(-0.411155\pi\)
0.275504 + 0.961300i \(0.411155\pi\)
\(468\) 0 0
\(469\) −22.1745 −1.02393
\(470\) 0 0
\(471\) 0 0
\(472\) −1.92645 −0.0886722
\(473\) −7.89900 −0.363196
\(474\) 0 0
\(475\) 0 0
\(476\) 7.14510 0.327495
\(477\) 0 0
\(478\) −33.6088 −1.53723
\(479\) −25.8990 −1.18336 −0.591678 0.806175i \(-0.701534\pi\)
−0.591678 + 0.806175i \(0.701534\pi\)
\(480\) 0 0
\(481\) −0.912726 −0.0416167
\(482\) −17.3186 −0.788840
\(483\) 0 0
\(484\) −27.1662 −1.23483
\(485\) 0 0
\(486\) 0 0
\(487\) 3.18828 0.144475 0.0722373 0.997387i \(-0.476986\pi\)
0.0722373 + 0.997387i \(0.476986\pi\)
\(488\) −6.56363 −0.297122
\(489\) 0 0
\(490\) 0 0
\(491\) −4.47941 −0.202153 −0.101076 0.994879i \(-0.532229\pi\)
−0.101076 + 0.994879i \(0.532229\pi\)
\(492\) 0 0
\(493\) 2.45636 0.110629
\(494\) −5.37748 −0.241944
\(495\) 0 0
\(496\) 13.3775 0.600667
\(497\) −2.98627 −0.133953
\(498\) 0 0
\(499\) 40.8285 1.82773 0.913867 0.406013i \(-0.133081\pi\)
0.913867 + 0.406013i \(0.133081\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −28.9442 −1.29184
\(503\) −11.3186 −0.504671 −0.252335 0.967640i \(-0.581199\pi\)
−0.252335 + 0.967640i \(0.581199\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 21.0031 0.931860
\(509\) −38.9863 −1.72804 −0.864018 0.503461i \(-0.832060\pi\)
−0.864018 + 0.503461i \(0.832060\pi\)
\(510\) 0 0
\(511\) 35.8064 1.58398
\(512\) 25.2902 1.11768
\(513\) 0 0
\(514\) 17.5352 0.773447
\(515\) 0 0
\(516\) 0 0
\(517\) −0.254360 −0.0111868
\(518\) −2.68874 −0.118136
\(519\) 0 0
\(520\) 0 0
\(521\) −6.12405 −0.268299 −0.134150 0.990961i \(-0.542830\pi\)
−0.134150 + 0.990961i \(0.542830\pi\)
\(522\) 0 0
\(523\) 3.59414 0.157161 0.0785803 0.996908i \(-0.474961\pi\)
0.0785803 + 0.996908i \(0.474961\pi\)
\(524\) −41.8148 −1.82669
\(525\) 0 0
\(526\) −29.6750 −1.29389
\(527\) 5.49314 0.239285
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) −8.95590 −0.388287
\(533\) −7.89900 −0.342144
\(534\) 0 0
\(535\) 0 0
\(536\) 10.4165 0.449926
\(537\) 0 0
\(538\) −26.8779 −1.15879
\(539\) 0.405862 0.0174817
\(540\) 0 0
\(541\) −42.1471 −1.81205 −0.906023 0.423229i \(-0.860896\pi\)
−0.906023 + 0.423229i \(0.860896\pi\)
\(542\) 28.2313 1.21264
\(543\) 0 0
\(544\) 7.80440 0.334611
\(545\) 0 0
\(546\) 0 0
\(547\) −21.1524 −0.904413 −0.452206 0.891913i \(-0.649363\pi\)
−0.452206 + 0.891913i \(0.649363\pi\)
\(548\) 14.1588 0.604835
\(549\) 0 0
\(550\) 0 0
\(551\) −3.07888 −0.131165
\(552\) 0 0
\(553\) −21.9725 −0.934368
\(554\) −6.62252 −0.281364
\(555\) 0 0
\(556\) 24.6961 1.04735
\(557\) −35.9725 −1.52421 −0.762103 0.647456i \(-0.775833\pi\)
−0.762103 + 0.647456i \(0.775833\pi\)
\(558\) 0 0
\(559\) 21.1608 0.895007
\(560\) 0 0
\(561\) 0 0
\(562\) −6.40586 −0.270215
\(563\) 11.2260 0.473119 0.236559 0.971617i \(-0.423980\pi\)
0.236559 + 0.971617i \(0.423980\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −50.0388 −2.10329
\(567\) 0 0
\(568\) 1.40281 0.0588605
\(569\) −4.91273 −0.205952 −0.102976 0.994684i \(-0.532837\pi\)
−0.102976 + 0.994684i \(0.532837\pi\)
\(570\) 0 0
\(571\) 22.3049 0.933429 0.466715 0.884408i \(-0.345437\pi\)
0.466715 + 0.884408i \(0.345437\pi\)
\(572\) −3.88434 −0.162413
\(573\) 0 0
\(574\) −23.2692 −0.971236
\(575\) 0 0
\(576\) 0 0
\(577\) −7.16082 −0.298109 −0.149054 0.988829i \(-0.547623\pi\)
−0.149054 + 0.988829i \(0.547623\pi\)
\(578\) 2.14510 0.0892245
\(579\) 0 0
\(580\) 0 0
\(581\) 41.1608 1.70764
\(582\) 0 0
\(583\) −8.23970 −0.341254
\(584\) −16.8201 −0.696021
\(585\) 0 0
\(586\) 51.6897 2.13528
\(587\) −19.4280 −0.801879 −0.400939 0.916105i \(-0.631316\pi\)
−0.400939 + 0.916105i \(0.631316\pi\)
\(588\) 0 0
\(589\) −6.88527 −0.283703
\(590\) 0 0
\(591\) 0 0
\(592\) −1.11138 −0.0456776
\(593\) 32.4289 1.33170 0.665848 0.746088i \(-0.268070\pi\)
0.665848 + 0.746088i \(0.268070\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −26.2060 −1.07344
\(597\) 0 0
\(598\) 0 0
\(599\) 8.14709 0.332881 0.166441 0.986051i \(-0.446773\pi\)
0.166441 + 0.986051i \(0.446773\pi\)
\(600\) 0 0
\(601\) 13.1334 0.535721 0.267861 0.963458i \(-0.413683\pi\)
0.267861 + 0.963458i \(0.413683\pi\)
\(602\) 62.3363 2.54064
\(603\) 0 0
\(604\) −11.2922 −0.459473
\(605\) 0 0
\(606\) 0 0
\(607\) 6.26716 0.254376 0.127188 0.991879i \(-0.459405\pi\)
0.127188 + 0.991879i \(0.459405\pi\)
\(608\) −9.78228 −0.396724
\(609\) 0 0
\(610\) 0 0
\(611\) 0.681412 0.0275670
\(612\) 0 0
\(613\) 19.0137 0.767957 0.383979 0.923342i \(-0.374554\pi\)
0.383979 + 0.923342i \(0.374554\pi\)
\(614\) −51.6402 −2.08403
\(615\) 0 0
\(616\) −2.64557 −0.106593
\(617\) 25.0873 1.00998 0.504988 0.863126i \(-0.331497\pi\)
0.504988 + 0.863126i \(0.331497\pi\)
\(618\) 0 0
\(619\) 8.81172 0.354173 0.177087 0.984195i \(-0.443333\pi\)
0.177087 + 0.984195i \(0.443333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −10.3985 −0.416943
\(623\) −27.6677 −1.10848
\(624\) 0 0
\(625\) 0 0
\(626\) 68.4761 2.73685
\(627\) 0 0
\(628\) 31.6717 1.26384
\(629\) −0.456363 −0.0181964
\(630\) 0 0
\(631\) −34.3133 −1.36599 −0.682994 0.730424i \(-0.739323\pi\)
−0.682994 + 0.730424i \(0.739323\pi\)
\(632\) 10.3216 0.410573
\(633\) 0 0
\(634\) −49.6823 −1.97314
\(635\) 0 0
\(636\) 0 0
\(637\) −1.08727 −0.0430794
\(638\) −3.93378 −0.155740
\(639\) 0 0
\(640\) 0 0
\(641\) 47.0368 1.85784 0.928920 0.370279i \(-0.120738\pi\)
0.928920 + 0.370279i \(0.120738\pi\)
\(642\) 0 0
\(643\) −18.1662 −0.716403 −0.358202 0.933644i \(-0.616610\pi\)
−0.358202 + 0.933644i \(0.616610\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.68874 −0.105787
\(647\) −32.9588 −1.29574 −0.647872 0.761749i \(-0.724341\pi\)
−0.647872 + 0.761749i \(0.724341\pi\)
\(648\) 0 0
\(649\) −1.11473 −0.0437569
\(650\) 0 0
\(651\) 0 0
\(652\) 58.0472 2.27330
\(653\) −28.0735 −1.09860 −0.549301 0.835624i \(-0.685106\pi\)
−0.549301 + 0.835624i \(0.685106\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −9.61825 −0.375529
\(657\) 0 0
\(658\) 2.00733 0.0782538
\(659\) −15.6677 −0.610326 −0.305163 0.952300i \(-0.598711\pi\)
−0.305163 + 0.952300i \(0.598711\pi\)
\(660\) 0 0
\(661\) −12.8622 −0.500283 −0.250141 0.968209i \(-0.580477\pi\)
−0.250141 + 0.968209i \(0.580477\pi\)
\(662\) 41.2417 1.60290
\(663\) 0 0
\(664\) −19.3354 −0.750358
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 31.2176 1.20784
\(669\) 0 0
\(670\) 0 0
\(671\) −3.79800 −0.146620
\(672\) 0 0
\(673\) 35.0873 1.35252 0.676258 0.736665i \(-0.263601\pi\)
0.676258 + 0.736665i \(0.263601\pi\)
\(674\) 66.7348 2.57053
\(675\) 0 0
\(676\) −23.4132 −0.900507
\(677\) 49.3354 1.89611 0.948056 0.318103i \(-0.103046\pi\)
0.948056 + 0.318103i \(0.103046\pi\)
\(678\) 0 0
\(679\) 2.50686 0.0962046
\(680\) 0 0
\(681\) 0 0
\(682\) −8.79707 −0.336857
\(683\) 1.49314 0.0571333 0.0285666 0.999592i \(-0.490906\pi\)
0.0285666 + 0.999592i \(0.490906\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 38.0388 1.45233
\(687\) 0 0
\(688\) 25.7666 0.982341
\(689\) 22.0735 0.840935
\(690\) 0 0
\(691\) −40.6265 −1.54551 −0.772753 0.634707i \(-0.781121\pi\)
−0.772753 + 0.634707i \(0.781121\pi\)
\(692\) 49.5835 1.88488
\(693\) 0 0
\(694\) −1.74123 −0.0660963
\(695\) 0 0
\(696\) 0 0
\(697\) −3.94950 −0.149598
\(698\) 36.7034 1.38924
\(699\) 0 0
\(700\) 0 0
\(701\) −41.1608 −1.55462 −0.777311 0.629116i \(-0.783417\pi\)
−0.777311 + 0.629116i \(0.783417\pi\)
\(702\) 0 0
\(703\) 0.572020 0.0215741
\(704\) −8.86223 −0.334008
\(705\) 0 0
\(706\) −57.2838 −2.15590
\(707\) −41.1608 −1.54801
\(708\) 0 0
\(709\) −43.2069 −1.62267 −0.811335 0.584582i \(-0.801259\pi\)
−0.811335 + 0.584582i \(0.801259\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 12.9969 0.487081
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 44.6433 1.66840
\(717\) 0 0
\(718\) −3.20293 −0.119532
\(719\) −48.3133 −1.80178 −0.900890 0.434047i \(-0.857085\pi\)
−0.900890 + 0.434047i \(0.857085\pi\)
\(720\) 0 0
\(721\) 24.9588 0.929515
\(722\) −37.3868 −1.39139
\(723\) 0 0
\(724\) 31.4089 1.16730
\(725\) 0 0
\(726\) 0 0
\(727\) 2.91273 0.108027 0.0540135 0.998540i \(-0.482799\pi\)
0.0540135 + 0.998540i \(0.482799\pi\)
\(728\) 7.08727 0.262672
\(729\) 0 0
\(730\) 0 0
\(731\) 10.5804 0.391331
\(732\) 0 0
\(733\) −14.8117 −0.547084 −0.273542 0.961860i \(-0.588195\pi\)
−0.273542 + 0.961860i \(0.588195\pi\)
\(734\) 26.0568 0.961773
\(735\) 0 0
\(736\) 0 0
\(737\) 6.02745 0.222024
\(738\) 0 0
\(739\) −35.3354 −1.29983 −0.649916 0.760006i \(-0.725196\pi\)
−0.649916 + 0.760006i \(0.725196\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 65.0250 2.38714
\(743\) 2.98627 0.109556 0.0547779 0.998499i \(-0.482555\pi\)
0.0547779 + 0.998499i \(0.482555\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.157766 −0.00577624
\(747\) 0 0
\(748\) −1.94217 −0.0710128
\(749\) 37.0598 1.35414
\(750\) 0 0
\(751\) −9.34604 −0.341042 −0.170521 0.985354i \(-0.554545\pi\)
−0.170521 + 0.985354i \(0.554545\pi\)
\(752\) 0.829724 0.0302569
\(753\) 0 0
\(754\) 10.5383 0.383782
\(755\) 0 0
\(756\) 0 0
\(757\) 19.8255 0.720568 0.360284 0.932843i \(-0.382680\pi\)
0.360284 + 0.932843i \(0.382680\pi\)
\(758\) 50.7696 1.84404
\(759\) 0 0
\(760\) 0 0
\(761\) 46.0735 1.67016 0.835082 0.550125i \(-0.185420\pi\)
0.835082 + 0.550125i \(0.185420\pi\)
\(762\) 0 0
\(763\) −33.1608 −1.20050
\(764\) −36.8746 −1.33408
\(765\) 0 0
\(766\) −50.7516 −1.83373
\(767\) 2.98627 0.107828
\(768\) 0 0
\(769\) −9.44264 −0.340510 −0.170255 0.985400i \(-0.554459\pi\)
−0.170255 + 0.985400i \(0.554459\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −8.03144 −0.289058
\(773\) −11.2849 −0.405889 −0.202944 0.979190i \(-0.565051\pi\)
−0.202944 + 0.979190i \(0.565051\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.17760 −0.0422735
\(777\) 0 0
\(778\) −49.0913 −1.76001
\(779\) 4.95043 0.177367
\(780\) 0 0
\(781\) 0.811724 0.0290458
\(782\) 0 0
\(783\) 0 0
\(784\) −1.32392 −0.0472830
\(785\) 0 0
\(786\) 0 0
\(787\) 21.6318 0.771092 0.385546 0.922689i \(-0.374013\pi\)
0.385546 + 0.922689i \(0.374013\pi\)
\(788\) −23.3775 −0.832788
\(789\) 0 0
\(790\) 0 0
\(791\) 2.98627 0.106180
\(792\) 0 0
\(793\) 10.1745 0.361309
\(794\) 7.38481 0.262077
\(795\) 0 0
\(796\) 30.3531 1.07584
\(797\) −18.9358 −0.670739 −0.335370 0.942087i \(-0.608861\pi\)
−0.335370 + 0.942087i \(0.608861\pi\)
\(798\) 0 0
\(799\) 0.340706 0.0120533
\(800\) 0 0
\(801\) 0 0
\(802\) −13.1367 −0.463873
\(803\) −9.73284 −0.343465
\(804\) 0 0
\(805\) 0 0
\(806\) 23.5667 0.830101
\(807\) 0 0
\(808\) 19.3354 0.680216
\(809\) 40.3216 1.41763 0.708817 0.705393i \(-0.249229\pi\)
0.708817 + 0.705393i \(0.249229\pi\)
\(810\) 0 0
\(811\) −8.34910 −0.293176 −0.146588 0.989198i \(-0.546829\pi\)
−0.146588 + 0.989198i \(0.546829\pi\)
\(812\) 17.5510 0.615918
\(813\) 0 0
\(814\) 0.730849 0.0256163
\(815\) 0 0
\(816\) 0 0
\(817\) −13.2618 −0.463972
\(818\) 70.3122 2.45841
\(819\) 0 0
\(820\) 0 0
\(821\) −21.7980 −0.760755 −0.380378 0.924831i \(-0.624206\pi\)
−0.380378 + 0.924831i \(0.624206\pi\)
\(822\) 0 0
\(823\) 53.5308 1.86597 0.932984 0.359918i \(-0.117195\pi\)
0.932984 + 0.359918i \(0.117195\pi\)
\(824\) −11.7245 −0.408441
\(825\) 0 0
\(826\) 8.79707 0.306089
\(827\) −20.1471 −0.700583 −0.350292 0.936641i \(-0.613917\pi\)
−0.350292 + 0.936641i \(0.613917\pi\)
\(828\) 0 0
\(829\) 12.1976 0.423640 0.211820 0.977309i \(-0.432061\pi\)
0.211820 + 0.977309i \(0.432061\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 23.7412 0.823079
\(833\) −0.543637 −0.0188359
\(834\) 0 0
\(835\) 0 0
\(836\) 2.43438 0.0841948
\(837\) 0 0
\(838\) −40.1544 −1.38711
\(839\) 24.9947 0.862912 0.431456 0.902134i \(-0.358000\pi\)
0.431456 + 0.902134i \(0.358000\pi\)
\(840\) 0 0
\(841\) −22.9663 −0.791941
\(842\) −49.1996 −1.69553
\(843\) 0 0
\(844\) 52.0293 1.79092
\(845\) 0 0
\(846\) 0 0
\(847\) 28.6814 0.985505
\(848\) 26.8779 0.922992
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 6.73818 0.230711 0.115355 0.993324i \(-0.463199\pi\)
0.115355 + 0.993324i \(0.463199\pi\)
\(854\) 29.9725 1.02564
\(855\) 0 0
\(856\) −17.4089 −0.595025
\(857\) 30.8117 1.05251 0.526254 0.850327i \(-0.323596\pi\)
0.526254 + 0.850327i \(0.323596\pi\)
\(858\) 0 0
\(859\) 17.7328 0.605037 0.302518 0.953144i \(-0.402173\pi\)
0.302518 + 0.953144i \(0.402173\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −26.4132 −0.899637
\(863\) −10.8476 −0.369256 −0.184628 0.982809i \(-0.559108\pi\)
−0.184628 + 0.982809i \(0.559108\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 75.2069 2.55563
\(867\) 0 0
\(868\) 39.2490 1.33220
\(869\) 5.97255 0.202605
\(870\) 0 0
\(871\) −16.1471 −0.547123
\(872\) 15.5774 0.527516
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −9.36909 −0.316372 −0.158186 0.987409i \(-0.550565\pi\)
−0.158186 + 0.987409i \(0.550565\pi\)
\(878\) −40.7275 −1.37449
\(879\) 0 0
\(880\) 0 0
\(881\) 49.4594 1.66633 0.833165 0.553024i \(-0.186526\pi\)
0.833165 + 0.553024i \(0.186526\pi\)
\(882\) 0 0
\(883\) −40.5530 −1.36472 −0.682358 0.731018i \(-0.739045\pi\)
−0.682358 + 0.731018i \(0.739045\pi\)
\(884\) 5.20293 0.174994
\(885\) 0 0
\(886\) −38.5530 −1.29521
\(887\) 17.1608 0.576204 0.288102 0.957600i \(-0.406976\pi\)
0.288102 + 0.957600i \(0.406976\pi\)
\(888\) 0 0
\(889\) −22.1745 −0.743710
\(890\) 0 0
\(891\) 0 0
\(892\) −64.7382 −2.16759
\(893\) −0.427052 −0.0142907
\(894\) 0 0
\(895\) 0 0
\(896\) 27.0671 0.904250
\(897\) 0 0
\(898\) −81.8294 −2.73068
\(899\) 13.4931 0.450021
\(900\) 0 0
\(901\) 11.0368 0.367688
\(902\) 6.32499 0.210599
\(903\) 0 0
\(904\) −1.40281 −0.0466567
\(905\) 0 0
\(906\) 0 0
\(907\) −36.1387 −1.19997 −0.599983 0.800013i \(-0.704826\pi\)
−0.599983 + 0.800013i \(0.704826\pi\)
\(908\) 46.7550 1.55162
\(909\) 0 0
\(910\) 0 0
\(911\) −37.8064 −1.25258 −0.626291 0.779590i \(-0.715428\pi\)
−0.626291 + 0.779590i \(0.715428\pi\)
\(912\) 0 0
\(913\) −11.1883 −0.370278
\(914\) 43.0598 1.42429
\(915\) 0 0
\(916\) −7.90006 −0.261025
\(917\) 44.1471 1.45787
\(918\) 0 0
\(919\) −46.3133 −1.52773 −0.763867 0.645374i \(-0.776701\pi\)
−0.763867 + 0.645374i \(0.776701\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 62.5530 2.06007
\(923\) −2.17455 −0.0715761
\(924\) 0 0
\(925\) 0 0
\(926\) −21.2344 −0.697805
\(927\) 0 0
\(928\) 19.1704 0.629300
\(929\) 4.76122 0.156211 0.0781053 0.996945i \(-0.475113\pi\)
0.0781053 + 0.996945i \(0.475113\pi\)
\(930\) 0 0
\(931\) 0.681412 0.0223324
\(932\) 10.5972 0.347123
\(933\) 0 0
\(934\) 25.5426 0.835779
\(935\) 0 0
\(936\) 0 0
\(937\) 10.2481 0.334791 0.167395 0.985890i \(-0.446464\pi\)
0.167395 + 0.985890i \(0.446464\pi\)
\(938\) −47.5667 −1.55311
\(939\) 0 0
\(940\) 0 0
\(941\) 35.9725 1.17267 0.586336 0.810068i \(-0.300570\pi\)
0.586336 + 0.810068i \(0.300570\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 3.63625 0.118350
\(945\) 0 0
\(946\) −16.9442 −0.550902
\(947\) −44.9588 −1.46097 −0.730483 0.682931i \(-0.760705\pi\)
−0.730483 + 0.682931i \(0.760705\pi\)
\(948\) 0 0
\(949\) 26.0735 0.846383
\(950\) 0 0
\(951\) 0 0
\(952\) 3.54364 0.114850
\(953\) 12.7780 0.413920 0.206960 0.978349i \(-0.433643\pi\)
0.206960 + 0.978349i \(0.433643\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −40.7589 −1.31824
\(957\) 0 0
\(958\) −55.5560 −1.79493
\(959\) −14.9486 −0.482715
\(960\) 0 0
\(961\) −0.825451 −0.0266275
\(962\) −1.95789 −0.0631249
\(963\) 0 0
\(964\) −21.0031 −0.676463
\(965\) 0 0
\(966\) 0 0
\(967\) 27.5941 0.887368 0.443684 0.896183i \(-0.353671\pi\)
0.443684 + 0.896183i \(0.353671\pi\)
\(968\) −13.4731 −0.433043
\(969\) 0 0
\(970\) 0 0
\(971\) 21.8255 0.700412 0.350206 0.936673i \(-0.386112\pi\)
0.350206 + 0.936673i \(0.386112\pi\)
\(972\) 0 0
\(973\) −26.0735 −0.835880
\(974\) 6.83918 0.219141
\(975\) 0 0
\(976\) 12.3891 0.396565
\(977\) 51.7705 1.65629 0.828143 0.560517i \(-0.189397\pi\)
0.828143 + 0.560517i \(0.189397\pi\)
\(978\) 0 0
\(979\) 7.52059 0.240359
\(980\) 0 0
\(981\) 0 0
\(982\) −9.60879 −0.306629
\(983\) −19.4657 −0.620859 −0.310429 0.950596i \(-0.600473\pi\)
−0.310429 + 0.950596i \(0.600473\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 5.26915 0.167804
\(987\) 0 0
\(988\) −6.52152 −0.207477
\(989\) 0 0
\(990\) 0 0
\(991\) −28.8117 −0.915235 −0.457617 0.889149i \(-0.651297\pi\)
−0.457617 + 0.889149i \(0.651297\pi\)
\(992\) 42.8706 1.36114
\(993\) 0 0
\(994\) −6.40586 −0.203182
\(995\) 0 0
\(996\) 0 0
\(997\) 56.8516 1.80051 0.900253 0.435366i \(-0.143381\pi\)
0.900253 + 0.435366i \(0.143381\pi\)
\(998\) 87.5813 2.77234
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3825.2.a.be.1.3 3
3.2 odd 2 3825.2.a.bf.1.1 3
5.4 even 2 765.2.a.k.1.1 3
15.14 odd 2 765.2.a.l.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
765.2.a.k.1.1 3 5.4 even 2
765.2.a.l.1.3 yes 3 15.14 odd 2
3825.2.a.be.1.3 3 1.1 even 1 trivial
3825.2.a.bf.1.1 3 3.2 odd 2