Properties

Label 765.2.bh.b.19.4
Level $765$
Weight $2$
Character 765.19
Analytic conductor $6.109$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(19,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 4, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.bh (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 19.4
Character \(\chi\) \(=\) 765.19
Dual form 765.2.bh.b.604.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.352960 - 0.352960i) q^{2} +1.75084i q^{4} +(1.40760 - 1.73743i) q^{5} +(3.57820 + 1.48214i) q^{7} +(1.32390 + 1.32390i) q^{8} +O(q^{10})\) \(q+(0.352960 - 0.352960i) q^{2} +1.75084i q^{4} +(1.40760 - 1.73743i) q^{5} +(3.57820 + 1.48214i) q^{7} +(1.32390 + 1.32390i) q^{8} +(-0.116419 - 1.11007i) q^{10} +(2.71049 + 1.12272i) q^{11} -0.983677 q^{13} +(1.78610 - 0.739825i) q^{14} -2.56711 q^{16} +(-3.97002 + 1.11308i) q^{17} +(-1.81628 - 1.81628i) q^{19} +(3.04196 + 2.46447i) q^{20} +(1.35297 - 0.560418i) q^{22} +(-1.15054 + 2.77766i) q^{23} +(-1.03735 - 4.89121i) q^{25} +(-0.347198 + 0.347198i) q^{26} +(-2.59499 + 6.26485i) q^{28} +(-0.210302 - 0.507715i) q^{29} +(6.98112 - 2.89167i) q^{31} +(-3.55388 + 3.55388i) q^{32} +(-1.00838 + 1.79413i) q^{34} +(7.61178 - 4.13063i) q^{35} +(3.76666 + 9.09352i) q^{37} -1.28214 q^{38} +(4.16369 - 0.436669i) q^{40} +(2.83334 - 6.84028i) q^{41} +(-5.85161 - 5.85161i) q^{43} +(-1.96570 + 4.74563i) q^{44} +(0.574306 + 1.38650i) q^{46} +10.9492 q^{47} +(5.65702 + 5.65702i) q^{49} +(-2.09254 - 1.36026i) q^{50} -1.72226i q^{52} +(-2.53645 + 2.53645i) q^{53} +(5.76592 - 3.12895i) q^{55} +(2.77496 + 6.69936i) q^{56} +(-0.253431 - 0.104975i) q^{58} +(-0.216234 + 0.216234i) q^{59} +(-2.60281 + 6.28374i) q^{61} +(1.44341 - 3.48470i) q^{62} -2.62548i q^{64} +(-1.38462 + 1.70907i) q^{65} -5.09621i q^{67} +(-1.94883 - 6.95086i) q^{68} +(1.22870 - 4.14460i) q^{70} +(3.33246 - 1.38035i) q^{71} +(-4.62935 + 1.91754i) q^{73} +(4.53912 + 1.88017i) q^{74} +(3.18001 - 3.18001i) q^{76} +(8.03464 + 8.03464i) q^{77} +(-11.4965 - 4.76199i) q^{79} +(-3.61346 + 4.46019i) q^{80} +(-1.41429 - 3.41440i) q^{82} +(-5.74272 + 5.74272i) q^{83} +(-3.65428 + 8.46441i) q^{85} -4.13077 q^{86} +(2.10204 + 5.07477i) q^{88} -13.2723i q^{89} +(-3.51979 - 1.45795i) q^{91} +(-4.86323 - 2.01442i) q^{92} +(3.86462 - 3.86462i) q^{94} +(-5.71224 + 0.599074i) q^{95} +(-4.18163 + 1.73209i) q^{97} +3.99340 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 16 q^{10} + 24 q^{14} + 8 q^{16} - 24 q^{19} + 8 q^{20} + 16 q^{25} + 16 q^{26} - 24 q^{29} - 24 q^{31} + 8 q^{34} - 8 q^{35} + 16 q^{40} + 48 q^{41} - 72 q^{44} - 16 q^{46} + 48 q^{49} - 16 q^{50} - 24 q^{56} + 48 q^{59} + 16 q^{61} - 24 q^{65} + 32 q^{70} - 16 q^{71} + 64 q^{74} - 24 q^{76} - 72 q^{79} + 64 q^{80} - 24 q^{85} - 8 q^{91} - 40 q^{94} + 88 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.352960 0.352960i 0.249580 0.249580i −0.571218 0.820798i \(-0.693529\pi\)
0.820798 + 0.571218i \(0.193529\pi\)
\(3\) 0 0
\(4\) 1.75084i 0.875419i
\(5\) 1.40760 1.73743i 0.629496 0.777004i
\(6\) 0 0
\(7\) 3.57820 + 1.48214i 1.35243 + 0.560196i 0.936968 0.349414i \(-0.113619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(8\) 1.32390 + 1.32390i 0.468068 + 0.468068i
\(9\) 0 0
\(10\) −0.116419 1.11007i −0.0368150 0.351035i
\(11\) 2.71049 + 1.12272i 0.817243 + 0.338513i 0.751840 0.659346i \(-0.229167\pi\)
0.0654030 + 0.997859i \(0.479167\pi\)
\(12\) 0 0
\(13\) −0.983677 −0.272823 −0.136411 0.990652i \(-0.543557\pi\)
−0.136411 + 0.990652i \(0.543557\pi\)
\(14\) 1.78610 0.739825i 0.477354 0.197727i
\(15\) 0 0
\(16\) −2.56711 −0.641779
\(17\) −3.97002 + 1.11308i −0.962871 + 0.269962i
\(18\) 0 0
\(19\) −1.81628 1.81628i −0.416682 0.416682i 0.467376 0.884058i \(-0.345199\pi\)
−0.884058 + 0.467376i \(0.845199\pi\)
\(20\) 3.04196 + 2.46447i 0.680204 + 0.551073i
\(21\) 0 0
\(22\) 1.35297 0.560418i 0.288454 0.119481i
\(23\) −1.15054 + 2.77766i −0.239905 + 0.579182i −0.997273 0.0738068i \(-0.976485\pi\)
0.757367 + 0.652989i \(0.226485\pi\)
\(24\) 0 0
\(25\) −1.03735 4.89121i −0.207469 0.978242i
\(26\) −0.347198 + 0.347198i −0.0680912 + 0.0680912i
\(27\) 0 0
\(28\) −2.59499 + 6.26485i −0.490406 + 1.18395i
\(29\) −0.210302 0.507715i −0.0390521 0.0942802i 0.903150 0.429325i \(-0.141249\pi\)
−0.942202 + 0.335045i \(0.891249\pi\)
\(30\) 0 0
\(31\) 6.98112 2.89167i 1.25385 0.519360i 0.345831 0.938297i \(-0.387597\pi\)
0.908015 + 0.418937i \(0.137597\pi\)
\(32\) −3.55388 + 3.55388i −0.628243 + 0.628243i
\(33\) 0 0
\(34\) −1.00838 + 1.79413i −0.172936 + 0.307691i
\(35\) 7.61178 4.13063i 1.28662 0.698204i
\(36\) 0 0
\(37\) 3.76666 + 9.09352i 0.619235 + 1.49496i 0.852594 + 0.522574i \(0.175028\pi\)
−0.233359 + 0.972391i \(0.574972\pi\)
\(38\) −1.28214 −0.207991
\(39\) 0 0
\(40\) 4.16369 0.436669i 0.658337 0.0690435i
\(41\) 2.83334 6.84028i 0.442493 1.06827i −0.532578 0.846381i \(-0.678777\pi\)
0.975071 0.221892i \(-0.0712232\pi\)
\(42\) 0 0
\(43\) −5.85161 5.85161i −0.892363 0.892363i 0.102383 0.994745i \(-0.467353\pi\)
−0.994745 + 0.102383i \(0.967353\pi\)
\(44\) −1.96570 + 4.74563i −0.296341 + 0.715430i
\(45\) 0 0
\(46\) 0.574306 + 1.38650i 0.0846768 + 0.204428i
\(47\) 10.9492 1.59710 0.798551 0.601928i \(-0.205600\pi\)
0.798551 + 0.601928i \(0.205600\pi\)
\(48\) 0 0
\(49\) 5.65702 + 5.65702i 0.808146 + 0.808146i
\(50\) −2.09254 1.36026i −0.295930 0.192370i
\(51\) 0 0
\(52\) 1.72226i 0.238834i
\(53\) −2.53645 + 2.53645i −0.348408 + 0.348408i −0.859516 0.511108i \(-0.829235\pi\)
0.511108 + 0.859516i \(0.329235\pi\)
\(54\) 0 0
\(55\) 5.76592 3.12895i 0.777477 0.421908i
\(56\) 2.77496 + 6.69936i 0.370820 + 0.895239i
\(57\) 0 0
\(58\) −0.253431 0.104975i −0.0332771 0.0137838i
\(59\) −0.216234 + 0.216234i −0.0281513 + 0.0281513i −0.721042 0.692891i \(-0.756337\pi\)
0.692891 + 0.721042i \(0.256337\pi\)
\(60\) 0 0
\(61\) −2.60281 + 6.28374i −0.333256 + 0.804551i 0.665074 + 0.746778i \(0.268400\pi\)
−0.998330 + 0.0577732i \(0.981600\pi\)
\(62\) 1.44341 3.48470i 0.183313 0.442557i
\(63\) 0 0
\(64\) 2.62548i 0.328184i
\(65\) −1.38462 + 1.70907i −0.171741 + 0.211984i
\(66\) 0 0
\(67\) 5.09621i 0.622601i −0.950312 0.311301i \(-0.899235\pi\)
0.950312 0.311301i \(-0.100765\pi\)
\(68\) −1.94883 6.95086i −0.236330 0.842916i
\(69\) 0 0
\(70\) 1.22870 4.14460i 0.146858 0.495374i
\(71\) 3.33246 1.38035i 0.395491 0.163818i −0.176069 0.984378i \(-0.556338\pi\)
0.571560 + 0.820560i \(0.306338\pi\)
\(72\) 0 0
\(73\) −4.62935 + 1.91754i −0.541824 + 0.224431i −0.636773 0.771051i \(-0.719731\pi\)
0.0949491 + 0.995482i \(0.469731\pi\)
\(74\) 4.53912 + 1.88017i 0.527662 + 0.218565i
\(75\) 0 0
\(76\) 3.18001 3.18001i 0.364772 0.364772i
\(77\) 8.03464 + 8.03464i 0.915632 + 0.915632i
\(78\) 0 0
\(79\) −11.4965 4.76199i −1.29345 0.535766i −0.373441 0.927654i \(-0.621822\pi\)
−0.920013 + 0.391888i \(0.871822\pi\)
\(80\) −3.61346 + 4.46019i −0.403997 + 0.498664i
\(81\) 0 0
\(82\) −1.41429 3.41440i −0.156182 0.377057i
\(83\) −5.74272 + 5.74272i −0.630345 + 0.630345i −0.948155 0.317809i \(-0.897053\pi\)
0.317809 + 0.948155i \(0.397053\pi\)
\(84\) 0 0
\(85\) −3.65428 + 8.46441i −0.396362 + 0.918094i
\(86\) −4.13077 −0.445432
\(87\) 0 0
\(88\) 2.10204 + 5.07477i 0.224078 + 0.540972i
\(89\) 13.2723i 1.40687i −0.710761 0.703433i \(-0.751649\pi\)
0.710761 0.703433i \(-0.248351\pi\)
\(90\) 0 0
\(91\) −3.51979 1.45795i −0.368974 0.152834i
\(92\) −4.86323 2.01442i −0.507027 0.210018i
\(93\) 0 0
\(94\) 3.86462 3.86462i 0.398605 0.398605i
\(95\) −5.71224 + 0.599074i −0.586063 + 0.0614637i
\(96\) 0 0
\(97\) −4.18163 + 1.73209i −0.424581 + 0.175867i −0.584734 0.811225i \(-0.698801\pi\)
0.160153 + 0.987092i \(0.448801\pi\)
\(98\) 3.99340 0.403395
\(99\) 0 0
\(100\) 8.56372 1.81623i 0.856372 0.181623i
\(101\) −2.62696 −0.261393 −0.130696 0.991422i \(-0.541721\pi\)
−0.130696 + 0.991422i \(0.541721\pi\)
\(102\) 0 0
\(103\) 9.21332i 0.907815i 0.891049 + 0.453908i \(0.149970\pi\)
−0.891049 + 0.453908i \(0.850030\pi\)
\(104\) −1.30229 1.30229i −0.127700 0.127700i
\(105\) 0 0
\(106\) 1.79053i 0.173911i
\(107\) 5.38760 2.23162i 0.520839 0.215739i −0.106747 0.994286i \(-0.534043\pi\)
0.627585 + 0.778548i \(0.284043\pi\)
\(108\) 0 0
\(109\) 6.52084 15.7427i 0.624584 1.50788i −0.221683 0.975119i \(-0.571155\pi\)
0.846267 0.532759i \(-0.178845\pi\)
\(110\) 0.930745 3.13953i 0.0887430 0.299343i
\(111\) 0 0
\(112\) −9.18564 3.80482i −0.867962 0.359522i
\(113\) 0.448023 1.08162i 0.0421464 0.101750i −0.901404 0.432978i \(-0.857463\pi\)
0.943551 + 0.331228i \(0.107463\pi\)
\(114\) 0 0
\(115\) 3.20650 + 5.90882i 0.299007 + 0.551000i
\(116\) 0.888926 0.368205i 0.0825347 0.0341870i
\(117\) 0 0
\(118\) 0.152644i 0.0140520i
\(119\) −15.8553 1.90129i −1.45345 0.174291i
\(120\) 0 0
\(121\) −1.69193 1.69193i −0.153812 0.153812i
\(122\) 1.29922 + 3.13660i 0.117626 + 0.283974i
\(123\) 0 0
\(124\) 5.06285 + 12.2228i 0.454658 + 1.09764i
\(125\) −9.95831 5.08253i −0.890698 0.454595i
\(126\) 0 0
\(127\) −4.70813 4.70813i −0.417779 0.417779i 0.466659 0.884437i \(-0.345458\pi\)
−0.884437 + 0.466659i \(0.845458\pi\)
\(128\) −8.03444 8.03444i −0.710151 0.710151i
\(129\) 0 0
\(130\) 0.114519 + 1.09195i 0.0100440 + 0.0957703i
\(131\) −4.70084 11.3488i −0.410715 0.991553i −0.984946 0.172860i \(-0.944699\pi\)
0.574232 0.818693i \(-0.305301\pi\)
\(132\) 0 0
\(133\) −3.80702 9.19097i −0.330111 0.796958i
\(134\) −1.79876 1.79876i −0.155389 0.155389i
\(135\) 0 0
\(136\) −6.72949 3.78228i −0.577049 0.324328i
\(137\) 9.68972i 0.827848i −0.910311 0.413924i \(-0.864158\pi\)
0.910311 0.413924i \(-0.135842\pi\)
\(138\) 0 0
\(139\) −1.32180 + 0.547508i −0.112114 + 0.0464390i −0.438035 0.898958i \(-0.644325\pi\)
0.325922 + 0.945397i \(0.394325\pi\)
\(140\) 7.23206 + 13.3270i 0.611221 + 1.12634i
\(141\) 0 0
\(142\) 0.689017 1.66343i 0.0578210 0.139592i
\(143\) −2.66624 1.10439i −0.222963 0.0923541i
\(144\) 0 0
\(145\) −1.17814 0.349271i −0.0978392 0.0290054i
\(146\) −0.957159 + 2.31079i −0.0792150 + 0.191242i
\(147\) 0 0
\(148\) −15.9213 + 6.59481i −1.30872 + 0.542090i
\(149\) 9.40983i 0.770884i 0.922732 + 0.385442i \(0.125951\pi\)
−0.922732 + 0.385442i \(0.874049\pi\)
\(150\) 0 0
\(151\) −6.12505 6.12505i −0.498450 0.498450i 0.412506 0.910955i \(-0.364654\pi\)
−0.910955 + 0.412506i \(0.864654\pi\)
\(152\) 4.80912i 0.390071i
\(153\) 0 0
\(154\) 5.67181 0.457047
\(155\) 4.80251 16.1995i 0.385747 1.30118i
\(156\) 0 0
\(157\) 17.7467 1.41634 0.708169 0.706043i \(-0.249521\pi\)
0.708169 + 0.706043i \(0.249521\pi\)
\(158\) −5.73858 + 2.37700i −0.456537 + 0.189104i
\(159\) 0 0
\(160\) 1.17220 + 11.1771i 0.0926705 + 0.883623i
\(161\) −8.23375 + 8.23375i −0.648911 + 0.648911i
\(162\) 0 0
\(163\) 2.12558 + 0.880443i 0.166488 + 0.0689616i 0.464371 0.885641i \(-0.346280\pi\)
−0.297883 + 0.954602i \(0.596280\pi\)
\(164\) 11.9762 + 4.96072i 0.935187 + 0.387367i
\(165\) 0 0
\(166\) 4.05390i 0.314643i
\(167\) −3.58287 8.64980i −0.277251 0.669342i 0.722507 0.691364i \(-0.242990\pi\)
−0.999757 + 0.0220216i \(0.992990\pi\)
\(168\) 0 0
\(169\) −12.0324 −0.925568
\(170\) 1.69778 + 4.27741i 0.130214 + 0.328062i
\(171\) 0 0
\(172\) 10.2452 10.2452i 0.781191 0.781191i
\(173\) 3.55891 + 8.59197i 0.270579 + 0.653235i 0.999508 0.0313536i \(-0.00998178\pi\)
−0.728929 + 0.684589i \(0.759982\pi\)
\(174\) 0 0
\(175\) 3.53762 19.0392i 0.267419 1.43923i
\(176\) −6.95813 2.88215i −0.524489 0.217250i
\(177\) 0 0
\(178\) −4.68461 4.68461i −0.351126 0.351126i
\(179\) −1.37022 + 1.37022i −0.102415 + 0.102415i −0.756458 0.654043i \(-0.773072\pi\)
0.654043 + 0.756458i \(0.273072\pi\)
\(180\) 0 0
\(181\) 15.6158 + 6.46827i 1.16071 + 0.480782i 0.878112 0.478455i \(-0.158803\pi\)
0.282600 + 0.959238i \(0.408803\pi\)
\(182\) −1.75694 + 0.727749i −0.130233 + 0.0539443i
\(183\) 0 0
\(184\) −5.20053 + 2.15413i −0.383388 + 0.158805i
\(185\) 21.1013 + 6.25568i 1.55140 + 0.459927i
\(186\) 0 0
\(187\) −12.0104 1.44023i −0.878285 0.105320i
\(188\) 19.1702i 1.39813i
\(189\) 0 0
\(190\) −1.80474 + 2.22764i −0.130930 + 0.161610i
\(191\) 16.6593i 1.20543i 0.797958 + 0.602713i \(0.205914\pi\)
−0.797958 + 0.602713i \(0.794086\pi\)
\(192\) 0 0
\(193\) −5.42062 + 13.0865i −0.390185 + 0.941989i 0.599714 + 0.800214i \(0.295281\pi\)
−0.989899 + 0.141775i \(0.954719\pi\)
\(194\) −0.864591 + 2.08731i −0.0620740 + 0.149860i
\(195\) 0 0
\(196\) −9.90454 + 9.90454i −0.707467 + 0.707467i
\(197\) −16.9050 7.00226i −1.20443 0.498891i −0.312001 0.950082i \(-0.600999\pi\)
−0.892427 + 0.451191i \(0.850999\pi\)
\(198\) 0 0
\(199\) −2.08861 5.04236i −0.148058 0.357443i 0.832399 0.554176i \(-0.186967\pi\)
−0.980457 + 0.196733i \(0.936967\pi\)
\(200\) 5.10211 7.84878i 0.360774 0.554993i
\(201\) 0 0
\(202\) −0.927212 + 0.927212i −0.0652384 + 0.0652384i
\(203\) 2.12840i 0.149384i
\(204\) 0 0
\(205\) −7.89634 14.5511i −0.551504 1.01629i
\(206\) 3.25193 + 3.25193i 0.226573 + 0.226573i
\(207\) 0 0
\(208\) 2.52521 0.175092
\(209\) −2.88382 6.96216i −0.199478 0.481583i
\(210\) 0 0
\(211\) −2.10833 + 5.08995i −0.145143 + 0.350407i −0.979686 0.200536i \(-0.935732\pi\)
0.834543 + 0.550943i \(0.185732\pi\)
\(212\) −4.44091 4.44091i −0.305003 0.305003i
\(213\) 0 0
\(214\) 1.11393 2.68928i 0.0761470 0.183835i
\(215\) −18.4035 + 1.93008i −1.25511 + 0.131630i
\(216\) 0 0
\(217\) 29.2657 1.98668
\(218\) −3.25495 7.85814i −0.220453 0.532220i
\(219\) 0 0
\(220\) 5.47829 + 10.0952i 0.369346 + 0.680618i
\(221\) 3.90522 1.09491i 0.262693 0.0736519i
\(222\) 0 0
\(223\) −18.8220 + 18.8220i −1.26042 + 1.26042i −0.309525 + 0.950891i \(0.600170\pi\)
−0.950891 + 0.309525i \(0.899830\pi\)
\(224\) −17.9838 + 7.44914i −1.20159 + 0.497717i
\(225\) 0 0
\(226\) −0.223635 0.539903i −0.0148760 0.0359138i
\(227\) −2.93516 + 7.08610i −0.194813 + 0.470321i −0.990857 0.134919i \(-0.956923\pi\)
0.796043 + 0.605240i \(0.206923\pi\)
\(228\) 0 0
\(229\) −6.59984 + 6.59984i −0.436130 + 0.436130i −0.890707 0.454577i \(-0.849790\pi\)
0.454577 + 0.890707i \(0.349790\pi\)
\(230\) 3.21734 + 0.953811i 0.212145 + 0.0628924i
\(231\) 0 0
\(232\) 0.393743 0.950579i 0.0258505 0.0624086i
\(233\) −3.60219 + 1.49207i −0.235987 + 0.0977490i −0.497543 0.867439i \(-0.665764\pi\)
0.261556 + 0.965188i \(0.415764\pi\)
\(234\) 0 0
\(235\) 15.4120 19.0235i 1.00537 1.24095i
\(236\) −0.378591 0.378591i −0.0246442 0.0246442i
\(237\) 0 0
\(238\) −6.26735 + 4.92519i −0.406252 + 0.319253i
\(239\) −22.6299 −1.46380 −0.731902 0.681410i \(-0.761367\pi\)
−0.731902 + 0.681410i \(0.761367\pi\)
\(240\) 0 0
\(241\) 2.67184 1.10671i 0.172108 0.0712896i −0.294966 0.955508i \(-0.595308\pi\)
0.467074 + 0.884218i \(0.345308\pi\)
\(242\) −1.19437 −0.0767769
\(243\) 0 0
\(244\) −11.0018 4.55710i −0.704319 0.291739i
\(245\) 17.7915 1.86589i 1.13666 0.119208i
\(246\) 0 0
\(247\) 1.78663 + 1.78663i 0.113680 + 0.113680i
\(248\) 13.0705 + 5.41400i 0.829980 + 0.343789i
\(249\) 0 0
\(250\) −5.30881 + 1.72096i −0.335759 + 0.108843i
\(251\) 13.3749i 0.844213i −0.906546 0.422107i \(-0.861291\pi\)
0.906546 0.422107i \(-0.138709\pi\)
\(252\) 0 0
\(253\) −6.23707 + 6.23707i −0.392121 + 0.392121i
\(254\) −3.32356 −0.208539
\(255\) 0 0
\(256\) −0.420720 −0.0262950
\(257\) −5.18281 + 5.18281i −0.323295 + 0.323295i −0.850030 0.526735i \(-0.823416\pi\)
0.526735 + 0.850030i \(0.323416\pi\)
\(258\) 0 0
\(259\) 38.1211i 2.36873i
\(260\) −2.99231 2.42425i −0.185575 0.150345i
\(261\) 0 0
\(262\) −5.66489 2.34648i −0.349978 0.144966i
\(263\) −17.0504 17.0504i −1.05137 1.05137i −0.998607 0.0527652i \(-0.983197\pi\)
−0.0527652 0.998607i \(-0.516803\pi\)
\(264\) 0 0
\(265\) 0.836614 + 7.97720i 0.0513928 + 0.490036i
\(266\) −4.58777 1.90032i −0.281294 0.116516i
\(267\) 0 0
\(268\) 8.92264 0.545037
\(269\) 23.2121 9.61475i 1.41526 0.586222i 0.461598 0.887089i \(-0.347276\pi\)
0.953666 + 0.300868i \(0.0972762\pi\)
\(270\) 0 0
\(271\) 14.0988 0.856440 0.428220 0.903674i \(-0.359141\pi\)
0.428220 + 0.903674i \(0.359141\pi\)
\(272\) 10.1915 2.85741i 0.617950 0.173256i
\(273\) 0 0
\(274\) −3.42008 3.42008i −0.206615 0.206615i
\(275\) 2.67975 14.4222i 0.161595 0.869692i
\(276\) 0 0
\(277\) 5.74838 2.38106i 0.345387 0.143064i −0.203245 0.979128i \(-0.565149\pi\)
0.548632 + 0.836064i \(0.315149\pi\)
\(278\) −0.273294 + 0.659790i −0.0163911 + 0.0395716i
\(279\) 0 0
\(280\) 15.5457 + 4.60867i 0.929034 + 0.275421i
\(281\) 3.87369 3.87369i 0.231085 0.231085i −0.582061 0.813145i \(-0.697753\pi\)
0.813145 + 0.582061i \(0.197753\pi\)
\(282\) 0 0
\(283\) 9.48690 22.9034i 0.563937 1.36147i −0.342656 0.939461i \(-0.611327\pi\)
0.906594 0.422005i \(-0.138673\pi\)
\(284\) 2.41677 + 5.83461i 0.143409 + 0.346220i
\(285\) 0 0
\(286\) −1.33088 + 0.551270i −0.0786968 + 0.0325973i
\(287\) 20.2765 20.2765i 1.19688 1.19688i
\(288\) 0 0
\(289\) 14.5221 8.83792i 0.854241 0.519877i
\(290\) −0.539115 + 0.292558i −0.0316579 + 0.0171796i
\(291\) 0 0
\(292\) −3.35730 8.10524i −0.196471 0.474323i
\(293\) 24.3230 1.42096 0.710482 0.703715i \(-0.248477\pi\)
0.710482 + 0.703715i \(0.248477\pi\)
\(294\) 0 0
\(295\) 0.0713219 + 0.680062i 0.00415252 + 0.0395947i
\(296\) −7.05220 + 17.0255i −0.409901 + 0.989588i
\(297\) 0 0
\(298\) 3.32129 + 3.32129i 0.192397 + 0.192397i
\(299\) 1.13176 2.73232i 0.0654516 0.158014i
\(300\) 0 0
\(301\) −12.2653 29.6111i −0.706962 1.70676i
\(302\) −4.32379 −0.248806
\(303\) 0 0
\(304\) 4.66259 + 4.66259i 0.267418 + 0.267418i
\(305\) 7.25387 + 13.3672i 0.415356 + 0.765403i
\(306\) 0 0
\(307\) 0.916042i 0.0522813i −0.999658 0.0261406i \(-0.991678\pi\)
0.999658 0.0261406i \(-0.00832177\pi\)
\(308\) −14.0674 + 14.0674i −0.801562 + 0.801562i
\(309\) 0 0
\(310\) −4.02269 7.41288i −0.228474 0.421023i
\(311\) −3.26096 7.87266i −0.184912 0.446418i 0.804054 0.594556i \(-0.202672\pi\)
−0.988967 + 0.148138i \(0.952672\pi\)
\(312\) 0 0
\(313\) −15.6769 6.49359i −0.886111 0.367039i −0.107247 0.994232i \(-0.534204\pi\)
−0.778864 + 0.627193i \(0.784204\pi\)
\(314\) 6.26386 6.26386i 0.353490 0.353490i
\(315\) 0 0
\(316\) 8.33748 20.1285i 0.469020 1.13231i
\(317\) −9.50873 + 22.9561i −0.534064 + 1.28934i 0.394747 + 0.918790i \(0.370832\pi\)
−0.928811 + 0.370554i \(0.879168\pi\)
\(318\) 0 0
\(319\) 1.61226i 0.0902695i
\(320\) −4.56159 3.69561i −0.255001 0.206591i
\(321\) 0 0
\(322\) 5.81237i 0.323911i
\(323\) 9.23231 + 5.18898i 0.513699 + 0.288723i
\(324\) 0 0
\(325\) 1.02041 + 4.81137i 0.0566024 + 0.266887i
\(326\) 1.06100 0.439482i 0.0587636 0.0243407i
\(327\) 0 0
\(328\) 12.8069 5.30478i 0.707141 0.292907i
\(329\) 39.1783 + 16.2282i 2.15997 + 0.894689i
\(330\) 0 0
\(331\) −19.7269 + 19.7269i −1.08429 + 1.08429i −0.0881836 + 0.996104i \(0.528106\pi\)
−0.996104 + 0.0881836i \(0.971894\pi\)
\(332\) −10.0546 10.0546i −0.551816 0.551816i
\(333\) 0 0
\(334\) −4.31764 1.78843i −0.236251 0.0978583i
\(335\) −8.85432 7.17340i −0.483763 0.391925i
\(336\) 0 0
\(337\) −6.10377 14.7358i −0.332493 0.802710i −0.998393 0.0566688i \(-0.981952\pi\)
0.665900 0.746041i \(-0.268048\pi\)
\(338\) −4.24695 + 4.24695i −0.231003 + 0.231003i
\(339\) 0 0
\(340\) −14.8198 6.39805i −0.803718 0.346983i
\(341\) 22.1688 1.20051
\(342\) 0 0
\(343\) 1.48250 + 3.57906i 0.0800473 + 0.193251i
\(344\) 15.4938i 0.835372i
\(345\) 0 0
\(346\) 4.28877 + 1.77647i 0.230566 + 0.0955035i
\(347\) 24.0961 + 9.98091i 1.29354 + 0.535804i 0.920040 0.391825i \(-0.128156\pi\)
0.373504 + 0.927628i \(0.378156\pi\)
\(348\) 0 0
\(349\) 16.2233 16.2233i 0.868413 0.868413i −0.123884 0.992297i \(-0.539535\pi\)
0.992297 + 0.123884i \(0.0395349\pi\)
\(350\) −5.47144 7.96871i −0.292461 0.425945i
\(351\) 0 0
\(352\) −13.6228 + 5.64273i −0.726095 + 0.300759i
\(353\) −3.96701 −0.211142 −0.105571 0.994412i \(-0.533667\pi\)
−0.105571 + 0.994412i \(0.533667\pi\)
\(354\) 0 0
\(355\) 2.29250 7.73291i 0.121673 0.410420i
\(356\) 23.2377 1.23160
\(357\) 0 0
\(358\) 0.967265i 0.0511215i
\(359\) 13.2967 + 13.2967i 0.701773 + 0.701773i 0.964791 0.263018i \(-0.0847179\pi\)
−0.263018 + 0.964791i \(0.584718\pi\)
\(360\) 0 0
\(361\) 12.4023i 0.652752i
\(362\) 7.79478 3.22870i 0.409685 0.169697i
\(363\) 0 0
\(364\) 2.55263 6.16259i 0.133794 0.323007i
\(365\) −3.18466 + 10.7423i −0.166692 + 0.562277i
\(366\) 0 0
\(367\) −6.93632 2.87312i −0.362073 0.149976i 0.194228 0.980956i \(-0.437780\pi\)
−0.556301 + 0.830981i \(0.687780\pi\)
\(368\) 2.95358 7.13057i 0.153966 0.371707i
\(369\) 0 0
\(370\) 9.65592 5.23991i 0.501987 0.272410i
\(371\) −12.8353 + 5.31655i −0.666375 + 0.276021i
\(372\) 0 0
\(373\) 18.5763i 0.961844i 0.876763 + 0.480922i \(0.159698\pi\)
−0.876763 + 0.480922i \(0.840302\pi\)
\(374\) −4.74752 + 3.73083i −0.245488 + 0.192917i
\(375\) 0 0
\(376\) 14.4956 + 14.4956i 0.747551 + 0.747551i
\(377\) 0.206869 + 0.499427i 0.0106543 + 0.0257218i
\(378\) 0 0
\(379\) 5.62054 + 13.5692i 0.288708 + 0.697002i 0.999983 0.00591199i \(-0.00188186\pi\)
−0.711275 + 0.702914i \(0.751882\pi\)
\(380\) −1.04888 10.0012i −0.0538065 0.513051i
\(381\) 0 0
\(382\) 5.88007 + 5.88007i 0.300851 + 0.300851i
\(383\) −15.0658 15.0658i −0.769829 0.769829i 0.208248 0.978076i \(-0.433224\pi\)
−0.978076 + 0.208248i \(0.933224\pi\)
\(384\) 0 0
\(385\) 25.2692 2.65012i 1.28784 0.135063i
\(386\) 2.70576 + 6.53228i 0.137720 + 0.332484i
\(387\) 0 0
\(388\) −3.03261 7.32137i −0.153957 0.371686i
\(389\) −3.37903 3.37903i −0.171323 0.171323i 0.616237 0.787561i \(-0.288656\pi\)
−0.787561 + 0.616237i \(0.788656\pi\)
\(390\) 0 0
\(391\) 1.47592 12.3080i 0.0746404 0.622443i
\(392\) 14.9786i 0.756534i
\(393\) 0 0
\(394\) −8.43829 + 3.49525i −0.425115 + 0.176088i
\(395\) −24.4560 + 13.2714i −1.23052 + 0.667755i
\(396\) 0 0
\(397\) −12.3580 + 29.8348i −0.620228 + 1.49736i 0.231207 + 0.972904i \(0.425732\pi\)
−0.851436 + 0.524459i \(0.824268\pi\)
\(398\) −2.51694 1.04255i −0.126163 0.0522584i
\(399\) 0 0
\(400\) 2.66299 + 12.5563i 0.133149 + 0.627814i
\(401\) 9.50957 22.9581i 0.474885 1.14647i −0.487093 0.873350i \(-0.661943\pi\)
0.961979 0.273125i \(-0.0880572\pi\)
\(402\) 0 0
\(403\) −6.86717 + 2.84447i −0.342078 + 0.141693i
\(404\) 4.59939i 0.228828i
\(405\) 0 0
\(406\) −0.751240 0.751240i −0.0372834 0.0372834i
\(407\) 28.8768i 1.43137i
\(408\) 0 0
\(409\) 18.4025 0.909945 0.454973 0.890505i \(-0.349649\pi\)
0.454973 + 0.890505i \(0.349649\pi\)
\(410\) −7.92304 2.34886i −0.391291 0.116002i
\(411\) 0 0
\(412\) −16.1310 −0.794719
\(413\) −1.09422 + 0.453239i −0.0538429 + 0.0223024i
\(414\) 0 0
\(415\) 1.89416 + 18.0610i 0.0929806 + 0.886580i
\(416\) 3.49587 3.49587i 0.171399 0.171399i
\(417\) 0 0
\(418\) −3.47524 1.43949i −0.169979 0.0704078i
\(419\) 2.80373 + 1.16134i 0.136971 + 0.0567354i 0.450116 0.892970i \(-0.351383\pi\)
−0.313145 + 0.949705i \(0.601383\pi\)
\(420\) 0 0
\(421\) 31.0514i 1.51335i 0.653788 + 0.756677i \(0.273179\pi\)
−0.653788 + 0.756677i \(0.726821\pi\)
\(422\) 1.05239 + 2.54070i 0.0512297 + 0.123679i
\(423\) 0 0
\(424\) −6.71598 −0.326157
\(425\) 9.56260 + 18.2635i 0.463854 + 0.885912i
\(426\) 0 0
\(427\) −18.6268 + 18.6268i −0.901412 + 0.901412i
\(428\) 3.90720 + 9.43282i 0.188862 + 0.455952i
\(429\) 0 0
\(430\) −5.81445 + 7.17693i −0.280398 + 0.346102i
\(431\) −32.8743 13.6170i −1.58350 0.655907i −0.594536 0.804069i \(-0.702664\pi\)
−0.988963 + 0.148163i \(0.952664\pi\)
\(432\) 0 0
\(433\) 2.33269 + 2.33269i 0.112102 + 0.112102i 0.760933 0.648831i \(-0.224742\pi\)
−0.648831 + 0.760933i \(0.724742\pi\)
\(434\) 10.3296 10.3296i 0.495837 0.495837i
\(435\) 0 0
\(436\) 27.5629 + 11.4169i 1.32003 + 0.546773i
\(437\) 7.13470 2.95529i 0.341299 0.141371i
\(438\) 0 0
\(439\) −3.06718 + 1.27047i −0.146389 + 0.0606362i −0.454675 0.890657i \(-0.650245\pi\)
0.308286 + 0.951294i \(0.400245\pi\)
\(440\) 11.7759 + 3.49107i 0.561393 + 0.166430i
\(441\) 0 0
\(442\) 0.991924 1.76484i 0.0471810 0.0839451i
\(443\) 5.62292i 0.267153i 0.991039 + 0.133577i \(0.0426462\pi\)
−0.991039 + 0.133577i \(0.957354\pi\)
\(444\) 0 0
\(445\) −23.0598 18.6821i −1.09314 0.885617i
\(446\) 13.2868i 0.629150i
\(447\) 0 0
\(448\) 3.89132 9.39447i 0.183848 0.443847i
\(449\) −2.34670 + 5.66543i −0.110748 + 0.267368i −0.969530 0.244972i \(-0.921221\pi\)
0.858783 + 0.512340i \(0.171221\pi\)
\(450\) 0 0
\(451\) 15.3595 15.3595i 0.723249 0.723249i
\(452\) 1.89375 + 0.784416i 0.0890743 + 0.0368958i
\(453\) 0 0
\(454\) 1.46511 + 3.53710i 0.0687613 + 0.166004i
\(455\) −7.48753 + 4.06320i −0.351021 + 0.190486i
\(456\) 0 0
\(457\) 20.0771 20.0771i 0.939169 0.939169i −0.0590836 0.998253i \(-0.518818\pi\)
0.998253 + 0.0590836i \(0.0188178\pi\)
\(458\) 4.65896i 0.217699i
\(459\) 0 0
\(460\) −10.3454 + 5.61406i −0.482356 + 0.261757i
\(461\) 14.7095 + 14.7095i 0.685090 + 0.685090i 0.961142 0.276053i \(-0.0890264\pi\)
−0.276053 + 0.961142i \(0.589026\pi\)
\(462\) 0 0
\(463\) 31.4596 1.46205 0.731025 0.682351i \(-0.239042\pi\)
0.731025 + 0.682351i \(0.239042\pi\)
\(464\) 0.539870 + 1.30336i 0.0250628 + 0.0605070i
\(465\) 0 0
\(466\) −0.744785 + 1.79807i −0.0345015 + 0.0832939i
\(467\) −1.05068 1.05068i −0.0486197 0.0486197i 0.682379 0.730999i \(-0.260945\pi\)
−0.730999 + 0.682379i \(0.760945\pi\)
\(468\) 0 0
\(469\) 7.55329 18.2352i 0.348778 0.842026i
\(470\) −1.27469 12.1543i −0.0587972 0.560638i
\(471\) 0 0
\(472\) −0.572542 −0.0263534
\(473\) −9.29100 22.4304i −0.427200 1.03135i
\(474\) 0 0
\(475\) −6.99967 + 10.7679i −0.321167 + 0.494064i
\(476\) 3.32885 27.7600i 0.152577 1.27238i
\(477\) 0 0
\(478\) −7.98743 + 7.98743i −0.365337 + 0.365337i
\(479\) −13.5193 + 5.59989i −0.617714 + 0.255865i −0.669523 0.742792i \(-0.733501\pi\)
0.0518091 + 0.998657i \(0.483501\pi\)
\(480\) 0 0
\(481\) −3.70517 8.94508i −0.168941 0.407861i
\(482\) 0.552427 1.33368i 0.0251623 0.0607473i
\(483\) 0 0
\(484\) 2.96230 2.96230i 0.134650 0.134650i
\(485\) −2.87666 + 9.70339i −0.130623 + 0.440608i
\(486\) 0 0
\(487\) −1.29143 + 3.11780i −0.0585204 + 0.141281i −0.950435 0.310923i \(-0.899362\pi\)
0.891915 + 0.452204i \(0.149362\pi\)
\(488\) −11.7649 + 4.87317i −0.532570 + 0.220598i
\(489\) 0 0
\(490\) 5.62110 6.93827i 0.253935 0.313439i
\(491\) 5.35772 + 5.35772i 0.241790 + 0.241790i 0.817590 0.575800i \(-0.195309\pi\)
−0.575800 + 0.817590i \(0.695309\pi\)
\(492\) 0 0
\(493\) 1.40003 + 1.78155i 0.0630543 + 0.0802371i
\(494\) 1.26122 0.0567448
\(495\) 0 0
\(496\) −17.9213 + 7.42326i −0.804691 + 0.333314i
\(497\) 13.9701 0.626644
\(498\) 0 0
\(499\) −7.88006 3.26403i −0.352760 0.146118i 0.199265 0.979946i \(-0.436145\pi\)
−0.552025 + 0.833828i \(0.686145\pi\)
\(500\) 8.89868 17.4354i 0.397961 0.779735i
\(501\) 0 0
\(502\) −4.72078 4.72078i −0.210699 0.210699i
\(503\) 17.7646 + 7.35832i 0.792082 + 0.328091i 0.741780 0.670643i \(-0.233982\pi\)
0.0503018 + 0.998734i \(0.483982\pi\)
\(504\) 0 0
\(505\) −3.69770 + 4.56417i −0.164546 + 0.203103i
\(506\) 4.40287i 0.195732i
\(507\) 0 0
\(508\) 8.24317 8.24317i 0.365732 0.365732i
\(509\) 5.89076 0.261104 0.130552 0.991441i \(-0.458325\pi\)
0.130552 + 0.991441i \(0.458325\pi\)
\(510\) 0 0
\(511\) −19.4068 −0.858505
\(512\) 15.9204 15.9204i 0.703589 0.703589i
\(513\) 0 0
\(514\) 3.65864i 0.161376i
\(515\) 16.0075 + 12.9686i 0.705376 + 0.571466i
\(516\) 0 0
\(517\) 29.6776 + 12.2929i 1.30522 + 0.540640i
\(518\) 13.4552 + 13.4552i 0.591188 + 0.591188i
\(519\) 0 0
\(520\) −4.09573 + 0.429542i −0.179609 + 0.0188366i
\(521\) 23.8279 + 9.86983i 1.04392 + 0.432405i 0.837717 0.546104i \(-0.183890\pi\)
0.206202 + 0.978510i \(0.433890\pi\)
\(522\) 0 0
\(523\) 23.1957 1.01428 0.507138 0.861865i \(-0.330703\pi\)
0.507138 + 0.861865i \(0.330703\pi\)
\(524\) 19.8700 8.23042i 0.868025 0.359548i
\(525\) 0 0
\(526\) −12.0362 −0.524803
\(527\) −24.4965 + 19.2506i −1.06708 + 0.838568i
\(528\) 0 0
\(529\) 9.87182 + 9.87182i 0.429209 + 0.429209i
\(530\) 3.11092 + 2.52034i 0.135130 + 0.109477i
\(531\) 0 0
\(532\) 16.0919 6.66548i 0.697672 0.288985i
\(533\) −2.78709 + 6.72863i −0.120722 + 0.291449i
\(534\) 0 0
\(535\) 3.70628 12.5018i 0.160236 0.540500i
\(536\) 6.74685 6.74685i 0.291419 0.291419i
\(537\) 0 0
\(538\) 4.79930 11.5865i 0.206913 0.499531i
\(539\) 8.98204 + 21.6846i 0.386884 + 0.934020i
\(540\) 0 0
\(541\) 0.294727 0.122080i 0.0126713 0.00524863i −0.376339 0.926482i \(-0.622817\pi\)
0.389010 + 0.921233i \(0.372817\pi\)
\(542\) 4.97631 4.97631i 0.213751 0.213751i
\(543\) 0 0
\(544\) 10.1532 18.0647i 0.435315 0.774519i
\(545\) −18.1732 33.4889i −0.778454 1.43451i
\(546\) 0 0
\(547\) 11.1988 + 27.0363i 0.478826 + 1.15599i 0.960160 + 0.279450i \(0.0901523\pi\)
−0.481334 + 0.876537i \(0.659848\pi\)
\(548\) 16.9651 0.724714
\(549\) 0 0
\(550\) −4.14462 6.03630i −0.176727 0.257389i
\(551\) −0.540183 + 1.30412i −0.0230126 + 0.0555572i
\(552\) 0 0
\(553\) −34.0787 34.0787i −1.44917 1.44917i
\(554\) 1.18853 2.86936i 0.0504958 0.121908i
\(555\) 0 0
\(556\) −0.958597 2.31426i −0.0406536 0.0981464i
\(557\) 4.51904 0.191478 0.0957390 0.995406i \(-0.469479\pi\)
0.0957390 + 0.995406i \(0.469479\pi\)
\(558\) 0 0
\(559\) 5.75610 + 5.75610i 0.243457 + 0.243457i
\(560\) −19.5403 + 10.6038i −0.825728 + 0.448092i
\(561\) 0 0
\(562\) 2.73451i 0.115348i
\(563\) −17.3320 + 17.3320i −0.730457 + 0.730457i −0.970710 0.240253i \(-0.922770\pi\)
0.240253 + 0.970710i \(0.422770\pi\)
\(564\) 0 0
\(565\) −1.24861 2.30090i −0.0525295 0.0967995i
\(566\) −4.73548 11.4325i −0.199047 0.480543i
\(567\) 0 0
\(568\) 6.23928 + 2.58439i 0.261794 + 0.108439i
\(569\) −4.33415 + 4.33415i −0.181697 + 0.181697i −0.792095 0.610398i \(-0.791010\pi\)
0.610398 + 0.792095i \(0.291010\pi\)
\(570\) 0 0
\(571\) 0.200684 0.484495i 0.00839837 0.0202755i −0.919625 0.392798i \(-0.871507\pi\)
0.928023 + 0.372523i \(0.121507\pi\)
\(572\) 1.93362 4.66816i 0.0808486 0.195186i
\(573\) 0 0
\(574\) 14.3136i 0.597437i
\(575\) 14.7796 + 2.74616i 0.616353 + 0.114523i
\(576\) 0 0
\(577\) 39.5403i 1.64608i 0.567982 + 0.823041i \(0.307724\pi\)
−0.567982 + 0.823041i \(0.692276\pi\)
\(578\) 2.00629 8.24514i 0.0834505 0.342953i
\(579\) 0 0
\(580\) 0.611517 2.06273i 0.0253919 0.0856504i
\(581\) −29.0601 + 12.0371i −1.20562 + 0.499382i
\(582\) 0 0
\(583\) −9.72273 + 4.02729i −0.402674 + 0.166793i
\(584\) −8.66739 3.59015i −0.358659 0.148561i
\(585\) 0 0
\(586\) 8.58504 8.58504i 0.354645 0.354645i
\(587\) −7.73398 7.73398i −0.319216 0.319216i 0.529250 0.848466i \(-0.322473\pi\)
−0.848466 + 0.529250i \(0.822473\pi\)
\(588\) 0 0
\(589\) −17.9317 7.42756i −0.738863 0.306047i
\(590\) 0.265208 + 0.214861i 0.0109185 + 0.00884568i
\(591\) 0 0
\(592\) −9.66944 23.3441i −0.397412 0.959436i
\(593\) 2.72059 2.72059i 0.111721 0.111721i −0.649036 0.760757i \(-0.724828\pi\)
0.760757 + 0.649036i \(0.224828\pi\)
\(594\) 0 0
\(595\) −25.6212 + 24.8712i −1.05037 + 1.01962i
\(596\) −16.4751 −0.674847
\(597\) 0 0
\(598\) −0.564932 1.36387i −0.0231018 0.0557726i
\(599\) 35.5384i 1.45206i −0.687663 0.726030i \(-0.741363\pi\)
0.687663 0.726030i \(-0.258637\pi\)
\(600\) 0 0
\(601\) −17.3881 7.20238i −0.709275 0.293791i −0.00127033 0.999999i \(-0.500404\pi\)
−0.708004 + 0.706208i \(0.750404\pi\)
\(602\) −14.7807 6.12237i −0.602417 0.249529i
\(603\) 0 0
\(604\) 10.7240 10.7240i 0.436352 0.436352i
\(605\) −5.32118 + 0.558062i −0.216337 + 0.0226884i
\(606\) 0 0
\(607\) 26.1113 10.8157i 1.05983 0.438994i 0.216437 0.976297i \(-0.430557\pi\)
0.843390 + 0.537302i \(0.180557\pi\)
\(608\) 12.9096 0.523555
\(609\) 0 0
\(610\) 7.27840 + 2.15775i 0.294694 + 0.0873648i
\(611\) −10.7705 −0.435726
\(612\) 0 0
\(613\) 15.7155i 0.634743i 0.948301 + 0.317371i \(0.102800\pi\)
−0.948301 + 0.317371i \(0.897200\pi\)
\(614\) −0.323326 0.323326i −0.0130484 0.0130484i
\(615\) 0 0
\(616\) 21.2740i 0.857155i
\(617\) −25.2794 + 10.4711i −1.01771 + 0.421550i −0.828262 0.560341i \(-0.810670\pi\)
−0.189449 + 0.981891i \(0.560670\pi\)
\(618\) 0 0
\(619\) 2.89443 6.98778i 0.116337 0.280863i −0.854976 0.518668i \(-0.826428\pi\)
0.971313 + 0.237805i \(0.0764281\pi\)
\(620\) 28.3628 + 8.40841i 1.13908 + 0.337690i
\(621\) 0 0
\(622\) −3.92972 1.62774i −0.157568 0.0652666i
\(623\) 19.6715 47.4911i 0.788120 1.90269i
\(624\) 0 0
\(625\) −22.8478 + 10.1478i −0.913913 + 0.405910i
\(626\) −7.82529 + 3.24134i −0.312762 + 0.129550i
\(627\) 0 0
\(628\) 31.0716i 1.23989i
\(629\) −25.0755 31.9088i −0.999827 1.27229i
\(630\) 0 0
\(631\) −7.18142 7.18142i −0.285888 0.285888i 0.549564 0.835452i \(-0.314794\pi\)
−0.835452 + 0.549564i \(0.814794\pi\)
\(632\) −8.91574 21.5245i −0.354649 0.856198i
\(633\) 0 0
\(634\) 4.74638 + 11.4588i 0.188503 + 0.455087i
\(635\) −14.8072 + 1.55291i −0.587606 + 0.0616255i
\(636\) 0 0
\(637\) −5.56469 5.56469i −0.220481 0.220481i
\(638\) −0.569065 0.569065i −0.0225295 0.0225295i
\(639\) 0 0
\(640\) −25.2686 + 2.65006i −0.998828 + 0.104753i
\(641\) −12.2267 29.5179i −0.482925 1.16589i −0.958213 0.286055i \(-0.907656\pi\)
0.475288 0.879830i \(-0.342344\pi\)
\(642\) 0 0
\(643\) −13.4924 32.5735i −0.532088 1.28457i −0.930138 0.367211i \(-0.880313\pi\)
0.398050 0.917364i \(-0.369687\pi\)
\(644\) −14.4160 14.4160i −0.568069 0.568069i
\(645\) 0 0
\(646\) 5.09014 1.42713i 0.200269 0.0561498i
\(647\) 7.97446i 0.313508i −0.987638 0.156754i \(-0.949897\pi\)
0.987638 0.156754i \(-0.0501031\pi\)
\(648\) 0 0
\(649\) −0.828870 + 0.343329i −0.0325360 + 0.0134768i
\(650\) 2.05838 + 1.33805i 0.0807365 + 0.0524828i
\(651\) 0 0
\(652\) −1.54151 + 3.72154i −0.0603703 + 0.145747i
\(653\) −12.9322 5.35670i −0.506077 0.209624i 0.115012 0.993364i \(-0.463309\pi\)
−0.621089 + 0.783740i \(0.713309\pi\)
\(654\) 0 0
\(655\) −26.3347 7.80718i −1.02898 0.305052i
\(656\) −7.27350 + 17.5598i −0.283983 + 0.685595i
\(657\) 0 0
\(658\) 19.5563 8.10047i 0.762383 0.315789i
\(659\) 50.5377i 1.96867i 0.176309 + 0.984335i \(0.443584\pi\)
−0.176309 + 0.984335i \(0.556416\pi\)
\(660\) 0 0
\(661\) 23.9149 + 23.9149i 0.930181 + 0.930181i 0.997717 0.0675357i \(-0.0215137\pi\)
−0.0675357 + 0.997717i \(0.521514\pi\)
\(662\) 13.9256i 0.541234i
\(663\) 0 0
\(664\) −15.2055 −0.590088
\(665\) −21.3274 6.32272i −0.827042 0.245185i
\(666\) 0 0
\(667\) 1.65222 0.0639742
\(668\) 15.1444 6.27302i 0.585955 0.242710i
\(669\) 0 0
\(670\) −5.65714 + 0.593296i −0.218554 + 0.0229210i
\(671\) −14.1098 + 14.1098i −0.544702 + 0.544702i
\(672\) 0 0
\(673\) −0.237676 0.0984487i −0.00916174 0.00379492i 0.378098 0.925766i \(-0.376578\pi\)
−0.387260 + 0.921971i \(0.626578\pi\)
\(674\) −7.35553 3.04676i −0.283324 0.117357i
\(675\) 0 0
\(676\) 21.0668i 0.810260i
\(677\) 1.34830 + 3.25509i 0.0518195 + 0.125103i 0.947669 0.319254i \(-0.103432\pi\)
−0.895850 + 0.444357i \(0.853432\pi\)
\(678\) 0 0
\(679\) −17.5299 −0.672737
\(680\) −16.0439 + 6.36811i −0.615254 + 0.244206i
\(681\) 0 0
\(682\) 7.82469 7.82469i 0.299623 0.299623i
\(683\) −6.21032 14.9930i −0.237631 0.573693i 0.759406 0.650618i \(-0.225490\pi\)
−0.997037 + 0.0769247i \(0.975490\pi\)
\(684\) 0 0
\(685\) −16.8352 13.6392i −0.643241 0.521127i
\(686\) 1.78653 + 0.740004i 0.0682099 + 0.0282535i
\(687\) 0 0
\(688\) 15.0218 + 15.0218i 0.572699 + 0.572699i
\(689\) 2.49505 2.49505i 0.0950537 0.0950537i
\(690\) 0 0
\(691\) −12.6973 5.25938i −0.483027 0.200076i 0.127863 0.991792i \(-0.459188\pi\)
−0.610890 + 0.791716i \(0.709188\pi\)
\(692\) −15.0432 + 6.23108i −0.571855 + 0.236870i
\(693\) 0 0
\(694\) 12.0278 4.98208i 0.456569 0.189117i
\(695\) −0.909303 + 3.06721i −0.0344918 + 0.116346i
\(696\) 0 0
\(697\) −3.63461 + 30.3098i −0.137671 + 1.14807i
\(698\) 11.4523i 0.433478i
\(699\) 0 0
\(700\) 33.3346 + 6.19380i 1.25993 + 0.234103i
\(701\) 15.8410i 0.598305i 0.954205 + 0.299153i \(0.0967040\pi\)
−0.954205 + 0.299153i \(0.903296\pi\)
\(702\) 0 0
\(703\) 9.67504 23.3576i 0.364901 0.880949i
\(704\) 2.94768 7.11632i 0.111095 0.268206i
\(705\) 0 0
\(706\) −1.40019 + 1.40019i −0.0526970 + 0.0526970i
\(707\) −9.39979 3.89352i −0.353516 0.146431i
\(708\) 0 0
\(709\) 10.0675 + 24.3050i 0.378092 + 0.912795i 0.992324 + 0.123669i \(0.0394661\pi\)
−0.614232 + 0.789126i \(0.710534\pi\)
\(710\) −1.92025 3.53857i −0.0720656 0.132800i
\(711\) 0 0
\(712\) 17.5712 17.5712i 0.658509 0.658509i
\(713\) 22.7182i 0.850802i
\(714\) 0 0
\(715\) −5.67181 + 3.07788i −0.212114 + 0.115106i
\(716\) −2.39903 2.39903i −0.0896561 0.0896561i
\(717\) 0 0
\(718\) 9.38640 0.350297
\(719\) 10.9009 + 26.3171i 0.406535 + 0.981463i 0.986042 + 0.166496i \(0.0532452\pi\)
−0.579507 + 0.814967i \(0.696755\pi\)
\(720\) 0 0
\(721\) −13.6554 + 32.9671i −0.508554 + 1.22776i
\(722\) −4.37751 4.37751i −0.162914 0.162914i
\(723\) 0 0
\(724\) −11.3249 + 27.3407i −0.420886 + 1.01611i
\(725\) −2.26518 + 1.55531i −0.0841267 + 0.0577627i
\(726\) 0 0
\(727\) −4.70692 −0.174570 −0.0872850 0.996183i \(-0.527819\pi\)
−0.0872850 + 0.996183i \(0.527819\pi\)
\(728\) −2.72967 6.59000i −0.101168 0.244242i
\(729\) 0 0
\(730\) 2.66754 + 4.91565i 0.0987302 + 0.181937i
\(731\) 29.7443 + 16.7177i 1.10013 + 0.618326i
\(732\) 0 0
\(733\) 18.9410 18.9410i 0.699601 0.699601i −0.264723 0.964324i \(-0.585281\pi\)
0.964324 + 0.264723i \(0.0852806\pi\)
\(734\) −3.46234 + 1.43415i −0.127797 + 0.0529353i
\(735\) 0 0
\(736\) −5.78257 13.9604i −0.213148 0.514586i
\(737\) 5.72162 13.8132i 0.210759 0.508816i
\(738\) 0 0
\(739\) −17.3148 + 17.3148i −0.636935 + 0.636935i −0.949798 0.312863i \(-0.898712\pi\)
0.312863 + 0.949798i \(0.398712\pi\)
\(740\) −10.9527 + 36.9450i −0.402629 + 1.35812i
\(741\) 0 0
\(742\) −2.65381 + 6.40687i −0.0974244 + 0.235203i
\(743\) 27.1524 11.2469i 0.996126 0.412609i 0.175751 0.984435i \(-0.443765\pi\)
0.820375 + 0.571826i \(0.193765\pi\)
\(744\) 0 0
\(745\) 16.3490 + 13.2452i 0.598979 + 0.485268i
\(746\) 6.55668 + 6.55668i 0.240057 + 0.240057i
\(747\) 0 0
\(748\) 2.52160 21.0282i 0.0921990 0.768868i
\(749\) 22.5855 0.825255
\(750\) 0 0
\(751\) −10.6558 + 4.41379i −0.388837 + 0.161062i −0.568533 0.822661i \(-0.692489\pi\)
0.179696 + 0.983722i \(0.442489\pi\)
\(752\) −28.1078 −1.02499
\(753\) 0 0
\(754\) 0.249294 + 0.103261i 0.00907876 + 0.00376055i
\(755\) −19.2635 + 2.02027i −0.701069 + 0.0735250i
\(756\) 0 0
\(757\) −18.1908 18.1908i −0.661157 0.661157i 0.294496 0.955653i \(-0.404848\pi\)
−0.955653 + 0.294496i \(0.904848\pi\)
\(758\) 6.77320 + 2.80555i 0.246014 + 0.101902i
\(759\) 0 0
\(760\) −8.35552 6.76929i −0.303086 0.245548i
\(761\) 19.0450i 0.690379i 0.938533 + 0.345190i \(0.112185\pi\)
−0.938533 + 0.345190i \(0.887815\pi\)
\(762\) 0 0
\(763\) 46.6657 46.6657i 1.68941 1.68941i
\(764\) −29.1678 −1.05525
\(765\) 0 0
\(766\) −10.6353 −0.384268
\(767\) 0.212704 0.212704i 0.00768031 0.00768031i
\(768\) 0 0
\(769\) 23.2434i 0.838178i −0.907945 0.419089i \(-0.862349\pi\)
0.907945 0.419089i \(-0.137651\pi\)
\(770\) 7.98361 9.85438i 0.287709 0.355127i
\(771\) 0 0
\(772\) −22.9124 9.49063i −0.824636 0.341575i
\(773\) 27.6253 + 27.6253i 0.993611 + 0.993611i 0.999980 0.00636835i \(-0.00202712\pi\)
−0.00636835 + 0.999980i \(0.502027\pi\)
\(774\) 0 0
\(775\) −21.3856 31.1464i −0.768194 1.11881i
\(776\) −7.82915 3.24294i −0.281050 0.116415i
\(777\) 0 0
\(778\) −2.38532 −0.0855179
\(779\) −17.5700 + 7.27772i −0.629509 + 0.260751i
\(780\) 0 0
\(781\) 10.5824 0.378666
\(782\) −3.82329 4.86517i −0.136721 0.173978i
\(783\) 0 0
\(784\) −14.5222 14.5222i −0.518651 0.518651i
\(785\) 24.9801 30.8337i 0.891580 1.10050i
\(786\) 0 0
\(787\) −38.7192 + 16.0380i −1.38019 + 0.571694i −0.944533 0.328417i \(-0.893485\pi\)
−0.435659 + 0.900112i \(0.643485\pi\)
\(788\) 12.2598 29.5979i 0.436738 1.05438i
\(789\) 0 0
\(790\) −3.94773 + 13.3163i −0.140454 + 0.473771i
\(791\) 3.20623 3.20623i 0.114000 0.114000i
\(792\) 0 0
\(793\) 2.56033 6.18117i 0.0909198 0.219500i
\(794\) 6.16861 + 14.8923i 0.218916 + 0.528509i
\(795\) 0 0
\(796\) 8.82835 3.65682i 0.312913 0.129613i
\(797\) −28.5463 + 28.5463i −1.01116 + 1.01116i −0.0112235 + 0.999937i \(0.503573\pi\)
−0.999937 + 0.0112235i \(0.996427\pi\)
\(798\) 0 0
\(799\) −43.4684 + 12.1873i −1.53780 + 0.431157i
\(800\) 21.0694 + 13.6962i 0.744914 + 0.484232i
\(801\) 0 0
\(802\) −4.74680 11.4598i −0.167615 0.404659i
\(803\) −14.7006 −0.518774
\(804\) 0 0
\(805\) 2.71579 + 25.8954i 0.0957192 + 0.912693i
\(806\) −1.41985 + 3.42782i −0.0500120 + 0.120740i
\(807\) 0 0
\(808\) −3.47782 3.47782i −0.122349 0.122349i
\(809\) −10.0781 + 24.3308i −0.354329 + 0.855425i 0.641747 + 0.766917i \(0.278210\pi\)
−0.996075 + 0.0885086i \(0.971790\pi\)
\(810\) 0 0
\(811\) 6.77328 + 16.3522i 0.237842 + 0.574202i 0.997059 0.0766358i \(-0.0244179\pi\)
−0.759217 + 0.650838i \(0.774418\pi\)
\(812\) 3.72649 0.130774
\(813\) 0 0
\(814\) 10.1923 + 10.1923i 0.357241 + 0.357241i
\(815\) 4.52166 2.45374i 0.158387 0.0859507i
\(816\) 0 0
\(817\) 21.2563i 0.743663i
\(818\) 6.49534 6.49534i 0.227104 0.227104i
\(819\) 0 0
\(820\) 25.4766 13.8252i 0.889682 0.482797i
\(821\) −7.26680 17.5436i −0.253613 0.612276i 0.744877 0.667201i \(-0.232508\pi\)
−0.998490 + 0.0549252i \(0.982508\pi\)
\(822\) 0 0
\(823\) 35.4556 + 14.6862i 1.23591 + 0.511929i 0.902433 0.430831i \(-0.141780\pi\)
0.333473 + 0.942760i \(0.391780\pi\)
\(824\) −12.1975 + 12.1975i −0.424919 + 0.424919i
\(825\) 0 0
\(826\) −0.226239 + 0.546190i −0.00787187 + 0.0190044i
\(827\) 18.6234 44.9609i 0.647599 1.56344i −0.168608 0.985683i \(-0.553927\pi\)
0.816207 0.577759i \(-0.196073\pi\)
\(828\) 0 0
\(829\) 51.7088i 1.79592i 0.440076 + 0.897960i \(0.354951\pi\)
−0.440076 + 0.897960i \(0.645049\pi\)
\(830\) 7.04337 + 5.70625i 0.244479 + 0.198067i
\(831\) 0 0
\(832\) 2.58262i 0.0895362i
\(833\) −28.7552 16.1618i −0.996310 0.559972i
\(834\) 0 0
\(835\) −20.0717 5.95044i −0.694609 0.205924i
\(836\) 12.1896 5.04911i 0.421587 0.174627i
\(837\) 0 0
\(838\) 1.39951 0.579697i 0.0483454 0.0200253i
\(839\) −33.6766 13.9493i −1.16265 0.481584i −0.283891 0.958857i \(-0.591625\pi\)
−0.878755 + 0.477273i \(0.841625\pi\)
\(840\) 0 0
\(841\) 20.2925 20.2925i 0.699743 0.699743i
\(842\) 10.9599 + 10.9599i 0.377703 + 0.377703i
\(843\) 0 0
\(844\) −8.91168 3.69134i −0.306753 0.127061i
\(845\) −16.9367 + 20.9055i −0.582641 + 0.719169i
\(846\) 0 0
\(847\) −3.54639 8.56175i −0.121856 0.294185i
\(848\) 6.51135 6.51135i 0.223601 0.223601i
\(849\) 0 0
\(850\) 9.82151 + 3.07108i 0.336875 + 0.105337i
\(851\) −29.5924 −1.01441
\(852\) 0 0
\(853\) 0.358129 + 0.864600i 0.0122621 + 0.0296033i 0.929892 0.367833i \(-0.119900\pi\)
−0.917630 + 0.397436i \(0.869900\pi\)
\(854\) 13.1490i 0.449949i
\(855\) 0 0
\(856\) 10.0870 + 4.17819i 0.344768 + 0.142808i
\(857\) 28.1526 + 11.6612i 0.961676 + 0.398339i 0.807607 0.589721i \(-0.200762\pi\)
0.154069 + 0.988060i \(0.450762\pi\)
\(858\) 0 0
\(859\) 0.697980 0.697980i 0.0238148 0.0238148i −0.695099 0.718914i \(-0.744640\pi\)
0.718914 + 0.695099i \(0.244640\pi\)
\(860\) −3.37925 32.2215i −0.115232 1.09875i
\(861\) 0 0
\(862\) −16.4095 + 6.79706i −0.558911 + 0.231509i
\(863\) 26.0032 0.885159 0.442580 0.896729i \(-0.354063\pi\)
0.442580 + 0.896729i \(0.354063\pi\)
\(864\) 0 0
\(865\) 19.9375 + 5.91065i 0.677895 + 0.200968i
\(866\) 1.64669 0.0559568
\(867\) 0 0
\(868\) 51.2395i 1.73918i
\(869\) −25.8146 25.8146i −0.875702 0.875702i
\(870\) 0 0
\(871\) 5.01302i 0.169860i
\(872\) 29.4746 12.2088i 0.998136 0.413442i
\(873\) 0 0
\(874\) 1.47516 3.56136i 0.0498982 0.120465i
\(875\) −28.0998 32.9459i −0.949947 1.11377i
\(876\) 0 0
\(877\) −31.2380 12.9392i −1.05483 0.436925i −0.213217 0.977005i \(-0.568394\pi\)
−0.841614 + 0.540080i \(0.818394\pi\)
\(878\) −0.634168 + 1.53102i −0.0214021 + 0.0516693i
\(879\) 0 0
\(880\) −14.8018 + 8.03238i −0.498968 + 0.270771i
\(881\) −17.5111 + 7.25334i −0.589965 + 0.244371i −0.657635 0.753336i \(-0.728443\pi\)
0.0676708 + 0.997708i \(0.478443\pi\)
\(882\) 0 0
\(883\) 38.1002i 1.28217i −0.767468 0.641087i \(-0.778484\pi\)
0.767468 0.641087i \(-0.221516\pi\)
\(884\) 1.91702 + 6.83740i 0.0644763 + 0.229967i
\(885\) 0 0
\(886\) 1.98466 + 1.98466i 0.0666761 + 0.0666761i
\(887\) 16.5026 + 39.8409i 0.554104 + 1.33773i 0.914371 + 0.404876i \(0.132685\pi\)
−0.360267 + 0.932849i \(0.617315\pi\)
\(888\) 0 0
\(889\) −9.86852 23.8247i −0.330980 0.799055i
\(890\) −14.7332 + 1.54516i −0.493859 + 0.0517937i
\(891\) 0 0
\(892\) −32.9543 32.9543i −1.10339 1.10339i
\(893\) −19.8867 19.8867i −0.665483 0.665483i
\(894\) 0 0
\(895\) 0.451949 + 4.30938i 0.0151070 + 0.144047i
\(896\) −16.8407 40.6570i −0.562608 1.35825i
\(897\) 0 0
\(898\) 1.17138 + 2.82796i 0.0390894 + 0.0943702i
\(899\) −2.93629 2.93629i −0.0979307 0.0979307i
\(900\) 0 0
\(901\) 7.24647 12.8930i 0.241415 0.429529i
\(902\) 10.8425i 0.361017i
\(903\) 0 0
\(904\) 2.02509 0.838820i 0.0673535 0.0278987i
\(905\) 33.2189 18.0267i 1.10423 0.599226i
\(906\) 0 0
\(907\) 5.81633 14.0419i 0.193128 0.466253i −0.797419 0.603426i \(-0.793802\pi\)
0.990547 + 0.137174i \(0.0438018\pi\)
\(908\) −12.4066 5.13899i −0.411728 0.170543i
\(909\) 0 0
\(910\) −1.20865 + 4.07694i −0.0400663 + 0.135149i
\(911\) 8.93184 21.5634i 0.295925 0.714426i −0.704066 0.710135i \(-0.748634\pi\)
0.999991 0.00429141i \(-0.00136600\pi\)
\(912\) 0 0
\(913\) −22.0130 + 9.11810i −0.728525 + 0.301765i
\(914\) 14.1729i 0.468796i
\(915\) 0 0
\(916\) −11.5553 11.5553i −0.381797 0.381797i
\(917\) 47.5757i 1.57109i
\(918\) 0 0
\(919\) 11.1867 0.369017 0.184508 0.982831i \(-0.440931\pi\)
0.184508 + 0.982831i \(0.440931\pi\)
\(920\) −3.57759 + 12.0677i −0.117950 + 0.397861i
\(921\) 0 0
\(922\) 10.3837 0.341970
\(923\) −3.27807 + 1.35782i −0.107899 + 0.0446932i
\(924\) 0 0
\(925\) 40.5709 27.8566i 1.33396 0.915920i
\(926\) 11.1040 11.1040i 0.364899 0.364899i
\(927\) 0 0
\(928\) 2.55174 + 1.05697i 0.0837651 + 0.0346966i
\(929\) −0.819025 0.339251i −0.0268713 0.0111305i 0.369207 0.929347i \(-0.379629\pi\)
−0.396079 + 0.918217i \(0.629629\pi\)
\(930\) 0 0
\(931\) 20.5494i 0.673480i
\(932\) −2.61238 6.30685i −0.0855714 0.206588i
\(933\) 0 0
\(934\) −0.741696 −0.0242690
\(935\) −19.4080 + 18.8400i −0.634711 + 0.616132i
\(936\) 0 0
\(937\) 5.65400 5.65400i 0.184708 0.184708i −0.608696 0.793404i \(-0.708307\pi\)
0.793404 + 0.608696i \(0.208307\pi\)
\(938\) −3.77030 9.10232i −0.123105 0.297201i
\(939\) 0 0
\(940\) 33.3070 + 26.9840i 1.08635 + 0.880119i
\(941\) 42.8352 + 17.7429i 1.39639 + 0.578403i 0.948812 0.315842i \(-0.102287\pi\)
0.447577 + 0.894245i \(0.352287\pi\)
\(942\) 0 0
\(943\) 15.7401 + 15.7401i 0.512568 + 0.512568i
\(944\) 0.555097 0.555097i 0.0180669 0.0180669i
\(945\) 0 0
\(946\) −11.1964 4.63770i −0.364026 0.150785i
\(947\) −29.0189 + 12.0200i −0.942987 + 0.390598i −0.800591 0.599212i \(-0.795481\pi\)
−0.142396 + 0.989810i \(0.545481\pi\)
\(948\) 0 0
\(949\) 4.55378 1.88624i 0.147822 0.0612299i
\(950\) 1.33003 + 6.27123i 0.0431518 + 0.203466i
\(951\) 0 0
\(952\) −18.4736 23.5078i −0.598733 0.761892i
\(953\) 53.1529i 1.72179i 0.508781 + 0.860896i \(0.330096\pi\)
−0.508781 + 0.860896i \(0.669904\pi\)
\(954\) 0 0
\(955\) 28.9445 + 23.4496i 0.936621 + 0.758811i
\(956\) 39.6212i 1.28144i
\(957\) 0 0
\(958\) −2.79524 + 6.74831i −0.0903102 + 0.218028i
\(959\) 14.3615 34.6717i 0.463757 1.11961i
\(960\) 0 0
\(961\) 18.4539 18.4539i 0.595288 0.595288i
\(962\) −4.46503 1.84948i −0.143958 0.0596295i
\(963\) 0 0
\(964\) 1.93767 + 4.67796i 0.0624083 + 0.150667i
\(965\) 15.1069 + 27.8385i 0.486309 + 0.896154i
\(966\) 0 0
\(967\) −20.7371 + 20.7371i −0.666860 + 0.666860i −0.956988 0.290128i \(-0.906302\pi\)
0.290128 + 0.956988i \(0.406302\pi\)
\(968\) 4.47988i 0.143989i
\(969\) 0 0
\(970\) 2.40956 + 4.44025i 0.0773663 + 0.142568i
\(971\) 23.8303 + 23.8303i 0.764751 + 0.764751i 0.977177 0.212426i \(-0.0681365\pi\)
−0.212426 + 0.977177i \(0.568136\pi\)
\(972\) 0 0
\(973\) −5.54115 −0.177641
\(974\) 0.644633 + 1.55628i 0.0206554 + 0.0498665i
\(975\) 0 0
\(976\) 6.68171 16.1311i 0.213876 0.516343i
\(977\) 40.9965 + 40.9965i 1.31160 + 1.31160i 0.920239 + 0.391356i \(0.127994\pi\)
0.391356 + 0.920239i \(0.372006\pi\)
\(978\) 0 0
\(979\) 14.9011 35.9745i 0.476243 1.14975i
\(980\) 3.26688 + 31.1501i 0.104357 + 0.995052i
\(981\) 0 0
\(982\) 3.78212 0.120692
\(983\) 7.84974 + 18.9510i 0.250368 + 0.604441i 0.998234 0.0594084i \(-0.0189214\pi\)
−0.747866 + 0.663850i \(0.768921\pi\)
\(984\) 0 0
\(985\) −35.9613 + 19.5149i −1.14582 + 0.621795i
\(986\) 1.12297 + 0.134661i 0.0357627 + 0.00428849i
\(987\) 0 0
\(988\) −3.12810 + 3.12810i −0.0995181 + 0.0995181i
\(989\) 22.9863 9.52125i 0.730923 0.302758i
\(990\) 0 0
\(991\) 11.7383 + 28.3388i 0.372881 + 0.900213i 0.993260 + 0.115911i \(0.0369788\pi\)
−0.620379 + 0.784302i \(0.713021\pi\)
\(992\) −14.5334 + 35.0867i −0.461436 + 1.11400i
\(993\) 0 0
\(994\) 4.93088 4.93088i 0.156398 0.156398i
\(995\) −11.7007 3.46878i −0.370936 0.109968i
\(996\) 0 0
\(997\) −1.88809 + 4.55826i −0.0597965 + 0.144361i −0.950954 0.309333i \(-0.899894\pi\)
0.891157 + 0.453694i \(0.149894\pi\)
\(998\) −3.93341 + 1.62927i −0.124510 + 0.0515738i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.bh.b.19.4 24
3.2 odd 2 85.2.m.a.19.3 yes 24
5.4 even 2 inner 765.2.bh.b.19.3 24
15.2 even 4 425.2.m.e.376.3 24
15.8 even 4 425.2.m.e.376.4 24
15.14 odd 2 85.2.m.a.19.4 yes 24
17.9 even 8 inner 765.2.bh.b.604.3 24
51.14 even 16 1445.2.b.i.579.16 24
51.20 even 16 1445.2.b.i.579.15 24
51.26 odd 8 85.2.m.a.9.4 yes 24
85.9 even 8 inner 765.2.bh.b.604.4 24
255.14 even 16 1445.2.b.i.579.9 24
255.77 even 8 425.2.m.e.26.3 24
255.122 odd 16 7225.2.a.by.1.9 24
255.128 even 8 425.2.m.e.26.4 24
255.167 odd 16 7225.2.a.by.1.10 24
255.173 odd 16 7225.2.a.by.1.16 24
255.179 odd 8 85.2.m.a.9.3 24
255.218 odd 16 7225.2.a.by.1.15 24
255.224 even 16 1445.2.b.i.579.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.9.3 24 255.179 odd 8
85.2.m.a.9.4 yes 24 51.26 odd 8
85.2.m.a.19.3 yes 24 3.2 odd 2
85.2.m.a.19.4 yes 24 15.14 odd 2
425.2.m.e.26.3 24 255.77 even 8
425.2.m.e.26.4 24 255.128 even 8
425.2.m.e.376.3 24 15.2 even 4
425.2.m.e.376.4 24 15.8 even 4
765.2.bh.b.19.3 24 5.4 even 2 inner
765.2.bh.b.19.4 24 1.1 even 1 trivial
765.2.bh.b.604.3 24 17.9 even 8 inner
765.2.bh.b.604.4 24 85.9 even 8 inner
1445.2.b.i.579.9 24 255.14 even 16
1445.2.b.i.579.10 24 255.224 even 16
1445.2.b.i.579.15 24 51.20 even 16
1445.2.b.i.579.16 24 51.14 even 16
7225.2.a.by.1.9 24 255.122 odd 16
7225.2.a.by.1.10 24 255.167 odd 16
7225.2.a.by.1.15 24 255.218 odd 16
7225.2.a.by.1.16 24 255.173 odd 16