Properties

Label 7225.2.a.by.1.10
Level 72257225
Weight 22
Character 7225.1
Self dual yes
Analytic conductor 57.69257.692
Analytic rank 11
Dimension 2424
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7225=52172 7225 = 5^{2} \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 57.691915460457.6919154604
Analytic rank: 11
Dimension: 2424
Twist minimal: no (minimal twist has level 85)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.10
Character χ\chi == 7225.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.499161q2+0.171281q31.75084q40.0854968q63.87301q7+1.87227q82.97066q92.93381q110.299886q120.983677q13+1.93326q14+2.56711q16+1.48284q18+2.56860q190.663375q21+1.46444q22+3.00652q23+0.320685q24+0.491013q261.02266q27+6.78102q28+0.549546q29+7.55631q315.02594q320.502507q33+5.20115q36+9.84275q371.28214q380.168485q397.40387q41+0.331130q428.27543q43+5.13663q441.50073q46+10.9492q47+0.439699q48+8.00024q49+1.72226q523.58708q53+0.510473q547.25133q56+0.439953q570.274312q58+0.305801q59+6.80147q613.77181q62+11.5054q632.62548q64+0.250832q665.09621q67+0.514960q69+3.60703q715.56188q72+5.01077q734.91311q744.49721q76+11.3627q77+0.0841013q78+12.4437q79+8.73683q81+3.69572q82+8.12143q83+1.16146q84+4.13077q86+0.0941270q875.49289q8813.2723q89+3.80980q915.26393q92+1.29425q935.46540q940.860850q96+4.52617q973.99340q98+8.71536q99+O(q100)q-0.499161 q^{2} +0.171281 q^{3} -1.75084 q^{4} -0.0854968 q^{6} -3.87301 q^{7} +1.87227 q^{8} -2.97066 q^{9} -2.93381 q^{11} -0.299886 q^{12} -0.983677 q^{13} +1.93326 q^{14} +2.56711 q^{16} +1.48284 q^{18} +2.56860 q^{19} -0.663375 q^{21} +1.46444 q^{22} +3.00652 q^{23} +0.320685 q^{24} +0.491013 q^{26} -1.02266 q^{27} +6.78102 q^{28} +0.549546 q^{29} +7.55631 q^{31} -5.02594 q^{32} -0.502507 q^{33} +5.20115 q^{36} +9.84275 q^{37} -1.28214 q^{38} -0.168485 q^{39} -7.40387 q^{41} +0.331130 q^{42} -8.27543 q^{43} +5.13663 q^{44} -1.50073 q^{46} +10.9492 q^{47} +0.439699 q^{48} +8.00024 q^{49} +1.72226 q^{52} -3.58708 q^{53} +0.510473 q^{54} -7.25133 q^{56} +0.439953 q^{57} -0.274312 q^{58} +0.305801 q^{59} +6.80147 q^{61} -3.77181 q^{62} +11.5054 q^{63} -2.62548 q^{64} +0.250832 q^{66} -5.09621 q^{67} +0.514960 q^{69} +3.60703 q^{71} -5.56188 q^{72} +5.01077 q^{73} -4.91311 q^{74} -4.49721 q^{76} +11.3627 q^{77} +0.0841013 q^{78} +12.4437 q^{79} +8.73683 q^{81} +3.69572 q^{82} +8.12143 q^{83} +1.16146 q^{84} +4.13077 q^{86} +0.0941270 q^{87} -5.49289 q^{88} -13.2723 q^{89} +3.80980 q^{91} -5.26393 q^{92} +1.29425 q^{93} -5.46540 q^{94} -0.860850 q^{96} +4.52617 q^{97} -3.99340 q^{98} +8.71536 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 24q+8q48q98q1616q1932q2148q26+8q3656q4964q59104q6416q6632q6948q7688q8196q84112q89128q94+O(q100) 24 q + 8 q^{4} - 8 q^{9} - 8 q^{16} - 16 q^{19} - 32 q^{21} - 48 q^{26} + 8 q^{36} - 56 q^{49} - 64 q^{59} - 104 q^{64} - 16 q^{66} - 32 q^{69} - 48 q^{76} - 88 q^{81} - 96 q^{84} - 112 q^{89} - 128 q^{94}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.499161 −0.352960 −0.176480 0.984304i 0.556471π-0.556471\pi
−0.176480 + 0.984304i 0.556471π0.556471\pi
33 0.171281 0.0988893 0.0494446 0.998777i 0.484255π-0.484255\pi
0.0494446 + 0.998777i 0.484255π0.484255\pi
44 −1.75084 −0.875419
55 0 0
66 −0.0854968 −0.0349039
77 −3.87301 −1.46386 −0.731931 0.681379i 0.761381π-0.761381\pi
−0.731931 + 0.681379i 0.761381π0.761381\pi
88 1.87227 0.661948
99 −2.97066 −0.990221
1010 0 0
1111 −2.93381 −0.884577 −0.442289 0.896873i 0.645833π-0.645833\pi
−0.442289 + 0.896873i 0.645833π0.645833\pi
1212 −0.299886 −0.0865696
1313 −0.983677 −0.272823 −0.136411 0.990652i 0.543557π-0.543557\pi
−0.136411 + 0.990652i 0.543557π0.543557\pi
1414 1.93326 0.516684
1515 0 0
1616 2.56711 0.641779
1717 0 0
1818 1.48284 0.349508
1919 2.56860 0.589277 0.294639 0.955609i 0.404801π-0.404801\pi
0.294639 + 0.955609i 0.404801π0.404801\pi
2020 0 0
2121 −0.663375 −0.144760
2222 1.46444 0.312220
2323 3.00652 0.626902 0.313451 0.949604i 0.398515π-0.398515\pi
0.313451 + 0.949604i 0.398515π0.398515\pi
2424 0.320685 0.0654595
2525 0 0
2626 0.491013 0.0962955
2727 −1.02266 −0.196812
2828 6.78102 1.28149
2929 0.549546 0.102048 0.0510241 0.998697i 0.483751π-0.483751\pi
0.0510241 + 0.998697i 0.483751π0.483751\pi
3030 0 0
3131 7.55631 1.35715 0.678577 0.734530i 0.262597π-0.262597\pi
0.678577 + 0.734530i 0.262597π0.262597\pi
3232 −5.02594 −0.888470
3333 −0.502507 −0.0874752
3434 0 0
3535 0 0
3636 5.20115 0.866859
3737 9.84275 1.61814 0.809069 0.587714i 0.199972π-0.199972\pi
0.809069 + 0.587714i 0.199972π0.199972\pi
3838 −1.28214 −0.207991
3939 −0.168485 −0.0269793
4040 0 0
4141 −7.40387 −1.15629 −0.578145 0.815934i 0.696223π-0.696223\pi
−0.578145 + 0.815934i 0.696223π0.696223\pi
4242 0.331130 0.0510945
4343 −8.27543 −1.26199 −0.630996 0.775786i 0.717353π-0.717353\pi
−0.630996 + 0.775786i 0.717353π0.717353\pi
4444 5.13663 0.774376
4545 0 0
4646 −1.50073 −0.221271
4747 10.9492 1.59710 0.798551 0.601928i 0.205600π-0.205600\pi
0.798551 + 0.601928i 0.205600π0.205600\pi
4848 0.439699 0.0634650
4949 8.00024 1.14289
5050 0 0
5151 0 0
5252 1.72226 0.238834
5353 −3.58708 −0.492723 −0.246362 0.969178i 0.579235π-0.579235\pi
−0.246362 + 0.969178i 0.579235π0.579235\pi
5454 0.510473 0.0694665
5555 0 0
5656 −7.25133 −0.969000
5757 0.439953 0.0582732
5858 −0.274312 −0.0360189
5959 0.305801 0.0398119 0.0199059 0.999802i 0.493663π-0.493663\pi
0.0199059 + 0.999802i 0.493663π0.493663\pi
6060 0 0
6161 6.80147 0.870839 0.435420 0.900228i 0.356600π-0.356600\pi
0.435420 + 0.900228i 0.356600π0.356600\pi
6262 −3.77181 −0.479020
6363 11.5054 1.44955
6464 −2.62548 −0.328184
6565 0 0
6666 0.250832 0.0308752
6767 −5.09621 −0.622601 −0.311301 0.950312i 0.600765π-0.600765\pi
−0.311301 + 0.950312i 0.600765π0.600765\pi
6868 0 0
6969 0.514960 0.0619939
7070 0 0
7171 3.60703 0.428076 0.214038 0.976825i 0.431338π-0.431338\pi
0.214038 + 0.976825i 0.431338π0.431338\pi
7272 −5.56188 −0.655474
7373 5.01077 0.586466 0.293233 0.956041i 0.405269π-0.405269\pi
0.293233 + 0.956041i 0.405269π0.405269\pi
7474 −4.91311 −0.571138
7575 0 0
7676 −4.49721 −0.515865
7777 11.3627 1.29490
7878 0.0841013 0.00952259
7979 12.4437 1.40002 0.700012 0.714131i 0.253178π-0.253178\pi
0.700012 + 0.714131i 0.253178π0.253178\pi
8080 0 0
8181 8.73683 0.970758
8282 3.69572 0.408124
8383 8.12143 0.891443 0.445721 0.895172i 0.352947π-0.352947\pi
0.445721 + 0.895172i 0.352947π0.352947\pi
8484 1.16146 0.126726
8585 0 0
8686 4.13077 0.445432
8787 0.0941270 0.0100915
8888 −5.49289 −0.585544
8989 −13.2723 −1.40687 −0.703433 0.710761i 0.748351π-0.748351\pi
−0.703433 + 0.710761i 0.748351π0.748351\pi
9090 0 0
9191 3.80980 0.399375
9292 −5.26393 −0.548802
9393 1.29425 0.134208
9494 −5.46540 −0.563712
9595 0 0
9696 −0.860850 −0.0878601
9797 4.52617 0.459563 0.229781 0.973242i 0.426199π-0.426199\pi
0.229781 + 0.973242i 0.426199π0.426199\pi
9898 −3.99340 −0.403395
9999 8.71536 0.875927
100100 0 0
101101 −2.62696 −0.261393 −0.130696 0.991422i 0.541721π-0.541721\pi
−0.130696 + 0.991422i 0.541721π0.541721\pi
102102 0 0
103103 9.21332 0.907815 0.453908 0.891049i 0.350030π-0.350030\pi
0.453908 + 0.891049i 0.350030π0.350030\pi
104104 −1.84171 −0.180594
105105 0 0
106106 1.79053 0.173911
107107 −5.83150 −0.563752 −0.281876 0.959451i 0.590957π-0.590957\pi
−0.281876 + 0.959451i 0.590957π0.590957\pi
108108 1.79052 0.172293
109109 −17.0398 −1.63212 −0.816058 0.577970i 0.803845π-0.803845\pi
−0.816058 + 0.577970i 0.803845π0.803845\pi
110110 0 0
111111 1.68588 0.160017
112112 −9.94247 −0.939475
113113 1.17074 0.110134 0.0550670 0.998483i 0.482463π-0.482463\pi
0.0550670 + 0.998483i 0.482463π0.482463\pi
114114 −0.219607 −0.0205681
115115 0 0
116116 −0.962167 −0.0893350
117117 2.92217 0.270155
118118 −0.152644 −0.0140520
119119 0 0
120120 0 0
121121 −2.39275 −0.217523
122122 −3.39503 −0.307371
123123 −1.26814 −0.114345
124124 −13.2299 −1.18808
125125 0 0
126126 −5.74305 −0.511632
127127 −6.65830 −0.590828 −0.295414 0.955369i 0.595458π-0.595458\pi
−0.295414 + 0.955369i 0.595458π0.595458\pi
128128 11.3624 1.00431
129129 −1.41743 −0.124797
130130 0 0
131131 −12.2839 −1.07325 −0.536624 0.843821i 0.680301π-0.680301\pi
−0.536624 + 0.843821i 0.680301π0.680301\pi
132132 0.879808 0.0765775
133133 −9.94823 −0.862621
134134 2.54383 0.219753
135135 0 0
136136 0 0
137137 −9.68972 −0.827848 −0.413924 0.910311i 0.635842π-0.635842\pi
−0.413924 + 0.910311i 0.635842π0.635842\pi
138138 −0.257048 −0.0218814
139139 −1.43071 −0.121351 −0.0606755 0.998158i 0.519325π-0.519325\pi
−0.0606755 + 0.998158i 0.519325π0.519325\pi
140140 0 0
141141 1.87539 0.157936
142142 −1.80049 −0.151094
143143 2.88592 0.241333
144144 −7.62603 −0.635502
145145 0 0
146146 −2.50118 −0.206999
147147 1.37029 0.113020
148148 −17.2331 −1.41655
149149 −9.40983 −0.770884 −0.385442 0.922732i 0.625951π-0.625951\pi
−0.385442 + 0.922732i 0.625951π0.625951\pi
150150 0 0
151151 8.66213 0.704914 0.352457 0.935828i 0.385346π-0.385346\pi
0.352457 + 0.935828i 0.385346π0.385346\pi
152152 4.80912 0.390071
153153 0 0
154154 −5.67181 −0.457047
155155 0 0
156156 0.294991 0.0236182
157157 17.7467 1.41634 0.708169 0.706043i 0.249521π-0.249521\pi
0.708169 + 0.706043i 0.249521π0.249521\pi
158158 −6.21140 −0.494152
159159 −0.614399 −0.0487250
160160 0 0
161161 −11.6443 −0.917698
162162 −4.36108 −0.342639
163163 −2.30071 −0.180205 −0.0901027 0.995932i 0.528720π-0.528720\pi
−0.0901027 + 0.995932i 0.528720π0.528720\pi
164164 12.9630 1.01224
165165 0 0
166166 −4.05390 −0.314643
167167 −9.36248 −0.724491 −0.362245 0.932083i 0.617990π-0.617990\pi
−0.362245 + 0.932083i 0.617990π0.617990\pi
168168 −1.24202 −0.0958237
169169 −12.0324 −0.925568
170170 0 0
171171 −7.63045 −0.583515
172172 14.4889 1.10477
173173 9.29988 0.707057 0.353528 0.935424i 0.384982π-0.384982\pi
0.353528 + 0.935424i 0.384982π0.384982\pi
174174 −0.0469845 −0.00356188
175175 0 0
176176 −7.53143 −0.567703
177177 0.0523780 0.00393697
178178 6.62503 0.496567
179179 −1.93778 −0.144837 −0.0724183 0.997374i 0.523072π-0.523072\pi
−0.0724183 + 0.997374i 0.523072π0.523072\pi
180180 0 0
181181 16.9024 1.25635 0.628173 0.778074i 0.283803π-0.283803\pi
0.628173 + 0.778074i 0.283803π0.283803\pi
182182 −1.90170 −0.140963
183183 1.16496 0.0861167
184184 5.62901 0.414976
185185 0 0
186186 −0.646040 −0.0473700
187187 0 0
188188 −19.1702 −1.39813
189189 3.96079 0.288105
190190 0 0
191191 −16.6593 −1.20543 −0.602713 0.797958i 0.705914π-0.705914\pi
−0.602713 + 0.797958i 0.705914π0.705914\pi
192192 −0.449695 −0.0324539
193193 −14.1648 −1.01960 −0.509801 0.860292i 0.670281π-0.670281\pi
−0.509801 + 0.860292i 0.670281π0.670281\pi
194194 −2.25928 −0.162207
195195 0 0
196196 −14.0071 −1.00051
197197 18.2978 1.30366 0.651832 0.758363i 0.274001π-0.274001\pi
0.651832 + 0.758363i 0.274001π0.274001\pi
198198 −4.35036 −0.309167
199199 −5.45781 −0.386894 −0.193447 0.981111i 0.561967π-0.561967\pi
−0.193447 + 0.981111i 0.561967π0.561967\pi
200200 0 0
201201 −0.872885 −0.0615686
202202 1.31128 0.0922611
203203 −2.12840 −0.149384
204204 0 0
205205 0 0
206206 −4.59893 −0.320422
207207 −8.93135 −0.620772
208208 −2.52521 −0.175092
209209 −7.53579 −0.521261
210210 0 0
211211 −5.50932 −0.379277 −0.189639 0.981854i 0.560732π-0.560732\pi
−0.189639 + 0.981854i 0.560732π0.560732\pi
212212 6.28040 0.431339
213213 0.617817 0.0423321
214214 2.91085 0.198982
215215 0 0
216216 −1.91470 −0.130279
217217 −29.2657 −1.98668
218218 8.50559 0.576071
219219 0.858250 0.0579952
220220 0 0
221221 0 0
222222 −0.841524 −0.0564794
223223 26.6184 1.78250 0.891249 0.453514i 0.149830π-0.149830\pi
0.891249 + 0.453514i 0.149830π0.149830\pi
224224 19.4656 1.30060
225225 0 0
226226 −0.584387 −0.0388728
227227 −7.66994 −0.509072 −0.254536 0.967063i 0.581923π-0.581923\pi
−0.254536 + 0.967063i 0.581923π0.581923\pi
228228 −0.770287 −0.0510135
229229 −9.33359 −0.616781 −0.308390 0.951260i 0.599790π-0.599790\pi
−0.308390 + 0.951260i 0.599790π0.599790\pi
230230 0 0
231231 1.94622 0.128052
232232 1.02890 0.0675505
233233 3.89898 0.255431 0.127715 0.991811i 0.459236π-0.459236\pi
0.127715 + 0.991811i 0.459236π0.459236\pi
234234 −1.45863 −0.0953538
235235 0 0
236236 −0.535408 −0.0348521
237237 2.13137 0.138447
238238 0 0
239239 −22.6299 −1.46380 −0.731902 0.681410i 0.761367π-0.761367\pi
−0.731902 + 0.681410i 0.761367π0.761367\pi
240240 0 0
241241 −2.89198 −0.186289 −0.0931443 0.995653i 0.529692π-0.529692\pi
−0.0931443 + 0.995653i 0.529692π0.529692\pi
242242 1.19437 0.0767769
243243 4.56444 0.292809
244244 −11.9083 −0.762350
245245 0 0
246246 0.633007 0.0403591
247247 −2.52667 −0.160768
248248 14.1475 0.898364
249249 1.39105 0.0881541
250250 0 0
251251 −13.3749 −0.844213 −0.422107 0.906546i 0.638709π-0.638709\pi
−0.422107 + 0.906546i 0.638709π0.638709\pi
252252 −20.1441 −1.26896
253253 −8.82055 −0.554543
254254 3.32356 0.208539
255255 0 0
256256 −0.420720 −0.0262950
257257 7.32959 0.457208 0.228604 0.973520i 0.426584π-0.426584\pi
0.228604 + 0.973520i 0.426584π0.426584\pi
258258 0.707523 0.0440485
259259 −38.1211 −2.36873
260260 0 0
261261 −1.63252 −0.101050
262262 6.13164 0.378814
263263 −24.1129 −1.48686 −0.743432 0.668811i 0.766803π-0.766803\pi
−0.743432 + 0.668811i 0.766803π0.766803\pi
264264 −0.940829 −0.0579040
265265 0 0
266266 4.96576 0.304470
267267 −2.27330 −0.139124
268268 8.92264 0.545037
269269 25.1246 1.53187 0.765935 0.642918i 0.222276π-0.222276\pi
0.765935 + 0.642918i 0.222276π0.222276\pi
270270 0 0
271271 −14.0988 −0.856440 −0.428220 0.903674i 0.640859π-0.640859\pi
−0.428220 + 0.903674i 0.640859π0.640859\pi
272272 0 0
273273 0.652547 0.0394939
274274 4.83672 0.292197
275275 0 0
276276 −0.901612 −0.0542707
277277 6.22200 0.373844 0.186922 0.982375i 0.440149π-0.440149\pi
0.186922 + 0.982375i 0.440149π0.440149\pi
278278 0.714152 0.0428320
279279 −22.4472 −1.34388
280280 0 0
281281 −5.47822 −0.326803 −0.163402 0.986560i 0.552247π-0.552247\pi
−0.163402 + 0.986560i 0.552247π0.552247\pi
282282 −0.936120 −0.0557451
283283 −24.7905 −1.47364 −0.736820 0.676089i 0.763673π-0.763673\pi
−0.736820 + 0.676089i 0.763673π0.763673\pi
284284 −6.31534 −0.374746
285285 0 0
286286 −1.44054 −0.0851808
287287 28.6753 1.69265
288288 14.9304 0.879781
289289 0 0
290290 0 0
291291 0.775248 0.0454458
292292 −8.77305 −0.513404
293293 24.3230 1.42096 0.710482 0.703715i 0.248477π-0.248477\pi
0.710482 + 0.703715i 0.248477π0.248477\pi
294294 −0.683995 −0.0398914
295295 0 0
296296 18.4283 1.07112
297297 3.00030 0.174095
298298 4.69702 0.272091
299299 −2.95744 −0.171033
300300 0 0
301301 32.0509 1.84738
302302 −4.32379 −0.248806
303303 −0.449949 −0.0258489
304304 6.59389 0.378186
305305 0 0
306306 0 0
307307 0.916042 0.0522813 0.0261406 0.999658i 0.491678π-0.491678\pi
0.0261406 + 0.999658i 0.491678π0.491678\pi
308308 −19.8942 −1.13358
309309 1.57807 0.0897732
310310 0 0
311311 8.52131 0.483199 0.241600 0.970376i 0.422328π-0.422328\pi
0.241600 + 0.970376i 0.422328π0.422328\pi
312312 −0.315450 −0.0178589
313313 −16.9686 −0.959120 −0.479560 0.877509i 0.659204π-0.659204\pi
−0.479560 + 0.877509i 0.659204π0.659204\pi
314314 −8.85844 −0.499911
315315 0 0
316316 −21.7869 −1.22561
317317 24.8475 1.39558 0.697788 0.716304i 0.254168π-0.254168\pi
0.697788 + 0.716304i 0.254168π0.254168\pi
318318 0.306684 0.0171980
319319 −1.61226 −0.0902695
320320 0 0
321321 −0.998826 −0.0557490
322322 5.81237 0.323911
323323 0 0
324324 −15.2968 −0.849821
325325 0 0
326326 1.14842 0.0636052
327327 −2.91860 −0.161399
328328 −13.8620 −0.765403
329329 −42.4063 −2.33794
330330 0 0
331331 27.8980 1.53341 0.766707 0.641997i 0.221894π-0.221894\pi
0.766707 + 0.641997i 0.221894π0.221894\pi
332332 −14.2193 −0.780386
333333 −29.2395 −1.60231
334334 4.67338 0.255716
335335 0 0
336336 −1.70296 −0.0929040
337337 15.9499 0.868847 0.434424 0.900709i 0.356952π-0.356952\pi
0.434424 + 0.900709i 0.356952π0.356952\pi
338338 6.00609 0.326688
339339 0.200526 0.0108911
340340 0 0
341341 −22.1688 −1.20051
342342 3.80882 0.205957
343343 −3.87395 −0.209174
344344 −15.4938 −0.835372
345345 0 0
346346 −4.64213 −0.249563
347347 26.0814 1.40012 0.700061 0.714083i 0.253156π-0.253156\pi
0.700061 + 0.714083i 0.253156π0.253156\pi
348348 −0.164801 −0.00883427
349349 −22.9432 −1.22812 −0.614061 0.789259i 0.710465π-0.710465\pi
−0.614061 + 0.789259i 0.710465π0.710465\pi
350350 0 0
351351 1.00597 0.0536947
352352 14.7452 0.785920
353353 3.96701 0.211142 0.105571 0.994412i 0.466333π-0.466333\pi
0.105571 + 0.994412i 0.466333π0.466333\pi
354354 −0.0261450 −0.00138959
355355 0 0
356356 23.2377 1.23160
357357 0 0
358358 0.967265 0.0511215
359359 18.8044 0.992457 0.496228 0.868192i 0.334718π-0.334718\pi
0.496228 + 0.868192i 0.334718π0.334718\pi
360360 0 0
361361 −12.4023 −0.652752
362362 −8.43701 −0.443439
363363 −0.409834 −0.0215107
364364 −6.67034 −0.349621
365365 0 0
366366 −0.581505 −0.0303957
367367 −7.50782 −0.391905 −0.195952 0.980613i 0.562780π-0.562780\pi
−0.195952 + 0.980613i 0.562780π0.562780\pi
368368 7.71807 0.402332
369369 21.9944 1.14498
370370 0 0
371371 13.8928 0.721279
372372 −2.26603 −0.117488
373373 −18.5763 −0.961844 −0.480922 0.876763i 0.659698π-0.659698\pi
−0.480922 + 0.876763i 0.659698π0.659698\pi
374374 0 0
375375 0 0
376376 20.4998 1.05720
377377 −0.540576 −0.0278411
378378 −1.97707 −0.101689
379379 −14.6872 −0.754430 −0.377215 0.926126i 0.623118π-0.623118\pi
−0.377215 + 0.926126i 0.623118π0.623118\pi
380380 0 0
381381 −1.14044 −0.0584266
382382 8.31568 0.425467
383383 21.3063 1.08870 0.544351 0.838858i 0.316776π-0.316776\pi
0.544351 + 0.838858i 0.316776π0.316776\pi
384384 1.94617 0.0993150
385385 0 0
386386 7.07049 0.359878
387387 24.5835 1.24965
388388 −7.92459 −0.402310
389389 4.77866 0.242288 0.121144 0.992635i 0.461344π-0.461344\pi
0.121144 + 0.992635i 0.461344π0.461344\pi
390390 0 0
391391 0 0
392392 14.9786 0.756534
393393 −2.10400 −0.106133
394394 −9.13354 −0.460141
395395 0 0
396396 −15.2592 −0.766803
397397 32.2929 1.62073 0.810367 0.585922i 0.199268π-0.199268\pi
0.810367 + 0.585922i 0.199268π0.199268\pi
398398 2.72432 0.136558
399399 −1.70395 −0.0853040
400400 0 0
401401 24.8497 1.24094 0.620468 0.784232i 0.286943π-0.286943\pi
0.620468 + 0.784232i 0.286943π0.286943\pi
402402 0.435710 0.0217312
403403 −7.43297 −0.370262
404404 4.59939 0.228828
405405 0 0
406406 1.06241 0.0527267
407407 −28.8768 −1.43137
408408 0 0
409409 −18.4025 −0.909945 −0.454973 0.890505i 0.650351π-0.650351\pi
−0.454973 + 0.890505i 0.650351π0.650351\pi
410410 0 0
411411 −1.65967 −0.0818653
412412 −16.1310 −0.794719
413413 −1.18437 −0.0582791
414414 4.45818 0.219107
415415 0 0
416416 4.94390 0.242395
417417 −0.245053 −0.0120003
418418 3.76157 0.183984
419419 3.03474 0.148257 0.0741284 0.997249i 0.476383π-0.476383\pi
0.0741284 + 0.997249i 0.476383π0.476383\pi
420420 0 0
421421 −31.0514 −1.51335 −0.756677 0.653788i 0.773179π-0.773179\pi
−0.756677 + 0.653788i 0.773179π0.773179\pi
422422 2.75004 0.133870
423423 −32.5263 −1.58148
424424 −6.71598 −0.326157
425425 0 0
426426 −0.308390 −0.0149415
427427 −26.3422 −1.27479
428428 10.2100 0.493519
429429 0.494304 0.0238652
430430 0 0
431431 −35.5829 −1.71397 −0.856983 0.515344i 0.827664π-0.827664\pi
−0.856983 + 0.515344i 0.827664π0.827664\pi
432432 −2.62529 −0.126309
433433 −3.29892 −0.158536 −0.0792680 0.996853i 0.525258π-0.525258\pi
−0.0792680 + 0.996853i 0.525258π0.525258\pi
434434 14.6083 0.701220
435435 0 0
436436 29.8339 1.42879
437437 7.72254 0.369419
438438 −0.428405 −0.0204700
439439 3.31990 0.158450 0.0792250 0.996857i 0.474755π-0.474755\pi
0.0792250 + 0.996857i 0.474755π0.474755\pi
440440 0 0
441441 −23.7660 −1.13172
442442 0 0
443443 −5.62292 −0.267153 −0.133577 0.991039i 0.542646π-0.542646\pi
−0.133577 + 0.991039i 0.542646π0.542646\pi
444444 −2.95170 −0.140082
445445 0 0
446446 −13.2868 −0.629150
447447 −1.61173 −0.0762321
448448 10.1685 0.480417
449449 −6.13222 −0.289397 −0.144699 0.989476i 0.546221π-0.546221\pi
−0.144699 + 0.989476i 0.546221π0.546221\pi
450450 0 0
451451 21.7216 1.02283
452452 −2.04978 −0.0964134
453453 1.48366 0.0697084
454454 3.82853 0.179682
455455 0 0
456456 0.823711 0.0385738
457457 −28.3934 −1.32819 −0.664093 0.747650i 0.731182π-0.731182\pi
−0.664093 + 0.747650i 0.731182π0.731182\pi
458458 4.65896 0.217699
459459 0 0
460460 0 0
461461 −20.8024 −0.968863 −0.484432 0.874829i 0.660974π-0.660974\pi
−0.484432 + 0.874829i 0.660974π0.660974\pi
462462 −0.971474 −0.0451971
463463 −31.4596 −1.46205 −0.731025 0.682351i 0.760958π-0.760958\pi
−0.731025 + 0.682351i 0.760958π0.760958\pi
464464 1.41075 0.0654923
465465 0 0
466466 −1.94622 −0.0901567
467467 1.48589 0.0687586 0.0343793 0.999409i 0.489055π-0.489055\pi
0.0343793 + 0.999409i 0.489055π0.489055\pi
468468 −5.11625 −0.236499
469469 19.7377 0.911402
470470 0 0
471471 3.03967 0.140061
472472 0.572542 0.0263534
473473 24.2785 1.11633
474474 −1.06390 −0.0488663
475475 0 0
476476 0 0
477477 10.6560 0.487905
478478 11.2959 0.516664
479479 14.6332 0.668608 0.334304 0.942465i 0.391499π-0.391499\pi
0.334304 + 0.942465i 0.391499π0.391499\pi
480480 0 0
481481 −9.68209 −0.441465
482482 1.44356 0.0657524
483483 −1.99445 −0.0907505
484484 4.18933 0.190424
485485 0 0
486486 −2.27839 −0.103350
487487 −3.37468 −0.152921 −0.0764606 0.997073i 0.524362π-0.524362\pi
−0.0764606 + 0.997073i 0.524362π0.524362\pi
488488 12.7342 0.576450
489489 −0.394068 −0.0178204
490490 0 0
491491 7.57696 0.341943 0.170972 0.985276i 0.445309π-0.445309\pi
0.170972 + 0.985276i 0.445309π0.445309\pi
492492 2.22032 0.100100
493493 0 0
494494 1.26122 0.0567448
495495 0 0
496496 19.3979 0.870992
497497 −13.9701 −0.626644
498498 −0.694356 −0.0311149
499499 −8.52931 −0.381825 −0.190912 0.981607i 0.561145π-0.561145\pi
−0.190912 + 0.981607i 0.561145π0.561145\pi
500500 0 0
501501 −1.60362 −0.0716443
502502 6.67620 0.297973
503503 19.2282 0.857344 0.428672 0.903460i 0.358982π-0.358982\pi
0.428672 + 0.903460i 0.358982π0.358982\pi
504504 21.5413 0.959524
505505 0 0
506506 4.40287 0.195732
507507 −2.06092 −0.0915287
508508 11.6576 0.517223
509509 −5.89076 −0.261104 −0.130552 0.991441i 0.541675π-0.541675\pi
−0.130552 + 0.991441i 0.541675π0.541675\pi
510510 0 0
511511 −19.4068 −0.858505
512512 −22.5148 −0.995024
513513 −2.62681 −0.115977
514514 −3.65864 −0.161376
515515 0 0
516516 2.48168 0.109250
517517 −32.1228 −1.41276
518518 19.0286 0.836067
519519 1.59290 0.0699203
520520 0 0
521521 −25.7911 −1.12993 −0.564965 0.825115i 0.691110π-0.691110\pi
−0.564965 + 0.825115i 0.691110π0.691110\pi
522522 0.814888 0.0356667
523523 23.1957 1.01428 0.507138 0.861865i 0.330703π-0.330703\pi
0.507138 + 0.861865i 0.330703π0.330703\pi
524524 21.5071 0.939543
525525 0 0
526526 12.0362 0.524803
527527 0 0
528528 −1.28999 −0.0561397
529529 −13.9609 −0.606994
530530 0 0
531531 −0.908431 −0.0394226
532532 17.4177 0.755155
533533 7.28302 0.315462
534534 1.13474 0.0491052
535535 0 0
536536 −9.54148 −0.412129
537537 −0.331906 −0.0143228
538538 −12.5412 −0.540689
539539 −23.4712 −1.01098
540540 0 0
541541 0.319010 0.0137153 0.00685766 0.999976i 0.497817π-0.497817\pi
0.00685766 + 0.999976i 0.497817π0.497817\pi
542542 7.03756 0.302289
543543 2.89506 0.124239
544544 0 0
545545 0 0
546546 −0.325725 −0.0139398
547547 29.2638 1.25123 0.625616 0.780131i 0.284848π-0.284848\pi
0.625616 + 0.780131i 0.284848π0.284848\pi
548548 16.9651 0.724714
549549 −20.2049 −0.862323
550550 0 0
551551 1.41157 0.0601347
552552 0.964144 0.0410367
553553 −48.1946 −2.04944
554554 −3.10578 −0.131952
555555 0 0
556556 2.50494 0.106233
557557 4.51904 0.191478 0.0957390 0.995406i 0.469479π-0.469479\pi
0.0957390 + 0.995406i 0.469479π0.469479\pi
558558 11.2048 0.474336
559559 8.14035 0.344300
560560 0 0
561561 0 0
562562 2.73451 0.115348
563563 −24.5112 −1.03302 −0.516511 0.856280i 0.672770π-0.672770\pi
−0.516511 + 0.856280i 0.672770π0.672770\pi
564564 −3.28350 −0.138260
565565 0 0
566566 12.3744 0.520135
567567 −33.8379 −1.42106
568568 6.75334 0.283364
569569 6.12942 0.256958 0.128479 0.991712i 0.458990π-0.458990\pi
0.128479 + 0.991712i 0.458990π0.458990\pi
570570 0 0
571571 −0.524413 −0.0219460 −0.0109730 0.999940i 0.503493π-0.503493\pi
−0.0109730 + 0.999940i 0.503493π0.503493\pi
572572 −5.05278 −0.211268
573573 −2.85343 −0.119204
574574 −14.3136 −0.597437
575575 0 0
576576 7.79940 0.324975
577577 39.5403 1.64608 0.823041 0.567982i 0.192276π-0.192276\pi
0.823041 + 0.567982i 0.192276π0.192276\pi
578578 0 0
579579 −2.42616 −0.100828
580580 0 0
581581 −31.4544 −1.30495
582582 −0.386973 −0.0160406
583583 10.5238 0.435852
584584 9.38151 0.388210
585585 0 0
586586 −12.1411 −0.501543
587587 −10.9375 −0.451439 −0.225719 0.974192i 0.572473π-0.572473\pi
−0.225719 + 0.974192i 0.572473π0.572473\pi
588588 −2.39916 −0.0989397
589589 19.4091 0.799740
590590 0 0
591591 3.13407 0.128918
592592 25.2675 1.03849
593593 −3.84749 −0.157998 −0.0789988 0.996875i 0.525172π-0.525172\pi
−0.0789988 + 0.996875i 0.525172π0.525172\pi
594594 −1.49763 −0.0614485
595595 0 0
596596 16.4751 0.674847
597597 −0.934820 −0.0382596
598598 1.47624 0.0603679
599599 −35.5384 −1.45206 −0.726030 0.687663i 0.758637π-0.758637\pi
−0.726030 + 0.687663i 0.758637π0.758637\pi
600600 0 0
601601 18.8207 0.767714 0.383857 0.923393i 0.374596π-0.374596\pi
0.383857 + 0.923393i 0.374596π0.374596\pi
602602 −15.9985 −0.652051
603603 15.1391 0.616513
604604 −15.1660 −0.617095
605605 0 0
606606 0.224597 0.00912363
607607 −28.2627 −1.14715 −0.573574 0.819154i 0.694443π-0.694443\pi
−0.573574 + 0.819154i 0.694443π0.694443\pi
608608 −12.9096 −0.523555
609609 −0.364555 −0.0147725
610610 0 0
611611 −10.7705 −0.435726
612612 0 0
613613 15.7155 0.634743 0.317371 0.948301i 0.397200π-0.397200\pi
0.317371 + 0.948301i 0.397200π0.397200\pi
614614 −0.457252 −0.0184532
615615 0 0
616616 21.2740 0.857155
617617 27.3622 1.10156 0.550781 0.834650i 0.314330π-0.314330\pi
0.550781 + 0.834650i 0.314330π0.314330\pi
618618 −0.787710 −0.0316863
619619 −7.56352 −0.304004 −0.152002 0.988380i 0.548572π-0.548572\pi
−0.152002 + 0.988380i 0.548572π0.548572\pi
620620 0 0
621621 −3.07465 −0.123382
622622 −4.25350 −0.170550
623623 51.4040 2.05946
624624 −0.432521 −0.0173147
625625 0 0
626626 8.47004 0.338531
627627 −1.29074 −0.0515472
628628 −31.0716 −1.23989
629629 0 0
630630 0 0
631631 −10.1561 −0.404306 −0.202153 0.979354i 0.564794π-0.564794\pi
−0.202153 + 0.979354i 0.564794π0.564794\pi
632632 23.2979 0.926743
633633 −0.943643 −0.0375065
634634 −12.4029 −0.492582
635635 0 0
636636 1.07571 0.0426548
637637 −7.86965 −0.311807
638638 0.804779 0.0318615
639639 −10.7153 −0.423890
640640 0 0
641641 −31.9499 −1.26194 −0.630972 0.775805i 0.717344π-0.717344\pi
−0.630972 + 0.775805i 0.717344π0.717344\pi
642642 0.498574 0.0196772
643643 −35.2573 −1.39041 −0.695207 0.718810i 0.744687π-0.744687\pi
−0.695207 + 0.718810i 0.744687π0.744687\pi
644644 20.3873 0.803371
645645 0 0
646646 0 0
647647 −7.97446 −0.313508 −0.156754 0.987638i 0.550103π-0.550103\pi
−0.156754 + 0.987638i 0.550103π0.550103\pi
648648 16.3577 0.642591
649649 −0.897162 −0.0352167
650650 0 0
651651 −5.01266 −0.196462
652652 4.02817 0.157755
653653 13.9977 0.547773 0.273887 0.961762i 0.411691π-0.411691\pi
0.273887 + 0.961762i 0.411691π0.411691\pi
654654 1.45685 0.0569673
655655 0 0
656656 −19.0066 −0.742082
657657 −14.8853 −0.580731
658658 21.1676 0.825197
659659 −50.5377 −1.96867 −0.984335 0.176309i 0.943584π-0.943584\pi
−0.984335 + 0.176309i 0.943584π0.943584\pi
660660 0 0
661661 −33.8208 −1.31547 −0.657737 0.753247i 0.728486π-0.728486\pi
−0.657737 + 0.753247i 0.728486π0.728486\pi
662662 −13.9256 −0.541234
663663 0 0
664664 15.2055 0.590088
665665 0 0
666666 14.5952 0.565553
667667 1.65222 0.0639742
668668 16.3922 0.634233
669669 4.55923 0.176270
670670 0 0
671671 −19.9542 −0.770325
672672 3.33408 0.128615
673673 0.257259 0.00991660 0.00495830 0.999988i 0.498422π-0.498422\pi
0.00495830 + 0.999988i 0.498422π0.498422\pi
674674 −7.96157 −0.306668
675675 0 0
676676 21.0668 0.810260
677677 3.52328 0.135411 0.0677054 0.997705i 0.478432π-0.478432\pi
0.0677054 + 0.997705i 0.478432π0.478432\pi
678678 −0.100095 −0.00384411
679679 −17.5299 −0.672737
680680 0 0
681681 −1.31372 −0.0503417
682682 11.0658 0.423731
683683 −16.2284 −0.620961 −0.310480 0.950580i 0.600490π-0.600490\pi
−0.310480 + 0.950580i 0.600490π0.600490\pi
684684 13.3597 0.510820
685685 0 0
686686 1.93372 0.0738299
687687 −1.59867 −0.0609930
688688 −21.2440 −0.809919
689689 3.52853 0.134426
690690 0 0
691691 −13.7434 −0.522824 −0.261412 0.965227i 0.584188π-0.584188\pi
−0.261412 + 0.965227i 0.584188π0.584188\pi
692692 −16.2826 −0.618971
693693 −33.7547 −1.28224
694694 −13.0188 −0.494187
695695 0 0
696696 0.176231 0.00668002
697697 0 0
698698 11.4523 0.433478
699699 0.667822 0.0252593
700700 0 0
701701 −15.8410 −0.598305 −0.299153 0.954205i 0.596704π-0.596704\pi
−0.299153 + 0.954205i 0.596704π0.596704\pi
702702 −0.502140 −0.0189521
703703 25.2821 0.953532
704704 7.70265 0.290305
705705 0 0
706706 −1.98017 −0.0745248
707707 10.1743 0.382643
708708 −0.0917054 −0.00344650
709709 26.3076 0.988002 0.494001 0.869461i 0.335534π-0.335534\pi
0.494001 + 0.869461i 0.335534π0.335534\pi
710710 0 0
711711 −36.9660 −1.38633
712712 −24.8494 −0.931272
713713 22.7182 0.850802
714714 0 0
715715 0 0
716716 3.39274 0.126793
717717 −3.87607 −0.144755
718718 −9.38640 −0.350297
719719 28.4854 1.06233 0.531164 0.847269i 0.321755π-0.321755\pi
0.531164 + 0.847269i 0.321755π0.321755\pi
720720 0 0
721721 −35.6833 −1.32892
722722 6.19073 0.230395
723723 −0.495341 −0.0184219
724724 −29.5934 −1.09983
725725 0 0
726726 0.204573 0.00759241
727727 4.70692 0.174570 0.0872850 0.996183i 0.472181π-0.472181\pi
0.0872850 + 0.996183i 0.472181π0.472181\pi
728728 7.13297 0.264365
729729 −25.4287 −0.941803
730730 0 0
731731 0 0
732732 −2.03967 −0.0753882
733733 −26.7866 −0.989386 −0.494693 0.869068i 0.664719π-0.664719\pi
−0.494693 + 0.869068i 0.664719π0.664719\pi
734734 3.74761 0.138327
735735 0 0
736736 −15.1106 −0.556984
737737 14.9513 0.550739
738738 −10.9787 −0.404133
739739 −24.4868 −0.900763 −0.450381 0.892836i 0.648712π-0.648712\pi
−0.450381 + 0.892836i 0.648712π0.648712\pi
740740 0 0
741741 −0.432772 −0.0158983
742742 −6.93474 −0.254582
743743 −29.3896 −1.07820 −0.539100 0.842242i 0.681235π-0.681235\pi
−0.539100 + 0.842242i 0.681235π0.681235\pi
744744 2.42319 0.0888386
745745 0 0
746746 9.27255 0.339492
747747 −24.1260 −0.882725
748748 0 0
749749 22.5855 0.825255
750750 0 0
751751 11.5338 0.420874 0.210437 0.977607i 0.432511π-0.432511\pi
0.210437 + 0.977607i 0.432511π0.432511\pi
752752 28.1078 1.02499
753753 −2.29086 −0.0834836
754754 0.269834 0.00982678
755755 0 0
756756 −6.93470 −0.252213
757757 25.7257 0.935018 0.467509 0.883988i 0.345152π-0.345152\pi
0.467509 + 0.883988i 0.345152π0.345152\pi
758758 7.33126 0.266283
759759 −1.51080 −0.0548384
760760 0 0
761761 19.0450 0.690379 0.345190 0.938533i 0.387815π-0.387815\pi
0.345190 + 0.938533i 0.387815π0.387815\pi
762762 0.569264 0.0206222
763763 65.9953 2.38919
764764 29.1678 1.05525
765765 0 0
766766 −10.6353 −0.384268
767767 −0.300809 −0.0108616
768768 −0.0720615 −0.00260029
769769 23.2434 0.838178 0.419089 0.907945i 0.362349π-0.362349\pi
0.419089 + 0.907945i 0.362349π0.362349\pi
770770 0 0
771771 1.25542 0.0452129
772772 24.8002 0.892579
773773 39.0680 1.40518 0.702589 0.711596i 0.252027π-0.252027\pi
0.702589 + 0.711596i 0.252027π0.252027\pi
774774 −12.2711 −0.441076
775775 0 0
776776 8.47421 0.304207
777777 −6.52943 −0.234242
778778 −2.38532 −0.0855179
779779 −19.0176 −0.681376
780780 0 0
781781 −10.5824 −0.378666
782782 0 0
783783 −0.562000 −0.0200843
784784 20.5375 0.733483
785785 0 0
786786 1.05023 0.0374606
787787 −41.9094 −1.49391 −0.746955 0.664875i 0.768485π-0.768485\pi
−0.746955 + 0.664875i 0.768485π0.768485\pi
788788 −32.0365 −1.14125
789789 −4.13009 −0.147035
790790 0 0
791791 −4.53429 −0.161221
792792 16.3175 0.579818
793793 −6.69045 −0.237585
794794 −16.1193 −0.572054
795795 0 0
796796 9.55574 0.338694
797797 −40.3705 −1.43000 −0.714998 0.699126i 0.753573π-0.753573\pi
−0.714998 + 0.699126i 0.753573π0.753573\pi
798798 0.850542 0.0301089
799799 0 0
800800 0 0
801801 39.4277 1.39311
802802 −12.4040 −0.438000
803803 −14.7006 −0.518774
804804 1.52828 0.0538983
805805 0 0
806806 3.71024 0.130688
807807 4.30336 0.151486
808808 −4.91839 −0.173028
809809 26.3355 0.925906 0.462953 0.886383i 0.346790π-0.346790\pi
0.462953 + 0.886383i 0.346790π0.346790\pi
810810 0 0
811811 −17.6994 −0.621511 −0.310756 0.950490i 0.600582π-0.600582\pi
−0.310756 + 0.950490i 0.600582π0.600582\pi
812812 3.72649 0.130774
813813 −2.41486 −0.0846928
814814 14.4141 0.505215
815815 0 0
816816 0 0
817817 −21.2563 −0.743663
818818 9.18580 0.321174
819819 −11.3176 −0.395470
820820 0 0
821821 18.9891 0.662723 0.331362 0.943504i 0.392492π-0.392492\pi
0.331362 + 0.943504i 0.392492π0.392492\pi
822822 0.828440 0.0288952
823823 38.3769 1.33773 0.668867 0.743382i 0.266780π-0.266780\pi
0.668867 + 0.743382i 0.266780π0.266780\pi
824824 17.2498 0.600926
825825 0 0
826826 0.591191 0.0205702
827827 −48.6653 −1.69226 −0.846129 0.532978i 0.821073π-0.821073\pi
−0.846129 + 0.532978i 0.821073π0.821073\pi
828828 15.6374 0.543436
829829 51.7088 1.79592 0.897960 0.440076i 0.145049π-0.145049\pi
0.897960 + 0.440076i 0.145049π0.145049\pi
830830 0 0
831831 1.06571 0.0369691
832832 2.58262 0.0895362
833833 0 0
834834 0.122321 0.00423562
835835 0 0
836836 13.1940 0.456322
837837 −7.72755 −0.267103
838838 −1.51482 −0.0523287
839839 36.4513 1.25844 0.629219 0.777228i 0.283375π-0.283375\pi
0.629219 + 0.777228i 0.283375π0.283375\pi
840840 0 0
841841 −28.6980 −0.989586
842842 15.4997 0.534153
843843 −0.938316 −0.0323173
844844 9.64593 0.332027
845845 0 0
846846 16.2358 0.558200
847847 9.26717 0.318424
848848 −9.20844 −0.316219
849849 −4.24614 −0.145727
850850 0 0
851851 29.5924 1.01441
852852 −1.08170 −0.0370584
853853 −0.935836 −0.0320424 −0.0160212 0.999872i 0.505100π-0.505100\pi
−0.0160212 + 0.999872i 0.505100π0.505100\pi
854854 13.1490 0.449949
855855 0 0
856856 −10.9181 −0.373174
857857 30.4722 1.04091 0.520455 0.853889i 0.325762π-0.325762\pi
0.520455 + 0.853889i 0.325762π0.325762\pi
858858 −0.246737 −0.00842347
859859 −0.987092 −0.0336792 −0.0168396 0.999858i 0.505360π-0.505360\pi
−0.0168396 + 0.999858i 0.505360π0.505360\pi
860860 0 0
861861 4.91154 0.167385
862862 17.7616 0.604961
863863 −26.0032 −0.885159 −0.442580 0.896729i 0.645937π-0.645937\pi
−0.442580 + 0.896729i 0.645937π0.645937\pi
864864 5.13984 0.174861
865865 0 0
866866 1.64669 0.0559568
867867 0 0
868868 51.2395 1.73918
869869 −36.5074 −1.23843
870870 0 0
871871 5.01302 0.169860
872872 −31.9031 −1.08037
873873 −13.4457 −0.455069
874874 −3.85479 −0.130390
875875 0 0
876876 −1.50266 −0.0507701
877877 −33.8117 −1.14174 −0.570870 0.821040i 0.693394π-0.693394\pi
−0.570870 + 0.821040i 0.693394π0.693394\pi
878878 −1.65716 −0.0559265
879879 4.16607 0.140518
880880 0 0
881881 18.9539 0.638573 0.319287 0.947658i 0.396557π-0.396557\pi
0.319287 + 0.947658i 0.396557π0.396557\pi
882882 11.8631 0.399450
883883 38.1002 1.28217 0.641087 0.767468i 0.278484π-0.278484\pi
0.641087 + 0.767468i 0.278484π0.278484\pi
884884 0 0
885885 0 0
886886 2.80674 0.0942943
887887 −43.1234 −1.44794 −0.723972 0.689830i 0.757685π-0.757685\pi
−0.723972 + 0.689830i 0.757685π0.757685\pi
888888 3.15642 0.105923
889889 25.7877 0.864891
890890 0 0
891891 −25.6322 −0.858711
892892 −46.6045 −1.56043
893893 28.1241 0.941136
894894 0.804511 0.0269069
895895 0 0
896896 −44.0068 −1.47016
897897 −0.506554 −0.0169134
898898 3.06096 0.102146
899899 4.15254 0.138495
900900 0 0
901901 0 0
902902 −10.8425 −0.361017
903903 5.48971 0.182686
904904 2.19194 0.0729029
905905 0 0
906906 −0.740585 −0.0246043
907907 −15.1988 −0.504668 −0.252334 0.967640i 0.581198π-0.581198\pi
−0.252334 + 0.967640i 0.581198π0.581198\pi
908908 13.4288 0.445651
909909 7.80382 0.258836
910910 0 0
911911 23.3400 0.773289 0.386645 0.922229i 0.373634π-0.373634\pi
0.386645 + 0.922229i 0.373634π0.373634\pi
912912 1.12941 0.0373985
913913 −23.8267 −0.788550
914914 14.1729 0.468796
915915 0 0
916916 16.3416 0.539942
917917 47.5757 1.57109
918918 0 0
919919 −11.1867 −0.369017 −0.184508 0.982831i 0.559069π-0.559069\pi
−0.184508 + 0.982831i 0.559069π0.559069\pi
920920 0 0
921921 0.156901 0.00517006
922922 10.3837 0.341970
923923 −3.54816 −0.116789
924924 −3.40751 −0.112099
925925 0 0
926926 15.7034 0.516045
927927 −27.3697 −0.898938
928928 −2.76199 −0.0906667
929929 −0.886506 −0.0290853 −0.0145427 0.999894i 0.504629π-0.504629\pi
−0.0145427 + 0.999894i 0.504629π0.504629\pi
930930 0 0
931931 20.5494 0.673480
932932 −6.82648 −0.223609
933933 1.45954 0.0477832
934934 −0.741696 −0.0242690
935935 0 0
936936 5.47110 0.178828
937937 7.99596 0.261217 0.130608 0.991434i 0.458307π-0.458307\pi
0.130608 + 0.991434i 0.458307π0.458307\pi
938938 −9.85228 −0.321688
939939 −2.90640 −0.0948467
940940 0 0
941941 46.3645 1.51144 0.755720 0.654894i 0.227287π-0.227287\pi
0.755720 + 0.654894i 0.227287π0.227287\pi
942942 −1.51728 −0.0494358
943943 −22.2599 −0.724881
944944 0.785026 0.0255504
945945 0 0
946946 −12.1189 −0.394019
947947 −31.4098 −1.02068 −0.510341 0.859972i 0.670481π-0.670481\pi
−0.510341 + 0.859972i 0.670481π0.670481\pi
948948 −3.73169 −0.121200
949949 −4.92898 −0.160001
950950 0 0
951951 4.25591 0.138007
952952 0 0
953953 −53.1529 −1.72179 −0.860896 0.508781i 0.830096π-0.830096\pi
−0.860896 + 0.508781i 0.830096π0.830096\pi
954954 −5.31905 −0.172211
955955 0 0
956956 39.6212 1.28144
957957 −0.276151 −0.00892669
958958 −7.30432 −0.235992
959959 37.5284 1.21186
960960 0 0
961961 26.0978 0.841864
962962 4.83292 0.155819
963963 17.3234 0.558239
964964 5.06338 0.163081
965965 0 0
966966 0.995549 0.0320313
967967 29.3267 0.943083 0.471541 0.881844i 0.343698π-0.343698\pi
0.471541 + 0.881844i 0.343698π0.343698\pi
968968 −4.47988 −0.143989
969969 0 0
970970 0 0
971971 −33.7011 −1.08152 −0.540761 0.841177i 0.681864π-0.681864\pi
−0.540761 + 0.841177i 0.681864π0.681864\pi
972972 −7.99160 −0.256331
973973 5.54115 0.177641
974974 1.68451 0.0539751
975975 0 0
976976 17.4602 0.558886
977977 −57.9778 −1.85488 −0.927438 0.373977i 0.877994π-0.877994\pi
−0.927438 + 0.373977i 0.877994π0.877994\pi
978978 0.196703 0.00628988
979979 38.9386 1.24448
980980 0 0
981981 50.6195 1.61615
982982 −3.78212 −0.120692
983983 −20.5124 −0.654243 −0.327121 0.944982i 0.606079π-0.606079\pi
−0.327121 + 0.944982i 0.606079π0.606079\pi
984984 −2.37431 −0.0756902
985985 0 0
986986 0 0
987987 −7.26341 −0.231197
988988 4.42380 0.140740
989989 −24.8802 −0.791145
990990 0 0
991991 30.6737 0.974384 0.487192 0.873295i 0.338021π-0.338021\pi
0.487192 + 0.873295i 0.338021π0.338021\pi
992992 −37.9776 −1.20579
993993 4.77841 0.151638
994994 6.97332 0.221180
995995 0 0
996996 −2.43550 −0.0771718
997997 −4.93382 −0.156256 −0.0781279 0.996943i 0.524894π-0.524894\pi
−0.0781279 + 0.996943i 0.524894π0.524894\pi
998998 4.25750 0.134769
999999 −10.0658 −0.318468
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.by.1.10 24
5.2 odd 4 1445.2.b.i.579.9 24
5.3 odd 4 1445.2.b.i.579.16 24
5.4 even 2 inner 7225.2.a.by.1.15 24
17.11 odd 16 425.2.m.e.376.3 24
17.14 odd 16 425.2.m.e.26.3 24
17.16 even 2 inner 7225.2.a.by.1.9 24
85.14 odd 16 425.2.m.e.26.4 24
85.28 even 16 85.2.m.a.19.3 yes 24
85.33 odd 4 1445.2.b.i.579.15 24
85.48 even 16 85.2.m.a.9.4 yes 24
85.62 even 16 85.2.m.a.19.4 yes 24
85.67 odd 4 1445.2.b.i.579.10 24
85.79 odd 16 425.2.m.e.376.4 24
85.82 even 16 85.2.m.a.9.3 24
85.84 even 2 inner 7225.2.a.by.1.16 24
255.62 odd 16 765.2.bh.b.19.3 24
255.113 odd 16 765.2.bh.b.19.4 24
255.167 odd 16 765.2.bh.b.604.4 24
255.218 odd 16 765.2.bh.b.604.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.9.3 24 85.82 even 16
85.2.m.a.9.4 yes 24 85.48 even 16
85.2.m.a.19.3 yes 24 85.28 even 16
85.2.m.a.19.4 yes 24 85.62 even 16
425.2.m.e.26.3 24 17.14 odd 16
425.2.m.e.26.4 24 85.14 odd 16
425.2.m.e.376.3 24 17.11 odd 16
425.2.m.e.376.4 24 85.79 odd 16
765.2.bh.b.19.3 24 255.62 odd 16
765.2.bh.b.19.4 24 255.113 odd 16
765.2.bh.b.604.3 24 255.218 odd 16
765.2.bh.b.604.4 24 255.167 odd 16
1445.2.b.i.579.9 24 5.2 odd 4
1445.2.b.i.579.10 24 85.67 odd 4
1445.2.b.i.579.15 24 85.33 odd 4
1445.2.b.i.579.16 24 5.3 odd 4
7225.2.a.by.1.9 24 17.16 even 2 inner
7225.2.a.by.1.10 24 1.1 even 1 trivial
7225.2.a.by.1.15 24 5.4 even 2 inner
7225.2.a.by.1.16 24 85.84 even 2 inner