Properties

Label 7225.2.a.by.1.10
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.499161 q^{2} +0.171281 q^{3} -1.75084 q^{4} -0.0854968 q^{6} -3.87301 q^{7} +1.87227 q^{8} -2.97066 q^{9} +O(q^{10})\) \(q-0.499161 q^{2} +0.171281 q^{3} -1.75084 q^{4} -0.0854968 q^{6} -3.87301 q^{7} +1.87227 q^{8} -2.97066 q^{9} -2.93381 q^{11} -0.299886 q^{12} -0.983677 q^{13} +1.93326 q^{14} +2.56711 q^{16} +1.48284 q^{18} +2.56860 q^{19} -0.663375 q^{21} +1.46444 q^{22} +3.00652 q^{23} +0.320685 q^{24} +0.491013 q^{26} -1.02266 q^{27} +6.78102 q^{28} +0.549546 q^{29} +7.55631 q^{31} -5.02594 q^{32} -0.502507 q^{33} +5.20115 q^{36} +9.84275 q^{37} -1.28214 q^{38} -0.168485 q^{39} -7.40387 q^{41} +0.331130 q^{42} -8.27543 q^{43} +5.13663 q^{44} -1.50073 q^{46} +10.9492 q^{47} +0.439699 q^{48} +8.00024 q^{49} +1.72226 q^{52} -3.58708 q^{53} +0.510473 q^{54} -7.25133 q^{56} +0.439953 q^{57} -0.274312 q^{58} +0.305801 q^{59} +6.80147 q^{61} -3.77181 q^{62} +11.5054 q^{63} -2.62548 q^{64} +0.250832 q^{66} -5.09621 q^{67} +0.514960 q^{69} +3.60703 q^{71} -5.56188 q^{72} +5.01077 q^{73} -4.91311 q^{74} -4.49721 q^{76} +11.3627 q^{77} +0.0841013 q^{78} +12.4437 q^{79} +8.73683 q^{81} +3.69572 q^{82} +8.12143 q^{83} +1.16146 q^{84} +4.13077 q^{86} +0.0941270 q^{87} -5.49289 q^{88} -13.2723 q^{89} +3.80980 q^{91} -5.26393 q^{92} +1.29425 q^{93} -5.46540 q^{94} -0.860850 q^{96} +4.52617 q^{97} -3.99340 q^{98} +8.71536 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{4} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 8 q^{4} - 8 q^{9} - 8 q^{16} - 16 q^{19} - 32 q^{21} - 48 q^{26} + 8 q^{36} - 56 q^{49} - 64 q^{59} - 104 q^{64} - 16 q^{66} - 32 q^{69} - 48 q^{76} - 88 q^{81} - 96 q^{84} - 112 q^{89} - 128 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.499161 −0.352960 −0.176480 0.984304i \(-0.556471\pi\)
−0.176480 + 0.984304i \(0.556471\pi\)
\(3\) 0.171281 0.0988893 0.0494446 0.998777i \(-0.484255\pi\)
0.0494446 + 0.998777i \(0.484255\pi\)
\(4\) −1.75084 −0.875419
\(5\) 0 0
\(6\) −0.0854968 −0.0349039
\(7\) −3.87301 −1.46386 −0.731931 0.681379i \(-0.761381\pi\)
−0.731931 + 0.681379i \(0.761381\pi\)
\(8\) 1.87227 0.661948
\(9\) −2.97066 −0.990221
\(10\) 0 0
\(11\) −2.93381 −0.884577 −0.442289 0.896873i \(-0.645833\pi\)
−0.442289 + 0.896873i \(0.645833\pi\)
\(12\) −0.299886 −0.0865696
\(13\) −0.983677 −0.272823 −0.136411 0.990652i \(-0.543557\pi\)
−0.136411 + 0.990652i \(0.543557\pi\)
\(14\) 1.93326 0.516684
\(15\) 0 0
\(16\) 2.56711 0.641779
\(17\) 0 0
\(18\) 1.48284 0.349508
\(19\) 2.56860 0.589277 0.294639 0.955609i \(-0.404801\pi\)
0.294639 + 0.955609i \(0.404801\pi\)
\(20\) 0 0
\(21\) −0.663375 −0.144760
\(22\) 1.46444 0.312220
\(23\) 3.00652 0.626902 0.313451 0.949604i \(-0.398515\pi\)
0.313451 + 0.949604i \(0.398515\pi\)
\(24\) 0.320685 0.0654595
\(25\) 0 0
\(26\) 0.491013 0.0962955
\(27\) −1.02266 −0.196812
\(28\) 6.78102 1.28149
\(29\) 0.549546 0.102048 0.0510241 0.998697i \(-0.483751\pi\)
0.0510241 + 0.998697i \(0.483751\pi\)
\(30\) 0 0
\(31\) 7.55631 1.35715 0.678577 0.734530i \(-0.262597\pi\)
0.678577 + 0.734530i \(0.262597\pi\)
\(32\) −5.02594 −0.888470
\(33\) −0.502507 −0.0874752
\(34\) 0 0
\(35\) 0 0
\(36\) 5.20115 0.866859
\(37\) 9.84275 1.61814 0.809069 0.587714i \(-0.199972\pi\)
0.809069 + 0.587714i \(0.199972\pi\)
\(38\) −1.28214 −0.207991
\(39\) −0.168485 −0.0269793
\(40\) 0 0
\(41\) −7.40387 −1.15629 −0.578145 0.815934i \(-0.696223\pi\)
−0.578145 + 0.815934i \(0.696223\pi\)
\(42\) 0.331130 0.0510945
\(43\) −8.27543 −1.26199 −0.630996 0.775786i \(-0.717353\pi\)
−0.630996 + 0.775786i \(0.717353\pi\)
\(44\) 5.13663 0.774376
\(45\) 0 0
\(46\) −1.50073 −0.221271
\(47\) 10.9492 1.59710 0.798551 0.601928i \(-0.205600\pi\)
0.798551 + 0.601928i \(0.205600\pi\)
\(48\) 0.439699 0.0634650
\(49\) 8.00024 1.14289
\(50\) 0 0
\(51\) 0 0
\(52\) 1.72226 0.238834
\(53\) −3.58708 −0.492723 −0.246362 0.969178i \(-0.579235\pi\)
−0.246362 + 0.969178i \(0.579235\pi\)
\(54\) 0.510473 0.0694665
\(55\) 0 0
\(56\) −7.25133 −0.969000
\(57\) 0.439953 0.0582732
\(58\) −0.274312 −0.0360189
\(59\) 0.305801 0.0398119 0.0199059 0.999802i \(-0.493663\pi\)
0.0199059 + 0.999802i \(0.493663\pi\)
\(60\) 0 0
\(61\) 6.80147 0.870839 0.435420 0.900228i \(-0.356600\pi\)
0.435420 + 0.900228i \(0.356600\pi\)
\(62\) −3.77181 −0.479020
\(63\) 11.5054 1.44955
\(64\) −2.62548 −0.328184
\(65\) 0 0
\(66\) 0.250832 0.0308752
\(67\) −5.09621 −0.622601 −0.311301 0.950312i \(-0.600765\pi\)
−0.311301 + 0.950312i \(0.600765\pi\)
\(68\) 0 0
\(69\) 0.514960 0.0619939
\(70\) 0 0
\(71\) 3.60703 0.428076 0.214038 0.976825i \(-0.431338\pi\)
0.214038 + 0.976825i \(0.431338\pi\)
\(72\) −5.56188 −0.655474
\(73\) 5.01077 0.586466 0.293233 0.956041i \(-0.405269\pi\)
0.293233 + 0.956041i \(0.405269\pi\)
\(74\) −4.91311 −0.571138
\(75\) 0 0
\(76\) −4.49721 −0.515865
\(77\) 11.3627 1.29490
\(78\) 0.0841013 0.00952259
\(79\) 12.4437 1.40002 0.700012 0.714131i \(-0.253178\pi\)
0.700012 + 0.714131i \(0.253178\pi\)
\(80\) 0 0
\(81\) 8.73683 0.970758
\(82\) 3.69572 0.408124
\(83\) 8.12143 0.891443 0.445721 0.895172i \(-0.352947\pi\)
0.445721 + 0.895172i \(0.352947\pi\)
\(84\) 1.16146 0.126726
\(85\) 0 0
\(86\) 4.13077 0.445432
\(87\) 0.0941270 0.0100915
\(88\) −5.49289 −0.585544
\(89\) −13.2723 −1.40687 −0.703433 0.710761i \(-0.748351\pi\)
−0.703433 + 0.710761i \(0.748351\pi\)
\(90\) 0 0
\(91\) 3.80980 0.399375
\(92\) −5.26393 −0.548802
\(93\) 1.29425 0.134208
\(94\) −5.46540 −0.563712
\(95\) 0 0
\(96\) −0.860850 −0.0878601
\(97\) 4.52617 0.459563 0.229781 0.973242i \(-0.426199\pi\)
0.229781 + 0.973242i \(0.426199\pi\)
\(98\) −3.99340 −0.403395
\(99\) 8.71536 0.875927
\(100\) 0 0
\(101\) −2.62696 −0.261393 −0.130696 0.991422i \(-0.541721\pi\)
−0.130696 + 0.991422i \(0.541721\pi\)
\(102\) 0 0
\(103\) 9.21332 0.907815 0.453908 0.891049i \(-0.350030\pi\)
0.453908 + 0.891049i \(0.350030\pi\)
\(104\) −1.84171 −0.180594
\(105\) 0 0
\(106\) 1.79053 0.173911
\(107\) −5.83150 −0.563752 −0.281876 0.959451i \(-0.590957\pi\)
−0.281876 + 0.959451i \(0.590957\pi\)
\(108\) 1.79052 0.172293
\(109\) −17.0398 −1.63212 −0.816058 0.577970i \(-0.803845\pi\)
−0.816058 + 0.577970i \(0.803845\pi\)
\(110\) 0 0
\(111\) 1.68588 0.160017
\(112\) −9.94247 −0.939475
\(113\) 1.17074 0.110134 0.0550670 0.998483i \(-0.482463\pi\)
0.0550670 + 0.998483i \(0.482463\pi\)
\(114\) −0.219607 −0.0205681
\(115\) 0 0
\(116\) −0.962167 −0.0893350
\(117\) 2.92217 0.270155
\(118\) −0.152644 −0.0140520
\(119\) 0 0
\(120\) 0 0
\(121\) −2.39275 −0.217523
\(122\) −3.39503 −0.307371
\(123\) −1.26814 −0.114345
\(124\) −13.2299 −1.18808
\(125\) 0 0
\(126\) −5.74305 −0.511632
\(127\) −6.65830 −0.590828 −0.295414 0.955369i \(-0.595458\pi\)
−0.295414 + 0.955369i \(0.595458\pi\)
\(128\) 11.3624 1.00431
\(129\) −1.41743 −0.124797
\(130\) 0 0
\(131\) −12.2839 −1.07325 −0.536624 0.843821i \(-0.680301\pi\)
−0.536624 + 0.843821i \(0.680301\pi\)
\(132\) 0.879808 0.0765775
\(133\) −9.94823 −0.862621
\(134\) 2.54383 0.219753
\(135\) 0 0
\(136\) 0 0
\(137\) −9.68972 −0.827848 −0.413924 0.910311i \(-0.635842\pi\)
−0.413924 + 0.910311i \(0.635842\pi\)
\(138\) −0.257048 −0.0218814
\(139\) −1.43071 −0.121351 −0.0606755 0.998158i \(-0.519325\pi\)
−0.0606755 + 0.998158i \(0.519325\pi\)
\(140\) 0 0
\(141\) 1.87539 0.157936
\(142\) −1.80049 −0.151094
\(143\) 2.88592 0.241333
\(144\) −7.62603 −0.635502
\(145\) 0 0
\(146\) −2.50118 −0.206999
\(147\) 1.37029 0.113020
\(148\) −17.2331 −1.41655
\(149\) −9.40983 −0.770884 −0.385442 0.922732i \(-0.625951\pi\)
−0.385442 + 0.922732i \(0.625951\pi\)
\(150\) 0 0
\(151\) 8.66213 0.704914 0.352457 0.935828i \(-0.385346\pi\)
0.352457 + 0.935828i \(0.385346\pi\)
\(152\) 4.80912 0.390071
\(153\) 0 0
\(154\) −5.67181 −0.457047
\(155\) 0 0
\(156\) 0.294991 0.0236182
\(157\) 17.7467 1.41634 0.708169 0.706043i \(-0.249521\pi\)
0.708169 + 0.706043i \(0.249521\pi\)
\(158\) −6.21140 −0.494152
\(159\) −0.614399 −0.0487250
\(160\) 0 0
\(161\) −11.6443 −0.917698
\(162\) −4.36108 −0.342639
\(163\) −2.30071 −0.180205 −0.0901027 0.995932i \(-0.528720\pi\)
−0.0901027 + 0.995932i \(0.528720\pi\)
\(164\) 12.9630 1.01224
\(165\) 0 0
\(166\) −4.05390 −0.314643
\(167\) −9.36248 −0.724491 −0.362245 0.932083i \(-0.617990\pi\)
−0.362245 + 0.932083i \(0.617990\pi\)
\(168\) −1.24202 −0.0958237
\(169\) −12.0324 −0.925568
\(170\) 0 0
\(171\) −7.63045 −0.583515
\(172\) 14.4889 1.10477
\(173\) 9.29988 0.707057 0.353528 0.935424i \(-0.384982\pi\)
0.353528 + 0.935424i \(0.384982\pi\)
\(174\) −0.0469845 −0.00356188
\(175\) 0 0
\(176\) −7.53143 −0.567703
\(177\) 0.0523780 0.00393697
\(178\) 6.62503 0.496567
\(179\) −1.93778 −0.144837 −0.0724183 0.997374i \(-0.523072\pi\)
−0.0724183 + 0.997374i \(0.523072\pi\)
\(180\) 0 0
\(181\) 16.9024 1.25635 0.628173 0.778074i \(-0.283803\pi\)
0.628173 + 0.778074i \(0.283803\pi\)
\(182\) −1.90170 −0.140963
\(183\) 1.16496 0.0861167
\(184\) 5.62901 0.414976
\(185\) 0 0
\(186\) −0.646040 −0.0473700
\(187\) 0 0
\(188\) −19.1702 −1.39813
\(189\) 3.96079 0.288105
\(190\) 0 0
\(191\) −16.6593 −1.20543 −0.602713 0.797958i \(-0.705914\pi\)
−0.602713 + 0.797958i \(0.705914\pi\)
\(192\) −0.449695 −0.0324539
\(193\) −14.1648 −1.01960 −0.509801 0.860292i \(-0.670281\pi\)
−0.509801 + 0.860292i \(0.670281\pi\)
\(194\) −2.25928 −0.162207
\(195\) 0 0
\(196\) −14.0071 −1.00051
\(197\) 18.2978 1.30366 0.651832 0.758363i \(-0.274001\pi\)
0.651832 + 0.758363i \(0.274001\pi\)
\(198\) −4.35036 −0.309167
\(199\) −5.45781 −0.386894 −0.193447 0.981111i \(-0.561967\pi\)
−0.193447 + 0.981111i \(0.561967\pi\)
\(200\) 0 0
\(201\) −0.872885 −0.0615686
\(202\) 1.31128 0.0922611
\(203\) −2.12840 −0.149384
\(204\) 0 0
\(205\) 0 0
\(206\) −4.59893 −0.320422
\(207\) −8.93135 −0.620772
\(208\) −2.52521 −0.175092
\(209\) −7.53579 −0.521261
\(210\) 0 0
\(211\) −5.50932 −0.379277 −0.189639 0.981854i \(-0.560732\pi\)
−0.189639 + 0.981854i \(0.560732\pi\)
\(212\) 6.28040 0.431339
\(213\) 0.617817 0.0423321
\(214\) 2.91085 0.198982
\(215\) 0 0
\(216\) −1.91470 −0.130279
\(217\) −29.2657 −1.98668
\(218\) 8.50559 0.576071
\(219\) 0.858250 0.0579952
\(220\) 0 0
\(221\) 0 0
\(222\) −0.841524 −0.0564794
\(223\) 26.6184 1.78250 0.891249 0.453514i \(-0.149830\pi\)
0.891249 + 0.453514i \(0.149830\pi\)
\(224\) 19.4656 1.30060
\(225\) 0 0
\(226\) −0.584387 −0.0388728
\(227\) −7.66994 −0.509072 −0.254536 0.967063i \(-0.581923\pi\)
−0.254536 + 0.967063i \(0.581923\pi\)
\(228\) −0.770287 −0.0510135
\(229\) −9.33359 −0.616781 −0.308390 0.951260i \(-0.599790\pi\)
−0.308390 + 0.951260i \(0.599790\pi\)
\(230\) 0 0
\(231\) 1.94622 0.128052
\(232\) 1.02890 0.0675505
\(233\) 3.89898 0.255431 0.127715 0.991811i \(-0.459236\pi\)
0.127715 + 0.991811i \(0.459236\pi\)
\(234\) −1.45863 −0.0953538
\(235\) 0 0
\(236\) −0.535408 −0.0348521
\(237\) 2.13137 0.138447
\(238\) 0 0
\(239\) −22.6299 −1.46380 −0.731902 0.681410i \(-0.761367\pi\)
−0.731902 + 0.681410i \(0.761367\pi\)
\(240\) 0 0
\(241\) −2.89198 −0.186289 −0.0931443 0.995653i \(-0.529692\pi\)
−0.0931443 + 0.995653i \(0.529692\pi\)
\(242\) 1.19437 0.0767769
\(243\) 4.56444 0.292809
\(244\) −11.9083 −0.762350
\(245\) 0 0
\(246\) 0.633007 0.0403591
\(247\) −2.52667 −0.160768
\(248\) 14.1475 0.898364
\(249\) 1.39105 0.0881541
\(250\) 0 0
\(251\) −13.3749 −0.844213 −0.422107 0.906546i \(-0.638709\pi\)
−0.422107 + 0.906546i \(0.638709\pi\)
\(252\) −20.1441 −1.26896
\(253\) −8.82055 −0.554543
\(254\) 3.32356 0.208539
\(255\) 0 0
\(256\) −0.420720 −0.0262950
\(257\) 7.32959 0.457208 0.228604 0.973520i \(-0.426584\pi\)
0.228604 + 0.973520i \(0.426584\pi\)
\(258\) 0.707523 0.0440485
\(259\) −38.1211 −2.36873
\(260\) 0 0
\(261\) −1.63252 −0.101050
\(262\) 6.13164 0.378814
\(263\) −24.1129 −1.48686 −0.743432 0.668811i \(-0.766803\pi\)
−0.743432 + 0.668811i \(0.766803\pi\)
\(264\) −0.940829 −0.0579040
\(265\) 0 0
\(266\) 4.96576 0.304470
\(267\) −2.27330 −0.139124
\(268\) 8.92264 0.545037
\(269\) 25.1246 1.53187 0.765935 0.642918i \(-0.222276\pi\)
0.765935 + 0.642918i \(0.222276\pi\)
\(270\) 0 0
\(271\) −14.0988 −0.856440 −0.428220 0.903674i \(-0.640859\pi\)
−0.428220 + 0.903674i \(0.640859\pi\)
\(272\) 0 0
\(273\) 0.652547 0.0394939
\(274\) 4.83672 0.292197
\(275\) 0 0
\(276\) −0.901612 −0.0542707
\(277\) 6.22200 0.373844 0.186922 0.982375i \(-0.440149\pi\)
0.186922 + 0.982375i \(0.440149\pi\)
\(278\) 0.714152 0.0428320
\(279\) −22.4472 −1.34388
\(280\) 0 0
\(281\) −5.47822 −0.326803 −0.163402 0.986560i \(-0.552247\pi\)
−0.163402 + 0.986560i \(0.552247\pi\)
\(282\) −0.936120 −0.0557451
\(283\) −24.7905 −1.47364 −0.736820 0.676089i \(-0.763673\pi\)
−0.736820 + 0.676089i \(0.763673\pi\)
\(284\) −6.31534 −0.374746
\(285\) 0 0
\(286\) −1.44054 −0.0851808
\(287\) 28.6753 1.69265
\(288\) 14.9304 0.879781
\(289\) 0 0
\(290\) 0 0
\(291\) 0.775248 0.0454458
\(292\) −8.77305 −0.513404
\(293\) 24.3230 1.42096 0.710482 0.703715i \(-0.248477\pi\)
0.710482 + 0.703715i \(0.248477\pi\)
\(294\) −0.683995 −0.0398914
\(295\) 0 0
\(296\) 18.4283 1.07112
\(297\) 3.00030 0.174095
\(298\) 4.69702 0.272091
\(299\) −2.95744 −0.171033
\(300\) 0 0
\(301\) 32.0509 1.84738
\(302\) −4.32379 −0.248806
\(303\) −0.449949 −0.0258489
\(304\) 6.59389 0.378186
\(305\) 0 0
\(306\) 0 0
\(307\) 0.916042 0.0522813 0.0261406 0.999658i \(-0.491678\pi\)
0.0261406 + 0.999658i \(0.491678\pi\)
\(308\) −19.8942 −1.13358
\(309\) 1.57807 0.0897732
\(310\) 0 0
\(311\) 8.52131 0.483199 0.241600 0.970376i \(-0.422328\pi\)
0.241600 + 0.970376i \(0.422328\pi\)
\(312\) −0.315450 −0.0178589
\(313\) −16.9686 −0.959120 −0.479560 0.877509i \(-0.659204\pi\)
−0.479560 + 0.877509i \(0.659204\pi\)
\(314\) −8.85844 −0.499911
\(315\) 0 0
\(316\) −21.7869 −1.22561
\(317\) 24.8475 1.39558 0.697788 0.716304i \(-0.254168\pi\)
0.697788 + 0.716304i \(0.254168\pi\)
\(318\) 0.306684 0.0171980
\(319\) −1.61226 −0.0902695
\(320\) 0 0
\(321\) −0.998826 −0.0557490
\(322\) 5.81237 0.323911
\(323\) 0 0
\(324\) −15.2968 −0.849821
\(325\) 0 0
\(326\) 1.14842 0.0636052
\(327\) −2.91860 −0.161399
\(328\) −13.8620 −0.765403
\(329\) −42.4063 −2.33794
\(330\) 0 0
\(331\) 27.8980 1.53341 0.766707 0.641997i \(-0.221894\pi\)
0.766707 + 0.641997i \(0.221894\pi\)
\(332\) −14.2193 −0.780386
\(333\) −29.2395 −1.60231
\(334\) 4.67338 0.255716
\(335\) 0 0
\(336\) −1.70296 −0.0929040
\(337\) 15.9499 0.868847 0.434424 0.900709i \(-0.356952\pi\)
0.434424 + 0.900709i \(0.356952\pi\)
\(338\) 6.00609 0.326688
\(339\) 0.200526 0.0108911
\(340\) 0 0
\(341\) −22.1688 −1.20051
\(342\) 3.80882 0.205957
\(343\) −3.87395 −0.209174
\(344\) −15.4938 −0.835372
\(345\) 0 0
\(346\) −4.64213 −0.249563
\(347\) 26.0814 1.40012 0.700061 0.714083i \(-0.253156\pi\)
0.700061 + 0.714083i \(0.253156\pi\)
\(348\) −0.164801 −0.00883427
\(349\) −22.9432 −1.22812 −0.614061 0.789259i \(-0.710465\pi\)
−0.614061 + 0.789259i \(0.710465\pi\)
\(350\) 0 0
\(351\) 1.00597 0.0536947
\(352\) 14.7452 0.785920
\(353\) 3.96701 0.211142 0.105571 0.994412i \(-0.466333\pi\)
0.105571 + 0.994412i \(0.466333\pi\)
\(354\) −0.0261450 −0.00138959
\(355\) 0 0
\(356\) 23.2377 1.23160
\(357\) 0 0
\(358\) 0.967265 0.0511215
\(359\) 18.8044 0.992457 0.496228 0.868192i \(-0.334718\pi\)
0.496228 + 0.868192i \(0.334718\pi\)
\(360\) 0 0
\(361\) −12.4023 −0.652752
\(362\) −8.43701 −0.443439
\(363\) −0.409834 −0.0215107
\(364\) −6.67034 −0.349621
\(365\) 0 0
\(366\) −0.581505 −0.0303957
\(367\) −7.50782 −0.391905 −0.195952 0.980613i \(-0.562780\pi\)
−0.195952 + 0.980613i \(0.562780\pi\)
\(368\) 7.71807 0.402332
\(369\) 21.9944 1.14498
\(370\) 0 0
\(371\) 13.8928 0.721279
\(372\) −2.26603 −0.117488
\(373\) −18.5763 −0.961844 −0.480922 0.876763i \(-0.659698\pi\)
−0.480922 + 0.876763i \(0.659698\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 20.4998 1.05720
\(377\) −0.540576 −0.0278411
\(378\) −1.97707 −0.101689
\(379\) −14.6872 −0.754430 −0.377215 0.926126i \(-0.623118\pi\)
−0.377215 + 0.926126i \(0.623118\pi\)
\(380\) 0 0
\(381\) −1.14044 −0.0584266
\(382\) 8.31568 0.425467
\(383\) 21.3063 1.08870 0.544351 0.838858i \(-0.316776\pi\)
0.544351 + 0.838858i \(0.316776\pi\)
\(384\) 1.94617 0.0993150
\(385\) 0 0
\(386\) 7.07049 0.359878
\(387\) 24.5835 1.24965
\(388\) −7.92459 −0.402310
\(389\) 4.77866 0.242288 0.121144 0.992635i \(-0.461344\pi\)
0.121144 + 0.992635i \(0.461344\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 14.9786 0.756534
\(393\) −2.10400 −0.106133
\(394\) −9.13354 −0.460141
\(395\) 0 0
\(396\) −15.2592 −0.766803
\(397\) 32.2929 1.62073 0.810367 0.585922i \(-0.199268\pi\)
0.810367 + 0.585922i \(0.199268\pi\)
\(398\) 2.72432 0.136558
\(399\) −1.70395 −0.0853040
\(400\) 0 0
\(401\) 24.8497 1.24094 0.620468 0.784232i \(-0.286943\pi\)
0.620468 + 0.784232i \(0.286943\pi\)
\(402\) 0.435710 0.0217312
\(403\) −7.43297 −0.370262
\(404\) 4.59939 0.228828
\(405\) 0 0
\(406\) 1.06241 0.0527267
\(407\) −28.8768 −1.43137
\(408\) 0 0
\(409\) −18.4025 −0.909945 −0.454973 0.890505i \(-0.650351\pi\)
−0.454973 + 0.890505i \(0.650351\pi\)
\(410\) 0 0
\(411\) −1.65967 −0.0818653
\(412\) −16.1310 −0.794719
\(413\) −1.18437 −0.0582791
\(414\) 4.45818 0.219107
\(415\) 0 0
\(416\) 4.94390 0.242395
\(417\) −0.245053 −0.0120003
\(418\) 3.76157 0.183984
\(419\) 3.03474 0.148257 0.0741284 0.997249i \(-0.476383\pi\)
0.0741284 + 0.997249i \(0.476383\pi\)
\(420\) 0 0
\(421\) −31.0514 −1.51335 −0.756677 0.653788i \(-0.773179\pi\)
−0.756677 + 0.653788i \(0.773179\pi\)
\(422\) 2.75004 0.133870
\(423\) −32.5263 −1.58148
\(424\) −6.71598 −0.326157
\(425\) 0 0
\(426\) −0.308390 −0.0149415
\(427\) −26.3422 −1.27479
\(428\) 10.2100 0.493519
\(429\) 0.494304 0.0238652
\(430\) 0 0
\(431\) −35.5829 −1.71397 −0.856983 0.515344i \(-0.827664\pi\)
−0.856983 + 0.515344i \(0.827664\pi\)
\(432\) −2.62529 −0.126309
\(433\) −3.29892 −0.158536 −0.0792680 0.996853i \(-0.525258\pi\)
−0.0792680 + 0.996853i \(0.525258\pi\)
\(434\) 14.6083 0.701220
\(435\) 0 0
\(436\) 29.8339 1.42879
\(437\) 7.72254 0.369419
\(438\) −0.428405 −0.0204700
\(439\) 3.31990 0.158450 0.0792250 0.996857i \(-0.474755\pi\)
0.0792250 + 0.996857i \(0.474755\pi\)
\(440\) 0 0
\(441\) −23.7660 −1.13172
\(442\) 0 0
\(443\) −5.62292 −0.267153 −0.133577 0.991039i \(-0.542646\pi\)
−0.133577 + 0.991039i \(0.542646\pi\)
\(444\) −2.95170 −0.140082
\(445\) 0 0
\(446\) −13.2868 −0.629150
\(447\) −1.61173 −0.0762321
\(448\) 10.1685 0.480417
\(449\) −6.13222 −0.289397 −0.144699 0.989476i \(-0.546221\pi\)
−0.144699 + 0.989476i \(0.546221\pi\)
\(450\) 0 0
\(451\) 21.7216 1.02283
\(452\) −2.04978 −0.0964134
\(453\) 1.48366 0.0697084
\(454\) 3.82853 0.179682
\(455\) 0 0
\(456\) 0.823711 0.0385738
\(457\) −28.3934 −1.32819 −0.664093 0.747650i \(-0.731182\pi\)
−0.664093 + 0.747650i \(0.731182\pi\)
\(458\) 4.65896 0.217699
\(459\) 0 0
\(460\) 0 0
\(461\) −20.8024 −0.968863 −0.484432 0.874829i \(-0.660974\pi\)
−0.484432 + 0.874829i \(0.660974\pi\)
\(462\) −0.971474 −0.0451971
\(463\) −31.4596 −1.46205 −0.731025 0.682351i \(-0.760958\pi\)
−0.731025 + 0.682351i \(0.760958\pi\)
\(464\) 1.41075 0.0654923
\(465\) 0 0
\(466\) −1.94622 −0.0901567
\(467\) 1.48589 0.0687586 0.0343793 0.999409i \(-0.489055\pi\)
0.0343793 + 0.999409i \(0.489055\pi\)
\(468\) −5.11625 −0.236499
\(469\) 19.7377 0.911402
\(470\) 0 0
\(471\) 3.03967 0.140061
\(472\) 0.572542 0.0263534
\(473\) 24.2785 1.11633
\(474\) −1.06390 −0.0488663
\(475\) 0 0
\(476\) 0 0
\(477\) 10.6560 0.487905
\(478\) 11.2959 0.516664
\(479\) 14.6332 0.668608 0.334304 0.942465i \(-0.391499\pi\)
0.334304 + 0.942465i \(0.391499\pi\)
\(480\) 0 0
\(481\) −9.68209 −0.441465
\(482\) 1.44356 0.0657524
\(483\) −1.99445 −0.0907505
\(484\) 4.18933 0.190424
\(485\) 0 0
\(486\) −2.27839 −0.103350
\(487\) −3.37468 −0.152921 −0.0764606 0.997073i \(-0.524362\pi\)
−0.0764606 + 0.997073i \(0.524362\pi\)
\(488\) 12.7342 0.576450
\(489\) −0.394068 −0.0178204
\(490\) 0 0
\(491\) 7.57696 0.341943 0.170972 0.985276i \(-0.445309\pi\)
0.170972 + 0.985276i \(0.445309\pi\)
\(492\) 2.22032 0.100100
\(493\) 0 0
\(494\) 1.26122 0.0567448
\(495\) 0 0
\(496\) 19.3979 0.870992
\(497\) −13.9701 −0.626644
\(498\) −0.694356 −0.0311149
\(499\) −8.52931 −0.381825 −0.190912 0.981607i \(-0.561145\pi\)
−0.190912 + 0.981607i \(0.561145\pi\)
\(500\) 0 0
\(501\) −1.60362 −0.0716443
\(502\) 6.67620 0.297973
\(503\) 19.2282 0.857344 0.428672 0.903460i \(-0.358982\pi\)
0.428672 + 0.903460i \(0.358982\pi\)
\(504\) 21.5413 0.959524
\(505\) 0 0
\(506\) 4.40287 0.195732
\(507\) −2.06092 −0.0915287
\(508\) 11.6576 0.517223
\(509\) −5.89076 −0.261104 −0.130552 0.991441i \(-0.541675\pi\)
−0.130552 + 0.991441i \(0.541675\pi\)
\(510\) 0 0
\(511\) −19.4068 −0.858505
\(512\) −22.5148 −0.995024
\(513\) −2.62681 −0.115977
\(514\) −3.65864 −0.161376
\(515\) 0 0
\(516\) 2.48168 0.109250
\(517\) −32.1228 −1.41276
\(518\) 19.0286 0.836067
\(519\) 1.59290 0.0699203
\(520\) 0 0
\(521\) −25.7911 −1.12993 −0.564965 0.825115i \(-0.691110\pi\)
−0.564965 + 0.825115i \(0.691110\pi\)
\(522\) 0.814888 0.0356667
\(523\) 23.1957 1.01428 0.507138 0.861865i \(-0.330703\pi\)
0.507138 + 0.861865i \(0.330703\pi\)
\(524\) 21.5071 0.939543
\(525\) 0 0
\(526\) 12.0362 0.524803
\(527\) 0 0
\(528\) −1.28999 −0.0561397
\(529\) −13.9609 −0.606994
\(530\) 0 0
\(531\) −0.908431 −0.0394226
\(532\) 17.4177 0.755155
\(533\) 7.28302 0.315462
\(534\) 1.13474 0.0491052
\(535\) 0 0
\(536\) −9.54148 −0.412129
\(537\) −0.331906 −0.0143228
\(538\) −12.5412 −0.540689
\(539\) −23.4712 −1.01098
\(540\) 0 0
\(541\) 0.319010 0.0137153 0.00685766 0.999976i \(-0.497817\pi\)
0.00685766 + 0.999976i \(0.497817\pi\)
\(542\) 7.03756 0.302289
\(543\) 2.89506 0.124239
\(544\) 0 0
\(545\) 0 0
\(546\) −0.325725 −0.0139398
\(547\) 29.2638 1.25123 0.625616 0.780131i \(-0.284848\pi\)
0.625616 + 0.780131i \(0.284848\pi\)
\(548\) 16.9651 0.724714
\(549\) −20.2049 −0.862323
\(550\) 0 0
\(551\) 1.41157 0.0601347
\(552\) 0.964144 0.0410367
\(553\) −48.1946 −2.04944
\(554\) −3.10578 −0.131952
\(555\) 0 0
\(556\) 2.50494 0.106233
\(557\) 4.51904 0.191478 0.0957390 0.995406i \(-0.469479\pi\)
0.0957390 + 0.995406i \(0.469479\pi\)
\(558\) 11.2048 0.474336
\(559\) 8.14035 0.344300
\(560\) 0 0
\(561\) 0 0
\(562\) 2.73451 0.115348
\(563\) −24.5112 −1.03302 −0.516511 0.856280i \(-0.672770\pi\)
−0.516511 + 0.856280i \(0.672770\pi\)
\(564\) −3.28350 −0.138260
\(565\) 0 0
\(566\) 12.3744 0.520135
\(567\) −33.8379 −1.42106
\(568\) 6.75334 0.283364
\(569\) 6.12942 0.256958 0.128479 0.991712i \(-0.458990\pi\)
0.128479 + 0.991712i \(0.458990\pi\)
\(570\) 0 0
\(571\) −0.524413 −0.0219460 −0.0109730 0.999940i \(-0.503493\pi\)
−0.0109730 + 0.999940i \(0.503493\pi\)
\(572\) −5.05278 −0.211268
\(573\) −2.85343 −0.119204
\(574\) −14.3136 −0.597437
\(575\) 0 0
\(576\) 7.79940 0.324975
\(577\) 39.5403 1.64608 0.823041 0.567982i \(-0.192276\pi\)
0.823041 + 0.567982i \(0.192276\pi\)
\(578\) 0 0
\(579\) −2.42616 −0.100828
\(580\) 0 0
\(581\) −31.4544 −1.30495
\(582\) −0.386973 −0.0160406
\(583\) 10.5238 0.435852
\(584\) 9.38151 0.388210
\(585\) 0 0
\(586\) −12.1411 −0.501543
\(587\) −10.9375 −0.451439 −0.225719 0.974192i \(-0.572473\pi\)
−0.225719 + 0.974192i \(0.572473\pi\)
\(588\) −2.39916 −0.0989397
\(589\) 19.4091 0.799740
\(590\) 0 0
\(591\) 3.13407 0.128918
\(592\) 25.2675 1.03849
\(593\) −3.84749 −0.157998 −0.0789988 0.996875i \(-0.525172\pi\)
−0.0789988 + 0.996875i \(0.525172\pi\)
\(594\) −1.49763 −0.0614485
\(595\) 0 0
\(596\) 16.4751 0.674847
\(597\) −0.934820 −0.0382596
\(598\) 1.47624 0.0603679
\(599\) −35.5384 −1.45206 −0.726030 0.687663i \(-0.758637\pi\)
−0.726030 + 0.687663i \(0.758637\pi\)
\(600\) 0 0
\(601\) 18.8207 0.767714 0.383857 0.923393i \(-0.374596\pi\)
0.383857 + 0.923393i \(0.374596\pi\)
\(602\) −15.9985 −0.652051
\(603\) 15.1391 0.616513
\(604\) −15.1660 −0.617095
\(605\) 0 0
\(606\) 0.224597 0.00912363
\(607\) −28.2627 −1.14715 −0.573574 0.819154i \(-0.694443\pi\)
−0.573574 + 0.819154i \(0.694443\pi\)
\(608\) −12.9096 −0.523555
\(609\) −0.364555 −0.0147725
\(610\) 0 0
\(611\) −10.7705 −0.435726
\(612\) 0 0
\(613\) 15.7155 0.634743 0.317371 0.948301i \(-0.397200\pi\)
0.317371 + 0.948301i \(0.397200\pi\)
\(614\) −0.457252 −0.0184532
\(615\) 0 0
\(616\) 21.2740 0.857155
\(617\) 27.3622 1.10156 0.550781 0.834650i \(-0.314330\pi\)
0.550781 + 0.834650i \(0.314330\pi\)
\(618\) −0.787710 −0.0316863
\(619\) −7.56352 −0.304004 −0.152002 0.988380i \(-0.548572\pi\)
−0.152002 + 0.988380i \(0.548572\pi\)
\(620\) 0 0
\(621\) −3.07465 −0.123382
\(622\) −4.25350 −0.170550
\(623\) 51.4040 2.05946
\(624\) −0.432521 −0.0173147
\(625\) 0 0
\(626\) 8.47004 0.338531
\(627\) −1.29074 −0.0515472
\(628\) −31.0716 −1.23989
\(629\) 0 0
\(630\) 0 0
\(631\) −10.1561 −0.404306 −0.202153 0.979354i \(-0.564794\pi\)
−0.202153 + 0.979354i \(0.564794\pi\)
\(632\) 23.2979 0.926743
\(633\) −0.943643 −0.0375065
\(634\) −12.4029 −0.492582
\(635\) 0 0
\(636\) 1.07571 0.0426548
\(637\) −7.86965 −0.311807
\(638\) 0.804779 0.0318615
\(639\) −10.7153 −0.423890
\(640\) 0 0
\(641\) −31.9499 −1.26194 −0.630972 0.775805i \(-0.717344\pi\)
−0.630972 + 0.775805i \(0.717344\pi\)
\(642\) 0.498574 0.0196772
\(643\) −35.2573 −1.39041 −0.695207 0.718810i \(-0.744687\pi\)
−0.695207 + 0.718810i \(0.744687\pi\)
\(644\) 20.3873 0.803371
\(645\) 0 0
\(646\) 0 0
\(647\) −7.97446 −0.313508 −0.156754 0.987638i \(-0.550103\pi\)
−0.156754 + 0.987638i \(0.550103\pi\)
\(648\) 16.3577 0.642591
\(649\) −0.897162 −0.0352167
\(650\) 0 0
\(651\) −5.01266 −0.196462
\(652\) 4.02817 0.157755
\(653\) 13.9977 0.547773 0.273887 0.961762i \(-0.411691\pi\)
0.273887 + 0.961762i \(0.411691\pi\)
\(654\) 1.45685 0.0569673
\(655\) 0 0
\(656\) −19.0066 −0.742082
\(657\) −14.8853 −0.580731
\(658\) 21.1676 0.825197
\(659\) −50.5377 −1.96867 −0.984335 0.176309i \(-0.943584\pi\)
−0.984335 + 0.176309i \(0.943584\pi\)
\(660\) 0 0
\(661\) −33.8208 −1.31547 −0.657737 0.753247i \(-0.728486\pi\)
−0.657737 + 0.753247i \(0.728486\pi\)
\(662\) −13.9256 −0.541234
\(663\) 0 0
\(664\) 15.2055 0.590088
\(665\) 0 0
\(666\) 14.5952 0.565553
\(667\) 1.65222 0.0639742
\(668\) 16.3922 0.634233
\(669\) 4.55923 0.176270
\(670\) 0 0
\(671\) −19.9542 −0.770325
\(672\) 3.33408 0.128615
\(673\) 0.257259 0.00991660 0.00495830 0.999988i \(-0.498422\pi\)
0.00495830 + 0.999988i \(0.498422\pi\)
\(674\) −7.96157 −0.306668
\(675\) 0 0
\(676\) 21.0668 0.810260
\(677\) 3.52328 0.135411 0.0677054 0.997705i \(-0.478432\pi\)
0.0677054 + 0.997705i \(0.478432\pi\)
\(678\) −0.100095 −0.00384411
\(679\) −17.5299 −0.672737
\(680\) 0 0
\(681\) −1.31372 −0.0503417
\(682\) 11.0658 0.423731
\(683\) −16.2284 −0.620961 −0.310480 0.950580i \(-0.600490\pi\)
−0.310480 + 0.950580i \(0.600490\pi\)
\(684\) 13.3597 0.510820
\(685\) 0 0
\(686\) 1.93372 0.0738299
\(687\) −1.59867 −0.0609930
\(688\) −21.2440 −0.809919
\(689\) 3.52853 0.134426
\(690\) 0 0
\(691\) −13.7434 −0.522824 −0.261412 0.965227i \(-0.584188\pi\)
−0.261412 + 0.965227i \(0.584188\pi\)
\(692\) −16.2826 −0.618971
\(693\) −33.7547 −1.28224
\(694\) −13.0188 −0.494187
\(695\) 0 0
\(696\) 0.176231 0.00668002
\(697\) 0 0
\(698\) 11.4523 0.433478
\(699\) 0.667822 0.0252593
\(700\) 0 0
\(701\) −15.8410 −0.598305 −0.299153 0.954205i \(-0.596704\pi\)
−0.299153 + 0.954205i \(0.596704\pi\)
\(702\) −0.502140 −0.0189521
\(703\) 25.2821 0.953532
\(704\) 7.70265 0.290305
\(705\) 0 0
\(706\) −1.98017 −0.0745248
\(707\) 10.1743 0.382643
\(708\) −0.0917054 −0.00344650
\(709\) 26.3076 0.988002 0.494001 0.869461i \(-0.335534\pi\)
0.494001 + 0.869461i \(0.335534\pi\)
\(710\) 0 0
\(711\) −36.9660 −1.38633
\(712\) −24.8494 −0.931272
\(713\) 22.7182 0.850802
\(714\) 0 0
\(715\) 0 0
\(716\) 3.39274 0.126793
\(717\) −3.87607 −0.144755
\(718\) −9.38640 −0.350297
\(719\) 28.4854 1.06233 0.531164 0.847269i \(-0.321755\pi\)
0.531164 + 0.847269i \(0.321755\pi\)
\(720\) 0 0
\(721\) −35.6833 −1.32892
\(722\) 6.19073 0.230395
\(723\) −0.495341 −0.0184219
\(724\) −29.5934 −1.09983
\(725\) 0 0
\(726\) 0.204573 0.00759241
\(727\) 4.70692 0.174570 0.0872850 0.996183i \(-0.472181\pi\)
0.0872850 + 0.996183i \(0.472181\pi\)
\(728\) 7.13297 0.264365
\(729\) −25.4287 −0.941803
\(730\) 0 0
\(731\) 0 0
\(732\) −2.03967 −0.0753882
\(733\) −26.7866 −0.989386 −0.494693 0.869068i \(-0.664719\pi\)
−0.494693 + 0.869068i \(0.664719\pi\)
\(734\) 3.74761 0.138327
\(735\) 0 0
\(736\) −15.1106 −0.556984
\(737\) 14.9513 0.550739
\(738\) −10.9787 −0.404133
\(739\) −24.4868 −0.900763 −0.450381 0.892836i \(-0.648712\pi\)
−0.450381 + 0.892836i \(0.648712\pi\)
\(740\) 0 0
\(741\) −0.432772 −0.0158983
\(742\) −6.93474 −0.254582
\(743\) −29.3896 −1.07820 −0.539100 0.842242i \(-0.681235\pi\)
−0.539100 + 0.842242i \(0.681235\pi\)
\(744\) 2.42319 0.0888386
\(745\) 0 0
\(746\) 9.27255 0.339492
\(747\) −24.1260 −0.882725
\(748\) 0 0
\(749\) 22.5855 0.825255
\(750\) 0 0
\(751\) 11.5338 0.420874 0.210437 0.977607i \(-0.432511\pi\)
0.210437 + 0.977607i \(0.432511\pi\)
\(752\) 28.1078 1.02499
\(753\) −2.29086 −0.0834836
\(754\) 0.269834 0.00982678
\(755\) 0 0
\(756\) −6.93470 −0.252213
\(757\) 25.7257 0.935018 0.467509 0.883988i \(-0.345152\pi\)
0.467509 + 0.883988i \(0.345152\pi\)
\(758\) 7.33126 0.266283
\(759\) −1.51080 −0.0548384
\(760\) 0 0
\(761\) 19.0450 0.690379 0.345190 0.938533i \(-0.387815\pi\)
0.345190 + 0.938533i \(0.387815\pi\)
\(762\) 0.569264 0.0206222
\(763\) 65.9953 2.38919
\(764\) 29.1678 1.05525
\(765\) 0 0
\(766\) −10.6353 −0.384268
\(767\) −0.300809 −0.0108616
\(768\) −0.0720615 −0.00260029
\(769\) 23.2434 0.838178 0.419089 0.907945i \(-0.362349\pi\)
0.419089 + 0.907945i \(0.362349\pi\)
\(770\) 0 0
\(771\) 1.25542 0.0452129
\(772\) 24.8002 0.892579
\(773\) 39.0680 1.40518 0.702589 0.711596i \(-0.252027\pi\)
0.702589 + 0.711596i \(0.252027\pi\)
\(774\) −12.2711 −0.441076
\(775\) 0 0
\(776\) 8.47421 0.304207
\(777\) −6.52943 −0.234242
\(778\) −2.38532 −0.0855179
\(779\) −19.0176 −0.681376
\(780\) 0 0
\(781\) −10.5824 −0.378666
\(782\) 0 0
\(783\) −0.562000 −0.0200843
\(784\) 20.5375 0.733483
\(785\) 0 0
\(786\) 1.05023 0.0374606
\(787\) −41.9094 −1.49391 −0.746955 0.664875i \(-0.768485\pi\)
−0.746955 + 0.664875i \(0.768485\pi\)
\(788\) −32.0365 −1.14125
\(789\) −4.13009 −0.147035
\(790\) 0 0
\(791\) −4.53429 −0.161221
\(792\) 16.3175 0.579818
\(793\) −6.69045 −0.237585
\(794\) −16.1193 −0.572054
\(795\) 0 0
\(796\) 9.55574 0.338694
\(797\) −40.3705 −1.43000 −0.714998 0.699126i \(-0.753573\pi\)
−0.714998 + 0.699126i \(0.753573\pi\)
\(798\) 0.850542 0.0301089
\(799\) 0 0
\(800\) 0 0
\(801\) 39.4277 1.39311
\(802\) −12.4040 −0.438000
\(803\) −14.7006 −0.518774
\(804\) 1.52828 0.0538983
\(805\) 0 0
\(806\) 3.71024 0.130688
\(807\) 4.30336 0.151486
\(808\) −4.91839 −0.173028
\(809\) 26.3355 0.925906 0.462953 0.886383i \(-0.346790\pi\)
0.462953 + 0.886383i \(0.346790\pi\)
\(810\) 0 0
\(811\) −17.6994 −0.621511 −0.310756 0.950490i \(-0.600582\pi\)
−0.310756 + 0.950490i \(0.600582\pi\)
\(812\) 3.72649 0.130774
\(813\) −2.41486 −0.0846928
\(814\) 14.4141 0.505215
\(815\) 0 0
\(816\) 0 0
\(817\) −21.2563 −0.743663
\(818\) 9.18580 0.321174
\(819\) −11.3176 −0.395470
\(820\) 0 0
\(821\) 18.9891 0.662723 0.331362 0.943504i \(-0.392492\pi\)
0.331362 + 0.943504i \(0.392492\pi\)
\(822\) 0.828440 0.0288952
\(823\) 38.3769 1.33773 0.668867 0.743382i \(-0.266780\pi\)
0.668867 + 0.743382i \(0.266780\pi\)
\(824\) 17.2498 0.600926
\(825\) 0 0
\(826\) 0.591191 0.0205702
\(827\) −48.6653 −1.69226 −0.846129 0.532978i \(-0.821073\pi\)
−0.846129 + 0.532978i \(0.821073\pi\)
\(828\) 15.6374 0.543436
\(829\) 51.7088 1.79592 0.897960 0.440076i \(-0.145049\pi\)
0.897960 + 0.440076i \(0.145049\pi\)
\(830\) 0 0
\(831\) 1.06571 0.0369691
\(832\) 2.58262 0.0895362
\(833\) 0 0
\(834\) 0.122321 0.00423562
\(835\) 0 0
\(836\) 13.1940 0.456322
\(837\) −7.72755 −0.267103
\(838\) −1.51482 −0.0523287
\(839\) 36.4513 1.25844 0.629219 0.777228i \(-0.283375\pi\)
0.629219 + 0.777228i \(0.283375\pi\)
\(840\) 0 0
\(841\) −28.6980 −0.989586
\(842\) 15.4997 0.534153
\(843\) −0.938316 −0.0323173
\(844\) 9.64593 0.332027
\(845\) 0 0
\(846\) 16.2358 0.558200
\(847\) 9.26717 0.318424
\(848\) −9.20844 −0.316219
\(849\) −4.24614 −0.145727
\(850\) 0 0
\(851\) 29.5924 1.01441
\(852\) −1.08170 −0.0370584
\(853\) −0.935836 −0.0320424 −0.0160212 0.999872i \(-0.505100\pi\)
−0.0160212 + 0.999872i \(0.505100\pi\)
\(854\) 13.1490 0.449949
\(855\) 0 0
\(856\) −10.9181 −0.373174
\(857\) 30.4722 1.04091 0.520455 0.853889i \(-0.325762\pi\)
0.520455 + 0.853889i \(0.325762\pi\)
\(858\) −0.246737 −0.00842347
\(859\) −0.987092 −0.0336792 −0.0168396 0.999858i \(-0.505360\pi\)
−0.0168396 + 0.999858i \(0.505360\pi\)
\(860\) 0 0
\(861\) 4.91154 0.167385
\(862\) 17.7616 0.604961
\(863\) −26.0032 −0.885159 −0.442580 0.896729i \(-0.645937\pi\)
−0.442580 + 0.896729i \(0.645937\pi\)
\(864\) 5.13984 0.174861
\(865\) 0 0
\(866\) 1.64669 0.0559568
\(867\) 0 0
\(868\) 51.2395 1.73918
\(869\) −36.5074 −1.23843
\(870\) 0 0
\(871\) 5.01302 0.169860
\(872\) −31.9031 −1.08037
\(873\) −13.4457 −0.455069
\(874\) −3.85479 −0.130390
\(875\) 0 0
\(876\) −1.50266 −0.0507701
\(877\) −33.8117 −1.14174 −0.570870 0.821040i \(-0.693394\pi\)
−0.570870 + 0.821040i \(0.693394\pi\)
\(878\) −1.65716 −0.0559265
\(879\) 4.16607 0.140518
\(880\) 0 0
\(881\) 18.9539 0.638573 0.319287 0.947658i \(-0.396557\pi\)
0.319287 + 0.947658i \(0.396557\pi\)
\(882\) 11.8631 0.399450
\(883\) 38.1002 1.28217 0.641087 0.767468i \(-0.278484\pi\)
0.641087 + 0.767468i \(0.278484\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 2.80674 0.0942943
\(887\) −43.1234 −1.44794 −0.723972 0.689830i \(-0.757685\pi\)
−0.723972 + 0.689830i \(0.757685\pi\)
\(888\) 3.15642 0.105923
\(889\) 25.7877 0.864891
\(890\) 0 0
\(891\) −25.6322 −0.858711
\(892\) −46.6045 −1.56043
\(893\) 28.1241 0.941136
\(894\) 0.804511 0.0269069
\(895\) 0 0
\(896\) −44.0068 −1.47016
\(897\) −0.506554 −0.0169134
\(898\) 3.06096 0.102146
\(899\) 4.15254 0.138495
\(900\) 0 0
\(901\) 0 0
\(902\) −10.8425 −0.361017
\(903\) 5.48971 0.182686
\(904\) 2.19194 0.0729029
\(905\) 0 0
\(906\) −0.740585 −0.0246043
\(907\) −15.1988 −0.504668 −0.252334 0.967640i \(-0.581198\pi\)
−0.252334 + 0.967640i \(0.581198\pi\)
\(908\) 13.4288 0.445651
\(909\) 7.80382 0.258836
\(910\) 0 0
\(911\) 23.3400 0.773289 0.386645 0.922229i \(-0.373634\pi\)
0.386645 + 0.922229i \(0.373634\pi\)
\(912\) 1.12941 0.0373985
\(913\) −23.8267 −0.788550
\(914\) 14.1729 0.468796
\(915\) 0 0
\(916\) 16.3416 0.539942
\(917\) 47.5757 1.57109
\(918\) 0 0
\(919\) −11.1867 −0.369017 −0.184508 0.982831i \(-0.559069\pi\)
−0.184508 + 0.982831i \(0.559069\pi\)
\(920\) 0 0
\(921\) 0.156901 0.00517006
\(922\) 10.3837 0.341970
\(923\) −3.54816 −0.116789
\(924\) −3.40751 −0.112099
\(925\) 0 0
\(926\) 15.7034 0.516045
\(927\) −27.3697 −0.898938
\(928\) −2.76199 −0.0906667
\(929\) −0.886506 −0.0290853 −0.0145427 0.999894i \(-0.504629\pi\)
−0.0145427 + 0.999894i \(0.504629\pi\)
\(930\) 0 0
\(931\) 20.5494 0.673480
\(932\) −6.82648 −0.223609
\(933\) 1.45954 0.0477832
\(934\) −0.741696 −0.0242690
\(935\) 0 0
\(936\) 5.47110 0.178828
\(937\) 7.99596 0.261217 0.130608 0.991434i \(-0.458307\pi\)
0.130608 + 0.991434i \(0.458307\pi\)
\(938\) −9.85228 −0.321688
\(939\) −2.90640 −0.0948467
\(940\) 0 0
\(941\) 46.3645 1.51144 0.755720 0.654894i \(-0.227287\pi\)
0.755720 + 0.654894i \(0.227287\pi\)
\(942\) −1.51728 −0.0494358
\(943\) −22.2599 −0.724881
\(944\) 0.785026 0.0255504
\(945\) 0 0
\(946\) −12.1189 −0.394019
\(947\) −31.4098 −1.02068 −0.510341 0.859972i \(-0.670481\pi\)
−0.510341 + 0.859972i \(0.670481\pi\)
\(948\) −3.73169 −0.121200
\(949\) −4.92898 −0.160001
\(950\) 0 0
\(951\) 4.25591 0.138007
\(952\) 0 0
\(953\) −53.1529 −1.72179 −0.860896 0.508781i \(-0.830096\pi\)
−0.860896 + 0.508781i \(0.830096\pi\)
\(954\) −5.31905 −0.172211
\(955\) 0 0
\(956\) 39.6212 1.28144
\(957\) −0.276151 −0.00892669
\(958\) −7.30432 −0.235992
\(959\) 37.5284 1.21186
\(960\) 0 0
\(961\) 26.0978 0.841864
\(962\) 4.83292 0.155819
\(963\) 17.3234 0.558239
\(964\) 5.06338 0.163081
\(965\) 0 0
\(966\) 0.995549 0.0320313
\(967\) 29.3267 0.943083 0.471541 0.881844i \(-0.343698\pi\)
0.471541 + 0.881844i \(0.343698\pi\)
\(968\) −4.47988 −0.143989
\(969\) 0 0
\(970\) 0 0
\(971\) −33.7011 −1.08152 −0.540761 0.841177i \(-0.681864\pi\)
−0.540761 + 0.841177i \(0.681864\pi\)
\(972\) −7.99160 −0.256331
\(973\) 5.54115 0.177641
\(974\) 1.68451 0.0539751
\(975\) 0 0
\(976\) 17.4602 0.558886
\(977\) −57.9778 −1.85488 −0.927438 0.373977i \(-0.877994\pi\)
−0.927438 + 0.373977i \(0.877994\pi\)
\(978\) 0.196703 0.00628988
\(979\) 38.9386 1.24448
\(980\) 0 0
\(981\) 50.6195 1.61615
\(982\) −3.78212 −0.120692
\(983\) −20.5124 −0.654243 −0.327121 0.944982i \(-0.606079\pi\)
−0.327121 + 0.944982i \(0.606079\pi\)
\(984\) −2.37431 −0.0756902
\(985\) 0 0
\(986\) 0 0
\(987\) −7.26341 −0.231197
\(988\) 4.42380 0.140740
\(989\) −24.8802 −0.791145
\(990\) 0 0
\(991\) 30.6737 0.974384 0.487192 0.873295i \(-0.338021\pi\)
0.487192 + 0.873295i \(0.338021\pi\)
\(992\) −37.9776 −1.20579
\(993\) 4.77841 0.151638
\(994\) 6.97332 0.221180
\(995\) 0 0
\(996\) −2.43550 −0.0771718
\(997\) −4.93382 −0.156256 −0.0781279 0.996943i \(-0.524894\pi\)
−0.0781279 + 0.996943i \(0.524894\pi\)
\(998\) 4.25750 0.134769
\(999\) −10.0658 −0.318468
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.by.1.10 24
5.2 odd 4 1445.2.b.i.579.9 24
5.3 odd 4 1445.2.b.i.579.16 24
5.4 even 2 inner 7225.2.a.by.1.15 24
17.11 odd 16 425.2.m.e.376.3 24
17.14 odd 16 425.2.m.e.26.3 24
17.16 even 2 inner 7225.2.a.by.1.9 24
85.14 odd 16 425.2.m.e.26.4 24
85.28 even 16 85.2.m.a.19.3 yes 24
85.33 odd 4 1445.2.b.i.579.15 24
85.48 even 16 85.2.m.a.9.4 yes 24
85.62 even 16 85.2.m.a.19.4 yes 24
85.67 odd 4 1445.2.b.i.579.10 24
85.79 odd 16 425.2.m.e.376.4 24
85.82 even 16 85.2.m.a.9.3 24
85.84 even 2 inner 7225.2.a.by.1.16 24
255.62 odd 16 765.2.bh.b.19.3 24
255.113 odd 16 765.2.bh.b.19.4 24
255.167 odd 16 765.2.bh.b.604.4 24
255.218 odd 16 765.2.bh.b.604.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.9.3 24 85.82 even 16
85.2.m.a.9.4 yes 24 85.48 even 16
85.2.m.a.19.3 yes 24 85.28 even 16
85.2.m.a.19.4 yes 24 85.62 even 16
425.2.m.e.26.3 24 17.14 odd 16
425.2.m.e.26.4 24 85.14 odd 16
425.2.m.e.376.3 24 17.11 odd 16
425.2.m.e.376.4 24 85.79 odd 16
765.2.bh.b.19.3 24 255.62 odd 16
765.2.bh.b.19.4 24 255.113 odd 16
765.2.bh.b.604.3 24 255.218 odd 16
765.2.bh.b.604.4 24 255.167 odd 16
1445.2.b.i.579.9 24 5.2 odd 4
1445.2.b.i.579.10 24 85.67 odd 4
1445.2.b.i.579.15 24 85.33 odd 4
1445.2.b.i.579.16 24 5.3 odd 4
7225.2.a.by.1.9 24 17.16 even 2 inner
7225.2.a.by.1.10 24 1.1 even 1 trivial
7225.2.a.by.1.15 24 5.4 even 2 inner
7225.2.a.by.1.16 24 85.84 even 2 inner