Properties

Label 7225.2.a.by
Level 72257225
Weight 22
Character orbit 7225.a
Self dual yes
Analytic conductor 57.69257.692
Analytic rank 11
Dimension 2424
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7225=52172 7225 = 5^{2} \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 57.691915460457.6919154604
Analytic rank: 11
Dimension: 2424
Twist minimal: no (minimal twist has level 85)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 24q+8q48q98q1616q1932q2148q26+8q3656q4964q59104q6416q6632q6948q7688q8196q84112q89128q94+O(q100) 24 q + 8 q^{4} - 8 q^{9} - 8 q^{16} - 16 q^{19} - 32 q^{21} - 48 q^{26} + 8 q^{36} - 56 q^{49} - 64 q^{59} - 104 q^{64} - 16 q^{66} - 32 q^{69} - 48 q^{76} - 88 q^{81} - 96 q^{84} - 112 q^{89} - 128 q^{94}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −2.30578 −1.87767 3.31660 0 4.32949 1.54574 −3.03579 0.525655 0
1.2 −2.30578 1.87767 3.31660 0 −4.32949 −1.54574 −3.03579 0.525655 0
1.3 −2.10495 −1.80557 2.43082 0 3.80063 2.68338 −0.906851 0.260076 0
1.4 −2.10495 1.80557 2.43082 0 −3.80063 −2.68338 −0.906851 0.260076 0
1.5 −1.74231 −0.598698 1.03565 0 1.04312 1.03798 1.68020 −2.64156 0
1.6 −1.74231 0.598698 1.03565 0 −1.04312 −1.03798 1.68020 −2.64156 0
1.7 −0.951739 −2.47483 −1.09419 0 2.35540 0.533377 2.94486 3.12480 0
1.8 −0.951739 2.47483 −1.09419 0 −2.35540 −0.533377 2.94486 3.12480 0
1.9 −0.499161 −0.171281 −1.75084 0 0.0854968 3.87301 1.87227 −2.97066 0
1.10 −0.499161 0.171281 −1.75084 0 −0.0854968 −3.87301 1.87227 −2.97066 0
1.11 −0.248918 −1.64368 −1.93804 0 0.409143 −1.43109 0.980251 −0.298307 0
1.12 −0.248918 1.64368 −1.93804 0 −0.409143 1.43109 0.980251 −0.298307 0
1.13 0.248918 −1.64368 −1.93804 0 −0.409143 −1.43109 −0.980251 −0.298307 0
1.14 0.248918 1.64368 −1.93804 0 0.409143 1.43109 −0.980251 −0.298307 0
1.15 0.499161 −0.171281 −1.75084 0 −0.0854968 3.87301 −1.87227 −2.97066 0
1.16 0.499161 0.171281 −1.75084 0 0.0854968 −3.87301 −1.87227 −2.97066 0
1.17 0.951739 −2.47483 −1.09419 0 −2.35540 0.533377 −2.94486 3.12480 0
1.18 0.951739 2.47483 −1.09419 0 2.35540 −0.533377 −2.94486 3.12480 0
1.19 1.74231 −0.598698 1.03565 0 −1.04312 1.03798 −1.68020 −2.64156 0
1.20 1.74231 0.598698 1.03565 0 1.04312 −1.03798 −1.68020 −2.64156 0
See all 24 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.24
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
1717 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
17.b even 2 1 inner
85.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7225.2.a.by 24
5.b even 2 1 inner 7225.2.a.by 24
5.c odd 4 2 1445.2.b.i 24
17.b even 2 1 inner 7225.2.a.by 24
17.e odd 16 2 425.2.m.e 24
85.c even 2 1 inner 7225.2.a.by 24
85.g odd 4 2 1445.2.b.i 24
85.o even 16 2 85.2.m.a 24
85.p odd 16 2 425.2.m.e 24
85.r even 16 2 85.2.m.a 24
255.bc odd 16 2 765.2.bh.b 24
255.bj odd 16 2 765.2.bh.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.m.a 24 85.o even 16 2
85.2.m.a 24 85.r even 16 2
425.2.m.e 24 17.e odd 16 2
425.2.m.e 24 85.p odd 16 2
765.2.bh.b 24 255.bc odd 16 2
765.2.bh.b 24 255.bj odd 16 2
1445.2.b.i 24 5.c odd 4 2
1445.2.b.i 24 85.g odd 4 2
7225.2.a.by 24 1.a even 1 1 trivial
7225.2.a.by 24 5.b even 2 1 inner
7225.2.a.by 24 17.b even 2 1 inner
7225.2.a.by 24 85.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7225))S_{2}^{\mathrm{new}}(\Gamma_0(7225)):

T21214T210+69T28140T26+103T2422T22+1 T_{2}^{12} - 14T_{2}^{10} + 69T_{2}^{8} - 140T_{2}^{6} + 103T_{2}^{4} - 22T_{2}^{2} + 1 Copy content Toggle raw display
T31216T310+94T38248T36+274T3476T32+2 T_{3}^{12} - 16T_{3}^{10} + 94T_{3}^{8} - 248T_{3}^{6} + 274T_{3}^{4} - 76T_{3}^{2} + 2 Copy content Toggle raw display
T71228T710+248T78884T76+1394T74900T72+162 T_{7}^{12} - 28T_{7}^{10} + 248T_{7}^{8} - 884T_{7}^{6} + 1394T_{7}^{4} - 900T_{7}^{2} + 162 Copy content Toggle raw display
T111260T1110+1270T11811252T116+38776T11427936T112+162 T_{11}^{12} - 60T_{11}^{10} + 1270T_{11}^{8} - 11252T_{11}^{6} + 38776T_{11}^{4} - 27936T_{11}^{2} + 162 Copy content Toggle raw display