Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7225,2,Mod(1,7225)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7225.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 7225 = 5^{2} \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7225.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(57.6919154604\) |
Analytic rank: | \(1\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 85) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.30578 | −1.87767 | 3.31660 | 0 | 4.32949 | 1.54574 | −3.03579 | 0.525655 | 0 | ||||||||||||||||||
1.2 | −2.30578 | 1.87767 | 3.31660 | 0 | −4.32949 | −1.54574 | −3.03579 | 0.525655 | 0 | ||||||||||||||||||
1.3 | −2.10495 | −1.80557 | 2.43082 | 0 | 3.80063 | 2.68338 | −0.906851 | 0.260076 | 0 | ||||||||||||||||||
1.4 | −2.10495 | 1.80557 | 2.43082 | 0 | −3.80063 | −2.68338 | −0.906851 | 0.260076 | 0 | ||||||||||||||||||
1.5 | −1.74231 | −0.598698 | 1.03565 | 0 | 1.04312 | 1.03798 | 1.68020 | −2.64156 | 0 | ||||||||||||||||||
1.6 | −1.74231 | 0.598698 | 1.03565 | 0 | −1.04312 | −1.03798 | 1.68020 | −2.64156 | 0 | ||||||||||||||||||
1.7 | −0.951739 | −2.47483 | −1.09419 | 0 | 2.35540 | 0.533377 | 2.94486 | 3.12480 | 0 | ||||||||||||||||||
1.8 | −0.951739 | 2.47483 | −1.09419 | 0 | −2.35540 | −0.533377 | 2.94486 | 3.12480 | 0 | ||||||||||||||||||
1.9 | −0.499161 | −0.171281 | −1.75084 | 0 | 0.0854968 | 3.87301 | 1.87227 | −2.97066 | 0 | ||||||||||||||||||
1.10 | −0.499161 | 0.171281 | −1.75084 | 0 | −0.0854968 | −3.87301 | 1.87227 | −2.97066 | 0 | ||||||||||||||||||
1.11 | −0.248918 | −1.64368 | −1.93804 | 0 | 0.409143 | −1.43109 | 0.980251 | −0.298307 | 0 | ||||||||||||||||||
1.12 | −0.248918 | 1.64368 | −1.93804 | 0 | −0.409143 | 1.43109 | 0.980251 | −0.298307 | 0 | ||||||||||||||||||
1.13 | 0.248918 | −1.64368 | −1.93804 | 0 | −0.409143 | −1.43109 | −0.980251 | −0.298307 | 0 | ||||||||||||||||||
1.14 | 0.248918 | 1.64368 | −1.93804 | 0 | 0.409143 | 1.43109 | −0.980251 | −0.298307 | 0 | ||||||||||||||||||
1.15 | 0.499161 | −0.171281 | −1.75084 | 0 | −0.0854968 | 3.87301 | −1.87227 | −2.97066 | 0 | ||||||||||||||||||
1.16 | 0.499161 | 0.171281 | −1.75084 | 0 | 0.0854968 | −3.87301 | −1.87227 | −2.97066 | 0 | ||||||||||||||||||
1.17 | 0.951739 | −2.47483 | −1.09419 | 0 | −2.35540 | 0.533377 | −2.94486 | 3.12480 | 0 | ||||||||||||||||||
1.18 | 0.951739 | 2.47483 | −1.09419 | 0 | 2.35540 | −0.533377 | −2.94486 | 3.12480 | 0 | ||||||||||||||||||
1.19 | 1.74231 | −0.598698 | 1.03565 | 0 | −1.04312 | 1.03798 | −1.68020 | −2.64156 | 0 | ||||||||||||||||||
1.20 | 1.74231 | 0.598698 | 1.03565 | 0 | 1.04312 | −1.03798 | −1.68020 | −2.64156 | 0 | ||||||||||||||||||
See all 24 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \( -1 \) |
\(17\) | \( -1 \) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
17.b | even | 2 | 1 | inner |
85.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 7225.2.a.by | 24 | |
5.b | even | 2 | 1 | inner | 7225.2.a.by | 24 | |
5.c | odd | 4 | 2 | 1445.2.b.i | 24 | ||
17.b | even | 2 | 1 | inner | 7225.2.a.by | 24 | |
17.e | odd | 16 | 2 | 425.2.m.e | 24 | ||
85.c | even | 2 | 1 | inner | 7225.2.a.by | 24 | |
85.g | odd | 4 | 2 | 1445.2.b.i | 24 | ||
85.o | even | 16 | 2 | 85.2.m.a | ✓ | 24 | |
85.p | odd | 16 | 2 | 425.2.m.e | 24 | ||
85.r | even | 16 | 2 | 85.2.m.a | ✓ | 24 | |
255.bc | odd | 16 | 2 | 765.2.bh.b | 24 | ||
255.bj | odd | 16 | 2 | 765.2.bh.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
85.2.m.a | ✓ | 24 | 85.o | even | 16 | 2 | |
85.2.m.a | ✓ | 24 | 85.r | even | 16 | 2 | |
425.2.m.e | 24 | 17.e | odd | 16 | 2 | ||
425.2.m.e | 24 | 85.p | odd | 16 | 2 | ||
765.2.bh.b | 24 | 255.bc | odd | 16 | 2 | ||
765.2.bh.b | 24 | 255.bj | odd | 16 | 2 | ||
1445.2.b.i | 24 | 5.c | odd | 4 | 2 | ||
1445.2.b.i | 24 | 85.g | odd | 4 | 2 | ||
7225.2.a.by | 24 | 1.a | even | 1 | 1 | trivial | |
7225.2.a.by | 24 | 5.b | even | 2 | 1 | inner | |
7225.2.a.by | 24 | 17.b | even | 2 | 1 | inner | |
7225.2.a.by | 24 | 85.c | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7225))\):
\( T_{2}^{12} - 14T_{2}^{10} + 69T_{2}^{8} - 140T_{2}^{6} + 103T_{2}^{4} - 22T_{2}^{2} + 1 \) |
\( T_{3}^{12} - 16T_{3}^{10} + 94T_{3}^{8} - 248T_{3}^{6} + 274T_{3}^{4} - 76T_{3}^{2} + 2 \) |
\( T_{7}^{12} - 28T_{7}^{10} + 248T_{7}^{8} - 884T_{7}^{6} + 1394T_{7}^{4} - 900T_{7}^{2} + 162 \) |
\( T_{11}^{12} - 60T_{11}^{10} + 1270T_{11}^{8} - 11252T_{11}^{6} + 38776T_{11}^{4} - 27936T_{11}^{2} + 162 \) |