Properties

Label 7650.2.a.do.1.2
Level $7650$
Weight $2$
Character 7650.1
Self dual yes
Analytic conductor $61.086$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7650,2,Mod(1,7650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7650.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7650 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.0855575463\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.76156\) of defining polynomial
Character \(\chi\) \(=\) 7650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -0.864641 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -0.864641 q^{7} +1.00000 q^{8} -2.00000 q^{11} +2.62620 q^{13} -0.864641 q^{14} +1.00000 q^{16} +1.00000 q^{17} -0.896916 q^{19} -2.00000 q^{22} -3.13536 q^{23} +2.62620 q^{26} -0.864641 q^{28} -9.49084 q^{29} +9.01395 q^{31} +1.00000 q^{32} +1.00000 q^{34} -10.1816 q^{37} -0.896916 q^{38} -9.52311 q^{41} -7.25240 q^{43} -2.00000 q^{44} -3.13536 q^{46} -10.4200 q^{47} -6.25240 q^{49} +2.62620 q^{52} +11.4017 q^{53} -0.864641 q^{56} -9.49084 q^{58} +4.14931 q^{59} +3.28467 q^{61} +9.01395 q^{62} +1.00000 q^{64} -1.25240 q^{67} +1.00000 q^{68} +12.5371 q^{71} +2.62620 q^{73} -10.1816 q^{74} -0.896916 q^{76} +1.72928 q^{77} -7.91087 q^{79} -9.52311 q^{82} -4.20617 q^{83} -7.25240 q^{86} -2.00000 q^{88} -4.14931 q^{89} -2.27072 q^{91} -3.13536 q^{92} -10.4200 q^{94} +6.14931 q^{97} -6.25240 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{2} + 3 q^{4} + 3 q^{8} - 6 q^{11} - q^{13} + 3 q^{16} + 3 q^{17} + q^{19} - 6 q^{22} - 12 q^{23} - q^{26} - 17 q^{29} + 3 q^{31} + 3 q^{32} + 3 q^{34} - 8 q^{37} + q^{38} - 16 q^{41} - 4 q^{43} - 6 q^{44} - 12 q^{46} - 15 q^{47} - q^{49} - q^{52} - 5 q^{53} - 17 q^{58} - 9 q^{59} - 9 q^{61} + 3 q^{62} + 3 q^{64} + 14 q^{67} + 3 q^{68} + q^{71} - q^{73} - 8 q^{74} + q^{76} + 4 q^{79} - 16 q^{82} - 20 q^{83} - 4 q^{86} - 6 q^{88} + 9 q^{89} - 12 q^{91} - 12 q^{92} - 15 q^{94} - 3 q^{97} - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −0.864641 −0.326804 −0.163402 0.986560i \(-0.552247\pi\)
−0.163402 + 0.986560i \(0.552247\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 2.62620 0.728376 0.364188 0.931325i \(-0.381347\pi\)
0.364188 + 0.931325i \(0.381347\pi\)
\(14\) −0.864641 −0.231085
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −0.896916 −0.205767 −0.102883 0.994693i \(-0.532807\pi\)
−0.102883 + 0.994693i \(0.532807\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) −3.13536 −0.653768 −0.326884 0.945065i \(-0.605999\pi\)
−0.326884 + 0.945065i \(0.605999\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.62620 0.515040
\(27\) 0 0
\(28\) −0.864641 −0.163402
\(29\) −9.49084 −1.76240 −0.881202 0.472739i \(-0.843265\pi\)
−0.881202 + 0.472739i \(0.843265\pi\)
\(30\) 0 0
\(31\) 9.01395 1.61895 0.809477 0.587152i \(-0.199751\pi\)
0.809477 + 0.587152i \(0.199751\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 0 0
\(37\) −10.1816 −1.67384 −0.836921 0.547323i \(-0.815647\pi\)
−0.836921 + 0.547323i \(0.815647\pi\)
\(38\) −0.896916 −0.145499
\(39\) 0 0
\(40\) 0 0
\(41\) −9.52311 −1.48726 −0.743630 0.668591i \(-0.766898\pi\)
−0.743630 + 0.668591i \(0.766898\pi\)
\(42\) 0 0
\(43\) −7.25240 −1.10598 −0.552990 0.833188i \(-0.686513\pi\)
−0.552990 + 0.833188i \(0.686513\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) −3.13536 −0.462283
\(47\) −10.4200 −1.51992 −0.759959 0.649971i \(-0.774781\pi\)
−0.759959 + 0.649971i \(0.774781\pi\)
\(48\) 0 0
\(49\) −6.25240 −0.893199
\(50\) 0 0
\(51\) 0 0
\(52\) 2.62620 0.364188
\(53\) 11.4017 1.56615 0.783073 0.621930i \(-0.213651\pi\)
0.783073 + 0.621930i \(0.213651\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.864641 −0.115542
\(57\) 0 0
\(58\) −9.49084 −1.24621
\(59\) 4.14931 0.540194 0.270097 0.962833i \(-0.412944\pi\)
0.270097 + 0.962833i \(0.412944\pi\)
\(60\) 0 0
\(61\) 3.28467 0.420559 0.210280 0.977641i \(-0.432563\pi\)
0.210280 + 0.977641i \(0.432563\pi\)
\(62\) 9.01395 1.14477
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −1.25240 −0.153005 −0.0765023 0.997069i \(-0.524375\pi\)
−0.0765023 + 0.997069i \(0.524375\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) 12.5371 1.48788 0.743938 0.668249i \(-0.232956\pi\)
0.743938 + 0.668249i \(0.232956\pi\)
\(72\) 0 0
\(73\) 2.62620 0.307373 0.153687 0.988120i \(-0.450885\pi\)
0.153687 + 0.988120i \(0.450885\pi\)
\(74\) −10.1816 −1.18359
\(75\) 0 0
\(76\) −0.896916 −0.102883
\(77\) 1.72928 0.197070
\(78\) 0 0
\(79\) −7.91087 −0.890042 −0.445021 0.895520i \(-0.646804\pi\)
−0.445021 + 0.895520i \(0.646804\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −9.52311 −1.05165
\(83\) −4.20617 −0.461687 −0.230843 0.972991i \(-0.574149\pi\)
−0.230843 + 0.972991i \(0.574149\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −7.25240 −0.782046
\(87\) 0 0
\(88\) −2.00000 −0.213201
\(89\) −4.14931 −0.439826 −0.219913 0.975519i \(-0.570577\pi\)
−0.219913 + 0.975519i \(0.570577\pi\)
\(90\) 0 0
\(91\) −2.27072 −0.238036
\(92\) −3.13536 −0.326884
\(93\) 0 0
\(94\) −10.4200 −1.07474
\(95\) 0 0
\(96\) 0 0
\(97\) 6.14931 0.624368 0.312184 0.950022i \(-0.398939\pi\)
0.312184 + 0.950022i \(0.398939\pi\)
\(98\) −6.25240 −0.631587
\(99\) 0 0
\(100\) 0 0
\(101\) −0.206167 −0.0205144 −0.0102572 0.999947i \(-0.503265\pi\)
−0.0102572 + 0.999947i \(0.503265\pi\)
\(102\) 0 0
\(103\) −4.77551 −0.470545 −0.235273 0.971929i \(-0.575598\pi\)
−0.235273 + 0.971929i \(0.575598\pi\)
\(104\) 2.62620 0.257520
\(105\) 0 0
\(106\) 11.4017 1.10743
\(107\) 6.29862 0.608911 0.304456 0.952527i \(-0.401526\pi\)
0.304456 + 0.952527i \(0.401526\pi\)
\(108\) 0 0
\(109\) 5.55539 0.532110 0.266055 0.963958i \(-0.414280\pi\)
0.266055 + 0.963958i \(0.414280\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.864641 −0.0817009
\(113\) 10.6262 0.999629 0.499814 0.866133i \(-0.333402\pi\)
0.499814 + 0.866133i \(0.333402\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −9.49084 −0.881202
\(117\) 0 0
\(118\) 4.14931 0.381975
\(119\) −0.864641 −0.0792615
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 3.28467 0.297380
\(123\) 0 0
\(124\) 9.01395 0.809477
\(125\) 0 0
\(126\) 0 0
\(127\) 14.3555 1.27384 0.636921 0.770929i \(-0.280208\pi\)
0.636921 + 0.770929i \(0.280208\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −17.0462 −1.48934 −0.744668 0.667435i \(-0.767392\pi\)
−0.744668 + 0.667435i \(0.767392\pi\)
\(132\) 0 0
\(133\) 0.775511 0.0672453
\(134\) −1.25240 −0.108191
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 14.5048 1.23923 0.619614 0.784907i \(-0.287289\pi\)
0.619614 + 0.784907i \(0.287289\pi\)
\(138\) 0 0
\(139\) −14.7110 −1.24777 −0.623884 0.781517i \(-0.714446\pi\)
−0.623884 + 0.781517i \(0.714446\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.5371 1.05209
\(143\) −5.25240 −0.439227
\(144\) 0 0
\(145\) 0 0
\(146\) 2.62620 0.217346
\(147\) 0 0
\(148\) −10.1816 −0.836921
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) −5.18785 −0.422181 −0.211090 0.977467i \(-0.567701\pi\)
−0.211090 + 0.977467i \(0.567701\pi\)
\(152\) −0.896916 −0.0727495
\(153\) 0 0
\(154\) 1.72928 0.139349
\(155\) 0 0
\(156\) 0 0
\(157\) −10.2341 −0.816768 −0.408384 0.912810i \(-0.633908\pi\)
−0.408384 + 0.912810i \(0.633908\pi\)
\(158\) −7.91087 −0.629355
\(159\) 0 0
\(160\) 0 0
\(161\) 2.71096 0.213654
\(162\) 0 0
\(163\) −6.47689 −0.507309 −0.253654 0.967295i \(-0.581633\pi\)
−0.253654 + 0.967295i \(0.581633\pi\)
\(164\) −9.52311 −0.743630
\(165\) 0 0
\(166\) −4.20617 −0.326462
\(167\) −3.84632 −0.297637 −0.148819 0.988865i \(-0.547547\pi\)
−0.148819 + 0.988865i \(0.547547\pi\)
\(168\) 0 0
\(169\) −6.10308 −0.469468
\(170\) 0 0
\(171\) 0 0
\(172\) −7.25240 −0.552990
\(173\) −23.9109 −1.81791 −0.908955 0.416895i \(-0.863118\pi\)
−0.908955 + 0.416895i \(0.863118\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) −4.14931 −0.311004
\(179\) 14.7110 1.09955 0.549774 0.835313i \(-0.314714\pi\)
0.549774 + 0.835313i \(0.314714\pi\)
\(180\) 0 0
\(181\) −23.4340 −1.74183 −0.870917 0.491430i \(-0.836474\pi\)
−0.870917 + 0.491430i \(0.836474\pi\)
\(182\) −2.27072 −0.168317
\(183\) 0 0
\(184\) −3.13536 −0.231142
\(185\) 0 0
\(186\) 0 0
\(187\) −2.00000 −0.146254
\(188\) −10.4200 −0.759959
\(189\) 0 0
\(190\) 0 0
\(191\) −18.5048 −1.33896 −0.669480 0.742830i \(-0.733483\pi\)
−0.669480 + 0.742830i \(0.733483\pi\)
\(192\) 0 0
\(193\) −5.45856 −0.392916 −0.196458 0.980512i \(-0.562944\pi\)
−0.196458 + 0.980512i \(0.562944\pi\)
\(194\) 6.14931 0.441495
\(195\) 0 0
\(196\) −6.25240 −0.446600
\(197\) −13.9388 −0.993097 −0.496548 0.868009i \(-0.665399\pi\)
−0.496548 + 0.868009i \(0.665399\pi\)
\(198\) 0 0
\(199\) −11.2847 −0.799949 −0.399975 0.916526i \(-0.630981\pi\)
−0.399975 + 0.916526i \(0.630981\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −0.206167 −0.0145059
\(203\) 8.20617 0.575960
\(204\) 0 0
\(205\) 0 0
\(206\) −4.77551 −0.332726
\(207\) 0 0
\(208\) 2.62620 0.182094
\(209\) 1.79383 0.124082
\(210\) 0 0
\(211\) −14.8401 −1.02163 −0.510816 0.859690i \(-0.670657\pi\)
−0.510816 + 0.859690i \(0.670657\pi\)
\(212\) 11.4017 0.783073
\(213\) 0 0
\(214\) 6.29862 0.430565
\(215\) 0 0
\(216\) 0 0
\(217\) −7.79383 −0.529080
\(218\) 5.55539 0.376258
\(219\) 0 0
\(220\) 0 0
\(221\) 2.62620 0.176657
\(222\) 0 0
\(223\) 3.30925 0.221604 0.110802 0.993843i \(-0.464658\pi\)
0.110802 + 0.993843i \(0.464658\pi\)
\(224\) −0.864641 −0.0577712
\(225\) 0 0
\(226\) 10.6262 0.706844
\(227\) 24.7187 1.64063 0.820317 0.571909i \(-0.193797\pi\)
0.820317 + 0.571909i \(0.193797\pi\)
\(228\) 0 0
\(229\) 4.27072 0.282217 0.141109 0.989994i \(-0.454933\pi\)
0.141109 + 0.989994i \(0.454933\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −9.49084 −0.623104
\(233\) −0.832365 −0.0545301 −0.0272650 0.999628i \(-0.508680\pi\)
−0.0272650 + 0.999628i \(0.508680\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4.14931 0.270097
\(237\) 0 0
\(238\) −0.864641 −0.0560463
\(239\) 4.71096 0.304727 0.152363 0.988325i \(-0.451312\pi\)
0.152363 + 0.988325i \(0.451312\pi\)
\(240\) 0 0
\(241\) −23.4865 −1.51290 −0.756448 0.654054i \(-0.773067\pi\)
−0.756448 + 0.654054i \(0.773067\pi\)
\(242\) −7.00000 −0.449977
\(243\) 0 0
\(244\) 3.28467 0.210280
\(245\) 0 0
\(246\) 0 0
\(247\) −2.35548 −0.149876
\(248\) 9.01395 0.572387
\(249\) 0 0
\(250\) 0 0
\(251\) 6.29862 0.397566 0.198783 0.980044i \(-0.436301\pi\)
0.198783 + 0.980044i \(0.436301\pi\)
\(252\) 0 0
\(253\) 6.27072 0.394237
\(254\) 14.3555 0.900743
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 1.49521 0.0932685 0.0466342 0.998912i \(-0.485150\pi\)
0.0466342 + 0.998912i \(0.485150\pi\)
\(258\) 0 0
\(259\) 8.80342 0.547018
\(260\) 0 0
\(261\) 0 0
\(262\) −17.0462 −1.05312
\(263\) 9.94315 0.613121 0.306560 0.951851i \(-0.400822\pi\)
0.306560 + 0.951851i \(0.400822\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.775511 0.0475496
\(267\) 0 0
\(268\) −1.25240 −0.0765023
\(269\) −1.96772 −0.119974 −0.0599871 0.998199i \(-0.519106\pi\)
−0.0599871 + 0.998199i \(0.519106\pi\)
\(270\) 0 0
\(271\) 8.84006 0.536995 0.268498 0.963280i \(-0.413473\pi\)
0.268498 + 0.963280i \(0.413473\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) 14.5048 0.876267
\(275\) 0 0
\(276\) 0 0
\(277\) −19.8463 −1.19245 −0.596225 0.802817i \(-0.703333\pi\)
−0.596225 + 0.802817i \(0.703333\pi\)
\(278\) −14.7110 −0.882305
\(279\) 0 0
\(280\) 0 0
\(281\) 11.9065 0.710282 0.355141 0.934813i \(-0.384433\pi\)
0.355141 + 0.934813i \(0.384433\pi\)
\(282\) 0 0
\(283\) 13.7370 0.816579 0.408289 0.912853i \(-0.366125\pi\)
0.408289 + 0.912853i \(0.366125\pi\)
\(284\) 12.5371 0.743938
\(285\) 0 0
\(286\) −5.25240 −0.310581
\(287\) 8.23407 0.486042
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 2.62620 0.153687
\(293\) 12.1772 0.711401 0.355700 0.934600i \(-0.384242\pi\)
0.355700 + 0.934600i \(0.384242\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −10.1816 −0.591793
\(297\) 0 0
\(298\) −10.0000 −0.579284
\(299\) −8.23407 −0.476189
\(300\) 0 0
\(301\) 6.27072 0.361438
\(302\) −5.18785 −0.298527
\(303\) 0 0
\(304\) −0.896916 −0.0514417
\(305\) 0 0
\(306\) 0 0
\(307\) 23.7938 1.35799 0.678993 0.734145i \(-0.262417\pi\)
0.678993 + 0.734145i \(0.262417\pi\)
\(308\) 1.72928 0.0985350
\(309\) 0 0
\(310\) 0 0
\(311\) −32.9205 −1.86675 −0.933374 0.358906i \(-0.883150\pi\)
−0.933374 + 0.358906i \(0.883150\pi\)
\(312\) 0 0
\(313\) −29.0462 −1.64179 −0.820895 0.571079i \(-0.806525\pi\)
−0.820895 + 0.571079i \(0.806525\pi\)
\(314\) −10.2341 −0.577542
\(315\) 0 0
\(316\) −7.91087 −0.445021
\(317\) −20.6864 −1.16186 −0.580931 0.813953i \(-0.697312\pi\)
−0.580931 + 0.813953i \(0.697312\pi\)
\(318\) 0 0
\(319\) 18.9817 1.06277
\(320\) 0 0
\(321\) 0 0
\(322\) 2.71096 0.151076
\(323\) −0.896916 −0.0499058
\(324\) 0 0
\(325\) 0 0
\(326\) −6.47689 −0.358722
\(327\) 0 0
\(328\) −9.52311 −0.525826
\(329\) 9.00958 0.496714
\(330\) 0 0
\(331\) 4.02021 0.220971 0.110485 0.993878i \(-0.464759\pi\)
0.110485 + 0.993878i \(0.464759\pi\)
\(332\) −4.20617 −0.230843
\(333\) 0 0
\(334\) −3.84632 −0.210461
\(335\) 0 0
\(336\) 0 0
\(337\) 2.21386 0.120597 0.0602984 0.998180i \(-0.480795\pi\)
0.0602984 + 0.998180i \(0.480795\pi\)
\(338\) −6.10308 −0.331964
\(339\) 0 0
\(340\) 0 0
\(341\) −18.0279 −0.976266
\(342\) 0 0
\(343\) 11.4586 0.618704
\(344\) −7.25240 −0.391023
\(345\) 0 0
\(346\) −23.9109 −1.28546
\(347\) 1.37380 0.0737496 0.0368748 0.999320i \(-0.488260\pi\)
0.0368748 + 0.999320i \(0.488260\pi\)
\(348\) 0 0
\(349\) −20.8680 −1.11704 −0.558518 0.829492i \(-0.688630\pi\)
−0.558518 + 0.829492i \(0.688630\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00000 −0.106600
\(353\) 13.7572 0.732221 0.366111 0.930571i \(-0.380689\pi\)
0.366111 + 0.930571i \(0.380689\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4.14931 −0.219913
\(357\) 0 0
\(358\) 14.7110 0.777498
\(359\) −9.31695 −0.491730 −0.245865 0.969304i \(-0.579072\pi\)
−0.245865 + 0.969304i \(0.579072\pi\)
\(360\) 0 0
\(361\) −18.1955 −0.957660
\(362\) −23.4340 −1.23166
\(363\) 0 0
\(364\) −2.27072 −0.119018
\(365\) 0 0
\(366\) 0 0
\(367\) 12.3878 0.646636 0.323318 0.946290i \(-0.395202\pi\)
0.323318 + 0.946290i \(0.395202\pi\)
\(368\) −3.13536 −0.163442
\(369\) 0 0
\(370\) 0 0
\(371\) −9.85838 −0.511822
\(372\) 0 0
\(373\) −23.3169 −1.20731 −0.603653 0.797247i \(-0.706289\pi\)
−0.603653 + 0.797247i \(0.706289\pi\)
\(374\) −2.00000 −0.103418
\(375\) 0 0
\(376\) −10.4200 −0.537372
\(377\) −24.9248 −1.28369
\(378\) 0 0
\(379\) 28.9817 1.48869 0.744344 0.667796i \(-0.232762\pi\)
0.744344 + 0.667796i \(0.232762\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −18.5048 −0.946788
\(383\) −14.9527 −0.764049 −0.382024 0.924152i \(-0.624773\pi\)
−0.382024 + 0.924152i \(0.624773\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.45856 −0.277834
\(387\) 0 0
\(388\) 6.14931 0.312184
\(389\) 19.3169 0.979408 0.489704 0.871889i \(-0.337105\pi\)
0.489704 + 0.871889i \(0.337105\pi\)
\(390\) 0 0
\(391\) −3.13536 −0.158562
\(392\) −6.25240 −0.315794
\(393\) 0 0
\(394\) −13.9388 −0.702225
\(395\) 0 0
\(396\) 0 0
\(397\) 9.57560 0.480586 0.240293 0.970700i \(-0.422757\pi\)
0.240293 + 0.970700i \(0.422757\pi\)
\(398\) −11.2847 −0.565649
\(399\) 0 0
\(400\) 0 0
\(401\) −11.3169 −0.565141 −0.282571 0.959246i \(-0.591187\pi\)
−0.282571 + 0.959246i \(0.591187\pi\)
\(402\) 0 0
\(403\) 23.6724 1.17921
\(404\) −0.206167 −0.0102572
\(405\) 0 0
\(406\) 8.20617 0.407265
\(407\) 20.3632 1.00937
\(408\) 0 0
\(409\) −9.10308 −0.450119 −0.225059 0.974345i \(-0.572258\pi\)
−0.225059 + 0.974345i \(0.572258\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −4.77551 −0.235273
\(413\) −3.58767 −0.176537
\(414\) 0 0
\(415\) 0 0
\(416\) 2.62620 0.128760
\(417\) 0 0
\(418\) 1.79383 0.0877392
\(419\) 4.02791 0.196776 0.0983881 0.995148i \(-0.468631\pi\)
0.0983881 + 0.995148i \(0.468631\pi\)
\(420\) 0 0
\(421\) 15.2524 0.743356 0.371678 0.928362i \(-0.378782\pi\)
0.371678 + 0.928362i \(0.378782\pi\)
\(422\) −14.8401 −0.722403
\(423\) 0 0
\(424\) 11.4017 0.553716
\(425\) 0 0
\(426\) 0 0
\(427\) −2.84006 −0.137440
\(428\) 6.29862 0.304456
\(429\) 0 0
\(430\) 0 0
\(431\) 4.45231 0.214460 0.107230 0.994234i \(-0.465802\pi\)
0.107230 + 0.994234i \(0.465802\pi\)
\(432\) 0 0
\(433\) 10.7110 0.514736 0.257368 0.966313i \(-0.417145\pi\)
0.257368 + 0.966313i \(0.417145\pi\)
\(434\) −7.79383 −0.374116
\(435\) 0 0
\(436\) 5.55539 0.266055
\(437\) 2.81215 0.134524
\(438\) 0 0
\(439\) 5.09871 0.243348 0.121674 0.992570i \(-0.461174\pi\)
0.121674 + 0.992570i \(0.461174\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.62620 0.124916
\(443\) −10.8034 −0.513286 −0.256643 0.966506i \(-0.582616\pi\)
−0.256643 + 0.966506i \(0.582616\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 3.30925 0.156698
\(447\) 0 0
\(448\) −0.864641 −0.0408504
\(449\) 5.82174 0.274745 0.137372 0.990519i \(-0.456134\pi\)
0.137372 + 0.990519i \(0.456134\pi\)
\(450\) 0 0
\(451\) 19.0462 0.896852
\(452\) 10.6262 0.499814
\(453\) 0 0
\(454\) 24.7187 1.16010
\(455\) 0 0
\(456\) 0 0
\(457\) 13.7014 0.640923 0.320462 0.947261i \(-0.396162\pi\)
0.320462 + 0.947261i \(0.396162\pi\)
\(458\) 4.27072 0.199558
\(459\) 0 0
\(460\) 0 0
\(461\) 27.0741 1.26097 0.630484 0.776202i \(-0.282856\pi\)
0.630484 + 0.776202i \(0.282856\pi\)
\(462\) 0 0
\(463\) 37.3372 1.73520 0.867602 0.497258i \(-0.165660\pi\)
0.867602 + 0.497258i \(0.165660\pi\)
\(464\) −9.49084 −0.440601
\(465\) 0 0
\(466\) −0.832365 −0.0385586
\(467\) −35.3449 −1.63556 −0.817782 0.575528i \(-0.804797\pi\)
−0.817782 + 0.575528i \(0.804797\pi\)
\(468\) 0 0
\(469\) 1.08287 0.0500024
\(470\) 0 0
\(471\) 0 0
\(472\) 4.14931 0.190988
\(473\) 14.5048 0.666931
\(474\) 0 0
\(475\) 0 0
\(476\) −0.864641 −0.0396308
\(477\) 0 0
\(478\) 4.71096 0.215474
\(479\) −31.0419 −1.41834 −0.709169 0.705038i \(-0.750930\pi\)
−0.709169 + 0.705038i \(0.750930\pi\)
\(480\) 0 0
\(481\) −26.7389 −1.21919
\(482\) −23.4865 −1.06978
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) 0 0
\(487\) 13.1633 0.596485 0.298242 0.954490i \(-0.403600\pi\)
0.298242 + 0.954490i \(0.403600\pi\)
\(488\) 3.28467 0.148690
\(489\) 0 0
\(490\) 0 0
\(491\) −24.3555 −1.09915 −0.549574 0.835445i \(-0.685210\pi\)
−0.549574 + 0.835445i \(0.685210\pi\)
\(492\) 0 0
\(493\) −9.49084 −0.427446
\(494\) −2.35548 −0.105978
\(495\) 0 0
\(496\) 9.01395 0.404738
\(497\) −10.8401 −0.486243
\(498\) 0 0
\(499\) 36.2620 1.62331 0.811655 0.584138i \(-0.198567\pi\)
0.811655 + 0.584138i \(0.198567\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 6.29862 0.281121
\(503\) 42.3511 1.88834 0.944171 0.329455i \(-0.106865\pi\)
0.944171 + 0.329455i \(0.106865\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 6.27072 0.278767
\(507\) 0 0
\(508\) 14.3555 0.636921
\(509\) 1.70138 0.0754121 0.0377061 0.999289i \(-0.487995\pi\)
0.0377061 + 0.999289i \(0.487995\pi\)
\(510\) 0 0
\(511\) −2.27072 −0.100451
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 1.49521 0.0659508
\(515\) 0 0
\(516\) 0 0
\(517\) 20.8401 0.916545
\(518\) 8.80342 0.386800
\(519\) 0 0
\(520\) 0 0
\(521\) −3.01832 −0.132235 −0.0661175 0.997812i \(-0.521061\pi\)
−0.0661175 + 0.997812i \(0.521061\pi\)
\(522\) 0 0
\(523\) −5.79383 −0.253347 −0.126673 0.991944i \(-0.540430\pi\)
−0.126673 + 0.991944i \(0.540430\pi\)
\(524\) −17.0462 −0.744668
\(525\) 0 0
\(526\) 9.94315 0.433542
\(527\) 9.01395 0.392654
\(528\) 0 0
\(529\) −13.1695 −0.572588
\(530\) 0 0
\(531\) 0 0
\(532\) 0.775511 0.0336226
\(533\) −25.0096 −1.08329
\(534\) 0 0
\(535\) 0 0
\(536\) −1.25240 −0.0540953
\(537\) 0 0
\(538\) −1.96772 −0.0848346
\(539\) 12.5048 0.538620
\(540\) 0 0
\(541\) 0.258654 0.0111204 0.00556019 0.999985i \(-0.498230\pi\)
0.00556019 + 0.999985i \(0.498230\pi\)
\(542\) 8.84006 0.379713
\(543\) 0 0
\(544\) 1.00000 0.0428746
\(545\) 0 0
\(546\) 0 0
\(547\) 32.4113 1.38581 0.692903 0.721030i \(-0.256331\pi\)
0.692903 + 0.721030i \(0.256331\pi\)
\(548\) 14.5048 0.619614
\(549\) 0 0
\(550\) 0 0
\(551\) 8.51249 0.362644
\(552\) 0 0
\(553\) 6.84006 0.290869
\(554\) −19.8463 −0.843189
\(555\) 0 0
\(556\) −14.7110 −0.623884
\(557\) 22.9248 0.971356 0.485678 0.874138i \(-0.338573\pi\)
0.485678 + 0.874138i \(0.338573\pi\)
\(558\) 0 0
\(559\) −19.0462 −0.805570
\(560\) 0 0
\(561\) 0 0
\(562\) 11.9065 0.502245
\(563\) −17.8863 −0.753817 −0.376909 0.926250i \(-0.623013\pi\)
−0.376909 + 0.926250i \(0.623013\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 13.7370 0.577408
\(567\) 0 0
\(568\) 12.5371 0.526044
\(569\) −12.3555 −0.517969 −0.258984 0.965882i \(-0.583388\pi\)
−0.258984 + 0.965882i \(0.583388\pi\)
\(570\) 0 0
\(571\) −27.3169 −1.14318 −0.571589 0.820540i \(-0.693673\pi\)
−0.571589 + 0.820540i \(0.693673\pi\)
\(572\) −5.25240 −0.219614
\(573\) 0 0
\(574\) 8.23407 0.343684
\(575\) 0 0
\(576\) 0 0
\(577\) 10.6339 0.442695 0.221347 0.975195i \(-0.428955\pi\)
0.221347 + 0.975195i \(0.428955\pi\)
\(578\) 1.00000 0.0415945
\(579\) 0 0
\(580\) 0 0
\(581\) 3.63682 0.150881
\(582\) 0 0
\(583\) −22.8034 −0.944421
\(584\) 2.62620 0.108673
\(585\) 0 0
\(586\) 12.1772 0.503036
\(587\) 22.3757 0.923544 0.461772 0.886999i \(-0.347214\pi\)
0.461772 + 0.886999i \(0.347214\pi\)
\(588\) 0 0
\(589\) −8.08476 −0.333127
\(590\) 0 0
\(591\) 0 0
\(592\) −10.1816 −0.418461
\(593\) −12.1695 −0.499742 −0.249871 0.968279i \(-0.580388\pi\)
−0.249871 + 0.968279i \(0.580388\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −10.0000 −0.409616
\(597\) 0 0
\(598\) −8.23407 −0.336716
\(599\) 25.1387 1.02714 0.513569 0.858048i \(-0.328323\pi\)
0.513569 + 0.858048i \(0.328323\pi\)
\(600\) 0 0
\(601\) −4.50479 −0.183754 −0.0918772 0.995770i \(-0.529287\pi\)
−0.0918772 + 0.995770i \(0.529287\pi\)
\(602\) 6.27072 0.255575
\(603\) 0 0
\(604\) −5.18785 −0.211090
\(605\) 0 0
\(606\) 0 0
\(607\) 7.00626 0.284375 0.142188 0.989840i \(-0.454586\pi\)
0.142188 + 0.989840i \(0.454586\pi\)
\(608\) −0.896916 −0.0363748
\(609\) 0 0
\(610\) 0 0
\(611\) −27.3651 −1.10707
\(612\) 0 0
\(613\) −7.46626 −0.301559 −0.150780 0.988567i \(-0.548178\pi\)
−0.150780 + 0.988567i \(0.548178\pi\)
\(614\) 23.7938 0.960241
\(615\) 0 0
\(616\) 1.72928 0.0696747
\(617\) 36.1772 1.45644 0.728220 0.685343i \(-0.240348\pi\)
0.728220 + 0.685343i \(0.240348\pi\)
\(618\) 0 0
\(619\) −4.27072 −0.171655 −0.0858273 0.996310i \(-0.527353\pi\)
−0.0858273 + 0.996310i \(0.527353\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −32.9205 −1.31999
\(623\) 3.58767 0.143737
\(624\) 0 0
\(625\) 0 0
\(626\) −29.0462 −1.16092
\(627\) 0 0
\(628\) −10.2341 −0.408384
\(629\) −10.1816 −0.405966
\(630\) 0 0
\(631\) 26.0279 1.03615 0.518077 0.855334i \(-0.326648\pi\)
0.518077 + 0.855334i \(0.326648\pi\)
\(632\) −7.91087 −0.314677
\(633\) 0 0
\(634\) −20.6864 −0.821561
\(635\) 0 0
\(636\) 0 0
\(637\) −16.4200 −0.650585
\(638\) 18.9817 0.751492
\(639\) 0 0
\(640\) 0 0
\(641\) −12.6831 −0.500950 −0.250475 0.968123i \(-0.580587\pi\)
−0.250475 + 0.968123i \(0.580587\pi\)
\(642\) 0 0
\(643\) −25.1108 −0.990272 −0.495136 0.868815i \(-0.664882\pi\)
−0.495136 + 0.868815i \(0.664882\pi\)
\(644\) 2.71096 0.106827
\(645\) 0 0
\(646\) −0.896916 −0.0352887
\(647\) 38.0635 1.49643 0.748215 0.663456i \(-0.230911\pi\)
0.748215 + 0.663456i \(0.230911\pi\)
\(648\) 0 0
\(649\) −8.29862 −0.325750
\(650\) 0 0
\(651\) 0 0
\(652\) −6.47689 −0.253654
\(653\) 45.2682 1.77148 0.885742 0.464179i \(-0.153650\pi\)
0.885742 + 0.464179i \(0.153650\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −9.52311 −0.371815
\(657\) 0 0
\(658\) 9.00958 0.351230
\(659\) −40.7466 −1.58726 −0.793630 0.608400i \(-0.791812\pi\)
−0.793630 + 0.608400i \(0.791812\pi\)
\(660\) 0 0
\(661\) 2.53270 0.0985106 0.0492553 0.998786i \(-0.484315\pi\)
0.0492553 + 0.998786i \(0.484315\pi\)
\(662\) 4.02021 0.156250
\(663\) 0 0
\(664\) −4.20617 −0.163231
\(665\) 0 0
\(666\) 0 0
\(667\) 29.7572 1.15220
\(668\) −3.84632 −0.148819
\(669\) 0 0
\(670\) 0 0
\(671\) −6.56934 −0.253607
\(672\) 0 0
\(673\) 37.0818 1.42940 0.714700 0.699431i \(-0.246563\pi\)
0.714700 + 0.699431i \(0.246563\pi\)
\(674\) 2.21386 0.0852748
\(675\) 0 0
\(676\) −6.10308 −0.234734
\(677\) −44.3790 −1.70562 −0.852812 0.522218i \(-0.825105\pi\)
−0.852812 + 0.522218i \(0.825105\pi\)
\(678\) 0 0
\(679\) −5.31695 −0.204046
\(680\) 0 0
\(681\) 0 0
\(682\) −18.0279 −0.690324
\(683\) 7.46626 0.285688 0.142844 0.989745i \(-0.454375\pi\)
0.142844 + 0.989745i \(0.454375\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 11.4586 0.437490
\(687\) 0 0
\(688\) −7.25240 −0.276495
\(689\) 29.9431 1.14074
\(690\) 0 0
\(691\) 26.8959 1.02317 0.511584 0.859233i \(-0.329059\pi\)
0.511584 + 0.859233i \(0.329059\pi\)
\(692\) −23.9109 −0.908955
\(693\) 0 0
\(694\) 1.37380 0.0521488
\(695\) 0 0
\(696\) 0 0
\(697\) −9.52311 −0.360714
\(698\) −20.8680 −0.789864
\(699\) 0 0
\(700\) 0 0
\(701\) −23.7938 −0.898681 −0.449340 0.893361i \(-0.648341\pi\)
−0.449340 + 0.893361i \(0.648341\pi\)
\(702\) 0 0
\(703\) 9.13203 0.344421
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) 13.7572 0.517759
\(707\) 0.178261 0.00670419
\(708\) 0 0
\(709\) −17.0140 −0.638972 −0.319486 0.947591i \(-0.603510\pi\)
−0.319486 + 0.947591i \(0.603510\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −4.14931 −0.155502
\(713\) −28.2620 −1.05842
\(714\) 0 0
\(715\) 0 0
\(716\) 14.7110 0.549774
\(717\) 0 0
\(718\) −9.31695 −0.347705
\(719\) 23.8665 0.890071 0.445036 0.895513i \(-0.353191\pi\)
0.445036 + 0.895513i \(0.353191\pi\)
\(720\) 0 0
\(721\) 4.12910 0.153776
\(722\) −18.1955 −0.677168
\(723\) 0 0
\(724\) −23.4340 −0.870917
\(725\) 0 0
\(726\) 0 0
\(727\) 28.3834 1.05268 0.526341 0.850274i \(-0.323564\pi\)
0.526341 + 0.850274i \(0.323564\pi\)
\(728\) −2.27072 −0.0841584
\(729\) 0 0
\(730\) 0 0
\(731\) −7.25240 −0.268240
\(732\) 0 0
\(733\) 28.2216 1.04239 0.521194 0.853439i \(-0.325487\pi\)
0.521194 + 0.853439i \(0.325487\pi\)
\(734\) 12.3878 0.457240
\(735\) 0 0
\(736\) −3.13536 −0.115571
\(737\) 2.50479 0.0922652
\(738\) 0 0
\(739\) 0.226378 0.00832746 0.00416373 0.999991i \(-0.498675\pi\)
0.00416373 + 0.999991i \(0.498675\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −9.85838 −0.361913
\(743\) −47.6035 −1.74640 −0.873202 0.487359i \(-0.837960\pi\)
−0.873202 + 0.487359i \(0.837960\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −23.3169 −0.853694
\(747\) 0 0
\(748\) −2.00000 −0.0731272
\(749\) −5.44605 −0.198994
\(750\) 0 0
\(751\) 0.124733 0.00455157 0.00227578 0.999997i \(-0.499276\pi\)
0.00227578 + 0.999997i \(0.499276\pi\)
\(752\) −10.4200 −0.379979
\(753\) 0 0
\(754\) −24.9248 −0.907709
\(755\) 0 0
\(756\) 0 0
\(757\) 33.7774 1.22766 0.613830 0.789438i \(-0.289628\pi\)
0.613830 + 0.789438i \(0.289628\pi\)
\(758\) 28.9817 1.05266
\(759\) 0 0
\(760\) 0 0
\(761\) −11.4219 −0.414044 −0.207022 0.978336i \(-0.566377\pi\)
−0.207022 + 0.978336i \(0.566377\pi\)
\(762\) 0 0
\(763\) −4.80342 −0.173895
\(764\) −18.5048 −0.669480
\(765\) 0 0
\(766\) −14.9527 −0.540264
\(767\) 10.8969 0.393465
\(768\) 0 0
\(769\) 12.1127 0.436794 0.218397 0.975860i \(-0.429917\pi\)
0.218397 + 0.975860i \(0.429917\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.45856 −0.196458
\(773\) −37.4586 −1.34729 −0.673645 0.739055i \(-0.735272\pi\)
−0.673645 + 0.739055i \(0.735272\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 6.14931 0.220747
\(777\) 0 0
\(778\) 19.3169 0.692546
\(779\) 8.54144 0.306029
\(780\) 0 0
\(781\) −25.0741 −0.897223
\(782\) −3.13536 −0.112120
\(783\) 0 0
\(784\) −6.25240 −0.223300
\(785\) 0 0
\(786\) 0 0
\(787\) −25.0664 −0.893522 −0.446761 0.894653i \(-0.647423\pi\)
−0.446761 + 0.894653i \(0.647423\pi\)
\(788\) −13.9388 −0.496548
\(789\) 0 0
\(790\) 0 0
\(791\) −9.18785 −0.326682
\(792\) 0 0
\(793\) 8.62620 0.306325
\(794\) 9.57560 0.339825
\(795\) 0 0
\(796\) −11.2847 −0.399975
\(797\) 19.5510 0.692533 0.346266 0.938136i \(-0.387449\pi\)
0.346266 + 0.938136i \(0.387449\pi\)
\(798\) 0 0
\(799\) −10.4200 −0.368634
\(800\) 0 0
\(801\) 0 0
\(802\) −11.3169 −0.399615
\(803\) −5.25240 −0.185353
\(804\) 0 0
\(805\) 0 0
\(806\) 23.6724 0.833826
\(807\) 0 0
\(808\) −0.206167 −0.00725294
\(809\) −20.1974 −0.710104 −0.355052 0.934847i \(-0.615537\pi\)
−0.355052 + 0.934847i \(0.615537\pi\)
\(810\) 0 0
\(811\) 28.1570 0.988726 0.494363 0.869255i \(-0.335401\pi\)
0.494363 + 0.869255i \(0.335401\pi\)
\(812\) 8.20617 0.287980
\(813\) 0 0
\(814\) 20.3632 0.713729
\(815\) 0 0
\(816\) 0 0
\(817\) 6.50479 0.227574
\(818\) −9.10308 −0.318282
\(819\) 0 0
\(820\) 0 0
\(821\) 51.2759 1.78954 0.894771 0.446525i \(-0.147339\pi\)
0.894771 + 0.446525i \(0.147339\pi\)
\(822\) 0 0
\(823\) 52.9850 1.84694 0.923471 0.383669i \(-0.125340\pi\)
0.923471 + 0.383669i \(0.125340\pi\)
\(824\) −4.77551 −0.166363
\(825\) 0 0
\(826\) −3.58767 −0.124831
\(827\) −39.7205 −1.38122 −0.690609 0.723228i \(-0.742658\pi\)
−0.690609 + 0.723228i \(0.742658\pi\)
\(828\) 0 0
\(829\) 23.0096 0.799156 0.399578 0.916699i \(-0.369157\pi\)
0.399578 + 0.916699i \(0.369157\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.62620 0.0910470
\(833\) −6.25240 −0.216633
\(834\) 0 0
\(835\) 0 0
\(836\) 1.79383 0.0620410
\(837\) 0 0
\(838\) 4.02791 0.139142
\(839\) −2.39545 −0.0827002 −0.0413501 0.999145i \(-0.513166\pi\)
−0.0413501 + 0.999145i \(0.513166\pi\)
\(840\) 0 0
\(841\) 61.0760 2.10607
\(842\) 15.2524 0.525632
\(843\) 0 0
\(844\) −14.8401 −0.510816
\(845\) 0 0
\(846\) 0 0
\(847\) 6.05249 0.207966
\(848\) 11.4017 0.391536
\(849\) 0 0
\(850\) 0 0
\(851\) 31.9229 1.09430
\(852\) 0 0
\(853\) −2.24614 −0.0769063 −0.0384532 0.999260i \(-0.512243\pi\)
−0.0384532 + 0.999260i \(0.512243\pi\)
\(854\) −2.84006 −0.0971849
\(855\) 0 0
\(856\) 6.29862 0.215283
\(857\) 18.3188 0.625760 0.312880 0.949793i \(-0.398706\pi\)
0.312880 + 0.949793i \(0.398706\pi\)
\(858\) 0 0
\(859\) −42.1127 −1.43687 −0.718433 0.695596i \(-0.755140\pi\)
−0.718433 + 0.695596i \(0.755140\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 4.45231 0.151646
\(863\) −44.8313 −1.52608 −0.763038 0.646354i \(-0.776293\pi\)
−0.763038 + 0.646354i \(0.776293\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 10.7110 0.363973
\(867\) 0 0
\(868\) −7.79383 −0.264540
\(869\) 15.8217 0.536716
\(870\) 0 0
\(871\) −3.28904 −0.111445
\(872\) 5.55539 0.188129
\(873\) 0 0
\(874\) 2.81215 0.0951226
\(875\) 0 0
\(876\) 0 0
\(877\) 2.29530 0.0775067 0.0387533 0.999249i \(-0.487661\pi\)
0.0387533 + 0.999249i \(0.487661\pi\)
\(878\) 5.09871 0.172073
\(879\) 0 0
\(880\) 0 0
\(881\) 20.9171 0.704716 0.352358 0.935865i \(-0.385380\pi\)
0.352358 + 0.935865i \(0.385380\pi\)
\(882\) 0 0
\(883\) −26.6743 −0.897662 −0.448831 0.893617i \(-0.648160\pi\)
−0.448831 + 0.893617i \(0.648160\pi\)
\(884\) 2.62620 0.0883286
\(885\) 0 0
\(886\) −10.8034 −0.362948
\(887\) 29.1633 0.979207 0.489603 0.871945i \(-0.337142\pi\)
0.489603 + 0.871945i \(0.337142\pi\)
\(888\) 0 0
\(889\) −12.4123 −0.416296
\(890\) 0 0
\(891\) 0 0
\(892\) 3.30925 0.110802
\(893\) 9.34590 0.312748
\(894\) 0 0
\(895\) 0 0
\(896\) −0.864641 −0.0288856
\(897\) 0 0
\(898\) 5.82174 0.194274
\(899\) −85.5500 −2.85325
\(900\) 0 0
\(901\) 11.4017 0.379846
\(902\) 19.0462 0.634170
\(903\) 0 0
\(904\) 10.6262 0.353422
\(905\) 0 0
\(906\) 0 0
\(907\) 23.2322 0.771412 0.385706 0.922622i \(-0.373958\pi\)
0.385706 + 0.922622i \(0.373958\pi\)
\(908\) 24.7187 0.820317
\(909\) 0 0
\(910\) 0 0
\(911\) 20.8646 0.691276 0.345638 0.938368i \(-0.387662\pi\)
0.345638 + 0.938368i \(0.387662\pi\)
\(912\) 0 0
\(913\) 8.41233 0.278408
\(914\) 13.7014 0.453201
\(915\) 0 0
\(916\) 4.27072 0.141109
\(917\) 14.7389 0.486720
\(918\) 0 0
\(919\) 18.2062 0.600566 0.300283 0.953850i \(-0.402919\pi\)
0.300283 + 0.953850i \(0.402919\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 27.0741 0.891639
\(923\) 32.9248 1.08373
\(924\) 0 0
\(925\) 0 0
\(926\) 37.3372 1.22698
\(927\) 0 0
\(928\) −9.49084 −0.311552
\(929\) −17.2803 −0.566948 −0.283474 0.958980i \(-0.591487\pi\)
−0.283474 + 0.958980i \(0.591487\pi\)
\(930\) 0 0
\(931\) 5.60788 0.183791
\(932\) −0.832365 −0.0272650
\(933\) 0 0
\(934\) −35.3449 −1.15652
\(935\) 0 0
\(936\) 0 0
\(937\) 50.2986 1.64318 0.821592 0.570076i \(-0.193086\pi\)
0.821592 + 0.570076i \(0.193086\pi\)
\(938\) 1.08287 0.0353571
\(939\) 0 0
\(940\) 0 0
\(941\) −20.7153 −0.675300 −0.337650 0.941272i \(-0.609632\pi\)
−0.337650 + 0.941272i \(0.609632\pi\)
\(942\) 0 0
\(943\) 29.8584 0.972323
\(944\) 4.14931 0.135049
\(945\) 0 0
\(946\) 14.5048 0.471591
\(947\) 8.89692 0.289111 0.144555 0.989497i \(-0.453825\pi\)
0.144555 + 0.989497i \(0.453825\pi\)
\(948\) 0 0
\(949\) 6.89692 0.223883
\(950\) 0 0
\(951\) 0 0
\(952\) −0.864641 −0.0280232
\(953\) −17.2158 −0.557673 −0.278836 0.960339i \(-0.589949\pi\)
−0.278836 + 0.960339i \(0.589949\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 4.71096 0.152363
\(957\) 0 0
\(958\) −31.0419 −1.00292
\(959\) −12.5414 −0.404984
\(960\) 0 0
\(961\) 50.2514 1.62101
\(962\) −26.7389 −0.862096
\(963\) 0 0
\(964\) −23.4865 −0.756448
\(965\) 0 0
\(966\) 0 0
\(967\) 1.90754 0.0613424 0.0306712 0.999530i \(-0.490236\pi\)
0.0306712 + 0.999530i \(0.490236\pi\)
\(968\) −7.00000 −0.224989
\(969\) 0 0
\(970\) 0 0
\(971\) 4.97398 0.159623 0.0798113 0.996810i \(-0.474568\pi\)
0.0798113 + 0.996810i \(0.474568\pi\)
\(972\) 0 0
\(973\) 12.7197 0.407775
\(974\) 13.1633 0.421778
\(975\) 0 0
\(976\) 3.28467 0.105140
\(977\) −51.2716 −1.64032 −0.820161 0.572132i \(-0.806116\pi\)
−0.820161 + 0.572132i \(0.806116\pi\)
\(978\) 0 0
\(979\) 8.29862 0.265225
\(980\) 0 0
\(981\) 0 0
\(982\) −24.3555 −0.777215
\(983\) −9.88296 −0.315218 −0.157609 0.987502i \(-0.550378\pi\)
−0.157609 + 0.987502i \(0.550378\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −9.49084 −0.302250
\(987\) 0 0
\(988\) −2.35548 −0.0749378
\(989\) 22.7389 0.723054
\(990\) 0 0
\(991\) −37.7807 −1.20014 −0.600072 0.799946i \(-0.704861\pi\)
−0.600072 + 0.799946i \(0.704861\pi\)
\(992\) 9.01395 0.286193
\(993\) 0 0
\(994\) −10.8401 −0.343826
\(995\) 0 0
\(996\) 0 0
\(997\) −8.14494 −0.257953 −0.128976 0.991648i \(-0.541169\pi\)
−0.128976 + 0.991648i \(0.541169\pi\)
\(998\) 36.2620 1.14785
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7650.2.a.do.1.2 3
3.2 odd 2 850.2.a.p.1.3 3
5.2 odd 4 1530.2.d.g.919.6 6
5.3 odd 4 1530.2.d.g.919.3 6
5.4 even 2 7650.2.a.dj.1.2 3
12.11 even 2 6800.2.a.bp.1.1 3
15.2 even 4 170.2.c.b.69.1 6
15.8 even 4 170.2.c.b.69.6 yes 6
15.14 odd 2 850.2.a.q.1.1 3
60.23 odd 4 1360.2.e.c.1089.2 6
60.47 odd 4 1360.2.e.c.1089.5 6
60.59 even 2 6800.2.a.bk.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.c.b.69.1 6 15.2 even 4
170.2.c.b.69.6 yes 6 15.8 even 4
850.2.a.p.1.3 3 3.2 odd 2
850.2.a.q.1.1 3 15.14 odd 2
1360.2.e.c.1089.2 6 60.23 odd 4
1360.2.e.c.1089.5 6 60.47 odd 4
1530.2.d.g.919.3 6 5.3 odd 4
1530.2.d.g.919.6 6 5.2 odd 4
6800.2.a.bk.1.3 3 60.59 even 2
6800.2.a.bp.1.1 3 12.11 even 2
7650.2.a.dj.1.2 3 5.4 even 2
7650.2.a.do.1.2 3 1.1 even 1 trivial