Properties

Label 850.2.a.p.1.3
Level $850$
Weight $2$
Character 850.1
Self dual yes
Analytic conductor $6.787$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(1,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.76156\) of defining polynomial
Character \(\chi\) \(=\) 850.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.62620 q^{3} +1.00000 q^{4} -2.62620 q^{6} -0.864641 q^{7} -1.00000 q^{8} +3.89692 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +2.62620 q^{3} +1.00000 q^{4} -2.62620 q^{6} -0.864641 q^{7} -1.00000 q^{8} +3.89692 q^{9} +2.00000 q^{11} +2.62620 q^{12} +2.62620 q^{13} +0.864641 q^{14} +1.00000 q^{16} -1.00000 q^{17} -3.89692 q^{18} -0.896916 q^{19} -2.27072 q^{21} -2.00000 q^{22} +3.13536 q^{23} -2.62620 q^{24} -2.62620 q^{26} +2.35548 q^{27} -0.864641 q^{28} +9.49084 q^{29} +9.01395 q^{31} -1.00000 q^{32} +5.25240 q^{33} +1.00000 q^{34} +3.89692 q^{36} -10.1816 q^{37} +0.896916 q^{38} +6.89692 q^{39} +9.52311 q^{41} +2.27072 q^{42} -7.25240 q^{43} +2.00000 q^{44} -3.13536 q^{46} +10.4200 q^{47} +2.62620 q^{48} -6.25240 q^{49} -2.62620 q^{51} +2.62620 q^{52} -11.4017 q^{53} -2.35548 q^{54} +0.864641 q^{56} -2.35548 q^{57} -9.49084 q^{58} -4.14931 q^{59} +3.28467 q^{61} -9.01395 q^{62} -3.36943 q^{63} +1.00000 q^{64} -5.25240 q^{66} -1.25240 q^{67} -1.00000 q^{68} +8.23407 q^{69} -12.5371 q^{71} -3.89692 q^{72} +2.62620 q^{73} +10.1816 q^{74} -0.896916 q^{76} -1.72928 q^{77} -6.89692 q^{78} -7.91087 q^{79} -5.50479 q^{81} -9.52311 q^{82} +4.20617 q^{83} -2.27072 q^{84} +7.25240 q^{86} +24.9248 q^{87} -2.00000 q^{88} +4.14931 q^{89} -2.27072 q^{91} +3.13536 q^{92} +23.6724 q^{93} -10.4200 q^{94} -2.62620 q^{96} +6.14931 q^{97} +6.25240 q^{98} +7.79383 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - q^{3} + 3 q^{4} + q^{6} - 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{2} - q^{3} + 3 q^{4} + q^{6} - 3 q^{8} + 8 q^{9} + 6 q^{11} - q^{12} - q^{13} + 3 q^{16} - 3 q^{17} - 8 q^{18} + q^{19} - 12 q^{21} - 6 q^{22} + 12 q^{23} + q^{24} + q^{26} - 7 q^{27} + 17 q^{29} + 3 q^{31} - 3 q^{32} - 2 q^{33} + 3 q^{34} + 8 q^{36} - 8 q^{37} - q^{38} + 17 q^{39} + 16 q^{41} + 12 q^{42} - 4 q^{43} + 6 q^{44} - 12 q^{46} + 15 q^{47} - q^{48} - q^{49} + q^{51} - q^{52} + 5 q^{53} + 7 q^{54} + 7 q^{57} - 17 q^{58} + 9 q^{59} - 9 q^{61} - 3 q^{62} + 28 q^{63} + 3 q^{64} + 2 q^{66} + 14 q^{67} - 3 q^{68} - 16 q^{69} - q^{71} - 8 q^{72} - q^{73} + 8 q^{74} + q^{76} - 17 q^{78} + 4 q^{79} + 19 q^{81} - 16 q^{82} + 20 q^{83} - 12 q^{84} + 4 q^{86} + 23 q^{87} - 6 q^{88} - 9 q^{89} - 12 q^{91} + 12 q^{92} + 37 q^{93} - 15 q^{94} + q^{96} - 3 q^{97} + q^{98} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.62620 1.51624 0.758118 0.652117i \(-0.226119\pi\)
0.758118 + 0.652117i \(0.226119\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −2.62620 −1.07214
\(7\) −0.864641 −0.326804 −0.163402 0.986560i \(-0.552247\pi\)
−0.163402 + 0.986560i \(0.552247\pi\)
\(8\) −1.00000 −0.353553
\(9\) 3.89692 1.29897
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 2.62620 0.758118
\(13\) 2.62620 0.728376 0.364188 0.931325i \(-0.381347\pi\)
0.364188 + 0.931325i \(0.381347\pi\)
\(14\) 0.864641 0.231085
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −3.89692 −0.918512
\(19\) −0.896916 −0.205767 −0.102883 0.994693i \(-0.532807\pi\)
−0.102883 + 0.994693i \(0.532807\pi\)
\(20\) 0 0
\(21\) −2.27072 −0.495511
\(22\) −2.00000 −0.426401
\(23\) 3.13536 0.653768 0.326884 0.945065i \(-0.394001\pi\)
0.326884 + 0.945065i \(0.394001\pi\)
\(24\) −2.62620 −0.536070
\(25\) 0 0
\(26\) −2.62620 −0.515040
\(27\) 2.35548 0.453312
\(28\) −0.864641 −0.163402
\(29\) 9.49084 1.76240 0.881202 0.472739i \(-0.156735\pi\)
0.881202 + 0.472739i \(0.156735\pi\)
\(30\) 0 0
\(31\) 9.01395 1.61895 0.809477 0.587152i \(-0.199751\pi\)
0.809477 + 0.587152i \(0.199751\pi\)
\(32\) −1.00000 −0.176777
\(33\) 5.25240 0.914325
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 3.89692 0.649486
\(37\) −10.1816 −1.67384 −0.836921 0.547323i \(-0.815647\pi\)
−0.836921 + 0.547323i \(0.815647\pi\)
\(38\) 0.896916 0.145499
\(39\) 6.89692 1.10439
\(40\) 0 0
\(41\) 9.52311 1.48726 0.743630 0.668591i \(-0.233102\pi\)
0.743630 + 0.668591i \(0.233102\pi\)
\(42\) 2.27072 0.350379
\(43\) −7.25240 −1.10598 −0.552990 0.833188i \(-0.686513\pi\)
−0.552990 + 0.833188i \(0.686513\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) −3.13536 −0.462283
\(47\) 10.4200 1.51992 0.759959 0.649971i \(-0.225219\pi\)
0.759959 + 0.649971i \(0.225219\pi\)
\(48\) 2.62620 0.379059
\(49\) −6.25240 −0.893199
\(50\) 0 0
\(51\) −2.62620 −0.367741
\(52\) 2.62620 0.364188
\(53\) −11.4017 −1.56615 −0.783073 0.621930i \(-0.786349\pi\)
−0.783073 + 0.621930i \(0.786349\pi\)
\(54\) −2.35548 −0.320540
\(55\) 0 0
\(56\) 0.864641 0.115542
\(57\) −2.35548 −0.311991
\(58\) −9.49084 −1.24621
\(59\) −4.14931 −0.540194 −0.270097 0.962833i \(-0.587056\pi\)
−0.270097 + 0.962833i \(0.587056\pi\)
\(60\) 0 0
\(61\) 3.28467 0.420559 0.210280 0.977641i \(-0.432563\pi\)
0.210280 + 0.977641i \(0.432563\pi\)
\(62\) −9.01395 −1.14477
\(63\) −3.36943 −0.424509
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −5.25240 −0.646525
\(67\) −1.25240 −0.153005 −0.0765023 0.997069i \(-0.524375\pi\)
−0.0765023 + 0.997069i \(0.524375\pi\)
\(68\) −1.00000 −0.121268
\(69\) 8.23407 0.991266
\(70\) 0 0
\(71\) −12.5371 −1.48788 −0.743938 0.668249i \(-0.767044\pi\)
−0.743938 + 0.668249i \(0.767044\pi\)
\(72\) −3.89692 −0.459256
\(73\) 2.62620 0.307373 0.153687 0.988120i \(-0.450885\pi\)
0.153687 + 0.988120i \(0.450885\pi\)
\(74\) 10.1816 1.18359
\(75\) 0 0
\(76\) −0.896916 −0.102883
\(77\) −1.72928 −0.197070
\(78\) −6.89692 −0.780922
\(79\) −7.91087 −0.890042 −0.445021 0.895520i \(-0.646804\pi\)
−0.445021 + 0.895520i \(0.646804\pi\)
\(80\) 0 0
\(81\) −5.50479 −0.611644
\(82\) −9.52311 −1.05165
\(83\) 4.20617 0.461687 0.230843 0.972991i \(-0.425851\pi\)
0.230843 + 0.972991i \(0.425851\pi\)
\(84\) −2.27072 −0.247756
\(85\) 0 0
\(86\) 7.25240 0.782046
\(87\) 24.9248 2.67222
\(88\) −2.00000 −0.213201
\(89\) 4.14931 0.439826 0.219913 0.975519i \(-0.429423\pi\)
0.219913 + 0.975519i \(0.429423\pi\)
\(90\) 0 0
\(91\) −2.27072 −0.238036
\(92\) 3.13536 0.326884
\(93\) 23.6724 2.45472
\(94\) −10.4200 −1.07474
\(95\) 0 0
\(96\) −2.62620 −0.268035
\(97\) 6.14931 0.624368 0.312184 0.950022i \(-0.398939\pi\)
0.312184 + 0.950022i \(0.398939\pi\)
\(98\) 6.25240 0.631587
\(99\) 7.79383 0.783310
\(100\) 0 0
\(101\) 0.206167 0.0205144 0.0102572 0.999947i \(-0.496735\pi\)
0.0102572 + 0.999947i \(0.496735\pi\)
\(102\) 2.62620 0.260032
\(103\) −4.77551 −0.470545 −0.235273 0.971929i \(-0.575598\pi\)
−0.235273 + 0.971929i \(0.575598\pi\)
\(104\) −2.62620 −0.257520
\(105\) 0 0
\(106\) 11.4017 1.10743
\(107\) −6.29862 −0.608911 −0.304456 0.952527i \(-0.598474\pi\)
−0.304456 + 0.952527i \(0.598474\pi\)
\(108\) 2.35548 0.226656
\(109\) 5.55539 0.532110 0.266055 0.963958i \(-0.414280\pi\)
0.266055 + 0.963958i \(0.414280\pi\)
\(110\) 0 0
\(111\) −26.7389 −2.53794
\(112\) −0.864641 −0.0817009
\(113\) −10.6262 −0.999629 −0.499814 0.866133i \(-0.666598\pi\)
−0.499814 + 0.866133i \(0.666598\pi\)
\(114\) 2.35548 0.220611
\(115\) 0 0
\(116\) 9.49084 0.881202
\(117\) 10.2341 0.946140
\(118\) 4.14931 0.381975
\(119\) 0.864641 0.0792615
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −3.28467 −0.297380
\(123\) 25.0096 2.25504
\(124\) 9.01395 0.809477
\(125\) 0 0
\(126\) 3.36943 0.300173
\(127\) 14.3555 1.27384 0.636921 0.770929i \(-0.280208\pi\)
0.636921 + 0.770929i \(0.280208\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −19.0462 −1.67693
\(130\) 0 0
\(131\) 17.0462 1.48934 0.744668 0.667435i \(-0.232608\pi\)
0.744668 + 0.667435i \(0.232608\pi\)
\(132\) 5.25240 0.457162
\(133\) 0.775511 0.0672453
\(134\) 1.25240 0.108191
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) −14.5048 −1.23923 −0.619614 0.784907i \(-0.712711\pi\)
−0.619614 + 0.784907i \(0.712711\pi\)
\(138\) −8.23407 −0.700931
\(139\) −14.7110 −1.24777 −0.623884 0.781517i \(-0.714446\pi\)
−0.623884 + 0.781517i \(0.714446\pi\)
\(140\) 0 0
\(141\) 27.3651 2.30455
\(142\) 12.5371 1.05209
\(143\) 5.25240 0.439227
\(144\) 3.89692 0.324743
\(145\) 0 0
\(146\) −2.62620 −0.217346
\(147\) −16.4200 −1.35430
\(148\) −10.1816 −0.836921
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) −5.18785 −0.422181 −0.211090 0.977467i \(-0.567701\pi\)
−0.211090 + 0.977467i \(0.567701\pi\)
\(152\) 0.896916 0.0727495
\(153\) −3.89692 −0.315047
\(154\) 1.72928 0.139349
\(155\) 0 0
\(156\) 6.89692 0.552195
\(157\) −10.2341 −0.816768 −0.408384 0.912810i \(-0.633908\pi\)
−0.408384 + 0.912810i \(0.633908\pi\)
\(158\) 7.91087 0.629355
\(159\) −29.9431 −2.37465
\(160\) 0 0
\(161\) −2.71096 −0.213654
\(162\) 5.50479 0.432497
\(163\) −6.47689 −0.507309 −0.253654 0.967295i \(-0.581633\pi\)
−0.253654 + 0.967295i \(0.581633\pi\)
\(164\) 9.52311 0.743630
\(165\) 0 0
\(166\) −4.20617 −0.326462
\(167\) 3.84632 0.297637 0.148819 0.988865i \(-0.452453\pi\)
0.148819 + 0.988865i \(0.452453\pi\)
\(168\) 2.27072 0.175190
\(169\) −6.10308 −0.469468
\(170\) 0 0
\(171\) −3.49521 −0.267285
\(172\) −7.25240 −0.552990
\(173\) 23.9109 1.81791 0.908955 0.416895i \(-0.136882\pi\)
0.908955 + 0.416895i \(0.136882\pi\)
\(174\) −24.9248 −1.88955
\(175\) 0 0
\(176\) 2.00000 0.150756
\(177\) −10.8969 −0.819062
\(178\) −4.14931 −0.311004
\(179\) −14.7110 −1.09955 −0.549774 0.835313i \(-0.685286\pi\)
−0.549774 + 0.835313i \(0.685286\pi\)
\(180\) 0 0
\(181\) −23.4340 −1.74183 −0.870917 0.491430i \(-0.836474\pi\)
−0.870917 + 0.491430i \(0.836474\pi\)
\(182\) 2.27072 0.168317
\(183\) 8.62620 0.637667
\(184\) −3.13536 −0.231142
\(185\) 0 0
\(186\) −23.6724 −1.73575
\(187\) −2.00000 −0.146254
\(188\) 10.4200 0.759959
\(189\) −2.03664 −0.148144
\(190\) 0 0
\(191\) 18.5048 1.33896 0.669480 0.742830i \(-0.266517\pi\)
0.669480 + 0.742830i \(0.266517\pi\)
\(192\) 2.62620 0.189530
\(193\) −5.45856 −0.392916 −0.196458 0.980512i \(-0.562944\pi\)
−0.196458 + 0.980512i \(0.562944\pi\)
\(194\) −6.14931 −0.441495
\(195\) 0 0
\(196\) −6.25240 −0.446600
\(197\) 13.9388 0.993097 0.496548 0.868009i \(-0.334601\pi\)
0.496548 + 0.868009i \(0.334601\pi\)
\(198\) −7.79383 −0.553884
\(199\) −11.2847 −0.799949 −0.399975 0.916526i \(-0.630981\pi\)
−0.399975 + 0.916526i \(0.630981\pi\)
\(200\) 0 0
\(201\) −3.28904 −0.231991
\(202\) −0.206167 −0.0145059
\(203\) −8.20617 −0.575960
\(204\) −2.62620 −0.183871
\(205\) 0 0
\(206\) 4.77551 0.332726
\(207\) 12.2182 0.849226
\(208\) 2.62620 0.182094
\(209\) −1.79383 −0.124082
\(210\) 0 0
\(211\) −14.8401 −1.02163 −0.510816 0.859690i \(-0.670657\pi\)
−0.510816 + 0.859690i \(0.670657\pi\)
\(212\) −11.4017 −0.783073
\(213\) −32.9248 −2.25597
\(214\) 6.29862 0.430565
\(215\) 0 0
\(216\) −2.35548 −0.160270
\(217\) −7.79383 −0.529080
\(218\) −5.55539 −0.376258
\(219\) 6.89692 0.466050
\(220\) 0 0
\(221\) −2.62620 −0.176657
\(222\) 26.7389 1.79460
\(223\) 3.30925 0.221604 0.110802 0.993843i \(-0.464658\pi\)
0.110802 + 0.993843i \(0.464658\pi\)
\(224\) 0.864641 0.0577712
\(225\) 0 0
\(226\) 10.6262 0.706844
\(227\) −24.7187 −1.64063 −0.820317 0.571909i \(-0.806203\pi\)
−0.820317 + 0.571909i \(0.806203\pi\)
\(228\) −2.35548 −0.155995
\(229\) 4.27072 0.282217 0.141109 0.989994i \(-0.454933\pi\)
0.141109 + 0.989994i \(0.454933\pi\)
\(230\) 0 0
\(231\) −4.54144 −0.298805
\(232\) −9.49084 −0.623104
\(233\) 0.832365 0.0545301 0.0272650 0.999628i \(-0.491320\pi\)
0.0272650 + 0.999628i \(0.491320\pi\)
\(234\) −10.2341 −0.669022
\(235\) 0 0
\(236\) −4.14931 −0.270097
\(237\) −20.7755 −1.34951
\(238\) −0.864641 −0.0560463
\(239\) −4.71096 −0.304727 −0.152363 0.988325i \(-0.548688\pi\)
−0.152363 + 0.988325i \(0.548688\pi\)
\(240\) 0 0
\(241\) −23.4865 −1.51290 −0.756448 0.654054i \(-0.773067\pi\)
−0.756448 + 0.654054i \(0.773067\pi\)
\(242\) 7.00000 0.449977
\(243\) −21.5231 −1.38071
\(244\) 3.28467 0.210280
\(245\) 0 0
\(246\) −25.0096 −1.59455
\(247\) −2.35548 −0.149876
\(248\) −9.01395 −0.572387
\(249\) 11.0462 0.700026
\(250\) 0 0
\(251\) −6.29862 −0.397566 −0.198783 0.980044i \(-0.563699\pi\)
−0.198783 + 0.980044i \(0.563699\pi\)
\(252\) −3.36943 −0.212254
\(253\) 6.27072 0.394237
\(254\) −14.3555 −0.900743
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −1.49521 −0.0932685 −0.0466342 0.998912i \(-0.514850\pi\)
−0.0466342 + 0.998912i \(0.514850\pi\)
\(258\) 19.0462 1.18577
\(259\) 8.80342 0.547018
\(260\) 0 0
\(261\) 36.9850 2.28931
\(262\) −17.0462 −1.05312
\(263\) −9.94315 −0.613121 −0.306560 0.951851i \(-0.599178\pi\)
−0.306560 + 0.951851i \(0.599178\pi\)
\(264\) −5.25240 −0.323263
\(265\) 0 0
\(266\) −0.775511 −0.0475496
\(267\) 10.8969 0.666880
\(268\) −1.25240 −0.0765023
\(269\) 1.96772 0.119974 0.0599871 0.998199i \(-0.480894\pi\)
0.0599871 + 0.998199i \(0.480894\pi\)
\(270\) 0 0
\(271\) 8.84006 0.536995 0.268498 0.963280i \(-0.413473\pi\)
0.268498 + 0.963280i \(0.413473\pi\)
\(272\) −1.00000 −0.0606339
\(273\) −5.96336 −0.360919
\(274\) 14.5048 0.876267
\(275\) 0 0
\(276\) 8.23407 0.495633
\(277\) −19.8463 −1.19245 −0.596225 0.802817i \(-0.703333\pi\)
−0.596225 + 0.802817i \(0.703333\pi\)
\(278\) 14.7110 0.882305
\(279\) 35.1266 2.10298
\(280\) 0 0
\(281\) −11.9065 −0.710282 −0.355141 0.934813i \(-0.615567\pi\)
−0.355141 + 0.934813i \(0.615567\pi\)
\(282\) −27.3651 −1.62957
\(283\) 13.7370 0.816579 0.408289 0.912853i \(-0.366125\pi\)
0.408289 + 0.912853i \(0.366125\pi\)
\(284\) −12.5371 −0.743938
\(285\) 0 0
\(286\) −5.25240 −0.310581
\(287\) −8.23407 −0.486042
\(288\) −3.89692 −0.229628
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 16.1493 0.946689
\(292\) 2.62620 0.153687
\(293\) −12.1772 −0.711401 −0.355700 0.934600i \(-0.615758\pi\)
−0.355700 + 0.934600i \(0.615758\pi\)
\(294\) 16.4200 0.957636
\(295\) 0 0
\(296\) 10.1816 0.591793
\(297\) 4.71096 0.273358
\(298\) −10.0000 −0.579284
\(299\) 8.23407 0.476189
\(300\) 0 0
\(301\) 6.27072 0.361438
\(302\) 5.18785 0.298527
\(303\) 0.541436 0.0311047
\(304\) −0.896916 −0.0514417
\(305\) 0 0
\(306\) 3.89692 0.222772
\(307\) 23.7938 1.35799 0.678993 0.734145i \(-0.262417\pi\)
0.678993 + 0.734145i \(0.262417\pi\)
\(308\) −1.72928 −0.0985350
\(309\) −12.5414 −0.713457
\(310\) 0 0
\(311\) 32.9205 1.86675 0.933374 0.358906i \(-0.116850\pi\)
0.933374 + 0.358906i \(0.116850\pi\)
\(312\) −6.89692 −0.390461
\(313\) −29.0462 −1.64179 −0.820895 0.571079i \(-0.806525\pi\)
−0.820895 + 0.571079i \(0.806525\pi\)
\(314\) 10.2341 0.577542
\(315\) 0 0
\(316\) −7.91087 −0.445021
\(317\) 20.6864 1.16186 0.580931 0.813953i \(-0.302688\pi\)
0.580931 + 0.813953i \(0.302688\pi\)
\(318\) 29.9431 1.67913
\(319\) 18.9817 1.06277
\(320\) 0 0
\(321\) −16.5414 −0.923253
\(322\) 2.71096 0.151076
\(323\) 0.896916 0.0499058
\(324\) −5.50479 −0.305822
\(325\) 0 0
\(326\) 6.47689 0.358722
\(327\) 14.5896 0.806804
\(328\) −9.52311 −0.525826
\(329\) −9.00958 −0.496714
\(330\) 0 0
\(331\) 4.02021 0.220971 0.110485 0.993878i \(-0.464759\pi\)
0.110485 + 0.993878i \(0.464759\pi\)
\(332\) 4.20617 0.230843
\(333\) −39.6768 −2.17428
\(334\) −3.84632 −0.210461
\(335\) 0 0
\(336\) −2.27072 −0.123878
\(337\) 2.21386 0.120597 0.0602984 0.998180i \(-0.480795\pi\)
0.0602984 + 0.998180i \(0.480795\pi\)
\(338\) 6.10308 0.331964
\(339\) −27.9065 −1.51567
\(340\) 0 0
\(341\) 18.0279 0.976266
\(342\) 3.49521 0.188999
\(343\) 11.4586 0.618704
\(344\) 7.25240 0.391023
\(345\) 0 0
\(346\) −23.9109 −1.28546
\(347\) −1.37380 −0.0737496 −0.0368748 0.999320i \(-0.511740\pi\)
−0.0368748 + 0.999320i \(0.511740\pi\)
\(348\) 24.9248 1.33611
\(349\) −20.8680 −1.11704 −0.558518 0.829492i \(-0.688630\pi\)
−0.558518 + 0.829492i \(0.688630\pi\)
\(350\) 0 0
\(351\) 6.18596 0.330182
\(352\) −2.00000 −0.106600
\(353\) −13.7572 −0.732221 −0.366111 0.930571i \(-0.619311\pi\)
−0.366111 + 0.930571i \(0.619311\pi\)
\(354\) 10.8969 0.579165
\(355\) 0 0
\(356\) 4.14931 0.219913
\(357\) 2.27072 0.120179
\(358\) 14.7110 0.777498
\(359\) 9.31695 0.491730 0.245865 0.969304i \(-0.420928\pi\)
0.245865 + 0.969304i \(0.420928\pi\)
\(360\) 0 0
\(361\) −18.1955 −0.957660
\(362\) 23.4340 1.23166
\(363\) −18.3834 −0.964878
\(364\) −2.27072 −0.119018
\(365\) 0 0
\(366\) −8.62620 −0.450899
\(367\) 12.3878 0.646636 0.323318 0.946290i \(-0.395202\pi\)
0.323318 + 0.946290i \(0.395202\pi\)
\(368\) 3.13536 0.163442
\(369\) 37.1108 1.93191
\(370\) 0 0
\(371\) 9.85838 0.511822
\(372\) 23.6724 1.22736
\(373\) −23.3169 −1.20731 −0.603653 0.797247i \(-0.706289\pi\)
−0.603653 + 0.797247i \(0.706289\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) −10.4200 −0.537372
\(377\) 24.9248 1.28369
\(378\) 2.03664 0.104754
\(379\) 28.9817 1.48869 0.744344 0.667796i \(-0.232762\pi\)
0.744344 + 0.667796i \(0.232762\pi\)
\(380\) 0 0
\(381\) 37.7003 1.93145
\(382\) −18.5048 −0.946788
\(383\) 14.9527 0.764049 0.382024 0.924152i \(-0.375227\pi\)
0.382024 + 0.924152i \(0.375227\pi\)
\(384\) −2.62620 −0.134018
\(385\) 0 0
\(386\) 5.45856 0.277834
\(387\) −28.2620 −1.43664
\(388\) 6.14931 0.312184
\(389\) −19.3169 −0.979408 −0.489704 0.871889i \(-0.662895\pi\)
−0.489704 + 0.871889i \(0.662895\pi\)
\(390\) 0 0
\(391\) −3.13536 −0.158562
\(392\) 6.25240 0.315794
\(393\) 44.7668 2.25818
\(394\) −13.9388 −0.702225
\(395\) 0 0
\(396\) 7.79383 0.391655
\(397\) 9.57560 0.480586 0.240293 0.970700i \(-0.422757\pi\)
0.240293 + 0.970700i \(0.422757\pi\)
\(398\) 11.2847 0.565649
\(399\) 2.03664 0.101960
\(400\) 0 0
\(401\) 11.3169 0.565141 0.282571 0.959246i \(-0.408813\pi\)
0.282571 + 0.959246i \(0.408813\pi\)
\(402\) 3.28904 0.164042
\(403\) 23.6724 1.17921
\(404\) 0.206167 0.0102572
\(405\) 0 0
\(406\) 8.20617 0.407265
\(407\) −20.3632 −1.00937
\(408\) 2.62620 0.130016
\(409\) −9.10308 −0.450119 −0.225059 0.974345i \(-0.572258\pi\)
−0.225059 + 0.974345i \(0.572258\pi\)
\(410\) 0 0
\(411\) −38.0925 −1.87896
\(412\) −4.77551 −0.235273
\(413\) 3.58767 0.176537
\(414\) −12.2182 −0.600493
\(415\) 0 0
\(416\) −2.62620 −0.128760
\(417\) −38.6339 −1.89191
\(418\) 1.79383 0.0877392
\(419\) −4.02791 −0.196776 −0.0983881 0.995148i \(-0.531369\pi\)
−0.0983881 + 0.995148i \(0.531369\pi\)
\(420\) 0 0
\(421\) 15.2524 0.743356 0.371678 0.928362i \(-0.378782\pi\)
0.371678 + 0.928362i \(0.378782\pi\)
\(422\) 14.8401 0.722403
\(423\) 40.6060 1.97433
\(424\) 11.4017 0.553716
\(425\) 0 0
\(426\) 32.9248 1.59521
\(427\) −2.84006 −0.137440
\(428\) −6.29862 −0.304456
\(429\) 13.7938 0.665973
\(430\) 0 0
\(431\) −4.45231 −0.214460 −0.107230 0.994234i \(-0.534198\pi\)
−0.107230 + 0.994234i \(0.534198\pi\)
\(432\) 2.35548 0.113328
\(433\) 10.7110 0.514736 0.257368 0.966313i \(-0.417145\pi\)
0.257368 + 0.966313i \(0.417145\pi\)
\(434\) 7.79383 0.374116
\(435\) 0 0
\(436\) 5.55539 0.266055
\(437\) −2.81215 −0.134524
\(438\) −6.89692 −0.329547
\(439\) 5.09871 0.243348 0.121674 0.992570i \(-0.461174\pi\)
0.121674 + 0.992570i \(0.461174\pi\)
\(440\) 0 0
\(441\) −24.3651 −1.16024
\(442\) 2.62620 0.124916
\(443\) 10.8034 0.513286 0.256643 0.966506i \(-0.417384\pi\)
0.256643 + 0.966506i \(0.417384\pi\)
\(444\) −26.7389 −1.26897
\(445\) 0 0
\(446\) −3.30925 −0.156698
\(447\) 26.2620 1.24215
\(448\) −0.864641 −0.0408504
\(449\) −5.82174 −0.274745 −0.137372 0.990519i \(-0.543866\pi\)
−0.137372 + 0.990519i \(0.543866\pi\)
\(450\) 0 0
\(451\) 19.0462 0.896852
\(452\) −10.6262 −0.499814
\(453\) −13.6243 −0.640126
\(454\) 24.7187 1.16010
\(455\) 0 0
\(456\) 2.35548 0.110305
\(457\) 13.7014 0.640923 0.320462 0.947261i \(-0.396162\pi\)
0.320462 + 0.947261i \(0.396162\pi\)
\(458\) −4.27072 −0.199558
\(459\) −2.35548 −0.109944
\(460\) 0 0
\(461\) −27.0741 −1.26097 −0.630484 0.776202i \(-0.717144\pi\)
−0.630484 + 0.776202i \(0.717144\pi\)
\(462\) 4.54144 0.211287
\(463\) 37.3372 1.73520 0.867602 0.497258i \(-0.165660\pi\)
0.867602 + 0.497258i \(0.165660\pi\)
\(464\) 9.49084 0.440601
\(465\) 0 0
\(466\) −0.832365 −0.0385586
\(467\) 35.3449 1.63556 0.817782 0.575528i \(-0.195203\pi\)
0.817782 + 0.575528i \(0.195203\pi\)
\(468\) 10.2341 0.473070
\(469\) 1.08287 0.0500024
\(470\) 0 0
\(471\) −26.8767 −1.23841
\(472\) 4.14931 0.190988
\(473\) −14.5048 −0.666931
\(474\) 20.7755 0.954251
\(475\) 0 0
\(476\) 0.864641 0.0396308
\(477\) −44.4315 −2.03438
\(478\) 4.71096 0.215474
\(479\) 31.0419 1.41834 0.709169 0.705038i \(-0.249070\pi\)
0.709169 + 0.705038i \(0.249070\pi\)
\(480\) 0 0
\(481\) −26.7389 −1.21919
\(482\) 23.4865 1.06978
\(483\) −7.11952 −0.323949
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) 21.5231 0.976308
\(487\) 13.1633 0.596485 0.298242 0.954490i \(-0.403600\pi\)
0.298242 + 0.954490i \(0.403600\pi\)
\(488\) −3.28467 −0.148690
\(489\) −17.0096 −0.769200
\(490\) 0 0
\(491\) 24.3555 1.09915 0.549574 0.835445i \(-0.314790\pi\)
0.549574 + 0.835445i \(0.314790\pi\)
\(492\) 25.0096 1.12752
\(493\) −9.49084 −0.427446
\(494\) 2.35548 0.105978
\(495\) 0 0
\(496\) 9.01395 0.404738
\(497\) 10.8401 0.486243
\(498\) −11.0462 −0.494993
\(499\) 36.2620 1.62331 0.811655 0.584138i \(-0.198567\pi\)
0.811655 + 0.584138i \(0.198567\pi\)
\(500\) 0 0
\(501\) 10.1012 0.451288
\(502\) 6.29862 0.281121
\(503\) −42.3511 −1.88834 −0.944171 0.329455i \(-0.893135\pi\)
−0.944171 + 0.329455i \(0.893135\pi\)
\(504\) 3.36943 0.150086
\(505\) 0 0
\(506\) −6.27072 −0.278767
\(507\) −16.0279 −0.711824
\(508\) 14.3555 0.636921
\(509\) −1.70138 −0.0754121 −0.0377061 0.999289i \(-0.512005\pi\)
−0.0377061 + 0.999289i \(0.512005\pi\)
\(510\) 0 0
\(511\) −2.27072 −0.100451
\(512\) −1.00000 −0.0441942
\(513\) −2.11267 −0.0932766
\(514\) 1.49521 0.0659508
\(515\) 0 0
\(516\) −19.0462 −0.838463
\(517\) 20.8401 0.916545
\(518\) −8.80342 −0.386800
\(519\) 62.7947 2.75638
\(520\) 0 0
\(521\) 3.01832 0.132235 0.0661175 0.997812i \(-0.478939\pi\)
0.0661175 + 0.997812i \(0.478939\pi\)
\(522\) −36.9850 −1.61879
\(523\) −5.79383 −0.253347 −0.126673 0.991944i \(-0.540430\pi\)
−0.126673 + 0.991944i \(0.540430\pi\)
\(524\) 17.0462 0.744668
\(525\) 0 0
\(526\) 9.94315 0.433542
\(527\) −9.01395 −0.392654
\(528\) 5.25240 0.228581
\(529\) −13.1695 −0.572588
\(530\) 0 0
\(531\) −16.1695 −0.701698
\(532\) 0.775511 0.0336226
\(533\) 25.0096 1.08329
\(534\) −10.8969 −0.471556
\(535\) 0 0
\(536\) 1.25240 0.0540953
\(537\) −38.6339 −1.66718
\(538\) −1.96772 −0.0848346
\(539\) −12.5048 −0.538620
\(540\) 0 0
\(541\) 0.258654 0.0111204 0.00556019 0.999985i \(-0.498230\pi\)
0.00556019 + 0.999985i \(0.498230\pi\)
\(542\) −8.84006 −0.379713
\(543\) −61.5423 −2.64103
\(544\) 1.00000 0.0428746
\(545\) 0 0
\(546\) 5.96336 0.255208
\(547\) 32.4113 1.38581 0.692903 0.721030i \(-0.256331\pi\)
0.692903 + 0.721030i \(0.256331\pi\)
\(548\) −14.5048 −0.619614
\(549\) 12.8001 0.546295
\(550\) 0 0
\(551\) −8.51249 −0.362644
\(552\) −8.23407 −0.350465
\(553\) 6.84006 0.290869
\(554\) 19.8463 0.843189
\(555\) 0 0
\(556\) −14.7110 −0.623884
\(557\) −22.9248 −0.971356 −0.485678 0.874138i \(-0.661427\pi\)
−0.485678 + 0.874138i \(0.661427\pi\)
\(558\) −35.1266 −1.48703
\(559\) −19.0462 −0.805570
\(560\) 0 0
\(561\) −5.25240 −0.221756
\(562\) 11.9065 0.502245
\(563\) 17.8863 0.753817 0.376909 0.926250i \(-0.376987\pi\)
0.376909 + 0.926250i \(0.376987\pi\)
\(564\) 27.3651 1.15228
\(565\) 0 0
\(566\) −13.7370 −0.577408
\(567\) 4.75967 0.199887
\(568\) 12.5371 0.526044
\(569\) 12.3555 0.517969 0.258984 0.965882i \(-0.416612\pi\)
0.258984 + 0.965882i \(0.416612\pi\)
\(570\) 0 0
\(571\) −27.3169 −1.14318 −0.571589 0.820540i \(-0.693673\pi\)
−0.571589 + 0.820540i \(0.693673\pi\)
\(572\) 5.25240 0.219614
\(573\) 48.5972 2.03018
\(574\) 8.23407 0.343684
\(575\) 0 0
\(576\) 3.89692 0.162372
\(577\) 10.6339 0.442695 0.221347 0.975195i \(-0.428955\pi\)
0.221347 + 0.975195i \(0.428955\pi\)
\(578\) −1.00000 −0.0415945
\(579\) −14.3353 −0.595753
\(580\) 0 0
\(581\) −3.63682 −0.150881
\(582\) −16.1493 −0.669411
\(583\) −22.8034 −0.944421
\(584\) −2.62620 −0.108673
\(585\) 0 0
\(586\) 12.1772 0.503036
\(587\) −22.3757 −0.923544 −0.461772 0.886999i \(-0.652786\pi\)
−0.461772 + 0.886999i \(0.652786\pi\)
\(588\) −16.4200 −0.677151
\(589\) −8.08476 −0.333127
\(590\) 0 0
\(591\) 36.6060 1.50577
\(592\) −10.1816 −0.418461
\(593\) 12.1695 0.499742 0.249871 0.968279i \(-0.419612\pi\)
0.249871 + 0.968279i \(0.419612\pi\)
\(594\) −4.71096 −0.193293
\(595\) 0 0
\(596\) 10.0000 0.409616
\(597\) −29.6358 −1.21291
\(598\) −8.23407 −0.336716
\(599\) −25.1387 −1.02714 −0.513569 0.858048i \(-0.671677\pi\)
−0.513569 + 0.858048i \(0.671677\pi\)
\(600\) 0 0
\(601\) −4.50479 −0.183754 −0.0918772 0.995770i \(-0.529287\pi\)
−0.0918772 + 0.995770i \(0.529287\pi\)
\(602\) −6.27072 −0.255575
\(603\) −4.88048 −0.198749
\(604\) −5.18785 −0.211090
\(605\) 0 0
\(606\) −0.541436 −0.0219944
\(607\) 7.00626 0.284375 0.142188 0.989840i \(-0.454586\pi\)
0.142188 + 0.989840i \(0.454586\pi\)
\(608\) 0.896916 0.0363748
\(609\) −21.5510 −0.873291
\(610\) 0 0
\(611\) 27.3651 1.10707
\(612\) −3.89692 −0.157524
\(613\) −7.46626 −0.301559 −0.150780 0.988567i \(-0.548178\pi\)
−0.150780 + 0.988567i \(0.548178\pi\)
\(614\) −23.7938 −0.960241
\(615\) 0 0
\(616\) 1.72928 0.0696747
\(617\) −36.1772 −1.45644 −0.728220 0.685343i \(-0.759652\pi\)
−0.728220 + 0.685343i \(0.759652\pi\)
\(618\) 12.5414 0.504491
\(619\) −4.27072 −0.171655 −0.0858273 0.996310i \(-0.527353\pi\)
−0.0858273 + 0.996310i \(0.527353\pi\)
\(620\) 0 0
\(621\) 7.38528 0.296361
\(622\) −32.9205 −1.31999
\(623\) −3.58767 −0.143737
\(624\) 6.89692 0.276098
\(625\) 0 0
\(626\) 29.0462 1.16092
\(627\) −4.71096 −0.188138
\(628\) −10.2341 −0.408384
\(629\) 10.1816 0.405966
\(630\) 0 0
\(631\) 26.0279 1.03615 0.518077 0.855334i \(-0.326648\pi\)
0.518077 + 0.855334i \(0.326648\pi\)
\(632\) 7.91087 0.314677
\(633\) −38.9729 −1.54904
\(634\) −20.6864 −0.821561
\(635\) 0 0
\(636\) −29.9431 −1.18732
\(637\) −16.4200 −0.650585
\(638\) −18.9817 −0.751492
\(639\) −48.8559 −1.93271
\(640\) 0 0
\(641\) 12.6831 0.500950 0.250475 0.968123i \(-0.419413\pi\)
0.250475 + 0.968123i \(0.419413\pi\)
\(642\) 16.5414 0.652838
\(643\) −25.1108 −0.990272 −0.495136 0.868815i \(-0.664882\pi\)
−0.495136 + 0.868815i \(0.664882\pi\)
\(644\) −2.71096 −0.106827
\(645\) 0 0
\(646\) −0.896916 −0.0352887
\(647\) −38.0635 −1.49643 −0.748215 0.663456i \(-0.769089\pi\)
−0.748215 + 0.663456i \(0.769089\pi\)
\(648\) 5.50479 0.216249
\(649\) −8.29862 −0.325750
\(650\) 0 0
\(651\) −20.4681 −0.802210
\(652\) −6.47689 −0.253654
\(653\) −45.2682 −1.77148 −0.885742 0.464179i \(-0.846350\pi\)
−0.885742 + 0.464179i \(0.846350\pi\)
\(654\) −14.5896 −0.570497
\(655\) 0 0
\(656\) 9.52311 0.371815
\(657\) 10.2341 0.399269
\(658\) 9.00958 0.351230
\(659\) 40.7466 1.58726 0.793630 0.608400i \(-0.208188\pi\)
0.793630 + 0.608400i \(0.208188\pi\)
\(660\) 0 0
\(661\) 2.53270 0.0985106 0.0492553 0.998786i \(-0.484315\pi\)
0.0492553 + 0.998786i \(0.484315\pi\)
\(662\) −4.02021 −0.156250
\(663\) −6.89692 −0.267854
\(664\) −4.20617 −0.163231
\(665\) 0 0
\(666\) 39.6768 1.53744
\(667\) 29.7572 1.15220
\(668\) 3.84632 0.148819
\(669\) 8.69075 0.336004
\(670\) 0 0
\(671\) 6.56934 0.253607
\(672\) 2.27072 0.0875949
\(673\) 37.0818 1.42940 0.714700 0.699431i \(-0.246563\pi\)
0.714700 + 0.699431i \(0.246563\pi\)
\(674\) −2.21386 −0.0852748
\(675\) 0 0
\(676\) −6.10308 −0.234734
\(677\) 44.3790 1.70562 0.852812 0.522218i \(-0.174895\pi\)
0.852812 + 0.522218i \(0.174895\pi\)
\(678\) 27.9065 1.07174
\(679\) −5.31695 −0.204046
\(680\) 0 0
\(681\) −64.9161 −2.48759
\(682\) −18.0279 −0.690324
\(683\) −7.46626 −0.285688 −0.142844 0.989745i \(-0.545625\pi\)
−0.142844 + 0.989745i \(0.545625\pi\)
\(684\) −3.49521 −0.133643
\(685\) 0 0
\(686\) −11.4586 −0.437490
\(687\) 11.2158 0.427908
\(688\) −7.25240 −0.276495
\(689\) −29.9431 −1.14074
\(690\) 0 0
\(691\) 26.8959 1.02317 0.511584 0.859233i \(-0.329059\pi\)
0.511584 + 0.859233i \(0.329059\pi\)
\(692\) 23.9109 0.908955
\(693\) −6.73887 −0.255988
\(694\) 1.37380 0.0521488
\(695\) 0 0
\(696\) −24.9248 −0.944773
\(697\) −9.52311 −0.360714
\(698\) 20.8680 0.789864
\(699\) 2.18596 0.0826805
\(700\) 0 0
\(701\) 23.7938 0.898681 0.449340 0.893361i \(-0.351659\pi\)
0.449340 + 0.893361i \(0.351659\pi\)
\(702\) −6.18596 −0.233474
\(703\) 9.13203 0.344421
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) 13.7572 0.517759
\(707\) −0.178261 −0.00670419
\(708\) −10.8969 −0.409531
\(709\) −17.0140 −0.638972 −0.319486 0.947591i \(-0.603510\pi\)
−0.319486 + 0.947591i \(0.603510\pi\)
\(710\) 0 0
\(711\) −30.8280 −1.15614
\(712\) −4.14931 −0.155502
\(713\) 28.2620 1.05842
\(714\) −2.27072 −0.0849795
\(715\) 0 0
\(716\) −14.7110 −0.549774
\(717\) −12.3719 −0.462038
\(718\) −9.31695 −0.347705
\(719\) −23.8665 −0.890071 −0.445036 0.895513i \(-0.646809\pi\)
−0.445036 + 0.895513i \(0.646809\pi\)
\(720\) 0 0
\(721\) 4.12910 0.153776
\(722\) 18.1955 0.677168
\(723\) −61.6801 −2.29391
\(724\) −23.4340 −0.870917
\(725\) 0 0
\(726\) 18.3834 0.682271
\(727\) 28.3834 1.05268 0.526341 0.850274i \(-0.323564\pi\)
0.526341 + 0.850274i \(0.323564\pi\)
\(728\) 2.27072 0.0841584
\(729\) −40.0096 −1.48184
\(730\) 0 0
\(731\) 7.25240 0.268240
\(732\) 8.62620 0.318833
\(733\) 28.2216 1.04239 0.521194 0.853439i \(-0.325487\pi\)
0.521194 + 0.853439i \(0.325487\pi\)
\(734\) −12.3878 −0.457240
\(735\) 0 0
\(736\) −3.13536 −0.115571
\(737\) −2.50479 −0.0922652
\(738\) −37.1108 −1.36607
\(739\) 0.226378 0.00832746 0.00416373 0.999991i \(-0.498675\pi\)
0.00416373 + 0.999991i \(0.498675\pi\)
\(740\) 0 0
\(741\) −6.18596 −0.227247
\(742\) −9.85838 −0.361913
\(743\) 47.6035 1.74640 0.873202 0.487359i \(-0.162040\pi\)
0.873202 + 0.487359i \(0.162040\pi\)
\(744\) −23.6724 −0.867873
\(745\) 0 0
\(746\) 23.3169 0.853694
\(747\) 16.3911 0.599718
\(748\) −2.00000 −0.0731272
\(749\) 5.44605 0.198994
\(750\) 0 0
\(751\) 0.124733 0.00455157 0.00227578 0.999997i \(-0.499276\pi\)
0.00227578 + 0.999997i \(0.499276\pi\)
\(752\) 10.4200 0.379979
\(753\) −16.5414 −0.602803
\(754\) −24.9248 −0.907709
\(755\) 0 0
\(756\) −2.03664 −0.0740720
\(757\) 33.7774 1.22766 0.613830 0.789438i \(-0.289628\pi\)
0.613830 + 0.789438i \(0.289628\pi\)
\(758\) −28.9817 −1.05266
\(759\) 16.4681 0.597756
\(760\) 0 0
\(761\) 11.4219 0.414044 0.207022 0.978336i \(-0.433623\pi\)
0.207022 + 0.978336i \(0.433623\pi\)
\(762\) −37.7003 −1.36574
\(763\) −4.80342 −0.173895
\(764\) 18.5048 0.669480
\(765\) 0 0
\(766\) −14.9527 −0.540264
\(767\) −10.8969 −0.393465
\(768\) 2.62620 0.0947648
\(769\) 12.1127 0.436794 0.218397 0.975860i \(-0.429917\pi\)
0.218397 + 0.975860i \(0.429917\pi\)
\(770\) 0 0
\(771\) −3.92671 −0.141417
\(772\) −5.45856 −0.196458
\(773\) 37.4586 1.34729 0.673645 0.739055i \(-0.264728\pi\)
0.673645 + 0.739055i \(0.264728\pi\)
\(774\) 28.2620 1.01586
\(775\) 0 0
\(776\) −6.14931 −0.220747
\(777\) 23.1195 0.829408
\(778\) 19.3169 0.692546
\(779\) −8.54144 −0.306029
\(780\) 0 0
\(781\) −25.0741 −0.897223
\(782\) 3.13536 0.112120
\(783\) 22.3555 0.798920
\(784\) −6.25240 −0.223300
\(785\) 0 0
\(786\) −44.7668 −1.59678
\(787\) −25.0664 −0.893522 −0.446761 0.894653i \(-0.647423\pi\)
−0.446761 + 0.894653i \(0.647423\pi\)
\(788\) 13.9388 0.496548
\(789\) −26.1127 −0.929636
\(790\) 0 0
\(791\) 9.18785 0.326682
\(792\) −7.79383 −0.276942
\(793\) 8.62620 0.306325
\(794\) −9.57560 −0.339825
\(795\) 0 0
\(796\) −11.2847 −0.399975
\(797\) −19.5510 −0.692533 −0.346266 0.938136i \(-0.612551\pi\)
−0.346266 + 0.938136i \(0.612551\pi\)
\(798\) −2.03664 −0.0720964
\(799\) −10.4200 −0.368634
\(800\) 0 0
\(801\) 16.1695 0.571322
\(802\) −11.3169 −0.399615
\(803\) 5.25240 0.185353
\(804\) −3.28904 −0.115996
\(805\) 0 0
\(806\) −23.6724 −0.833826
\(807\) 5.16763 0.181909
\(808\) −0.206167 −0.00725294
\(809\) 20.1974 0.710104 0.355052 0.934847i \(-0.384463\pi\)
0.355052 + 0.934847i \(0.384463\pi\)
\(810\) 0 0
\(811\) 28.1570 0.988726 0.494363 0.869255i \(-0.335401\pi\)
0.494363 + 0.869255i \(0.335401\pi\)
\(812\) −8.20617 −0.287980
\(813\) 23.2158 0.814212
\(814\) 20.3632 0.713729
\(815\) 0 0
\(816\) −2.62620 −0.0919353
\(817\) 6.50479 0.227574
\(818\) 9.10308 0.318282
\(819\) −8.84880 −0.309202
\(820\) 0 0
\(821\) −51.2759 −1.78954 −0.894771 0.446525i \(-0.852661\pi\)
−0.894771 + 0.446525i \(0.852661\pi\)
\(822\) 38.0925 1.32863
\(823\) 52.9850 1.84694 0.923471 0.383669i \(-0.125340\pi\)
0.923471 + 0.383669i \(0.125340\pi\)
\(824\) 4.77551 0.166363
\(825\) 0 0
\(826\) −3.58767 −0.124831
\(827\) 39.7205 1.38122 0.690609 0.723228i \(-0.257342\pi\)
0.690609 + 0.723228i \(0.257342\pi\)
\(828\) 12.2182 0.424613
\(829\) 23.0096 0.799156 0.399578 0.916699i \(-0.369157\pi\)
0.399578 + 0.916699i \(0.369157\pi\)
\(830\) 0 0
\(831\) −52.1204 −1.80804
\(832\) 2.62620 0.0910470
\(833\) 6.25240 0.216633
\(834\) 38.6339 1.33778
\(835\) 0 0
\(836\) −1.79383 −0.0620410
\(837\) 21.2322 0.733892
\(838\) 4.02791 0.139142
\(839\) 2.39545 0.0827002 0.0413501 0.999145i \(-0.486834\pi\)
0.0413501 + 0.999145i \(0.486834\pi\)
\(840\) 0 0
\(841\) 61.0760 2.10607
\(842\) −15.2524 −0.525632
\(843\) −31.2688 −1.07696
\(844\) −14.8401 −0.510816
\(845\) 0 0
\(846\) −40.6060 −1.39606
\(847\) 6.05249 0.207966
\(848\) −11.4017 −0.391536
\(849\) 36.0760 1.23813
\(850\) 0 0
\(851\) −31.9229 −1.09430
\(852\) −32.9248 −1.12799
\(853\) −2.24614 −0.0769063 −0.0384532 0.999260i \(-0.512243\pi\)
−0.0384532 + 0.999260i \(0.512243\pi\)
\(854\) 2.84006 0.0971849
\(855\) 0 0
\(856\) 6.29862 0.215283
\(857\) −18.3188 −0.625760 −0.312880 0.949793i \(-0.601294\pi\)
−0.312880 + 0.949793i \(0.601294\pi\)
\(858\) −13.7938 −0.470914
\(859\) −42.1127 −1.43687 −0.718433 0.695596i \(-0.755140\pi\)
−0.718433 + 0.695596i \(0.755140\pi\)
\(860\) 0 0
\(861\) −21.6243 −0.736954
\(862\) 4.45231 0.151646
\(863\) 44.8313 1.52608 0.763038 0.646354i \(-0.223707\pi\)
0.763038 + 0.646354i \(0.223707\pi\)
\(864\) −2.35548 −0.0801351
\(865\) 0 0
\(866\) −10.7110 −0.363973
\(867\) 2.62620 0.0891904
\(868\) −7.79383 −0.264540
\(869\) −15.8217 −0.536716
\(870\) 0 0
\(871\) −3.28904 −0.111445
\(872\) −5.55539 −0.188129
\(873\) 23.9634 0.811037
\(874\) 2.81215 0.0951226
\(875\) 0 0
\(876\) 6.89692 0.233025
\(877\) 2.29530 0.0775067 0.0387533 0.999249i \(-0.487661\pi\)
0.0387533 + 0.999249i \(0.487661\pi\)
\(878\) −5.09871 −0.172073
\(879\) −31.9798 −1.07865
\(880\) 0 0
\(881\) −20.9171 −0.704716 −0.352358 0.935865i \(-0.614620\pi\)
−0.352358 + 0.935865i \(0.614620\pi\)
\(882\) 24.3651 0.820414
\(883\) −26.6743 −0.897662 −0.448831 0.893617i \(-0.648160\pi\)
−0.448831 + 0.893617i \(0.648160\pi\)
\(884\) −2.62620 −0.0883286
\(885\) 0 0
\(886\) −10.8034 −0.362948
\(887\) −29.1633 −0.979207 −0.489603 0.871945i \(-0.662858\pi\)
−0.489603 + 0.871945i \(0.662858\pi\)
\(888\) 26.7389 0.897298
\(889\) −12.4123 −0.416296
\(890\) 0 0
\(891\) −11.0096 −0.368835
\(892\) 3.30925 0.110802
\(893\) −9.34590 −0.312748
\(894\) −26.2620 −0.878332
\(895\) 0 0
\(896\) 0.864641 0.0288856
\(897\) 21.6243 0.722015
\(898\) 5.82174 0.194274
\(899\) 85.5500 2.85325
\(900\) 0 0
\(901\) 11.4017 0.379846
\(902\) −19.0462 −0.634170
\(903\) 16.4681 0.548026
\(904\) 10.6262 0.353422
\(905\) 0 0
\(906\) 13.6243 0.452637
\(907\) 23.2322 0.771412 0.385706 0.922622i \(-0.373958\pi\)
0.385706 + 0.922622i \(0.373958\pi\)
\(908\) −24.7187 −0.820317
\(909\) 0.803417 0.0266477
\(910\) 0 0
\(911\) −20.8646 −0.691276 −0.345638 0.938368i \(-0.612338\pi\)
−0.345638 + 0.938368i \(0.612338\pi\)
\(912\) −2.35548 −0.0779977
\(913\) 8.41233 0.278408
\(914\) −13.7014 −0.453201
\(915\) 0 0
\(916\) 4.27072 0.141109
\(917\) −14.7389 −0.486720
\(918\) 2.35548 0.0777424
\(919\) 18.2062 0.600566 0.300283 0.953850i \(-0.402919\pi\)
0.300283 + 0.953850i \(0.402919\pi\)
\(920\) 0 0
\(921\) 62.4873 2.05903
\(922\) 27.0741 0.891639
\(923\) −32.9248 −1.08373
\(924\) −4.54144 −0.149402
\(925\) 0 0
\(926\) −37.3372 −1.22698
\(927\) −18.6098 −0.611225
\(928\) −9.49084 −0.311552
\(929\) 17.2803 0.566948 0.283474 0.958980i \(-0.408513\pi\)
0.283474 + 0.958980i \(0.408513\pi\)
\(930\) 0 0
\(931\) 5.60788 0.183791
\(932\) 0.832365 0.0272650
\(933\) 86.4556 2.83043
\(934\) −35.3449 −1.15652
\(935\) 0 0
\(936\) −10.2341 −0.334511
\(937\) 50.2986 1.64318 0.821592 0.570076i \(-0.193086\pi\)
0.821592 + 0.570076i \(0.193086\pi\)
\(938\) −1.08287 −0.0353571
\(939\) −76.2811 −2.48934
\(940\) 0 0
\(941\) 20.7153 0.675300 0.337650 0.941272i \(-0.390368\pi\)
0.337650 + 0.941272i \(0.390368\pi\)
\(942\) 26.8767 0.875690
\(943\) 29.8584 0.972323
\(944\) −4.14931 −0.135049
\(945\) 0 0
\(946\) 14.5048 0.471591
\(947\) −8.89692 −0.289111 −0.144555 0.989497i \(-0.546175\pi\)
−0.144555 + 0.989497i \(0.546175\pi\)
\(948\) −20.7755 −0.674757
\(949\) 6.89692 0.223883
\(950\) 0 0
\(951\) 54.3265 1.76166
\(952\) −0.864641 −0.0280232
\(953\) 17.2158 0.557673 0.278836 0.960339i \(-0.410051\pi\)
0.278836 + 0.960339i \(0.410051\pi\)
\(954\) 44.4315 1.43852
\(955\) 0 0
\(956\) −4.71096 −0.152363
\(957\) 49.8496 1.61141
\(958\) −31.0419 −1.00292
\(959\) 12.5414 0.404984
\(960\) 0 0
\(961\) 50.2514 1.62101
\(962\) 26.7389 0.862096
\(963\) −24.5452 −0.790958
\(964\) −23.4865 −0.756448
\(965\) 0 0
\(966\) 7.11952 0.229067
\(967\) 1.90754 0.0613424 0.0306712 0.999530i \(-0.490236\pi\)
0.0306712 + 0.999530i \(0.490236\pi\)
\(968\) 7.00000 0.224989
\(969\) 2.35548 0.0756689
\(970\) 0 0
\(971\) −4.97398 −0.159623 −0.0798113 0.996810i \(-0.525432\pi\)
−0.0798113 + 0.996810i \(0.525432\pi\)
\(972\) −21.5231 −0.690354
\(973\) 12.7197 0.407775
\(974\) −13.1633 −0.421778
\(975\) 0 0
\(976\) 3.28467 0.105140
\(977\) 51.2716 1.64032 0.820161 0.572132i \(-0.193884\pi\)
0.820161 + 0.572132i \(0.193884\pi\)
\(978\) 17.0096 0.543907
\(979\) 8.29862 0.265225
\(980\) 0 0
\(981\) 21.6489 0.691196
\(982\) −24.3555 −0.777215
\(983\) 9.88296 0.315218 0.157609 0.987502i \(-0.449622\pi\)
0.157609 + 0.987502i \(0.449622\pi\)
\(984\) −25.0096 −0.797276
\(985\) 0 0
\(986\) 9.49084 0.302250
\(987\) −23.6610 −0.753136
\(988\) −2.35548 −0.0749378
\(989\) −22.7389 −0.723054
\(990\) 0 0
\(991\) −37.7807 −1.20014 −0.600072 0.799946i \(-0.704861\pi\)
−0.600072 + 0.799946i \(0.704861\pi\)
\(992\) −9.01395 −0.286193
\(993\) 10.5579 0.335044
\(994\) −10.8401 −0.343826
\(995\) 0 0
\(996\) 11.0462 0.350013
\(997\) −8.14494 −0.257953 −0.128976 0.991648i \(-0.541169\pi\)
−0.128976 + 0.991648i \(0.541169\pi\)
\(998\) −36.2620 −1.14785
\(999\) −23.9825 −0.758774
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.a.p.1.3 3
3.2 odd 2 7650.2.a.do.1.2 3
4.3 odd 2 6800.2.a.bp.1.1 3
5.2 odd 4 170.2.c.b.69.1 6
5.3 odd 4 170.2.c.b.69.6 yes 6
5.4 even 2 850.2.a.q.1.1 3
15.2 even 4 1530.2.d.g.919.6 6
15.8 even 4 1530.2.d.g.919.3 6
15.14 odd 2 7650.2.a.dj.1.2 3
20.3 even 4 1360.2.e.c.1089.2 6
20.7 even 4 1360.2.e.c.1089.5 6
20.19 odd 2 6800.2.a.bk.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.c.b.69.1 6 5.2 odd 4
170.2.c.b.69.6 yes 6 5.3 odd 4
850.2.a.p.1.3 3 1.1 even 1 trivial
850.2.a.q.1.1 3 5.4 even 2
1360.2.e.c.1089.2 6 20.3 even 4
1360.2.e.c.1089.5 6 20.7 even 4
1530.2.d.g.919.3 6 15.8 even 4
1530.2.d.g.919.6 6 15.2 even 4
6800.2.a.bk.1.3 3 20.19 odd 2
6800.2.a.bp.1.1 3 4.3 odd 2
7650.2.a.dj.1.2 3 15.14 odd 2
7650.2.a.do.1.2 3 3.2 odd 2