Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [768,2,Mod(767,768)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(768, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("768.767");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 768 = 2^{8} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 768.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.13251087523\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-2}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 2 \) |
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 384) |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
Embedding invariants
Embedding label | 767.2 | ||
Root | \(1.41421i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 768.767 |
Dual form | 768.2.c.d.767.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).
\(n\) | \(257\) | \(511\) | \(517\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 1.00000 | + | 1.41421i | 0.577350 | + | 0.816497i | ||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −1.00000 | + | 2.82843i | −0.333333 | + | 0.942809i | ||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −6.00000 | −1.80907 | −0.904534 | − | 0.426401i | \(-0.859781\pi\) | ||||
−0.904534 | + | 0.426401i | \(0.859781\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 5.65685i | 1.37199i | 0.727607 | + | 0.685994i | \(0.240633\pi\) | ||||
−0.727607 | + | 0.685994i | \(0.759367\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 8.48528i | 1.94666i | 0.229416 | + | 0.973329i | \(0.426318\pi\) | ||||
−0.229416 | + | 0.973329i | \(0.573682\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 5.00000 | 1.00000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | −5.00000 | + | 1.41421i | −0.962250 | + | 0.272166i | ||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | −6.00000 | − | 8.48528i | −1.04447 | − | 1.47710i | ||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | − | 11.3137i | − | 1.76690i | −0.468521 | − | 0.883452i | \(-0.655213\pi\) | ||
0.468521 | − | 0.883452i | \(-0.344787\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 8.48528i | 1.29399i | 0.762493 | + | 0.646997i | \(0.223975\pi\) | ||||
−0.762493 | + | 0.646997i | \(0.776025\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 7.00000 | 1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | −8.00000 | + | 5.65685i | −1.12022 | + | 0.792118i | ||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | −12.0000 | + | 8.48528i | −1.58944 | + | 1.12390i | ||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 6.00000 | 0.781133 | 0.390567 | − | 0.920575i | \(-0.372279\pi\) | ||||
0.390567 | + | 0.920575i | \(0.372279\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − | 8.48528i | − | 1.03664i | −0.855186 | − | 0.518321i | \(-0.826557\pi\) | ||
0.855186 | − | 0.518321i | \(-0.173443\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000 | 0.234082 | 0.117041 | − | 0.993127i | \(-0.462659\pi\) | ||||
0.117041 | + | 0.993127i | \(0.462659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 5.00000 | + | 7.07107i | 0.577350 | + | 0.816497i | ||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | −7.00000 | − | 5.65685i | −0.777778 | − | 0.628539i | ||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −18.0000 | −1.97576 | −0.987878 | − | 0.155230i | \(-0.950388\pi\) | ||||
−0.987878 | + | 0.155230i | \(0.950388\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − | 5.65685i | − | 0.599625i | −0.953998 | − | 0.299813i | \(-0.903076\pi\) | ||
0.953998 | − | 0.299813i | \(-0.0969242\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 10.0000 | 1.01535 | 0.507673 | − | 0.861550i | \(-0.330506\pi\) | ||||
0.507673 | + | 0.861550i | \(0.330506\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 6.00000 | − | 16.9706i | 0.603023 | − | 1.70561i | ||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 6.00000 | 0.580042 | 0.290021 | − | 0.957020i | \(-0.406338\pi\) | ||||
0.290021 | + | 0.957020i | \(0.406338\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 11.3137i | 1.06430i | 0.846649 | + | 0.532152i | \(0.178617\pi\) | ||||
−0.846649 | + | 0.532152i | \(0.821383\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 25.0000 | 2.27273 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 16.0000 | − | 11.3137i | 1.44267 | − | 1.02012i | ||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | −12.0000 | + | 8.48528i | −1.05654 | + | 0.747087i | ||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 18.0000 | 1.57267 | 0.786334 | − | 0.617802i | \(-0.211977\pi\) | ||||
0.786334 | + | 0.617802i | \(0.211977\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 22.6274i | 1.93319i | 0.256307 | + | 0.966595i | \(0.417494\pi\) | ||||
−0.256307 | + | 0.966595i | \(0.582506\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | − | 8.48528i | − | 0.719712i | −0.933008 | − | 0.359856i | \(-0.882826\pi\) | ||
0.933008 | − | 0.359856i | \(-0.117174\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 7.00000 | + | 9.89949i | 0.577350 | + | 0.816497i | ||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | −16.0000 | − | 5.65685i | −1.29352 | − | 0.457330i | ||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − | 25.4558i | − | 1.99386i | −0.0783260 | − | 0.996928i | \(-0.524958\pi\) | ||
0.0783260 | − | 0.996928i | \(-0.475042\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −13.0000 | −1.00000 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −24.0000 | − | 8.48528i | −1.83533 | − | 0.648886i | ||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 6.00000 | + | 8.48528i | 0.450988 | + | 0.637793i | ||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 18.0000 | 1.34538 | 0.672692 | − | 0.739923i | \(-0.265138\pi\) | ||||
0.672692 | + | 0.739923i | \(0.265138\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − | 33.9411i | − | 2.48202i | ||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 22.0000 | 1.58359 | 0.791797 | − | 0.610784i | \(-0.209146\pi\) | ||||
0.791797 | + | 0.610784i | \(0.209146\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 12.0000 | − | 8.48528i | 0.846415 | − | 0.598506i | ||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | − | 50.9117i | − | 3.52164i | ||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 25.4558i | 1.75245i | 0.481900 | + | 0.876226i | \(0.339947\pi\) | ||||
−0.481900 | + | 0.876226i | \(0.660053\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 2.00000 | + | 2.82843i | 0.135147 | + | 0.191127i | ||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | −5.00000 | + | 14.1421i | −0.333333 | + | 0.942809i | ||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 30.0000 | 1.99117 | 0.995585 | − | 0.0938647i | \(-0.0299221\pi\) | ||||
0.995585 | + | 0.0938647i | \(0.0299221\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − | 5.65685i | − | 0.370593i | −0.982683 | − | 0.185296i | \(-0.940675\pi\) | ||
0.982683 | − | 0.185296i | \(-0.0593245\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −26.0000 | −1.67481 | −0.837404 | − | 0.546585i | \(-0.815928\pi\) | ||||
−0.837404 | + | 0.546585i | \(0.815928\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 1.00000 | − | 15.5563i | 0.0641500 | − | 0.997940i | ||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | −18.0000 | − | 25.4558i | −1.14070 | − | 1.61320i | ||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −6.00000 | −0.378717 | −0.189358 | − | 0.981908i | \(-0.560641\pi\) | ||||
−0.189358 | + | 0.981908i | \(0.560641\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 11.3137i | 0.705730i | 0.935674 | + | 0.352865i | \(0.114792\pi\) | ||||
−0.935674 | + | 0.352865i | \(0.885208\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 8.00000 | − | 5.65685i | 0.489592 | − | 0.346194i | ||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −30.0000 | −1.80907 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 28.2843i | 1.68730i | 0.536895 | + | 0.843649i | \(0.319597\pi\) | ||||
−0.536895 | + | 0.843649i | \(0.680403\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 25.4558i | 1.51319i | 0.653882 | + | 0.756596i | \(0.273139\pi\) | ||||
−0.653882 | + | 0.756596i | \(0.726861\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −15.0000 | −0.882353 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 10.0000 | + | 14.1421i | 0.586210 | + | 0.829027i | ||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 30.0000 | − | 8.48528i | 1.74078 | − | 0.492366i | ||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − | 8.48528i | − | 0.484281i | −0.970241 | − | 0.242140i | \(-0.922151\pi\) | ||
0.970241 | − | 0.242140i | \(-0.0778494\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 10.0000 | 0.565233 | 0.282617 | − | 0.959233i | \(-0.408798\pi\) | ||||
0.282617 | + | 0.959233i | \(0.408798\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 6.00000 | + | 8.48528i | 0.334887 | + | 0.473602i | ||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −48.0000 | −2.67079 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 25.4558i | 1.39918i | 0.714545 | + | 0.699590i | \(0.246634\pi\) | ||||
−0.714545 | + | 0.699590i | \(0.753366\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 14.0000 | 0.762629 | 0.381314 | − | 0.924445i | \(-0.375472\pi\) | ||||
0.381314 | + | 0.924445i | \(0.375472\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | −16.0000 | + | 11.3137i | −0.869001 | + | 0.614476i | ||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −6.00000 | −0.322097 | −0.161048 | − | 0.986947i | \(-0.551488\pi\) | ||||
−0.161048 | + | 0.986947i | \(0.551488\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − | 22.6274i | − | 1.20434i | −0.798369 | − | 0.602168i | \(-0.794304\pi\) | ||
0.798369 | − | 0.602168i | \(-0.205696\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −53.0000 | −2.78947 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 25.0000 | + | 35.3553i | 1.31216 | + | 1.85567i | ||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 32.0000 | + | 11.3137i | 1.66585 | + | 0.588968i | ||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 8.48528i | 0.435860i | 0.975964 | + | 0.217930i | \(0.0699304\pi\) | ||||
−0.975964 | + | 0.217930i | \(0.930070\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | −24.0000 | − | 8.48528i | −1.21999 | − | 0.431331i | ||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 18.0000 | + | 25.4558i | 0.907980 | + | 1.28408i | ||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 39.5980i | 1.97743i | 0.149813 | + | 0.988714i | \(0.452133\pi\) | ||||
−0.149813 | + | 0.988714i | \(0.547867\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 22.0000 | 1.08783 | 0.543915 | − | 0.839140i | \(-0.316941\pi\) | ||||
0.543915 | + | 0.839140i | \(0.316941\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −32.0000 | + | 22.6274i | −1.57844 | + | 1.11613i | ||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 12.0000 | − | 8.48528i | 0.587643 | − | 0.415526i | ||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −18.0000 | −0.879358 | −0.439679 | − | 0.898155i | \(-0.644908\pi\) | ||||
−0.439679 | + | 0.898155i | \(0.644908\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 28.2843i | 1.37199i | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −38.0000 | −1.82616 | −0.913082 | − | 0.407777i | \(-0.866304\pi\) | ||||
−0.913082 | + | 0.407777i | \(0.866304\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −7.00000 | + | 19.7990i | −0.333333 | + | 0.942809i | ||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 42.0000 | 1.99548 | 0.997740 | − | 0.0671913i | \(-0.0214038\pi\) | ||||
0.997740 | + | 0.0671913i | \(0.0214038\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 5.65685i | 0.266963i | 0.991051 | + | 0.133482i | \(0.0426157\pi\) | ||||
−0.991051 | + | 0.133482i | \(0.957384\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 67.8823i | 3.19645i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −26.0000 | −1.21623 | −0.608114 | − | 0.793849i | \(-0.708074\pi\) | ||||
−0.608114 | + | 0.793849i | \(0.708074\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | −8.00000 | − | 28.2843i | −0.373408 | − | 1.32020i | ||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 30.0000 | 1.38823 | 0.694117 | − | 0.719862i | \(-0.255795\pi\) | ||||
0.694117 | + | 0.719862i | \(0.255795\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − | 50.9117i | − | 2.34092i | ||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 42.4264i | 1.94666i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 36.0000 | − | 25.4558i | 1.62798 | − | 1.15115i | ||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −42.0000 | −1.89543 | −0.947717 | − | 0.319113i | \(-0.896615\pi\) | ||||
−0.947717 | + | 0.319113i | \(0.896615\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − | 42.4264i | − | 1.89927i | −0.313363 | − | 0.949633i | \(-0.601456\pi\) | ||
0.313363 | − | 0.949633i | \(-0.398544\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | −13.0000 | − | 18.3848i | −0.577350 | − | 0.816497i | ||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | −12.0000 | − | 42.4264i | −0.529813 | − | 1.87317i | ||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | − | 45.2548i | − | 1.98265i | −0.131432 | − | 0.991325i | \(-0.541958\pi\) | ||
0.131432 | − | 0.991325i | \(-0.458042\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − | 25.4558i | − | 1.11311i | −0.830812 | − | 0.556553i | \(-0.812124\pi\) | ||
0.830812 | − | 0.556553i | \(-0.187876\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −23.0000 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | −6.00000 | + | 16.9706i | −0.260378 | + | 0.736460i | ||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 18.0000 | + | 25.4558i | 0.776757 | + | 1.09850i | ||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −42.0000 | −1.80907 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 8.48528i | 0.362804i | 0.983409 | + | 0.181402i | \(0.0580636\pi\) | ||||
−0.983409 | + | 0.181402i | \(0.941936\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 48.0000 | − | 33.9411i | 2.02656 | − | 1.43300i | ||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 30.0000 | 1.26435 | 0.632175 | − | 0.774826i | \(-0.282163\pi\) | ||||
0.632175 | + | 0.774826i | \(0.282163\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 22.6274i | 0.948591i | 0.880366 | + | 0.474295i | \(0.157297\pi\) | ||||
−0.880366 | + | 0.474295i | \(0.842703\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | − | 42.4264i | − | 1.77549i | −0.460336 | − | 0.887745i | \(-0.652271\pi\) | ||
0.460336 | − | 0.887745i | \(-0.347729\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −34.0000 | −1.41544 | −0.707719 | − | 0.706494i | \(-0.750276\pi\) | ||||
−0.707719 | + | 0.706494i | \(0.750276\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 22.0000 | + | 31.1127i | 0.914289 | + | 1.29300i | ||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 6.00000 | 0.247647 | 0.123823 | − | 0.992304i | \(-0.460484\pi\) | ||||
0.123823 | + | 0.992304i | \(0.460484\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 45.2548i | 1.85839i | 0.369586 | + | 0.929197i | \(0.379500\pi\) | ||||
−0.369586 | + | 0.929197i | \(0.620500\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −46.0000 | −1.87638 | −0.938190 | − | 0.346122i | \(-0.887498\pi\) | ||||
−0.938190 | + | 0.346122i | \(0.887498\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 24.0000 | + | 8.48528i | 0.977356 | + | 0.345547i | ||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − | 39.5980i | − | 1.59415i | −0.603877 | − | 0.797077i | \(-0.706378\pi\) | ||
0.603877 | − | 0.797077i | \(-0.293622\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − | 42.4264i | − | 1.70526i | −0.522514 | − | 0.852631i | \(-0.675006\pi\) | ||
0.522514 | − | 0.852631i | \(-0.324994\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 25.0000 | 1.00000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 72.0000 | − | 50.9117i | 2.87540 | − | 2.03322i | ||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | −36.0000 | + | 25.4558i | −1.43087 | + | 1.01178i | ||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | − | 28.2843i | − | 1.11716i | −0.829450 | − | 0.558581i | \(-0.811346\pi\) | ||
0.829450 | − | 0.558581i | \(-0.188654\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 8.48528i | 0.334627i | 0.985904 | + | 0.167313i | \(0.0535092\pi\) | ||||
−0.985904 | + | 0.167313i | \(0.946491\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −36.0000 | −1.41312 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | −2.00000 | + | 5.65685i | −0.0780274 | + | 0.220695i | ||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 18.0000 | 0.701180 | 0.350590 | − | 0.936529i | \(-0.385981\pi\) | ||||
0.350590 | + | 0.936529i | \(0.385981\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 10.0000 | 0.385472 | 0.192736 | − | 0.981251i | \(-0.438264\pi\) | ||||
0.192736 | + | 0.981251i | \(0.438264\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | −25.0000 | + | 7.07107i | −0.962250 | + | 0.272166i | ||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 30.0000 | + | 42.4264i | 1.14960 | + | 1.62578i | ||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 42.0000 | 1.60709 | 0.803543 | − | 0.595247i | \(-0.202946\pi\) | ||||
0.803543 | + | 0.595247i | \(0.202946\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − | 25.4558i | − | 0.968386i | −0.874961 | − | 0.484193i | \(-0.839113\pi\) | ||
0.874961 | − | 0.484193i | \(-0.160887\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 64.0000 | 2.42417 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 8.00000 | − | 5.65685i | 0.302588 | − | 0.213962i | ||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | −26.0000 | − | 36.7696i | −0.966950 | − | 1.36747i | ||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 23.0000 | − | 14.1421i | 0.851852 | − | 0.523783i | ||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −48.0000 | −1.77534 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 50.9117i | 1.87536i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − | 42.4264i | − | 1.56068i | −0.625355 | − | 0.780340i | \(-0.715046\pi\) | ||
0.625355 | − | 0.780340i | \(-0.284954\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 18.0000 | − | 50.9117i | 0.658586 | − | 1.86276i | ||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | −6.00000 | − | 8.48528i | −0.218652 | − | 0.309221i | ||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | − | 11.3137i | − | 0.410122i | −0.978749 | − | 0.205061i | \(-0.934261\pi\) | ||
0.978749 | − | 0.205061i | \(-0.0657392\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 22.0000 | 0.793340 | 0.396670 | − | 0.917961i | \(-0.370166\pi\) | ||||
0.396670 | + | 0.917961i | \(0.370166\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | −16.0000 | + | 11.3137i | −0.576226 | + | 0.407453i | ||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 96.0000 | 3.43956 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − | 25.4558i | − | 0.907403i | −0.891154 | − | 0.453701i | \(-0.850103\pi\) | ||
0.891154 | − | 0.453701i | \(-0.149897\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 16.0000 | + | 5.65685i | 0.565332 | + | 0.199875i | ||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −12.0000 | −0.423471 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 56.5685i | 1.98884i | 0.105474 | + | 0.994422i | \(0.466364\pi\) | ||||
−0.105474 | + | 0.994422i | \(0.533636\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 42.4264i | 1.48979i | 0.667180 | + | 0.744896i | \(0.267501\pi\) | ||||
−0.667180 | + | 0.744896i | \(0.732499\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −72.0000 | −2.51896 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | −30.0000 | − | 42.4264i | −1.04447 | − | 1.47710i | ||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 54.0000 | 1.87776 | 0.938882 | − | 0.344239i | \(-0.111863\pi\) | ||||
0.938882 | + | 0.344239i | \(0.111863\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 39.5980i | 1.37199i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 29.0000 | 1.00000 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | −40.0000 | + | 28.2843i | −1.37767 | + | 0.974162i | ||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | −36.0000 | + | 25.4558i | −1.23552 | + | 0.873642i | ||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 22.6274i | 0.772938i | 0.922302 | + | 0.386469i | \(0.126305\pi\) | ||||
−0.922302 | + | 0.386469i | \(0.873695\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 8.48528i | 0.289514i | 0.989467 | + | 0.144757i | \(0.0462401\pi\) | ||||
−0.989467 | + | 0.144757i | \(0.953760\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | −15.0000 | − | 21.2132i | −0.509427 | − | 0.720438i | ||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | −10.0000 | + | 28.2843i | −0.338449 | + | 0.957278i | ||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | − | 56.5685i | − | 1.90584i | −0.303218 | − | 0.952921i | \(-0.598061\pi\) | ||
0.303218 | − | 0.952921i | \(-0.401939\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − | 59.3970i | − | 1.99887i | −0.0336527 | − | 0.999434i | \(-0.510714\pi\) | ||
0.0336527 | − | 0.999434i | \(-0.489286\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 42.0000 | + | 33.9411i | 1.40705 | + | 1.13707i | ||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − | 59.3970i | − | 1.97224i | −0.166022 | − | 0.986122i | \(-0.553092\pi\) | ||
0.166022 | − | 0.986122i | \(-0.446908\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 108.000 | 3.57428 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 12.0000 | − | 8.48528i | 0.395413 | − | 0.279600i | ||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | − | 28.2843i | − | 0.927977i | −0.885841 | − | 0.463988i | \(-0.846418\pi\) | ||
0.885841 | − | 0.463988i | \(-0.153582\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 59.3970i | 1.94666i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −34.0000 | −1.11073 | −0.555366 | − | 0.831606i | \(-0.687422\pi\) | ||||
−0.555366 | + | 0.831606i | \(0.687422\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 10.0000 | + | 14.1421i | 0.326338 | + | 0.461511i | ||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −30.0000 | −0.974869 | −0.487435 | − | 0.873160i | \(-0.662067\pi\) | ||||
−0.487435 | + | 0.873160i | \(0.662067\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − | 45.2548i | − | 1.46595i | −0.680257 | − | 0.732974i | \(-0.738132\pi\) | ||
0.680257 | − | 0.732974i | \(-0.261868\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 31.0000 | 1.00000 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | −6.00000 | + | 16.9706i | −0.193347 | + | 0.546869i | ||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | −48.0000 | − | 67.8823i | −1.54198 | − | 2.18069i | ||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −54.0000 | −1.73294 | −0.866471 | − | 0.499227i | \(-0.833617\pi\) | ||||
−0.866471 | + | 0.499227i | \(0.833617\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − | 62.2254i | − | 1.99077i | −0.0959785 | − | 0.995383i | \(-0.530598\pi\) | ||
0.0959785 | − | 0.995383i | \(-0.469402\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 33.9411i | 1.08476i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | −36.0000 | + | 25.4558i | −1.14243 | + | 0.807817i | ||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 768.2.c.d.767.2 | 2 | ||
3.2 | odd | 2 | 768.2.c.c.767.2 | 2 | |||
4.3 | odd | 2 | 768.2.c.c.767.1 | 2 | |||
8.3 | odd | 2 | CM | 768.2.c.d.767.2 | 2 | ||
8.5 | even | 2 | 768.2.c.c.767.1 | 2 | |||
12.11 | even | 2 | inner | 768.2.c.d.767.1 | 2 | ||
16.3 | odd | 4 | 384.2.f.c.191.3 | yes | 4 | ||
16.5 | even | 4 | 384.2.f.c.191.3 | yes | 4 | ||
16.11 | odd | 4 | 384.2.f.c.191.2 | yes | 4 | ||
16.13 | even | 4 | 384.2.f.c.191.2 | yes | 4 | ||
24.5 | odd | 2 | inner | 768.2.c.d.767.1 | 2 | ||
24.11 | even | 2 | 768.2.c.c.767.2 | 2 | |||
48.5 | odd | 4 | 384.2.f.c.191.4 | yes | 4 | ||
48.11 | even | 4 | 384.2.f.c.191.1 | ✓ | 4 | ||
48.29 | odd | 4 | 384.2.f.c.191.1 | ✓ | 4 | ||
48.35 | even | 4 | 384.2.f.c.191.4 | yes | 4 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
384.2.f.c.191.1 | ✓ | 4 | 48.11 | even | 4 | ||
384.2.f.c.191.1 | ✓ | 4 | 48.29 | odd | 4 | ||
384.2.f.c.191.2 | yes | 4 | 16.11 | odd | 4 | ||
384.2.f.c.191.2 | yes | 4 | 16.13 | even | 4 | ||
384.2.f.c.191.3 | yes | 4 | 16.3 | odd | 4 | ||
384.2.f.c.191.3 | yes | 4 | 16.5 | even | 4 | ||
384.2.f.c.191.4 | yes | 4 | 48.5 | odd | 4 | ||
384.2.f.c.191.4 | yes | 4 | 48.35 | even | 4 | ||
768.2.c.c.767.1 | 2 | 4.3 | odd | 2 | |||
768.2.c.c.767.1 | 2 | 8.5 | even | 2 | |||
768.2.c.c.767.2 | 2 | 3.2 | odd | 2 | |||
768.2.c.c.767.2 | 2 | 24.11 | even | 2 | |||
768.2.c.d.767.1 | 2 | 12.11 | even | 2 | inner | ||
768.2.c.d.767.1 | 2 | 24.5 | odd | 2 | inner | ||
768.2.c.d.767.2 | 2 | 1.1 | even | 1 | trivial | ||
768.2.c.d.767.2 | 2 | 8.3 | odd | 2 | CM |