Properties

Label 768.2.c.e
Level $768$
Weight $2$
Character orbit 768.c
Analytic conductor $6.133$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,2,Mod(767,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.767");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 384)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 1) q^{3} + 2 \beta q^{5} + 2 \beta q^{7} + ( - 2 \beta - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta + 1) q^{3} + 2 \beta q^{5} + 2 \beta q^{7} + ( - 2 \beta - 1) q^{9} + 2 q^{11} - 4 q^{13} + (2 \beta + 4) q^{15} + 4 \beta q^{17} + 2 \beta q^{19} + (2 \beta + 4) q^{21} + 8 q^{23} - 3 q^{25} + ( - \beta - 5) q^{27} - 2 \beta q^{29} + 6 \beta q^{31} + ( - 2 \beta + 2) q^{33} - 8 q^{35} - 4 q^{37} + (4 \beta - 4) q^{39} + 2 \beta q^{43} + ( - 2 \beta + 8) q^{45} - q^{49} + (4 \beta + 8) q^{51} - 6 \beta q^{53} + 4 \beta q^{55} + (2 \beta + 4) q^{57} + 6 q^{59} - 4 q^{61} + ( - 2 \beta + 8) q^{63} - 8 \beta q^{65} - 10 \beta q^{67} + ( - 8 \beta + 8) q^{69} + 8 q^{71} + 10 q^{73} + (3 \beta - 3) q^{75} + 4 \beta q^{77} - 2 \beta q^{79} + (4 \beta - 7) q^{81} + 6 q^{83} - 16 q^{85} + ( - 2 \beta - 4) q^{87} + 4 \beta q^{89} - 8 \beta q^{91} + (6 \beta + 12) q^{93} - 8 q^{95} - 6 q^{97} + ( - 4 \beta - 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} - 2 q^{9} + 4 q^{11} - 8 q^{13} + 8 q^{15} + 8 q^{21} + 16 q^{23} - 6 q^{25} - 10 q^{27} + 4 q^{33} - 16 q^{35} - 8 q^{37} - 8 q^{39} + 16 q^{45} - 2 q^{49} + 16 q^{51} + 8 q^{57} + 12 q^{59} - 8 q^{61} + 16 q^{63} + 16 q^{69} + 16 q^{71} + 20 q^{73} - 6 q^{75} - 14 q^{81} + 12 q^{83} - 32 q^{85} - 8 q^{87} + 24 q^{93} - 16 q^{95} - 12 q^{97} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
767.1
1.41421i
1.41421i
0 1.00000 1.41421i 0 2.82843i 0 2.82843i 0 −1.00000 2.82843i 0
767.2 0 1.00000 + 1.41421i 0 2.82843i 0 2.82843i 0 −1.00000 + 2.82843i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.2.c.e 2
3.b odd 2 1 768.2.c.a 2
4.b odd 2 1 768.2.c.a 2
8.b even 2 1 768.2.c.b 2
8.d odd 2 1 768.2.c.f 2
12.b even 2 1 inner 768.2.c.e 2
16.e even 4 2 384.2.f.d yes 4
16.f odd 4 2 384.2.f.b 4
24.f even 2 1 768.2.c.b 2
24.h odd 2 1 768.2.c.f 2
48.i odd 4 2 384.2.f.b 4
48.k even 4 2 384.2.f.d yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.2.f.b 4 16.f odd 4 2
384.2.f.b 4 48.i odd 4 2
384.2.f.d yes 4 16.e even 4 2
384.2.f.d yes 4 48.k even 4 2
768.2.c.a 2 3.b odd 2 1
768.2.c.a 2 4.b odd 2 1
768.2.c.b 2 8.b even 2 1
768.2.c.b 2 24.f even 2 1
768.2.c.e 2 1.a even 1 1 trivial
768.2.c.e 2 12.b even 2 1 inner
768.2.c.f 2 8.d odd 2 1
768.2.c.f 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(768, [\chi])\):

\( T_{5}^{2} + 8 \) Copy content Toggle raw display
\( T_{7}^{2} + 8 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{13} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T + 3 \) Copy content Toggle raw display
$5$ \( T^{2} + 8 \) Copy content Toggle raw display
$7$ \( T^{2} + 8 \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( (T + 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 32 \) Copy content Toggle raw display
$19$ \( T^{2} + 8 \) Copy content Toggle raw display
$23$ \( (T - 8)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 8 \) Copy content Toggle raw display
$31$ \( T^{2} + 72 \) Copy content Toggle raw display
$37$ \( (T + 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 8 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 72 \) Copy content Toggle raw display
$59$ \( (T - 6)^{2} \) Copy content Toggle raw display
$61$ \( (T + 4)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 200 \) Copy content Toggle raw display
$71$ \( (T - 8)^{2} \) Copy content Toggle raw display
$73$ \( (T - 10)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 8 \) Copy content Toggle raw display
$83$ \( (T - 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 32 \) Copy content Toggle raw display
$97$ \( (T + 6)^{2} \) Copy content Toggle raw display
show more
show less