Properties

Label 7744.2.a.bo.1.1
Level $7744$
Weight $2$
Character 7744.1
Self dual yes
Analytic conductor $61.836$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7744,2,Mod(1,7744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 7744.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.61803 q^{3} +1.61803 q^{5} -3.85410 q^{7} +3.85410 q^{9} +2.38197 q^{13} -4.23607 q^{15} -2.38197 q^{17} -3.85410 q^{19} +10.0902 q^{21} +2.47214 q^{23} -2.38197 q^{25} -2.23607 q^{27} +8.61803 q^{29} -0.854102 q^{31} -6.23607 q^{35} +1.85410 q^{37} -6.23607 q^{39} -8.61803 q^{41} +6.23607 q^{45} -1.38197 q^{47} +7.85410 q^{49} +6.23607 q^{51} +4.09017 q^{53} +10.0902 q^{57} +1.09017 q^{59} +2.38197 q^{61} -14.8541 q^{63} +3.85410 q^{65} +12.9443 q^{67} -6.47214 q^{69} +6.38197 q^{71} +0.909830 q^{73} +6.23607 q^{75} -7.14590 q^{79} -5.70820 q^{81} -13.0344 q^{83} -3.85410 q^{85} -22.5623 q^{87} +0.472136 q^{89} -9.18034 q^{91} +2.23607 q^{93} -6.23607 q^{95} -14.5623 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} + q^{5} - q^{7} + q^{9} + 7 q^{13} - 4 q^{15} - 7 q^{17} - q^{19} + 9 q^{21} - 4 q^{23} - 7 q^{25} + 15 q^{29} + 5 q^{31} - 8 q^{35} - 3 q^{37} - 8 q^{39} - 15 q^{41} + 8 q^{45} - 5 q^{47}+ \cdots - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.61803 −1.51152 −0.755761 0.654847i \(-0.772733\pi\)
−0.755761 + 0.654847i \(0.772733\pi\)
\(4\) 0 0
\(5\) 1.61803 0.723607 0.361803 0.932254i \(-0.382161\pi\)
0.361803 + 0.932254i \(0.382161\pi\)
\(6\) 0 0
\(7\) −3.85410 −1.45671 −0.728357 0.685198i \(-0.759716\pi\)
−0.728357 + 0.685198i \(0.759716\pi\)
\(8\) 0 0
\(9\) 3.85410 1.28470
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 2.38197 0.660639 0.330319 0.943869i \(-0.392844\pi\)
0.330319 + 0.943869i \(0.392844\pi\)
\(14\) 0 0
\(15\) −4.23607 −1.09375
\(16\) 0 0
\(17\) −2.38197 −0.577712 −0.288856 0.957373i \(-0.593275\pi\)
−0.288856 + 0.957373i \(0.593275\pi\)
\(18\) 0 0
\(19\) −3.85410 −0.884192 −0.442096 0.896968i \(-0.645765\pi\)
−0.442096 + 0.896968i \(0.645765\pi\)
\(20\) 0 0
\(21\) 10.0902 2.20186
\(22\) 0 0
\(23\) 2.47214 0.515476 0.257738 0.966215i \(-0.417023\pi\)
0.257738 + 0.966215i \(0.417023\pi\)
\(24\) 0 0
\(25\) −2.38197 −0.476393
\(26\) 0 0
\(27\) −2.23607 −0.430331
\(28\) 0 0
\(29\) 8.61803 1.60033 0.800164 0.599781i \(-0.204746\pi\)
0.800164 + 0.599781i \(0.204746\pi\)
\(30\) 0 0
\(31\) −0.854102 −0.153401 −0.0767006 0.997054i \(-0.524439\pi\)
−0.0767006 + 0.997054i \(0.524439\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.23607 −1.05409
\(36\) 0 0
\(37\) 1.85410 0.304812 0.152406 0.988318i \(-0.451298\pi\)
0.152406 + 0.988318i \(0.451298\pi\)
\(38\) 0 0
\(39\) −6.23607 −0.998570
\(40\) 0 0
\(41\) −8.61803 −1.34591 −0.672955 0.739683i \(-0.734975\pi\)
−0.672955 + 0.739683i \(0.734975\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 6.23607 0.929618
\(46\) 0 0
\(47\) −1.38197 −0.201580 −0.100790 0.994908i \(-0.532137\pi\)
−0.100790 + 0.994908i \(0.532137\pi\)
\(48\) 0 0
\(49\) 7.85410 1.12201
\(50\) 0 0
\(51\) 6.23607 0.873224
\(52\) 0 0
\(53\) 4.09017 0.561828 0.280914 0.959733i \(-0.409362\pi\)
0.280914 + 0.959733i \(0.409362\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 10.0902 1.33648
\(58\) 0 0
\(59\) 1.09017 0.141928 0.0709640 0.997479i \(-0.477392\pi\)
0.0709640 + 0.997479i \(0.477392\pi\)
\(60\) 0 0
\(61\) 2.38197 0.304979 0.152490 0.988305i \(-0.451271\pi\)
0.152490 + 0.988305i \(0.451271\pi\)
\(62\) 0 0
\(63\) −14.8541 −1.87144
\(64\) 0 0
\(65\) 3.85410 0.478043
\(66\) 0 0
\(67\) 12.9443 1.58139 0.790697 0.612207i \(-0.209718\pi\)
0.790697 + 0.612207i \(0.209718\pi\)
\(68\) 0 0
\(69\) −6.47214 −0.779154
\(70\) 0 0
\(71\) 6.38197 0.757400 0.378700 0.925519i \(-0.376371\pi\)
0.378700 + 0.925519i \(0.376371\pi\)
\(72\) 0 0
\(73\) 0.909830 0.106488 0.0532438 0.998582i \(-0.483044\pi\)
0.0532438 + 0.998582i \(0.483044\pi\)
\(74\) 0 0
\(75\) 6.23607 0.720079
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.14590 −0.803976 −0.401988 0.915645i \(-0.631681\pi\)
−0.401988 + 0.915645i \(0.631681\pi\)
\(80\) 0 0
\(81\) −5.70820 −0.634245
\(82\) 0 0
\(83\) −13.0344 −1.43072 −0.715358 0.698758i \(-0.753736\pi\)
−0.715358 + 0.698758i \(0.753736\pi\)
\(84\) 0 0
\(85\) −3.85410 −0.418036
\(86\) 0 0
\(87\) −22.5623 −2.41893
\(88\) 0 0
\(89\) 0.472136 0.0500463 0.0250232 0.999687i \(-0.492034\pi\)
0.0250232 + 0.999687i \(0.492034\pi\)
\(90\) 0 0
\(91\) −9.18034 −0.962361
\(92\) 0 0
\(93\) 2.23607 0.231869
\(94\) 0 0
\(95\) −6.23607 −0.639807
\(96\) 0 0
\(97\) −14.5623 −1.47858 −0.739289 0.673388i \(-0.764838\pi\)
−0.739289 + 0.673388i \(0.764838\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 17.7984 1.77100 0.885502 0.464635i \(-0.153815\pi\)
0.885502 + 0.464635i \(0.153815\pi\)
\(102\) 0 0
\(103\) 7.85410 0.773888 0.386944 0.922103i \(-0.373531\pi\)
0.386944 + 0.922103i \(0.373531\pi\)
\(104\) 0 0
\(105\) 16.3262 1.59328
\(106\) 0 0
\(107\) 11.5623 1.11777 0.558885 0.829245i \(-0.311229\pi\)
0.558885 + 0.829245i \(0.311229\pi\)
\(108\) 0 0
\(109\) −12.4721 −1.19461 −0.597307 0.802013i \(-0.703763\pi\)
−0.597307 + 0.802013i \(0.703763\pi\)
\(110\) 0 0
\(111\) −4.85410 −0.460731
\(112\) 0 0
\(113\) 17.5623 1.65212 0.826061 0.563580i \(-0.190576\pi\)
0.826061 + 0.563580i \(0.190576\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) 9.18034 0.848723
\(118\) 0 0
\(119\) 9.18034 0.841560
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 22.5623 2.03437
\(124\) 0 0
\(125\) −11.9443 −1.06833
\(126\) 0 0
\(127\) −2.38197 −0.211365 −0.105683 0.994400i \(-0.533703\pi\)
−0.105683 + 0.994400i \(0.533703\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.52786 −0.832453 −0.416227 0.909261i \(-0.636648\pi\)
−0.416227 + 0.909261i \(0.636648\pi\)
\(132\) 0 0
\(133\) 14.8541 1.28801
\(134\) 0 0
\(135\) −3.61803 −0.311391
\(136\) 0 0
\(137\) 13.7984 1.17887 0.589437 0.807814i \(-0.299350\pi\)
0.589437 + 0.807814i \(0.299350\pi\)
\(138\) 0 0
\(139\) −11.5623 −0.980702 −0.490351 0.871525i \(-0.663131\pi\)
−0.490351 + 0.871525i \(0.663131\pi\)
\(140\) 0 0
\(141\) 3.61803 0.304693
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 13.9443 1.15801
\(146\) 0 0
\(147\) −20.5623 −1.69595
\(148\) 0 0
\(149\) 2.38197 0.195138 0.0975691 0.995229i \(-0.468893\pi\)
0.0975691 + 0.995229i \(0.468893\pi\)
\(150\) 0 0
\(151\) 19.2705 1.56821 0.784106 0.620627i \(-0.213122\pi\)
0.784106 + 0.620627i \(0.213122\pi\)
\(152\) 0 0
\(153\) −9.18034 −0.742186
\(154\) 0 0
\(155\) −1.38197 −0.111002
\(156\) 0 0
\(157\) −17.5623 −1.40162 −0.700812 0.713346i \(-0.747179\pi\)
−0.700812 + 0.713346i \(0.747179\pi\)
\(158\) 0 0
\(159\) −10.7082 −0.849216
\(160\) 0 0
\(161\) −9.52786 −0.750901
\(162\) 0 0
\(163\) 11.3262 0.887139 0.443570 0.896240i \(-0.353712\pi\)
0.443570 + 0.896240i \(0.353712\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.7984 1.37728 0.688640 0.725104i \(-0.258208\pi\)
0.688640 + 0.725104i \(0.258208\pi\)
\(168\) 0 0
\(169\) −7.32624 −0.563557
\(170\) 0 0
\(171\) −14.8541 −1.13592
\(172\) 0 0
\(173\) −6.79837 −0.516871 −0.258435 0.966029i \(-0.583207\pi\)
−0.258435 + 0.966029i \(0.583207\pi\)
\(174\) 0 0
\(175\) 9.18034 0.693968
\(176\) 0 0
\(177\) −2.85410 −0.214527
\(178\) 0 0
\(179\) −2.61803 −0.195681 −0.0978405 0.995202i \(-0.531194\pi\)
−0.0978405 + 0.995202i \(0.531194\pi\)
\(180\) 0 0
\(181\) 1.61803 0.120268 0.0601338 0.998190i \(-0.480847\pi\)
0.0601338 + 0.998190i \(0.480847\pi\)
\(182\) 0 0
\(183\) −6.23607 −0.460983
\(184\) 0 0
\(185\) 3.00000 0.220564
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 8.61803 0.626870
\(190\) 0 0
\(191\) −26.0344 −1.88379 −0.941893 0.335913i \(-0.890955\pi\)
−0.941893 + 0.335913i \(0.890955\pi\)
\(192\) 0 0
\(193\) 22.5623 1.62407 0.812035 0.583609i \(-0.198360\pi\)
0.812035 + 0.583609i \(0.198360\pi\)
\(194\) 0 0
\(195\) −10.0902 −0.722572
\(196\) 0 0
\(197\) −2.94427 −0.209771 −0.104885 0.994484i \(-0.533448\pi\)
−0.104885 + 0.994484i \(0.533448\pi\)
\(198\) 0 0
\(199\) 0.944272 0.0669377 0.0334688 0.999440i \(-0.489345\pi\)
0.0334688 + 0.999440i \(0.489345\pi\)
\(200\) 0 0
\(201\) −33.8885 −2.39031
\(202\) 0 0
\(203\) −33.2148 −2.33122
\(204\) 0 0
\(205\) −13.9443 −0.973910
\(206\) 0 0
\(207\) 9.52786 0.662232
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −11.9098 −0.819907 −0.409953 0.912107i \(-0.634455\pi\)
−0.409953 + 0.912107i \(0.634455\pi\)
\(212\) 0 0
\(213\) −16.7082 −1.14483
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3.29180 0.223462
\(218\) 0 0
\(219\) −2.38197 −0.160958
\(220\) 0 0
\(221\) −5.67376 −0.381659
\(222\) 0 0
\(223\) 12.1459 0.813349 0.406675 0.913573i \(-0.366688\pi\)
0.406675 + 0.913573i \(0.366688\pi\)
\(224\) 0 0
\(225\) −9.18034 −0.612023
\(226\) 0 0
\(227\) −5.67376 −0.376581 −0.188290 0.982113i \(-0.560295\pi\)
−0.188290 + 0.982113i \(0.560295\pi\)
\(228\) 0 0
\(229\) −16.2705 −1.07519 −0.537593 0.843205i \(-0.680666\pi\)
−0.537593 + 0.843205i \(0.680666\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.38197 −0.156048 −0.0780239 0.996951i \(-0.524861\pi\)
−0.0780239 + 0.996951i \(0.524861\pi\)
\(234\) 0 0
\(235\) −2.23607 −0.145865
\(236\) 0 0
\(237\) 18.7082 1.21523
\(238\) 0 0
\(239\) −11.5623 −0.747903 −0.373952 0.927448i \(-0.621997\pi\)
−0.373952 + 0.927448i \(0.621997\pi\)
\(240\) 0 0
\(241\) −12.4721 −0.803401 −0.401700 0.915771i \(-0.631581\pi\)
−0.401700 + 0.915771i \(0.631581\pi\)
\(242\) 0 0
\(243\) 21.6525 1.38901
\(244\) 0 0
\(245\) 12.7082 0.811897
\(246\) 0 0
\(247\) −9.18034 −0.584131
\(248\) 0 0
\(249\) 34.1246 2.16256
\(250\) 0 0
\(251\) 25.7984 1.62838 0.814189 0.580599i \(-0.197182\pi\)
0.814189 + 0.580599i \(0.197182\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 10.0902 0.631871
\(256\) 0 0
\(257\) −4.90983 −0.306267 −0.153133 0.988206i \(-0.548936\pi\)
−0.153133 + 0.988206i \(0.548936\pi\)
\(258\) 0 0
\(259\) −7.14590 −0.444024
\(260\) 0 0
\(261\) 33.2148 2.05594
\(262\) 0 0
\(263\) 5.88854 0.363103 0.181552 0.983381i \(-0.441888\pi\)
0.181552 + 0.983381i \(0.441888\pi\)
\(264\) 0 0
\(265\) 6.61803 0.406543
\(266\) 0 0
\(267\) −1.23607 −0.0756461
\(268\) 0 0
\(269\) 24.0902 1.46880 0.734402 0.678715i \(-0.237463\pi\)
0.734402 + 0.678715i \(0.237463\pi\)
\(270\) 0 0
\(271\) −19.2705 −1.17060 −0.585300 0.810817i \(-0.699023\pi\)
−0.585300 + 0.810817i \(0.699023\pi\)
\(272\) 0 0
\(273\) 24.0344 1.45463
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −22.5623 −1.35564 −0.677819 0.735229i \(-0.737075\pi\)
−0.677819 + 0.735229i \(0.737075\pi\)
\(278\) 0 0
\(279\) −3.29180 −0.197075
\(280\) 0 0
\(281\) −27.3262 −1.63015 −0.815073 0.579358i \(-0.803303\pi\)
−0.815073 + 0.579358i \(0.803303\pi\)
\(282\) 0 0
\(283\) 11.5623 0.687308 0.343654 0.939096i \(-0.388335\pi\)
0.343654 + 0.939096i \(0.388335\pi\)
\(284\) 0 0
\(285\) 16.3262 0.967083
\(286\) 0 0
\(287\) 33.2148 1.96061
\(288\) 0 0
\(289\) −11.3262 −0.666249
\(290\) 0 0
\(291\) 38.1246 2.23490
\(292\) 0 0
\(293\) 8.61803 0.503471 0.251735 0.967796i \(-0.418999\pi\)
0.251735 + 0.967796i \(0.418999\pi\)
\(294\) 0 0
\(295\) 1.76393 0.102700
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.88854 0.340543
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −46.5967 −2.67691
\(304\) 0 0
\(305\) 3.85410 0.220685
\(306\) 0 0
\(307\) −9.52786 −0.543784 −0.271892 0.962328i \(-0.587649\pi\)
−0.271892 + 0.962328i \(0.587649\pi\)
\(308\) 0 0
\(309\) −20.5623 −1.16975
\(310\) 0 0
\(311\) −16.7984 −0.952548 −0.476274 0.879297i \(-0.658013\pi\)
−0.476274 + 0.879297i \(0.658013\pi\)
\(312\) 0 0
\(313\) −7.50658 −0.424297 −0.212148 0.977237i \(-0.568046\pi\)
−0.212148 + 0.977237i \(0.568046\pi\)
\(314\) 0 0
\(315\) −24.0344 −1.35419
\(316\) 0 0
\(317\) 14.5623 0.817901 0.408950 0.912557i \(-0.365895\pi\)
0.408950 + 0.912557i \(0.365895\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −30.2705 −1.68954
\(322\) 0 0
\(323\) 9.18034 0.510808
\(324\) 0 0
\(325\) −5.67376 −0.314724
\(326\) 0 0
\(327\) 32.6525 1.80569
\(328\) 0 0
\(329\) 5.32624 0.293645
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 0 0
\(333\) 7.14590 0.391593
\(334\) 0 0
\(335\) 20.9443 1.14431
\(336\) 0 0
\(337\) −24.0344 −1.30924 −0.654620 0.755958i \(-0.727171\pi\)
−0.654620 + 0.755958i \(0.727171\pi\)
\(338\) 0 0
\(339\) −45.9787 −2.49722
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −3.29180 −0.177740
\(344\) 0 0
\(345\) −10.4721 −0.563801
\(346\) 0 0
\(347\) 17.7984 0.955467 0.477733 0.878505i \(-0.341458\pi\)
0.477733 + 0.878505i \(0.341458\pi\)
\(348\) 0 0
\(349\) −16.3262 −0.873923 −0.436962 0.899480i \(-0.643945\pi\)
−0.436962 + 0.899480i \(0.643945\pi\)
\(350\) 0 0
\(351\) −5.32624 −0.284294
\(352\) 0 0
\(353\) −14.9443 −0.795403 −0.397702 0.917515i \(-0.630192\pi\)
−0.397702 + 0.917515i \(0.630192\pi\)
\(354\) 0 0
\(355\) 10.3262 0.548060
\(356\) 0 0
\(357\) −24.0344 −1.27204
\(358\) 0 0
\(359\) 11.5623 0.610235 0.305118 0.952315i \(-0.401304\pi\)
0.305118 + 0.952315i \(0.401304\pi\)
\(360\) 0 0
\(361\) −4.14590 −0.218205
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.47214 0.0770551
\(366\) 0 0
\(367\) −20.1459 −1.05161 −0.525804 0.850606i \(-0.676235\pi\)
−0.525804 + 0.850606i \(0.676235\pi\)
\(368\) 0 0
\(369\) −33.2148 −1.72909
\(370\) 0 0
\(371\) −15.7639 −0.818423
\(372\) 0 0
\(373\) −6.58359 −0.340885 −0.170443 0.985368i \(-0.554520\pi\)
−0.170443 + 0.985368i \(0.554520\pi\)
\(374\) 0 0
\(375\) 31.2705 1.61480
\(376\) 0 0
\(377\) 20.5279 1.05724
\(378\) 0 0
\(379\) 3.14590 0.161594 0.0807970 0.996731i \(-0.474253\pi\)
0.0807970 + 0.996731i \(0.474253\pi\)
\(380\) 0 0
\(381\) 6.23607 0.319483
\(382\) 0 0
\(383\) −19.9098 −1.01734 −0.508672 0.860960i \(-0.669864\pi\)
−0.508672 + 0.860960i \(0.669864\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 26.7984 1.35873 0.679366 0.733800i \(-0.262255\pi\)
0.679366 + 0.733800i \(0.262255\pi\)
\(390\) 0 0
\(391\) −5.88854 −0.297796
\(392\) 0 0
\(393\) 24.9443 1.25827
\(394\) 0 0
\(395\) −11.5623 −0.581763
\(396\) 0 0
\(397\) −32.8328 −1.64783 −0.823916 0.566712i \(-0.808215\pi\)
−0.823916 + 0.566712i \(0.808215\pi\)
\(398\) 0 0
\(399\) −38.8885 −1.94686
\(400\) 0 0
\(401\) 6.74265 0.336712 0.168356 0.985726i \(-0.446154\pi\)
0.168356 + 0.985726i \(0.446154\pi\)
\(402\) 0 0
\(403\) −2.03444 −0.101343
\(404\) 0 0
\(405\) −9.23607 −0.458944
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 7.14590 0.353342 0.176671 0.984270i \(-0.443467\pi\)
0.176671 + 0.984270i \(0.443467\pi\)
\(410\) 0 0
\(411\) −36.1246 −1.78190
\(412\) 0 0
\(413\) −4.20163 −0.206749
\(414\) 0 0
\(415\) −21.0902 −1.03528
\(416\) 0 0
\(417\) 30.2705 1.48235
\(418\) 0 0
\(419\) −4.58359 −0.223923 −0.111962 0.993713i \(-0.535713\pi\)
−0.111962 + 0.993713i \(0.535713\pi\)
\(420\) 0 0
\(421\) 9.27051 0.451817 0.225909 0.974149i \(-0.427465\pi\)
0.225909 + 0.974149i \(0.427465\pi\)
\(422\) 0 0
\(423\) −5.32624 −0.258971
\(424\) 0 0
\(425\) 5.67376 0.275218
\(426\) 0 0
\(427\) −9.18034 −0.444268
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.6738 −0.803147 −0.401573 0.915827i \(-0.631537\pi\)
−0.401573 + 0.915827i \(0.631537\pi\)
\(432\) 0 0
\(433\) 19.4508 0.934748 0.467374 0.884060i \(-0.345200\pi\)
0.467374 + 0.884060i \(0.345200\pi\)
\(434\) 0 0
\(435\) −36.5066 −1.75036
\(436\) 0 0
\(437\) −9.52786 −0.455780
\(438\) 0 0
\(439\) −15.4164 −0.735785 −0.367893 0.929868i \(-0.619921\pi\)
−0.367893 + 0.929868i \(0.619921\pi\)
\(440\) 0 0
\(441\) 30.2705 1.44145
\(442\) 0 0
\(443\) 3.27051 0.155387 0.0776933 0.996977i \(-0.475245\pi\)
0.0776933 + 0.996977i \(0.475245\pi\)
\(444\) 0 0
\(445\) 0.763932 0.0362139
\(446\) 0 0
\(447\) −6.23607 −0.294956
\(448\) 0 0
\(449\) −14.5623 −0.687238 −0.343619 0.939109i \(-0.611653\pi\)
−0.343619 + 0.939109i \(0.611653\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −50.4508 −2.37039
\(454\) 0 0
\(455\) −14.8541 −0.696371
\(456\) 0 0
\(457\) 7.14590 0.334271 0.167136 0.985934i \(-0.446548\pi\)
0.167136 + 0.985934i \(0.446548\pi\)
\(458\) 0 0
\(459\) 5.32624 0.248607
\(460\) 0 0
\(461\) −33.7771 −1.57316 −0.786578 0.617491i \(-0.788149\pi\)
−0.786578 + 0.617491i \(0.788149\pi\)
\(462\) 0 0
\(463\) 12.0000 0.557687 0.278844 0.960337i \(-0.410049\pi\)
0.278844 + 0.960337i \(0.410049\pi\)
\(464\) 0 0
\(465\) 3.61803 0.167782
\(466\) 0 0
\(467\) 12.6738 0.586472 0.293236 0.956040i \(-0.405268\pi\)
0.293236 + 0.956040i \(0.405268\pi\)
\(468\) 0 0
\(469\) −49.8885 −2.30364
\(470\) 0 0
\(471\) 45.9787 2.11859
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 9.18034 0.421223
\(476\) 0 0
\(477\) 15.7639 0.721781
\(478\) 0 0
\(479\) −27.3262 −1.24857 −0.624284 0.781198i \(-0.714609\pi\)
−0.624284 + 0.781198i \(0.714609\pi\)
\(480\) 0 0
\(481\) 4.41641 0.201371
\(482\) 0 0
\(483\) 24.9443 1.13500
\(484\) 0 0
\(485\) −23.5623 −1.06991
\(486\) 0 0
\(487\) 18.0344 0.817219 0.408609 0.912709i \(-0.366014\pi\)
0.408609 + 0.912709i \(0.366014\pi\)
\(488\) 0 0
\(489\) −29.6525 −1.34093
\(490\) 0 0
\(491\) −11.5623 −0.521800 −0.260900 0.965366i \(-0.584019\pi\)
−0.260900 + 0.965366i \(0.584019\pi\)
\(492\) 0 0
\(493\) −20.5279 −0.924528
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.5967 −1.10331
\(498\) 0 0
\(499\) −23.2705 −1.04173 −0.520866 0.853639i \(-0.674391\pi\)
−0.520866 + 0.853639i \(0.674391\pi\)
\(500\) 0 0
\(501\) −46.5967 −2.08179
\(502\) 0 0
\(503\) −36.5066 −1.62775 −0.813874 0.581042i \(-0.802645\pi\)
−0.813874 + 0.581042i \(0.802645\pi\)
\(504\) 0 0
\(505\) 28.7984 1.28151
\(506\) 0 0
\(507\) 19.1803 0.851829
\(508\) 0 0
\(509\) 28.6869 1.27153 0.635763 0.771885i \(-0.280686\pi\)
0.635763 + 0.771885i \(0.280686\pi\)
\(510\) 0 0
\(511\) −3.50658 −0.155122
\(512\) 0 0
\(513\) 8.61803 0.380495
\(514\) 0 0
\(515\) 12.7082 0.559990
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 17.7984 0.781262
\(520\) 0 0
\(521\) 7.67376 0.336194 0.168097 0.985770i \(-0.446238\pi\)
0.168097 + 0.985770i \(0.446238\pi\)
\(522\) 0 0
\(523\) −28.4508 −1.24407 −0.622034 0.782990i \(-0.713694\pi\)
−0.622034 + 0.782990i \(0.713694\pi\)
\(524\) 0 0
\(525\) −24.0344 −1.04895
\(526\) 0 0
\(527\) 2.03444 0.0886217
\(528\) 0 0
\(529\) −16.8885 −0.734285
\(530\) 0 0
\(531\) 4.20163 0.182335
\(532\) 0 0
\(533\) −20.5279 −0.889160
\(534\) 0 0
\(535\) 18.7082 0.808826
\(536\) 0 0
\(537\) 6.85410 0.295776
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 8.27051 0.355577 0.177788 0.984069i \(-0.443106\pi\)
0.177788 + 0.984069i \(0.443106\pi\)
\(542\) 0 0
\(543\) −4.23607 −0.181787
\(544\) 0 0
\(545\) −20.1803 −0.864431
\(546\) 0 0
\(547\) −38.3262 −1.63871 −0.819356 0.573285i \(-0.805669\pi\)
−0.819356 + 0.573285i \(0.805669\pi\)
\(548\) 0 0
\(549\) 9.18034 0.391807
\(550\) 0 0
\(551\) −33.2148 −1.41500
\(552\) 0 0
\(553\) 27.5410 1.17116
\(554\) 0 0
\(555\) −7.85410 −0.333388
\(556\) 0 0
\(557\) −31.7426 −1.34498 −0.672490 0.740107i \(-0.734775\pi\)
−0.672490 + 0.740107i \(0.734775\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.0344 0.549336 0.274668 0.961539i \(-0.411432\pi\)
0.274668 + 0.961539i \(0.411432\pi\)
\(564\) 0 0
\(565\) 28.4164 1.19549
\(566\) 0 0
\(567\) 22.0000 0.923913
\(568\) 0 0
\(569\) −29.9230 −1.25444 −0.627218 0.778843i \(-0.715807\pi\)
−0.627218 + 0.778843i \(0.715807\pi\)
\(570\) 0 0
\(571\) −9.52786 −0.398729 −0.199364 0.979925i \(-0.563888\pi\)
−0.199364 + 0.979925i \(0.563888\pi\)
\(572\) 0 0
\(573\) 68.1591 2.84739
\(574\) 0 0
\(575\) −5.88854 −0.245569
\(576\) 0 0
\(577\) −36.0902 −1.50245 −0.751227 0.660044i \(-0.770538\pi\)
−0.751227 + 0.660044i \(0.770538\pi\)
\(578\) 0 0
\(579\) −59.0689 −2.45482
\(580\) 0 0
\(581\) 50.2361 2.08414
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 14.8541 0.614142
\(586\) 0 0
\(587\) −7.85410 −0.324173 −0.162087 0.986777i \(-0.551822\pi\)
−0.162087 + 0.986777i \(0.551822\pi\)
\(588\) 0 0
\(589\) 3.29180 0.135636
\(590\) 0 0
\(591\) 7.70820 0.317073
\(592\) 0 0
\(593\) −37.4164 −1.53651 −0.768254 0.640145i \(-0.778874\pi\)
−0.768254 + 0.640145i \(0.778874\pi\)
\(594\) 0 0
\(595\) 14.8541 0.608959
\(596\) 0 0
\(597\) −2.47214 −0.101178
\(598\) 0 0
\(599\) −45.9787 −1.87864 −0.939320 0.343043i \(-0.888542\pi\)
−0.939320 + 0.343043i \(0.888542\pi\)
\(600\) 0 0
\(601\) −33.5623 −1.36904 −0.684518 0.728996i \(-0.739987\pi\)
−0.684518 + 0.728996i \(0.739987\pi\)
\(602\) 0 0
\(603\) 49.8885 2.03162
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 21.4377 0.870129 0.435065 0.900399i \(-0.356726\pi\)
0.435065 + 0.900399i \(0.356726\pi\)
\(608\) 0 0
\(609\) 86.9574 3.52369
\(610\) 0 0
\(611\) −3.29180 −0.133172
\(612\) 0 0
\(613\) −10.4377 −0.421574 −0.210787 0.977532i \(-0.567603\pi\)
−0.210787 + 0.977532i \(0.567603\pi\)
\(614\) 0 0
\(615\) 36.5066 1.47209
\(616\) 0 0
\(617\) −7.52786 −0.303060 −0.151530 0.988453i \(-0.548420\pi\)
−0.151530 + 0.988453i \(0.548420\pi\)
\(618\) 0 0
\(619\) 22.3262 0.897367 0.448684 0.893691i \(-0.351893\pi\)
0.448684 + 0.893691i \(0.351893\pi\)
\(620\) 0 0
\(621\) −5.52786 −0.221826
\(622\) 0 0
\(623\) −1.81966 −0.0729031
\(624\) 0 0
\(625\) −7.41641 −0.296656
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.41641 −0.176094
\(630\) 0 0
\(631\) 23.8541 0.949617 0.474808 0.880089i \(-0.342517\pi\)
0.474808 + 0.880089i \(0.342517\pi\)
\(632\) 0 0
\(633\) 31.1803 1.23931
\(634\) 0 0
\(635\) −3.85410 −0.152945
\(636\) 0 0
\(637\) 18.7082 0.741246
\(638\) 0 0
\(639\) 24.5967 0.973032
\(640\) 0 0
\(641\) 27.0902 1.07000 0.534999 0.844853i \(-0.320312\pi\)
0.534999 + 0.844853i \(0.320312\pi\)
\(642\) 0 0
\(643\) −12.2705 −0.483902 −0.241951 0.970289i \(-0.577787\pi\)
−0.241951 + 0.970289i \(0.577787\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.74265 −0.265081 −0.132540 0.991178i \(-0.542313\pi\)
−0.132540 + 0.991178i \(0.542313\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −8.61803 −0.337767
\(652\) 0 0
\(653\) −7.67376 −0.300298 −0.150149 0.988663i \(-0.547975\pi\)
−0.150149 + 0.988663i \(0.547975\pi\)
\(654\) 0 0
\(655\) −15.4164 −0.602369
\(656\) 0 0
\(657\) 3.50658 0.136805
\(658\) 0 0
\(659\) −40.3607 −1.57223 −0.786114 0.618081i \(-0.787910\pi\)
−0.786114 + 0.618081i \(0.787910\pi\)
\(660\) 0 0
\(661\) 30.3607 1.18089 0.590447 0.807077i \(-0.298952\pi\)
0.590447 + 0.807077i \(0.298952\pi\)
\(662\) 0 0
\(663\) 14.8541 0.576886
\(664\) 0 0
\(665\) 24.0344 0.932016
\(666\) 0 0
\(667\) 21.3050 0.824931
\(668\) 0 0
\(669\) −31.7984 −1.22940
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −36.8541 −1.42062 −0.710311 0.703888i \(-0.751446\pi\)
−0.710311 + 0.703888i \(0.751446\pi\)
\(674\) 0 0
\(675\) 5.32624 0.205007
\(676\) 0 0
\(677\) −3.50658 −0.134769 −0.0673844 0.997727i \(-0.521465\pi\)
−0.0673844 + 0.997727i \(0.521465\pi\)
\(678\) 0 0
\(679\) 56.1246 2.15386
\(680\) 0 0
\(681\) 14.8541 0.569210
\(682\) 0 0
\(683\) −0.944272 −0.0361316 −0.0180658 0.999837i \(-0.505751\pi\)
−0.0180658 + 0.999837i \(0.505751\pi\)
\(684\) 0 0
\(685\) 22.3262 0.853042
\(686\) 0 0
\(687\) 42.5967 1.62517
\(688\) 0 0
\(689\) 9.74265 0.371165
\(690\) 0 0
\(691\) −24.0902 −0.916433 −0.458217 0.888841i \(-0.651512\pi\)
−0.458217 + 0.888841i \(0.651512\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −18.7082 −0.709643
\(696\) 0 0
\(697\) 20.5279 0.777548
\(698\) 0 0
\(699\) 6.23607 0.235870
\(700\) 0 0
\(701\) 48.9787 1.84990 0.924950 0.380088i \(-0.124106\pi\)
0.924950 + 0.380088i \(0.124106\pi\)
\(702\) 0 0
\(703\) −7.14590 −0.269513
\(704\) 0 0
\(705\) 5.85410 0.220478
\(706\) 0 0
\(707\) −68.5967 −2.57985
\(708\) 0 0
\(709\) −23.3262 −0.876035 −0.438018 0.898966i \(-0.644319\pi\)
−0.438018 + 0.898966i \(0.644319\pi\)
\(710\) 0 0
\(711\) −27.5410 −1.03287
\(712\) 0 0
\(713\) −2.11146 −0.0790747
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 30.2705 1.13047
\(718\) 0 0
\(719\) 39.2705 1.46454 0.732271 0.681013i \(-0.238460\pi\)
0.732271 + 0.681013i \(0.238460\pi\)
\(720\) 0 0
\(721\) −30.2705 −1.12733
\(722\) 0 0
\(723\) 32.6525 1.21436
\(724\) 0 0
\(725\) −20.5279 −0.762386
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) −39.5623 −1.46527
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 33.5623 1.23965 0.619826 0.784739i \(-0.287203\pi\)
0.619826 + 0.784739i \(0.287203\pi\)
\(734\) 0 0
\(735\) −33.2705 −1.22720
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −23.6869 −0.871337 −0.435669 0.900107i \(-0.643488\pi\)
−0.435669 + 0.900107i \(0.643488\pi\)
\(740\) 0 0
\(741\) 24.0344 0.882927
\(742\) 0 0
\(743\) 3.50658 0.128644 0.0643219 0.997929i \(-0.479512\pi\)
0.0643219 + 0.997929i \(0.479512\pi\)
\(744\) 0 0
\(745\) 3.85410 0.141203
\(746\) 0 0
\(747\) −50.2361 −1.83804
\(748\) 0 0
\(749\) −44.5623 −1.62827
\(750\) 0 0
\(751\) −6.90983 −0.252143 −0.126072 0.992021i \(-0.540237\pi\)
−0.126072 + 0.992021i \(0.540237\pi\)
\(752\) 0 0
\(753\) −67.5410 −2.46133
\(754\) 0 0
\(755\) 31.1803 1.13477
\(756\) 0 0
\(757\) −26.7426 −0.971978 −0.485989 0.873965i \(-0.661540\pi\)
−0.485989 + 0.873965i \(0.661540\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.9230 0.685958 0.342979 0.939343i \(-0.388564\pi\)
0.342979 + 0.939343i \(0.388564\pi\)
\(762\) 0 0
\(763\) 48.0689 1.74021
\(764\) 0 0
\(765\) −14.8541 −0.537051
\(766\) 0 0
\(767\) 2.59675 0.0937631
\(768\) 0 0
\(769\) −37.4164 −1.34927 −0.674635 0.738151i \(-0.735699\pi\)
−0.674635 + 0.738151i \(0.735699\pi\)
\(770\) 0 0
\(771\) 12.8541 0.462929
\(772\) 0 0
\(773\) 28.3262 1.01882 0.509412 0.860523i \(-0.329863\pi\)
0.509412 + 0.860523i \(0.329863\pi\)
\(774\) 0 0
\(775\) 2.03444 0.0730793
\(776\) 0 0
\(777\) 18.7082 0.671153
\(778\) 0 0
\(779\) 33.2148 1.19004
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −19.2705 −0.688672
\(784\) 0 0
\(785\) −28.4164 −1.01423
\(786\) 0 0
\(787\) −16.6738 −0.594355 −0.297178 0.954822i \(-0.596045\pi\)
−0.297178 + 0.954822i \(0.596045\pi\)
\(788\) 0 0
\(789\) −15.4164 −0.548839
\(790\) 0 0
\(791\) −67.6869 −2.40667
\(792\) 0 0
\(793\) 5.67376 0.201481
\(794\) 0 0
\(795\) −17.3262 −0.614498
\(796\) 0 0
\(797\) −13.7984 −0.488763 −0.244382 0.969679i \(-0.578585\pi\)
−0.244382 + 0.969679i \(0.578585\pi\)
\(798\) 0 0
\(799\) 3.29180 0.116455
\(800\) 0 0
\(801\) 1.81966 0.0642945
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −15.4164 −0.543357
\(806\) 0 0
\(807\) −63.0689 −2.22013
\(808\) 0 0
\(809\) 18.9230 0.665297 0.332648 0.943051i \(-0.392058\pi\)
0.332648 + 0.943051i \(0.392058\pi\)
\(810\) 0 0
\(811\) 30.6180 1.07514 0.537572 0.843218i \(-0.319342\pi\)
0.537572 + 0.843218i \(0.319342\pi\)
\(812\) 0 0
\(813\) 50.4508 1.76939
\(814\) 0 0
\(815\) 18.3262 0.641940
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −35.3820 −1.23635
\(820\) 0 0
\(821\) −25.8541 −0.902314 −0.451157 0.892445i \(-0.648989\pi\)
−0.451157 + 0.892445i \(0.648989\pi\)
\(822\) 0 0
\(823\) 39.5066 1.37711 0.688556 0.725183i \(-0.258245\pi\)
0.688556 + 0.725183i \(0.258245\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.0344 0.453252 0.226626 0.973982i \(-0.427231\pi\)
0.226626 + 0.973982i \(0.427231\pi\)
\(828\) 0 0
\(829\) −34.8673 −1.21099 −0.605495 0.795849i \(-0.707025\pi\)
−0.605495 + 0.795849i \(0.707025\pi\)
\(830\) 0 0
\(831\) 59.0689 2.04908
\(832\) 0 0
\(833\) −18.7082 −0.648201
\(834\) 0 0
\(835\) 28.7984 0.996609
\(836\) 0 0
\(837\) 1.90983 0.0660134
\(838\) 0 0
\(839\) 2.61803 0.0903846 0.0451923 0.998978i \(-0.485610\pi\)
0.0451923 + 0.998978i \(0.485610\pi\)
\(840\) 0 0
\(841\) 45.2705 1.56105
\(842\) 0 0
\(843\) 71.5410 2.46400
\(844\) 0 0
\(845\) −11.8541 −0.407794
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −30.2705 −1.03888
\(850\) 0 0
\(851\) 4.58359 0.157124
\(852\) 0 0
\(853\) 17.7984 0.609405 0.304702 0.952448i \(-0.401443\pi\)
0.304702 + 0.952448i \(0.401443\pi\)
\(854\) 0 0
\(855\) −24.0344 −0.821961
\(856\) 0 0
\(857\) −2.94427 −0.100574 −0.0502872 0.998735i \(-0.516014\pi\)
−0.0502872 + 0.998735i \(0.516014\pi\)
\(858\) 0 0
\(859\) −31.0557 −1.05961 −0.529804 0.848120i \(-0.677734\pi\)
−0.529804 + 0.848120i \(0.677734\pi\)
\(860\) 0 0
\(861\) −86.9574 −2.96350
\(862\) 0 0
\(863\) 25.2148 0.858321 0.429161 0.903228i \(-0.358809\pi\)
0.429161 + 0.903228i \(0.358809\pi\)
\(864\) 0 0
\(865\) −11.0000 −0.374011
\(866\) 0 0
\(867\) 29.6525 1.00705
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 30.8328 1.04473
\(872\) 0 0
\(873\) −56.1246 −1.89953
\(874\) 0 0
\(875\) 46.0344 1.55625
\(876\) 0 0
\(877\) 27.6738 0.934477 0.467238 0.884131i \(-0.345249\pi\)
0.467238 + 0.884131i \(0.345249\pi\)
\(878\) 0 0
\(879\) −22.5623 −0.761008
\(880\) 0 0
\(881\) 15.8885 0.535299 0.267649 0.963516i \(-0.413753\pi\)
0.267649 + 0.963516i \(0.413753\pi\)
\(882\) 0 0
\(883\) 5.02129 0.168980 0.0844899 0.996424i \(-0.473074\pi\)
0.0844899 + 0.996424i \(0.473074\pi\)
\(884\) 0 0
\(885\) −4.61803 −0.155234
\(886\) 0 0
\(887\) 2.03444 0.0683099 0.0341549 0.999417i \(-0.489126\pi\)
0.0341549 + 0.999417i \(0.489126\pi\)
\(888\) 0 0
\(889\) 9.18034 0.307899
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.32624 0.178236
\(894\) 0 0
\(895\) −4.23607 −0.141596
\(896\) 0 0
\(897\) −15.4164 −0.514739
\(898\) 0 0
\(899\) −7.36068 −0.245492
\(900\) 0 0
\(901\) −9.74265 −0.324575
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.61803 0.0870264
\(906\) 0 0
\(907\) 1.97871 0.0657021 0.0328511 0.999460i \(-0.489541\pi\)
0.0328511 + 0.999460i \(0.489541\pi\)
\(908\) 0 0
\(909\) 68.5967 2.27521
\(910\) 0 0
\(911\) 19.5066 0.646282 0.323141 0.946351i \(-0.395261\pi\)
0.323141 + 0.946351i \(0.395261\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −10.0902 −0.333571
\(916\) 0 0
\(917\) 36.7214 1.21265
\(918\) 0 0
\(919\) −21.4377 −0.707164 −0.353582 0.935403i \(-0.615037\pi\)
−0.353582 + 0.935403i \(0.615037\pi\)
\(920\) 0 0
\(921\) 24.9443 0.821942
\(922\) 0 0
\(923\) 15.2016 0.500368
\(924\) 0 0
\(925\) −4.41641 −0.145211
\(926\) 0 0
\(927\) 30.2705 0.994214
\(928\) 0 0
\(929\) 19.9098 0.653220 0.326610 0.945159i \(-0.394094\pi\)
0.326610 + 0.945159i \(0.394094\pi\)
\(930\) 0 0
\(931\) −30.2705 −0.992076
\(932\) 0 0
\(933\) 43.9787 1.43980
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 7.14590 0.233446 0.116723 0.993164i \(-0.462761\pi\)
0.116723 + 0.993164i \(0.462761\pi\)
\(938\) 0 0
\(939\) 19.6525 0.641334
\(940\) 0 0
\(941\) 11.9098 0.388249 0.194125 0.980977i \(-0.437813\pi\)
0.194125 + 0.980977i \(0.437813\pi\)
\(942\) 0 0
\(943\) −21.3050 −0.693785
\(944\) 0 0
\(945\) 13.9443 0.453607
\(946\) 0 0
\(947\) −23.7771 −0.772652 −0.386326 0.922362i \(-0.626256\pi\)
−0.386326 + 0.922362i \(0.626256\pi\)
\(948\) 0 0
\(949\) 2.16718 0.0703498
\(950\) 0 0
\(951\) −38.1246 −1.23628
\(952\) 0 0
\(953\) −45.3394 −1.46869 −0.734344 0.678778i \(-0.762510\pi\)
−0.734344 + 0.678778i \(0.762510\pi\)
\(954\) 0 0
\(955\) −42.1246 −1.36312
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −53.1803 −1.71728
\(960\) 0 0
\(961\) −30.2705 −0.976468
\(962\) 0 0
\(963\) 44.5623 1.43600
\(964\) 0 0
\(965\) 36.5066 1.17519
\(966\) 0 0
\(967\) 44.0000 1.41494 0.707472 0.706741i \(-0.249835\pi\)
0.707472 + 0.706741i \(0.249835\pi\)
\(968\) 0 0
\(969\) −24.0344 −0.772098
\(970\) 0 0
\(971\) 6.90983 0.221747 0.110873 0.993835i \(-0.464635\pi\)
0.110873 + 0.993835i \(0.464635\pi\)
\(972\) 0 0
\(973\) 44.5623 1.42860
\(974\) 0 0
\(975\) 14.8541 0.475712
\(976\) 0 0
\(977\) −20.4508 −0.654281 −0.327140 0.944976i \(-0.606085\pi\)
−0.327140 + 0.944976i \(0.606085\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −48.0689 −1.53472
\(982\) 0 0
\(983\) 39.2705 1.25253 0.626267 0.779608i \(-0.284582\pi\)
0.626267 + 0.779608i \(0.284582\pi\)
\(984\) 0 0
\(985\) −4.76393 −0.151791
\(986\) 0 0
\(987\) −13.9443 −0.443851
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 0 0
\(993\) 31.4164 0.996970
\(994\) 0 0
\(995\) 1.52786 0.0484365
\(996\) 0 0
\(997\) 29.9230 0.947670 0.473835 0.880614i \(-0.342869\pi\)
0.473835 + 0.880614i \(0.342869\pi\)
\(998\) 0 0
\(999\) −4.14590 −0.131170
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7744.2.a.bo.1.1 2
4.3 odd 2 7744.2.a.db.1.2 2
8.3 odd 2 484.2.a.c.1.1 2
8.5 even 2 1936.2.a.z.1.2 2
11.2 odd 10 704.2.m.d.257.1 4
11.6 odd 10 704.2.m.d.641.1 4
11.10 odd 2 7744.2.a.bp.1.1 2
24.11 even 2 4356.2.a.u.1.2 2
44.35 even 10 704.2.m.e.257.1 4
44.39 even 10 704.2.m.e.641.1 4
44.43 even 2 7744.2.a.da.1.2 2
88.3 odd 10 484.2.e.d.9.1 4
88.13 odd 10 176.2.m.b.81.1 4
88.19 even 10 484.2.e.e.9.1 4
88.21 odd 2 1936.2.a.ba.1.2 2
88.27 odd 10 484.2.e.c.245.1 4
88.35 even 10 44.2.e.a.37.1 yes 4
88.43 even 2 484.2.a.b.1.1 2
88.51 even 10 484.2.e.e.269.1 4
88.59 odd 10 484.2.e.d.269.1 4
88.61 odd 10 176.2.m.b.113.1 4
88.75 odd 10 484.2.e.c.81.1 4
88.83 even 10 44.2.e.a.25.1 4
264.35 odd 10 396.2.j.a.37.1 4
264.83 odd 10 396.2.j.a.289.1 4
264.131 odd 2 4356.2.a.t.1.2 2
440.83 odd 20 1100.2.cb.a.949.2 8
440.123 odd 20 1100.2.cb.a.1049.1 8
440.259 even 10 1100.2.n.a.201.1 4
440.299 even 10 1100.2.n.a.301.1 4
440.347 odd 20 1100.2.cb.a.949.1 8
440.387 odd 20 1100.2.cb.a.1049.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.e.a.25.1 4 88.83 even 10
44.2.e.a.37.1 yes 4 88.35 even 10
176.2.m.b.81.1 4 88.13 odd 10
176.2.m.b.113.1 4 88.61 odd 10
396.2.j.a.37.1 4 264.35 odd 10
396.2.j.a.289.1 4 264.83 odd 10
484.2.a.b.1.1 2 88.43 even 2
484.2.a.c.1.1 2 8.3 odd 2
484.2.e.c.81.1 4 88.75 odd 10
484.2.e.c.245.1 4 88.27 odd 10
484.2.e.d.9.1 4 88.3 odd 10
484.2.e.d.269.1 4 88.59 odd 10
484.2.e.e.9.1 4 88.19 even 10
484.2.e.e.269.1 4 88.51 even 10
704.2.m.d.257.1 4 11.2 odd 10
704.2.m.d.641.1 4 11.6 odd 10
704.2.m.e.257.1 4 44.35 even 10
704.2.m.e.641.1 4 44.39 even 10
1100.2.n.a.201.1 4 440.259 even 10
1100.2.n.a.301.1 4 440.299 even 10
1100.2.cb.a.949.1 8 440.347 odd 20
1100.2.cb.a.949.2 8 440.83 odd 20
1100.2.cb.a.1049.1 8 440.123 odd 20
1100.2.cb.a.1049.2 8 440.387 odd 20
1936.2.a.z.1.2 2 8.5 even 2
1936.2.a.ba.1.2 2 88.21 odd 2
4356.2.a.t.1.2 2 264.131 odd 2
4356.2.a.u.1.2 2 24.11 even 2
7744.2.a.bo.1.1 2 1.1 even 1 trivial
7744.2.a.bp.1.1 2 11.10 odd 2
7744.2.a.da.1.2 2 44.43 even 2
7744.2.a.db.1.2 2 4.3 odd 2