Properties

Label 7744.2.a.bx
Level $7744$
Weight $2$
Character orbit 7744.a
Self dual yes
Analytic conductor $61.836$
Analytic rank $1$
Dimension $2$
CM discriminant -11
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7744,2,Mod(1,7744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 484)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} + (\beta - 2) q^{5} + (\beta + 5) q^{9} + (\beta - 8) q^{15} + (\beta + 4) q^{23} + ( - 3 \beta + 7) q^{25} + ( - 3 \beta - 8) q^{27} + ( - 3 \beta + 4) q^{31} + (3 \beta + 2) q^{37} + (4 \beta - 2) q^{45} + \cdots + (3 \beta - 10) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 3 q^{5} + 11 q^{9} - 15 q^{15} + 9 q^{23} + 11 q^{25} - 19 q^{27} + 5 q^{31} + 7 q^{37} - 24 q^{47} - 14 q^{49} - 12 q^{53} - 15 q^{59} + 13 q^{67} - 21 q^{69} + 3 q^{71} + 44 q^{75} + 26 q^{81}+ \cdots - 17 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.37228
−2.37228
0 −3.37228 0 1.37228 0 0 0 8.37228 0
1.2 0 2.37228 0 −4.37228 0 0 0 2.62772 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7744.2.a.bx 2
4.b odd 2 1 7744.2.a.cn 2
8.b even 2 1 484.2.a.d 2
8.d odd 2 1 1936.2.a.s 2
11.b odd 2 1 CM 7744.2.a.bx 2
24.h odd 2 1 4356.2.a.n 2
44.c even 2 1 7744.2.a.cn 2
88.b odd 2 1 484.2.a.d 2
88.g even 2 1 1936.2.a.s 2
88.o even 10 4 484.2.e.g 8
88.p odd 10 4 484.2.e.g 8
264.m even 2 1 4356.2.a.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
484.2.a.d 2 8.b even 2 1
484.2.a.d 2 88.b odd 2 1
484.2.e.g 8 88.o even 10 4
484.2.e.g 8 88.p odd 10 4
1936.2.a.s 2 8.d odd 2 1
1936.2.a.s 2 88.g even 2 1
4356.2.a.n 2 24.h odd 2 1
4356.2.a.n 2 264.m even 2 1
7744.2.a.bx 2 1.a even 1 1 trivial
7744.2.a.bx 2 11.b odd 2 1 CM
7744.2.a.cn 2 4.b odd 2 1
7744.2.a.cn 2 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7744))\):

\( T_{3}^{2} + T_{3} - 8 \) Copy content Toggle raw display
\( T_{5}^{2} + 3T_{5} - 6 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 8 \) Copy content Toggle raw display
$5$ \( T^{2} + 3T - 6 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 9T + 12 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 5T - 68 \) Copy content Toggle raw display
$37$ \( T^{2} - 7T - 62 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( (T + 12)^{2} \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 15T + 48 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 13T - 32 \) Copy content Toggle raw display
$71$ \( T^{2} - 3T - 204 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 9T - 186 \) Copy content Toggle raw display
$97$ \( T^{2} + 17T - 2 \) Copy content Toggle raw display
show more
show less