Properties

Label 7744.2.a.cf
Level $7744$
Weight $2$
Character orbit 7744.a
Self dual yes
Analytic conductor $61.836$
Analytic rank $1$
Dimension $2$
CM discriminant -4
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7744,2,Mod(1,7744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3872)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{5} - 3 q^{9} + ( - \beta + 3) q^{13} + (2 \beta - 1) q^{17} + ( - 2 \beta + 8) q^{25} + ( - \beta - 5) q^{29} + ( - 3 \beta - 1) q^{37} + ( - 2 \beta - 5) q^{41} + ( - 3 \beta + 3) q^{45}+ \cdots + ( - 2 \beta - 9) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 6 q^{9} + 6 q^{13} - 2 q^{17} + 16 q^{25} - 10 q^{29} - 2 q^{37} - 10 q^{41} + 6 q^{45} - 14 q^{49} + 14 q^{53} + 20 q^{61} - 30 q^{65} - 12 q^{73} + 18 q^{81} + 50 q^{85} - 10 q^{89} - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0 0 −4.46410 0 0 0 −3.00000 0
1.2 0 0 0 2.46410 0 0 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7744.2.a.cf 2
4.b odd 2 1 CM 7744.2.a.cf 2
8.b even 2 1 3872.2.a.v 2
8.d odd 2 1 3872.2.a.v 2
11.b odd 2 1 7744.2.a.ce 2
44.c even 2 1 7744.2.a.ce 2
88.b odd 2 1 3872.2.a.w yes 2
88.g even 2 1 3872.2.a.w yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3872.2.a.v 2 8.b even 2 1
3872.2.a.v 2 8.d odd 2 1
3872.2.a.w yes 2 88.b odd 2 1
3872.2.a.w yes 2 88.g even 2 1
7744.2.a.ce 2 11.b odd 2 1
7744.2.a.ce 2 44.c even 2 1
7744.2.a.cf 2 1.a even 1 1 trivial
7744.2.a.cf 2 4.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7744))\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5}^{2} + 2T_{5} - 11 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{13}^{2} - 6T_{13} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2T - 11 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 6T - 3 \) Copy content Toggle raw display
$17$ \( T^{2} + 2T - 47 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 10T + 13 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 2T - 107 \) Copy content Toggle raw display
$41$ \( T^{2} + 10T - 23 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 14T + 37 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T - 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T + 6)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 10T - 167 \) Copy content Toggle raw display
$97$ \( T^{2} + 18T + 33 \) Copy content Toggle raw display
show more
show less