Properties

Label 7744.2.a.dg
Level $7744$
Weight $2$
Character orbit 7744.a
Self dual yes
Analytic conductor $61.836$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7744,2,Mod(1,7744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3872)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} + (\beta_{2} + 1) q^{5} + ( - \beta_1 + 1) q^{7} + (\beta_{2} - \beta_1 + 2) q^{9} + ( - \beta_1 + 2) q^{13} + ( - 2 \beta_{2} + \beta_1 - 5) q^{15} + ( - \beta_{2} - \beta_1) q^{17}+ \cdots + (3 \beta_{2} + 3 \beta_1 + 4) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} + 4 q^{7} + 7 q^{9} + 7 q^{13} - 16 q^{15} + q^{17} - 12 q^{19} + 4 q^{21} + 4 q^{23} + 4 q^{25} - 12 q^{27} - q^{29} + 8 q^{31} - q^{37} + 4 q^{39} - 3 q^{41} - 12 q^{43} + 19 q^{45} - 8 q^{47}+ \cdots + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 5x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.65544
2.86620
−0.210756
0 −3.05137 0 4.05137 0 2.25951 0 6.31088 0
1.2 0 0.517304 0 0.482696 0 −3.21509 0 −2.73240 0
1.3 0 2.53407 0 −1.53407 0 4.95558 0 3.42151 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7744.2.a.dg 3
4.b odd 2 1 7744.2.a.de 3
8.b even 2 1 3872.2.a.bd yes 3
8.d odd 2 1 3872.2.a.bb 3
11.b odd 2 1 7744.2.a.dd 3
44.c even 2 1 7744.2.a.df 3
88.b odd 2 1 3872.2.a.bc yes 3
88.g even 2 1 3872.2.a.be yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3872.2.a.bb 3 8.d odd 2 1
3872.2.a.bc yes 3 88.b odd 2 1
3872.2.a.bd yes 3 8.b even 2 1
3872.2.a.be yes 3 88.g even 2 1
7744.2.a.dd 3 11.b odd 2 1
7744.2.a.de 3 4.b odd 2 1
7744.2.a.df 3 44.c even 2 1
7744.2.a.dg 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7744))\):

\( T_{3}^{3} - 8T_{3} + 4 \) Copy content Toggle raw display
\( T_{5}^{3} - 3T_{5}^{2} - 5T_{5} + 3 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} - 12T_{7} + 36 \) Copy content Toggle raw display
\( T_{13}^{3} - 7T_{13}^{2} - T_{13} + 43 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 8T + 4 \) Copy content Toggle raw display
$5$ \( T^{3} - 3 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 36 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 7T^{2} - T + 43 \) Copy content Toggle raw display
$17$ \( T^{3} - T^{2} + \cdots - 43 \) Copy content Toggle raw display
$19$ \( T^{3} + 12 T^{2} + \cdots + 36 \) Copy content Toggle raw display
$23$ \( T^{3} - 4 T^{2} + \cdots + 36 \) Copy content Toggle raw display
$29$ \( T^{3} + T^{2} + \cdots + 43 \) Copy content Toggle raw display
$31$ \( T^{3} - 8 T^{2} + \cdots + 148 \) Copy content Toggle raw display
$37$ \( T^{3} + T^{2} + \cdots - 21 \) Copy content Toggle raw display
$41$ \( T^{3} + 3 T^{2} + \cdots - 63 \) Copy content Toggle raw display
$43$ \( T^{3} + 12 T^{2} + \cdots - 96 \) Copy content Toggle raw display
$47$ \( T^{3} + 8 T^{2} + \cdots - 12 \) Copy content Toggle raw display
$53$ \( T^{3} - 15 T^{2} + \cdots - 81 \) Copy content Toggle raw display
$59$ \( T^{3} - 16 T^{2} + \cdots + 96 \) Copy content Toggle raw display
$61$ \( (T + 6)^{3} \) Copy content Toggle raw display
$67$ \( T^{3} - 8 T^{2} + \cdots + 252 \) Copy content Toggle raw display
$71$ \( (T - 8)^{3} \) Copy content Toggle raw display
$73$ \( T^{3} - 14 T^{2} + \cdots + 648 \) Copy content Toggle raw display
$79$ \( T^{3} - 8 T^{2} + \cdots + 796 \) Copy content Toggle raw display
$83$ \( T^{3} + 4 T^{2} + \cdots - 1036 \) Copy content Toggle raw display
$89$ \( T^{3} - 25 T^{2} + \cdots - 379 \) Copy content Toggle raw display
$97$ \( T^{3} - 9 T^{2} + \cdots + 2189 \) Copy content Toggle raw display
show more
show less